
Hardware-rooted Trust for Secure Key Management and
Transient Trust

Jeffrey S. Dwoskin and Ruby B. Lee
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544, USA

jdwoskin@princeton.edu, rblee@princeton.edu ∗

ABSTRACT
We propose minimalist new hardware additions to a micro-
processor chip that protect cryptographic keys in portable
computing devices which are used in the field but owned
by a central authority. Our authority-mode architecture has
trust rooted in two critical secrets: a Device Root Key and
a Storage Root Hash, initialized in the device by the trusted
authority. Our architecture protects trusted software, bound
to the device, which can use the root secrets to protect other
sensitive information for many different usage scenarios. We
describe a detailed usage scenario for crisis response, where
first responders are given transient access to third-party sen-
sitive information which can be securely accessed during a
crisis and reliably revoked after the crisis is over.

We leverage the Concealed Execution Mode of our ear-
lier user-mode SP (Secret-Protecting) architecture to pro-
tect trusted code and its execution [1]. We call our new ar-
chitecture authority-mode SP since it shares the same archi-
tectural lineage and the goal of minimalist hardware roots of
trust. However, we completely change the key management
hardware and software to enable new remote trust mecha-
nisms that user-mode SP cannot support. In our new archi-
tecture, trust is built on top of the shared root key which
binds together the secrets, policy and trusted software on the
device. As a result, the authority-mode SP architecture can
be used to provide significant new functionality including
transient access to secrets with reliable revocation mecha-
nisms, controlled transitive support for policy-controlled se-
crets belonging to different organizations, and remote attes-
tation and secure communications with the authority.

Categories and Subject Descriptors: K.6.5 [Manage-
ment of Computing and Information Systems]: Security and
Protection; C.1.0 [Processor Architectures]: General;

General Terms: Security

∗This work was funded by NSF Cybertrust and DARPA
under grants CNS-0430487 and CNS-0636808 for the Se-
cureCore collaborative research project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0010 ...$5.00.

Keywords: Secure Processors, Key Management, Hard-
ware Policy Enforcement, Secret Protection (SP), Transient
Trust, Emergency Response.

1. INTRODUCTION
We present a model for trust in portable computing de-

vices, where a central authority owns many devices used
remotely. It wants to share secrets and sensitive data with
users who are given the devices, but must maintain control
over how and when these secrets and data are used. We
define transient trust as the ability to access protected in-
formation for a limited time under certain conditions. We
protect information by encryption and hashing, and hence
reduce the problem of transient trust to that of secure key
management. In addition to secrets it owns, the authority
also wants to provide access to third party secrets on its de-
vices. We define new authority-mode architecture to support
such trust in remote devices by adding a few fundamental
security features to commodity processors at very low cost.

While this trust model applies to many usage scenarios, we
use crisis response as a concrete motivating example. First
responders are provided transient access to sensitive infor-
mation while in the field. Whether it is a natural disaster,
a terrorist attack, a building fire, or a medical emergency,
first responders need immediate access to sensitive informa-
tion stored in electronic databases maintained by a central
trusted authority or by other third-party data providers.
This might include data about building occupants, medi-
cal records, floor-plans, building or city evacuation plans,
satellite maps, and other types of information. This sensi-
tive information must be protected at all times, and access
should be limited in scope and duration.

The fundamental hardware features we propose are used
to protect critical secrets (e.g., a master cryptographic key
and a root hash of a secure storage structure) and to pro-
vide a secure execution environment for the software that
operates on those critical secrets. These hardware features
can be used to support software architecture, protocols and
storage that provide important new security functionality.
Hence, the processor itself provides hardware-rooted trust
for flexible software architecture and usage models. We
leverage the secure execution environment from our previ-
ous work on the SP (Secret-Protecting) architecture [1] to
protect the intermediate data generated during the execu-
tion of trusted software. But the similarity with the original
SP ends there. Our authority-mode architecture supports
remote trust usage models with secrets and devices owned
by the authority; this cannot be done by the original SP ar-

389

jdwoskin
Typewritten Text
Jeffrey S Dwoskin and Ruby B. Lee. Hardware-rooted Trust for Secure Key Management and Transient Trust.
In Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS 2007), pages 389-400,
Alexandria, VA, October 2007.

Figure 1: Trust Model of Authority and Many SP
Devices

chitecture which only provides local trust of a user’s secrets
on his own device. We therefore refer to the original work
as user-mode SP as compared to authority-mode SP for the
new architecture described in this paper.

A primary contribution of this paper is the demonstration
of the minimal hardware roots of trust needed for important
and complex usage models involving cryptographic access
control to protected information. We show that only two
hardware registers are needed: a Device Root Key and a
Storage Root Hash for the key chain and associated policies.
We show how this can be used by a trusted authority: to
establish a remote trust relationship with a device it owns
that is used in the field (remote trust); to support owner-
controlled policy enforcement for the use of secrets on the
device (policy-controlled secrets); to provide transient access
to secrets (transient trust); and to securely delegate third
party secrets to the device user (controlled transitive trust).

The rest of the paper is organized as follows: Section 2
describes our new authority-mode SP trust model, our as-
sumptions and threat model. Section 3 describes the new
hardware features and software mechanisms in our architec-
ture. Section 4 presents a detailed crisis response scenario
that demonstrates how our architecture can be used. Sec-
tion 5 provides a security analysis of authority-mode features
and architecture. Section 6 discusses the performance and
cost of the architecture. Section 7 discusses related past
work and future work. Section 8 presents our conclusions.

2. TRUST MODEL AND THREAT MODEL

2.1 Trust Models
Our basic trust model is shown in Figure 1, where an

authority is an entity that owns many SP devices used in the
field. It establishes a trust relationship with each device and
can delegate trust to the device itself, depicted as arrows in
the figure. The authority can distribute secrets (i.e., keys in
this paper) to the devices for remote use. It specifies access
control by sending policies associated with the keys, which
the devices will enforce. Through this model, we explore
three concepts for authority-owned devices.

First remote trust, where authority-owned secrets are pro-
vided to a remote device with assurance they will be pro-
tected using the authority’s own trusted software which it
had earlier installed in the device. The trust relationship is
based on a shared secret, binding together the authority’s

Figure 2: Trust Model Expanded to Include Third
Parties

secrets with its trusted software and allowing the device to
remotely attest to the authority that it is operating cor-
rectly. Second, policy-controlled secrets are the binding of
secrets with access control policy for remote enforcement,
and their protection from illegitimate modification or sepa-
ration from each other when stored on the device. We en-
sure that secrets are only used in authorized ways and only
through controlled interfaces. Third is transient trust, al-
lowing the authority to provide secrets to remote users on a
temporary basis, with reliable revocation mechanisms. The
authority might set limits on use, change policies, or remove
secrets entirely. Such policy enforcement and changes must
be guaranteed.

We will also explore a fourth concept, controlled transi-
tive trust, expanding our trust model to include third party
secrets and sensitive information. In Figure 2, we show
a number of third parties who each have a trust relation-
ship established with the authority. The authority and each
third party first agree on security policies to be used by the
authority’s devices to access third-party confidential data.
The authority installs these policies in the devices, which
can be trusted to enforce them. The authority thus enables
transitive trust from the third parties to individual devices,
by establishing policy-controlled temporary relationships be-
tween them, depicted as arrows with dashed lines. During
operation, the devices can communicate directly with the
third parties and access secrets and data for which they will
also enforce the associated policies.

2.2 Assumptions and Threat Model
Our threat model covers operational threats and not de-

velopmental threats. Hence, we assume that the devices
are manufactured correctly in a trusted factory and that
the hardware is free from defects. The authority will re-
ceive the devices from the factory with all processor and
system features intact and unmodified. Similarly, while we
do not assume the regular system software is correct, we
assume that the authority’s trusted software is carefully de-
signed and well-tested to ensure that it is correct and has
no software security vulnerabilities. Furthermore, we as-
sume strong cryptography for our encryption and hashing,
which is computationally infeasible to break.

We assume that the processor chip is the physical security
boundary for the hardware. If the adversary has physical

390

possession of the device, he can probe buses on the board
but cannot probe inside the processor chip without rendering
it unusable. A microprocessor chip is fabricated with many
physical layers and processing steps. Because of its com-
plexity, probing of this chip is extremely likely to destroy
circuitry unless very expensive equipment is used. Hence,
any registers or cache memory on-chip are assumed to be
safe from physical threats of observation or modification.

We only consider the design of the authority-mode SP
client device in this paper; we assume the trusted authority
has secure systems where it can store its secrets and run
its own software with perfect secrecy and access control.
Similarly, we assume the authority has a secure depot at
which it can initialize new SP devices. Also, while we protect
the confidentiality and integrity of the secrets and sensitive
data, we do not defend against Denial of Service attacks.

Users are trusted to protect their authentication tokens
(e.g. passwords) when logging in to an SP device. They are
expected to log out promptly when done with the session.
The adversary has no authorized access and will not be able
to login to the device.

The threats for authority-mode remote trust models are
quite different than those for a local trust model like in user-
mode SP [1], where the user is also the owner of the device
and has physical possession of the device. The devices and
secrets are authority-owned, so while the local users are in-
tentionally given access to secrets, the users can also po-
tentially be adversaries. Even legitimate users must not be
allowed to exceed their authorization and access to secrets,
or to use secrets in unauthorized ways.

The main threats we consider are violations of the confi-
dentiality and integrity of keys that the authority supplies
to the user of the authority-mode SP device. We consider
both software and physical attacks. Attackers can launch
software attacks on code and data, and network attacks by
observing or modifying traffic on the public networks. Code
and data on disk and in memory, in transit across the net-
work or buses, as well as the processor state at interrupts,
are all vulnerable to spoofing, splicing, and replay attacks.
Spoofing introduces false data and modifications; splicing re-
arranges real data; and replay reintroduces previously used
data that had been modified, deleted or revoked.

We also consider physical threats since an SP device can
be lost or stolen. An attacker may have temporary physical
access to the device, returning it without evidence of tam-
pering, or “permanent” access on obtaining a lost or stolen
device. Thus, this adversary can mount physical attacks on
both the hardware and software. Any code or data stored on
the hard disk or in main memory, belonging to the operat-
ing system or an application, is fully accessible to the adver-
sary. By modifying the operating system, he can access and
manipulate the full state of an application, including the
processor registers during interrupt handling. Main mem-
ory can also be accessed by physically probing the memory
bus, or by performing rogue DMA operations. We note that
the Trusted Platform Module (TPM) [4] does not protect
against physical attacks.

3. ARCHITECTURE

3.1 Hardware-Rooted Trust
A major contribution of this paper is to show that very

little hardware support is needed to enhance secure key man-

Table 1: New Instructions
Instruction Description

New Authority Mode SP Instructions
GR TO DRK Sets Device Root Key register from GRs.
DRK LOCK Sets DRK Lock register to 1, disabling

GR TO DRK instruction.
GR TO SRH Sets Storage Root Hash register from GRs.
SRH TO GR Reads the Storage Root Hash register into GRs.
DRK DERIVE Derives a key from DRK by computing a keyed

hash over a nonce and constants.
Instructions for providing a Concealed Execution Mode for TSM code
BEGIN CEM Enter CEM for next instruction.
END CEM End CEM for next instruction.
SECURE STORE Secure store from GR to memory.
SECURE LOAD Secure load to GR from memory.

agement and enable transient trust. Only two new processor
registers containing hardware roots of trust, and a secure
BIOS for bootup are needed to support this trust model.
Figure 3 shows the architecture of a processor chip with
these components added in bold and darkly shaded. We use
a 128-bit non-volatile register to store the Device Root Key
(DRK), and a 256-bit non-volatile register to store the Stor-
age Root Hash (SRH). There is also a 1-bit DRK Lock flag
which prevents software from writing to the DRK. We have
a secure BIOS to allow initialization of the DRK and to lock
it before loading the regular BIOS or other software.

These two registers may only be accessed by a Trusted
Software Module (TSM), whose execution is protected by
the hardware by a Concealed Execution Mode (CEM). CEM
prevents leaking of intermediate values during TSM execu-
tion as described below.

In Figure 3, the white components represent a typical un-
modified processor, and the lightly shaded components show
the features added to provide the concealed execution envi-
ronment for trusted software modules. New instructions to
access the new registers, derive keys from the DRK, and pro-
vide the Concealed Execution Mode are listed in Table 1.

3.2 Trusted Software Modules
In our architecture, a Trusted Software Module (TSM)

is the only software able to directly access the DRK and
SRH root secrets stored on the device. This high assurance,
trusted software module is provided by the trusted authority
who initializes the DRK and SRH in the device at its depot.
The authority trusts its TSM to use the secrets correctly
and to maintain confidentiality.

The DRK is used to sign the TSM by inserting a keyed-
hash into each cache line of code, upon installation of this
trusted code on the device. Later, the code is dynamically
verified for integrity during TSM execution (Code Integrity
Checking), which we describe in detail below.

Both the trusted software and the authority’s secrets will
be bound to the DRK, and consequently to each other.
Changing the TSM on the device, by anyone other than
the authority, requires replacing the DRK, since knowledge
of the DRK is necessary to sign new code. This will simulta-
neously cut off all access to the secrets bound to the previous
DRK. Therefore the secrets and the TSM that operates on
them are bound together and to the device itself.

3.3 Secure Execution Environment
To provide protection of the TSM, we leverage the secure

execution environment introduced with the user-mode SP

391

Figure 3: Hardware Features for Authority Mode SP Architecture (shaded)

architecture [1]. We summarize this as two parts: Code
Integrity Checking (CIC) and Concealed Execution Mode
(CEM). While the hardware support provided for key man-
agement in the original user-mode SP architecture does not
meet our needs, the hardware support it provides for a se-
cure execution environment for trusted software is entirely
appropriate, and we describe this briefly below. This section
describes the lightly shaded areas in Figure 3, and the last
four instructions in Table 1.

The combination of dynamic Code Integrity Checking of
the TSM with the protection of intermediate data in regis-
ters, caches and memory, provides a secure execution en-
vironment for executing trusted software that does not leak
the values of the DRK and SRH registers, nor the keys they
protect.

The first component, Code Integrity Checking, ensures
that the TSM code cannot be modified during storage, trans-
mission and execution. It also ensures that no other code
can be used as a TSM with access to authority secrets. TSM
code is signed by computing a keyed cryptographic hash over
each cache-line of code, keyed with the DRK, and embed-
ding the hash into the code itself. For example, a 64-byte
cache line would contain 48-bytes of TSM code, followed by
a 16-byte hash (e.g., using AES-CBC-MAC as the hash al-
gorithm [5]). When the trusted authority installs the TSM,
it adds these hashes using the DRK. Without access to the
DRK, no other party can sign TSM code.

During execution, the TSM code is verified as it is loaded
into the on-chip Level-2 (L2) cache in the microprocessor
chip. The keyed hash is recomputed over the cache line
of instructions and compared to the stored value, causing
any modifications to be detected dynamically during pro-
gram execution — and not just upon program launch as in
other schemes [4] [6]. If the hash check passes, the embed-
ded hashes are replaced with no-op instructions so as not to
affect execution. Within the processor chip, the hardware
keeps track of TSM code using cache-line tags added to the
L2 and L1 caches. Verified instruction cache-lines are tagged
as “Secure Instructions” and are read-only. The tag is car-
ried over from L2 cache to the L1 instruction-cache, and is
checked when fetching TSM code for execution.

The second component is Concealed Execution Mode (CEM),
which protects the confidentiality and integrity of data used
by the TSM during execution. Intermediate data is stored
in the general registers of the processor, in the caches and
in main memory.

Intermediate data that could leak secret information is ac-

tively protected by the TSM by using special Secure Load
and Secure Store instructions to read and write such data.
In general, within the security perimeter of the microproces-
sor chip, secure data is tagged in on-chip data cache lines
with a “Secure Data” tag. When such a data cache line has
to be evicted from the on-chip L2 cache, it is first encrypted
and hashed with the DRK. Similarly, the contents of a data
cache line are only hash-verified and decrypted when it has
to be brought on-chip into the L2 cache. This happens on
only a few Secure Load instructions which miss in both the
L1 and L2 on-chip caches. Secure data in cache can only
be read or written to by TSM code in CEM. Any accesses
to “Secure Data” tagged cache lines with normal load and
store instructions will cause them to be evicted (encrypted
and hashed), and then reloaded in encrypted form.

The contents of general registers must also be protected
during a processor interrupt. The executing CEM thread
can be interrupted at any time for a hardware interrupt
or software exception. The OS interrupt handler then saves
the process’s register state to memory before executing other
code. When an interrupt occurs during CEM, the hardware
protects the registers before turning control over to the OS
interrupt handler. It encrypts the registers as a single plain-
text chunk using the DRK, splits up the resulting ciphertext,
and places it back in the registers. It computes a hash over
the resulting ciphertext which is stored in the processor (in
the Int Hash register shown in Figure 3), along with the
memory address of the next CEM instruction (saved in the
Int Addr register). These are checked automatically to re-
sume CEM when the interrupt is completed. With the con-
tents of the general registers thus protected, the hardware
then allows the OS interrupt handler to assume control to
save and restore the register state without being able to read
the (plaintext) contents.

The state of the processor, whether executing in CEM or
not, and whether a thread in CEM has been suspended, is
indicated by the State bits in Figure 3. More details on
CEM and the hardware support for a secure execution en-
vironment can be found in [1].

3.4 Secure Storage for Keys
Building off of the secure execution environment provided

by CEM, the TSM in turn is responsible for protecting per-
sistent secrets (e.g. the key-chain) from unauthorized access.
For this protection, we can create secure local storage, a data
structure that provides hierarchically encrypted and hashed
storage of keys.

392

(a) Full tree

(b) Item structure

Figure 4: Secure local storage hierarchy

This secure storage structure incorporates a Merkle hash-
tree mechanism [3], storing the root hash in the Storage Root
Hash (SRH) register on-chip. The root hash, updated only
by the TSM, ensures integrity of the keys against malicious
modifications by untrusted software. Since the root hash is
stored on-chip, the secure storage is also protected against
replay attacks — changes to the secure storage structure are
made permanent, including deletions. Stale (deleted) data
cannot be replayed since the root hash will no longer match.

Replay-resistent secure storage can provide transient trust
for the authority’s keychain. At the authority’s request,
the TSM can permanently revoke access to certain keys by
deleting them from the secure storage. The secure stor-
age also contains nodes for access control policies associated
with keys, to be enforced by the TSM. This provides policy-
controlled secrets, which the authority can use to cut off ac-
cess when a predetermined condition is met. This provides
another means of revocation that is effective even when the
authority cannot communicate with the remote device.

The basic tree structure of the secure local storage is
shown in Figure 4(a). All non-leaf nodes are directory nodes
(DNs) and store special meta-data about their child nodes.
Leaf nodes can store not only keys, but also data, addi-
tional meta-data, and access control policies. A typical item
is shown in Figure 4(b) and is actually a collection of nodes:
a directory node and nodes which then contain keys or data
along with their respective policies and meta-data.

The secure storage structure is built on top of insecure OS
storage facilities and must be protected from attacks while
on disk or in main memory. Each node in the structure is en-
crypted with a derived key, generated from the DRK using a
nonce stored in its parent DN. A different derived key, using
the same nonce, is used to generate a keyed-hash (MAC) of

ID Type Nonce MAC Size Location
001 1 813547 0110. . . 1101 6144 nodes/item1.dat
002 1 718232 0001. . . 0101 9216 nodes/dn2.dat
003 1 128203 0100. . . 1100 6144 nodes/item3.dat
004 2 519025 1010. . . 0011 27648 nodes/policy4.dat
005 3 251092 0101. . . 0001 13824 nodes/meta5.dat

Figure 5: Directory Node Structure

the contents of the node. The resulting Merkle hash-tree is
incorporated into the secure storage structure by storing the
MAC in the DN. When data is first added, a random nonce
is chosen; it is then saved to regenerate the same derived
key for later decryption and integrity verification.

The DN structure, in Figure 5, also contains meta-data
identifying the nodes, their type, size and location on disk.
A chain of IDs can trace a path through the tree to reach
a particular node, such as “0:2:7” for node 7 in Figure 4(a).
When the TSM reads a DN, it can use the type field to
quickly identify any policy nodes that apply to a key or
data node without decrypting each node. Once found, poli-
cies are enforced by the TSM and are inherited hierarchically
from parent to child; conflicting policies are enforced by al-
lowing policy nodes lower in the tree to override general
policy set by a parent or ancestral node. Any descriptive
or application-specific meta-data (e.g. cipher type, creation
date) can be stored in a separate meta-data node.

Data nodes and key nodes are distinguished with differ-
ent types (not shown in Figure 5) so that specific policy can
be set to control keys, preventing them from being leaked
as data. The policy node can contain an Access Control
List (ACL), indicating which users are allowed access to the
data or key, and under what conditions. The policy may in-
clude generic read/write permissions, limits on the number
of accesses, expiration dates, or type-specific access control,
such as which queries can be made to a database. Policy
nodes can also contain general configuration for the author-
ity’s software, such as user customizable settings. The
format for policy files is determined by the authority’s soft-
ware and can be implementation specific. Secrets used for
user authentication are similarly stored in the tree.

Figure 6 shows a simple storage tree with only one level
of items. At the root of the tree is a special DN, the Root
Directory Node (RDN). Unlike all other DNs, the RDN does
not have a parent to store its directory entry. Instead, the
TSM is hard-coded with a location to find its nonce and
size (both unencrypted), and the DRK-encrypted contents
of the node. The root MAC is stored in the on-chip SRH
register, where it is protected from attacks.

3.5 Derived Keys
Secrecy of the secure storage is rooted in the DRK. Since

the DRK is a critical secret used to maintain the trust re-
lationship with the authority, it must never be revealed
to any software on the device. Instead the TSM derives
new keys from the DRK, using a new processor instruction,
DRK derive (see Table 1). This instruction performs a cryp-
tographic hash function to combine the DRK with a value
or nonce provided by the TSM. These derived keys are used
to encrypt the nodes of the secure storage structure. As a
result, the keys in secure storage are bound to the device and
cannot be read (decrypted) or modified (without detection)
by non-TSM software.

393

Figure 6: Simple storage hierarchy with Root Di-
rectory Node

For more general purpose use of derived keys, the value
provided to the hardware can include a constant that will
distinguish keys used for different purposes, e.g., communi-
cations versus storage. It also includes one or more nonces
to make each key unique. When the software needs to regen-
erate a particular key, such as an encryption key for secure
storage, the nonce can be saved with the data and reused
by the TSM to obtain the derived key. Similarly, if the au-
thority and the device need to produce the same key, they
can exchange nonces and generate the same derived key —
the authority deriving the key from its copy of the DRK in
a secure environment. On the device, the TSM is respon-
sible for protecting the secrecy of the derived keys that it
produces, however the constants are not secret.

As an example, Table 2 shows that derived keys for stor-
age will be derived using a constant, CStorage, and a different
nonce for each storage node. An additional set of constants,
CEnc and CMAC , distinguish keys used for encryption and
hashing of storage nodes. Derived keys that will be used as
session keys for secure communications and remote attesta-
tion can be derived using a different initial constant, CComm,
along with nonces that ensure freshness from the Authority,
NA, and the device, ND. Additional constants, CA and CD,
provide different keys for each direction of communication.

Table 2: Derived Keys
Storage key for encryption of node i:

KSiEnc = MACDRK [CStorage, CEnc, NSi]
Storage key for hash of node i:

KSiMAC = MACDRK [CStorage, CMAC , NSi]
Communication key for Authority to Device:

KA→D = MACDRK [CComm, CA, NA, ND]
Communication key for Device to Authority:

KD→A = MACDRK [CComm, CD, ND, NA]

3.6 Remote Attestation and Secure Commu-
nications

For an authority-owned device, remote attestation is the
process of proving to the authority that the device still has
possession of the correct DRK and is still running the cor-
rect TSM software, which properly uses and protects its
keys. Remote attestation is necessary when establishing

A (Authority), D (Device)
Initiate communications, generate nonces & send challenges:
D → A: IDD ; send device’s ID to initiate communications
A → D: NA ; random 128 bit nonce
D → A: ND ; random 128 bit nonce

Generate derived keys for communication:
; A,D: KA→D = MACDRK [CComm, CA, NA, ND]
; A,D: KD→A = MACDRK [CComm, CD, ND, NA]

Send responses:
A → D: ResponseA = MACKA→D [NA, ND]
D → A: ResponseD = MACKD→A [ND, NA]

Verify responses:
; A: MACKD→A [ND, NA] =? ResponseD

; D: MACKA→D [NA, ND] =? ResponseA

Figure 7: Challenge-response protocol for generat-
ing session keys and attestation

communication channels between the authority and its de-
vice in the field. Note that this is a different and more
lightweight “attestation” than that used in TPM-based sys-
tems, where remote attestation means verifying the integrity
(cumulative hashes) of every level of software running on the
machine, up through the desired application level.

To establish communications, the parties first need a se-
cure channel over the public untrusted network. This is done
by generating a session key which can encrypt and hash all
messages. The session key will be a derived key based on the
DRK, which is a secret shared only by the authority and this
particular SP device. No other parties, except the authority
and the device’s TSM, can produce the correct session key.
Consequently, using a correct derived key proves knowledge
of the DRK, so setting up a working secure channel implic-
itly serves as remote attestation.

Since no other party knows the shared secret, attestation
also serves as a form of mutual authentication, in the sense
that the device and authority both know that the other has
the same DRK. The authority knows it is communicating
with a good TSM on a device that it can trust. It can send
new secrets and policy, knowing they will be properly pro-
tected by its own signed TSM. It is also assured that any
data or messages sent back from the device, through this
secure communication channel, must have been generated
by its TSM. Similarly, the device has authenticated the au-
thority, so it can incorporate new keys or policies sent over
this secure channel.

Secure communications can be established between the de-
vice and the authority using the challenge-response protocol
given in Figure 7. Either side can initiate the protocol, dur-
ing which both sides select a nonce and transmit it in plain-
text. The nonces are combined with the constant prefixes to
generate the derived session keys, KA→D and KD→A. Once
these keys are established, the parties each send a Message
Authentication Code (MAC)—a keyed hash—of the com-
bined nonces, using their session key. Verifying these MACs
confirms that no man-in-the-middle or replay attack has oc-
curred, and that the authority and device share the same
keys. This verification requires each side to generate both of
the uni-directional keys (in the middle section of Figure 7),
using one key to send messages, and another to decrypt and
check received messages. These session keys can be used for
secure communications, using a standard protocol such as
TLS-PSK [2], which initiates the TLS protocol using pre-
shared keys.

394

3.7 Device Initialization
The authority initially establishes trust in a device at its

trusted depot, using physical access to install the DRK. This
new secret is generated randomly by the authority for each
device and is therefore independent of the manufacturer, any
other device, and any past use of the device. The authority
saves a copy of the DRK in its own database along with the
device’s ID. It then boots the device into the secure BIOS
by setting a hardware jumper. The secure BIOS bypasses
normal bootup and executes a verified initialization routine
from its ROM, which executes entirely within the security
perimeter of the processor chip, using only on-chip caches.
The routine saves the new secret in the on-chip DRK regis-
ter. The device is rebooted, removing the jumper, and from
then on skips the initialization routine. Instead the secure
BIOS executes only the DRK Lock instruction before pass-
ing control to the regular system bios for a normal bootup.

Then the TSM must be signed with the new DRK. This
can be done on the authority’s secure computers, where the
verified TSM code resides. The signing process computes
hashes over each cache line using the DRK, and stores them
in empty spaces left by the compiler. The signed TSM, and
other system code, can be copied to the disk or flash storage
on the device.

Finally, the authority initializes the secure storage struc-
tures; for this paper, this stores the keys and their associated
usage policies and meta-data. The authority must also set
up user authentication and authorization data, storing user
passwords, biometric data, or users’ cryptographic keys and
specifying what privileges each user has. All of these policies
and secrets can be updated in the field via secure communi-
cations.

4. USAGE SCENARIOS
Our new remote trust model is applicable to many dif-

ferent scenarios, where an authority entity wants to extend
trust to remote devices it owns which are used in the field.
The authority could be a crisis response entity with devices
used by first responders, firemen, policeman, etc. The au-
thority could also be a military organization with remote
devices used by soldiers in the field. The authority could be
a bank with devices used by customers as personal ATMs for
dispensing electronic cash and accepting deposits into bank
accounts. The authority could even be a cell phone net-
work provider allowing users to download software to their
phones while having trusted network-access software. Be-
low, we provide a detailed usage scenario for crisis response.

For crisis response, we provide transient acess to keys
which enable access to protected (encrypted) data when the
crisis starts, and revoke access to those keys when the crisis
ends. At all times, we provide confidentiality of these keys.
Even if a device is lost or stolen, the confidentiality of the
keys, and hence the sensitive data they protect, must be
maintained.

First responders can use their device (e.g., secure PDA)
for both critical and non-critical applications. Non-critical
applications include e-mail, web browsing, instant messag-
ing, voice chat, etc. These do not use the TSM and may
involve off-the-shelf or downloaded software that must not
put at risk the sensitive data made available to crisis respon-
ders. For critical applications, sensitive data will be needed,
such as firefighters accessing building plans and occupant

information, or paramedics accessing medical records when
they get to the scene of an accident. For these situations,
the authority will distribute secrets and access policies in
advance of a major crisis.

The sensitive information on the device will only be avail-
able to the responder through the controlled interfaces of the
TSM after authenticating. For example, this might mean
that the paramedic can read a patient’s allergies and med-
ical history but not access the psychiatric portion of his
medical record. Rate limiting might also be employed, so
a paramedic can access a few, but not hundreds of records
at any one time.

4.1 Preparation
The authority makes access control decisions in advance

for many likely crisis scenarios so the response can be quick
when a crisis does occur. For example, to give the fire-
fighter access to floor plans and building occupants, data
for all buildings in a city should be prepared in advance.
When a crisis occurs, the city’s crisis response authority can
decide which data to make available based on which parts
of the city are affected. The city authority will negotiate
access rights with building owners and hospitals in advance
and decide how to delegate rights to individual responders
using devices it will distribute. It forms trust relationships
with each of these third parties in advance, setting up a cer-
tificate authority (e.g. using X.509 certificates [8]) so it can
specify access rights and allow devices and third parties to
authenticate each other during the crisis.

When a crisis begins, the authority will create and sign
certificates for each device, tagged with a crisis ID and a
reasonable expiration. It then communicates with each de-
vice, which performs remote attestation that it still has the
correct DRK and DRK-signed TSM. It then distributes the
necessary keys, along with the certificates for third party
data and their associated access policies.

4.2 Crisis Operation
During the crisis, responders can contact third party data

sources directly, via their devices, to retrieve sensitive data
which they are pre-authorized for by the authority’s certifi-
cates. Since the certificates will be stored securely on the
device by the authority and signed by it, this is sufficient to
authenticate the device to a third party. However for more
complicated scenarios, the authority can give each device its
own public/private key pair which it can use to authenticate
directly to the third party.

Devices can also contact the authority during a crisis to
obtain additional keys and access rights while in the field.
Unanticipated circumstances will surely occur, requiring ac-
cess to data beyond what was pre-authorized. For example,
“need-to-know” may be determined in the field, for respon-
ders to have access to additional data. Alternatively, some
additional data can be sent in advance for offline enforce-
ment, to be revealed by the TSM only if needed.

4.3 Revocation post-crisis
Access to sensitive information must be revoked after a

crisis has ended. This is accomplished through a combina-
tion of three revocation mechanisms. First, all secrets given
to the device are policy-controlled and will include limits
on use, including a maximum number of accesses and/or an
expiration date. So as not to cut off access while the cri-

395

sis is still going on, these restrictions must necessarily give
a wide safety margin. This first line of defense is effective
even when the device is operating off-line.

Second, the authority can directly cut off access by con-
tacting each device to delete secrets and modify the stored
policies. The TSM will confirm that the revocation was
successful and that the secure storage’s hash-tree and SRH
register were updated. The TSM can also report back what
accesses had been made during the crisis. Knowing that ac-
cesses will be audited will provide a disincentive for abuse
by authorized users.

Third, access to new secrets and data will be cut off, both
from the authority and third parties. The authority will
contact each third party and report that a particular crisis
ID is no longer valid, or will revoke certain certificates. Any
certificates that specified this ID will no longer be accepted
for access, while general certificates for day-to-day use are
still available. A new crisis ID can be used for the next crisis
or another phase of the same crisis.

5. SECURITY ANALYSIS

5.1 Protection of Authority-mode Registers
The security provided by our architecture is rooted in

trust in the new processor features. Since the processor chip
is in our physical security perimeter, our new authority-
mode registers can only be accessed through software in-
structions we define. We do not define any instructions to
read the DRK register, and only allow writing by someone
with physical possession of the device using the secure BIOS;
therefore the DRK register contents can never be observed
outside the processor or copied to another device and can
never be modified except under secure BIOS execution. Sim-
ilarly, only TSM software can use instructions for accessing
the SRH register and for deriving keys from the DRK. Since
the TSM is the authority’s own correct, trusted software,
no other software can ever observe or modify the SRH or
generate derived session keys from the DRK.

5.2 Protection of TSM
The dynamic Code Integrity Checking for the TSM in-

structions ensures that it remains unmodified throughout
its execution. This defends against dynamic hostile code
insertion attacks, in addition to static changes to code on
disk. Also, Concealed Execution Mode (CEM) ensures that
secure intermediate data and general registers, during TSM
execution, cannot be observed or modified without detec-
tion. If a modification is detected, the processor raises an
exception; the TSM operation will be aborted and processor
registers cleared. These mechanisms guarantee that a TSM
will be protected during its execution, similar to user-mode
SP [1].

However, our authority-mode architecture provides addi-
tional trust guarantees over user-mode. Since TSM code
can only be hashed with the DRK, which is only known
outside of hardware by the authority, no new TSM code can
be added to a device by an adversary without changing the
DRK. Thus, the authority can check that its unmodified
TSM is running by having the device attest to having the
same DRK value shared with the authority. If an adversary
tries to modify TSM code or install new TSM code by replac-
ing the DRK, the derived keys generated by the new TSM,
based on this new DRK, would be different and the device

will be unable to attest itself. Also any data encrypted by
the authority’s TSM will no longer be accessible. As a re-
sult, data written by any TSM is bound to that TSM. No
other software is trusted with the authority’s data or with
policy enforcement, so integrity checking is only necessary
for the TSM.

5.3 Protection of Persistent Secure Data
All data from the authority that starts out under control

of the TSM will remain secure as long as the TSM handles
it properly on the device. The authority has written and
tested the TSM to ensure this property, making use of the
persistent secure storage structure. In secure storage, confi-
dentiality is protected with DRK-derived keys so that stored
data can only be read by the TSM. Integrity is based on a
hash tree rooted in the on-chip SRH register. That register
can only be modified by the TSM, which is continuously in-
stalled as long as the DRK is unchanged. If the TSM were
replaced, a new TSM could access the old value of the SRH,
however, this value is meaningless without access to decrypt
the data in the rest of the local secure storage structure.
While the new TSM could change the SRH, the DRK can
never be changed back to the original value, except by the
authority. This new adversarial TSM will be useless, since
the device can no longer attest the old DRK to the authority.

5.4 Remote Attestation and Communications
Remote trust also involves secure communication and at-

testation, which is based on the authority and device shar-
ing the DRK secret. Remote device attestation (and mutual
authentication) requires each side to prove knowledge of the
DRK through the challenge-response protocol. Hence, our
authority-mode protocol enables the authority to know that
the device still has the shared DRK, and enables the device
to know that it is speaking to the correct authority, i.e., one
that knows the shared DRK. Random nonces prevent re-
play attacks on the exchange and are also used to generate
session keys for communication. Man-in-the-middle attacks
are not possible since no other party can generate the correct
derived keys, to be used as valid session keys.

Once the authority knows its original DRK is still in the
device and was used to correctly generate derived session
keys, used for setting up the secure communications channel,
it can be certain that only the TSM code that it originally
signed with this DRK is running on the device and tak-
ing part in the communications. In fact, stronger than the
integrity-checking done only on program launch by TPM-
based systems [4], both user-mode and authority-mode SP
devices provide dynamic Code Integrity Checking during the
fetching of cache lines for the TSM throughout its execution.
It is safe for the authority to transmit new data to the TSM,
knowing it is continuously integrity-checked and protected
by the DRK.

5.5 Policy-controlled Secrets
In our architecture, keys and policies cannot be separated

without modifying or deleting nodes from the secure storage
tree, which requires modifying other nodes, and ultimately
modification of the root hash stored in the SRH. More gen-
erally, spoofing attacks on secure storage would include de-
liberate modification or insertion of data into the structure.
The integrity checking will detect any such changes, and the
MAC entries themselves cannot be spoofed without knowl-

396

edge of a DRK-derived key. If nodes could be rearranged,
duplicated or removed, it would also affect the application
of access control policies. Since each node or subtree is
self-contained and independently hashed, parts of it can be
reused at lower levels. However, the parent of each node is
a DN that lists its children and their MACs in order. Any
such splicing of the secure storage tree structure would be
detected when the MAC of the parent is checked. Since the
TSM performs checks all the way to the root SRH which is
on-chip and safe from attack, it is guaranteed to detect any
illegitimate changes. Therefore, the authority knows that an
access policy stored on the device cannot be modified and
will be enforced by the dynamically-verified TSM.

5.6 Transient Trust
Replay attacks on memory and disk storage are a threat

to revocation, which is essential for transient trust. This is
especially critical for data in the persistent secure storage
tree. If the entire storage tree can be replayed, then any
policy updates or revocation of keys or data performed by
the authority could be undone. However, since the root hash
is stored on-chip, out of reach of any adversaries, this is not
possible; previous trees will not be valid. The only way to
add or remove data from the tree is through the TSM, but
the TSM will only make legitimate modifications specified
by the authority during secure communications or through
previously set policy.

5.7 Transitive Trust
This is based on the TSM’s use of secrets and the au-

thority’s trust relationships established with the device and
the third parties. These components are all individually as-
sured, so the TSM’s implementation of transitive trust will
be maintained.

5.8 Other Issues
In addition to the TSM, we expect that other trustwor-

thy system software (e.g., a security kernel and secure I/O
drivers) will be present to assist with user authentication and
secure display of data to the user. These are orthogonal is-
sues to our design and therefore not discussed in this paper.
Without trusting these mechanisms, the authority’s TSM
cannot guarantee that data displayed to the user will not be
copied by some software. Therefore we place some respon-
sibility on the user — a reasonable tradeoff since users can
always reveal the data once it is outside of the device. The
user should not intentionally login and access data when he
knows the system to be physically compromised, and should
not replace the system software and continue to access the
TSM. The TSM and policies should set up controlled inter-
faces to release data to the user in as safe a way as possible,
mitigating any risk from data leaked while being displayed.
Only data being displayed is vulnerable in this way. Other
secrets accessed by the TSM or stored securely on the device
will not be leaked.

Our threat model currently does not defend against denial
of service attacks, which prevents a guarantee of availabil-
ity. Attacks on the TSM code, TSM execution, commu-
nications protocol, secure storage structure, etc, will all be
detectable, but currently we have not defined recovery mech-
anisms. This is acceptable under our threat model, but less
acceptable for a device relied upon in a crisis. While our ar-
chitecture does not require trust in system software to pro-

vide remote attestation or protect the authority’s secrets,
the best defense for availability is to install a secure OS that
can protect itself from untrusted applications and remote
exploits, and for the user to maintain physical control of the
device.

Our architecture uses strong ciphers and 128-bit symmet-
ric keys and random nonces, which should be adequate. Im-
plementations could easily be changed to increase these sizes
or use different algorithms if necessary. By using different
constants depending on the protocol used, derived keys are
always made specific to their purpose, helping to prevent
attacks from key re-use in different protocols.

6. COST AND PERFORMANCE ANALYSIS

6.1 Cost
The authority-mode architecture is implemented in hard-

ware with only four new registers (totaling 576 bits) plus 2
state bits and 1 lock bit (see Figure 3). The four registers
are the new 256-bit SRH register and 128-bit DRK regis-
ter of authority-mode, and the 64-bit Int Addr and 128-bit
Int Hash registers to provide the Concealed Execution Mode
common to both user-mode SP and authority-mode SP. For
on-chip caches, an insignificant 1-bit cache tag per L1 cache
line and 2-bit cache tag per L2 cache line is added. An
encryption/hashing engine is added at the chip boundary.
Nine new instructions are defined, and a secure BIOS is re-
quired. This represents a tiny and insignificant cost for any
commodity microprocessor or SOC (System-on-Chip), and
even for many embedded processors.

6.2 Performance
Non-TSM software is basically unaffected by the new hard-

ware since it will never trigger CEM protection or access the
new registers or instructions. Furthermore, the security of
authority-mode TSMs and secrets does not depend on lim-
iting other software or verifying the entire software stack.
Therefore, there is a negligible performance impact for sys-
tem software and applications that do not use the TSM.

TSM software will incur a slight performance penalty (see
[1]), but this penalty only impacts the small module where
security is critical and a slight delay is acceptable. One po-
tential source of delay is for Code Integrity Checking (CIC)
of TSM code and Concealed Execution Mode (CEM) check-
ing for secure loads and stores. These both occur only at
the cache-memory boundary upon the rare L2 cache miss,
where the miss penalty is already several hundred cycles for
typical microprocessors. Hence, some tens of extra cycles
for hardware hash computation and symmetric-key decryp-
tion or encryption is not going to cause much performance
degradation. Once inside the L2 and L1 caches, accessing
secure instructions and data proceeds as fast as before, since
the checking of the 1- or 2-bit tags for a cache line (that has
already been verified) is very fast.

CIC checking inserts additional no-op instructions into the
instruction stream for each cache line. These will cause some
degradation in the efficiency of the instruction-fetch process
(since a fraction of instructions fetched are useless), but in
a modern out-of-order processor, this should have insignif-
icant effect on execution throughput. CEM interrupt pro-
tection requires the encryption and hashing of the general
registers, but interrupts are relatively infrequent compared
to the other factors.

397

The final component affecting performance is the design
of the TSM software itself. Rather than directly access-
ing unprotected secrets, the TSM will perform additional
cryptographic operations to retrieve secrets. For example,
navigating the storage tree requires traversing nodes in the
tree, each of which requires generating two derived keys in
hardware which are used to check hashes and decrypt the
node with software operations. Additional data may have
to be retrieved from disk, involving the OS to access the file
system, therefore causing additional system calls and mem-
ory/disk accesses, and possibly affecting cache behavior. We
have designed the secure storage tree navigation to predomi-
nantly use symmetric-key operations which are significantly
faster than asymmetric-key operations. Therefore we expect
the effect of these additional operations to be small while
providing significant additional security. Furthermore, the
storage integrity checking requires Merkle tree hash opera-
tions only on the persistent secure storage tree, not on the
whole memory. This results in very significant reduction in
performance overhead.

7. RELATED WORK

7.1 Past Work
We adopt the CIC and CEM architectural features of the

user-mode SP architecture [1], however the user-centric local
trust model and the master secrets in SP could not serve our
needs for remote trust, secrets bound to policies, transient
trust guarantees, and controlled transitive trust. Our new
authority-mode SP architecture requires and provides these
features which are not possible in user-mode SP. We provide
a detailed comparison, including an attack on user-mode SP,
in the Appendix.

Many other security architectures have been developed to
protect execution of software on local or remote devices, such
as XOM [9], AEGIS [10], and others [11] [12] [13]. None ad-
dress all of our goals, especially enabling transient trust and
secrets bound to policies. Past work, including TPM [4], did
not protect remote execution without relying on permanent
factory-installed secrets or verifying and trusting the operat-
ing system, and in fact, the entire software stack. Past pro-
posals also used longer public-private keys and more compu-
tationally complex public-key cryptography, while we focus
on scenarios where the authority has initial access to the
device before it is used remotely, allowing us to use shorter
symmetric keys and much simpler symmetric-key ciphers in
the hardware encryption engine.

TPM also has a different threat model and assumptions.
It does not handle physical attacks nor does it provide dy-
namic verification of code integrity, both of which are ad-
dressed by SP architecture (both user-mode and authority-
mode). Physical attacks are very likely for mobile devices
that are easily lost, captured or stolen – TPM’s threat model
considers only software attacks. TPM provides only static
verification of code upon program launch, and does not de-
fend against dynamic hostile code insertion or modification
like we do with dynamic Code Integrity Checking on each
fetch of an instruction line into the caches on the micropro-
cessor chip. Instead, TPM relies on measuring and verifying
the entire software stack upon program launch. This is un-
necessarily limiting (and time consuming) since it requires
keeping track of many variations of installed software and
verifying the security of large and complex software in order

to make even the most basic guarantees of policy enforce-
ment and use of secrets. Furthermore, we expect lower per-
formance using the TPM for all accesses to protected data.
Critical key operations occur on the slower co-processor chip
rather than the processor itself, over a slow bus interface,
and require slower and more costly asymmetric key compu-
tations.

7.2 Future Work
There are a number of orthogonal issues raised in the dis-

cussion of remote trust that we hope to address in future
work. These include providing a secure display that the
authority TSM can trust to output data, and secure key-
board or biometric input for secure user authentication to
the TSM. These are separate issues from the design and
protection of the TSM itself, and will likely require a combi-
nation of trusted hardware and carefully designed software
drivers, and probably a trusted OS kernel; a trusted Virtual
Machine Monitor (VMM) might provide reliable and secure
input and display. Past work in this area from desktop com-
puters might be leveraged for use in portable devices. An-
other orthogonal issue is attestation by the device to the
local user. This attestation would assure the user that he
is using a good device and viewing secrets provided by the
real authority rather than from an adversary.

In future work we will also study dual-mode devices, where
the user-centric usage model in user-mode SP is coupled with
our authority-mode, on the same device. A single device
could be used for protection of both the user’s own secrets
and the authority’s secrets; a single dual-mode processor
chip can be manufactured that works in either mode or in
both modes simultaneously.

8. CONCLUSIONS
We have developed a new architecture for remote trust

in portable devices, where a central authority can provide
trusted software that will faithfully enforce its policies on
securely stored secrets and data. Our authority-mode SP
architecture has a very small set of low-complexity hardware
features that can be quite easily added to any microproces-
sor or SOC. We have demonstrated an important example,
using this architecture for crisis response where access is
critical but security and privacy of sensitive data must be
maintained. We provide multiple revocation mechanisms,
enabling reliable transient access to this data. Our new per-
sistent secure storage structure, anchored by a root hash
(SRH) stored in the processor chip, permits reliable revoca-
tion of secrets and associated policies.

A significant contribution of this paper is our demonstra-
tion that enhanced security can be provided, including re-
mote and transient trust, with only two new hardware reg-
isters, the Device Root Key (DRK) and the Storage Root
Hash (SRH) registers. Combined with the Concealed Exe-
cution Mode and derived keys, the trusted software can use
these secrets to provide robust guarantees remotely to the
owner of the device (which we call the authority).

While we have used our earlier user-mode SP architec-
ture as a reference design for simple but highly effective
processor-based security, we have made many significant
new contributions. On one hand, we verified and lever-
aged some of the architectural features proposed by the
user-mode SP architecture, such as the processor features
for providing Code Integrity Checking (CIC) and Concealed

398

Execution Mode (CEM) for trusted software. On the other
hand, we have provided much stronger trust propositions,
solving some open problems in user-mode SP. In particular,
our authority-mode SP architecture provides remote trust,
transient trust, policy-bound secrets and controlled transi-
tive trust—none of which are achievable with the user-mode
SP architecture. All this new secure functionality is possible
with only two root secrets, the Device Root Key (DRK) and
Storage Root Hash (SRH), without increasing the complex-
ity over the user-mode SP hardware architecture.

In conclusion, this paper demonstrates that simple hard-
ware features can be added to provide fundamental hardware
anchors that enable more secure systems, without compro-
mising performance, cost or usability. Designing security
into the core hardware and software of commodity comput-
ing and communications products is a goal of our larger Se-
cureCore collaborative research project [14]. We hope that
the authority-mode SP architecture presented in this pa-
per stimulates further research in the design and verification
of security-aware processors and hardware-rooted trust that
can enhance application and system security.

9. REFERENCES
[1] R. Lee, P. Kwan, J.P. McGregor, J. Dwoskin, Z.

Wang. “Architecture for Protecting Critical Secrets in
Microprocessors,” Proceedings of the 32nd
International Symposium on Computer Architecture
(ISCA 2005), pp. 2-13, June 2005.

[2] IETF Network Working Group. “Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS),”
Request for Comments: 4279.
http://www.ietf.org/rfc/rfc4279.txt

[3] R. C. Merkle. “Protocols for public key cryptography,”
IEEE Symposium on Security and Privacy, pp.
122Ű134, 1980.

[4] Trusted Computing Group. “Trusted Platform Module
(TPM) Specifications,” April 2006.
https://www.trustedcomputinggroup.org/specs/TPM

[5] National Institute of Standards and Technology,
“Advanced Encryption Standard,” Federal Information
Processing Standards Publication, FIPS Pub 197, Nov.
2001.

[6] Intel, “LaGrande Technology Architectural Overview,”
http://www.intel.com/technology/security/,
September 2003.

[7] National Institute of Standards and Technology. “The
Keyed-Hash Message Authentication Code (HMAC),”
Federal Information Processing Standards Publication,
FIPS Pub 198.
http://csrc.nist.gov/publications/fips/fips198/fips-
198a.pdf

[8] “ITU-T Recommendation X.509, The Directory:
Authentication Framework”, Int’l Telecomm. Union,
Geneva, 2000; ISO/IEC 9594-8.

[9] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. Mitchell, and M. Horowitz. “Architectural
Support for Copy and Tamper Resistant Software,”
Proc. of the 9th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-IX)., pp. 168-177, 2000.

[10] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas. “AEGIS: Architecture for Tamper-Evident

and Tamper-Resistant Processing,” Proc. of the 17th
Int’l Conf. on Supercomputing (ICS), 2003.

[11] R. M. Best, “Preventing Software Piracy with
Crypto-Microprocessors,” Proc. of IEEE Spring
COMPCON Š80, pp. 466-469, 1980.

[12] T. Gilmont, J.D. Legat, and J. J. Quisquater “An
Architecture of Security Management Unit for Safe
Hosting of Multiple Agents,” Proc. of the Int’l
Workshop on Intelligent Communications and
Multimedia Terminals, pp. 79-82, Nov 1998.

[13] D. Kirovski, M. Drinic, and M. Potkonjak. “Enabling
Trusted Software Integrity,” Proc. of the 10th Int’l
Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X),
October 2002.

[14] “SecureCore for Trustworthy Commodity Computing
and Communications,” collaborative project by
Princeton University, Naval Postgraduate School and
University of Southern California. Project home-page
at http://palms.ee.princeton.edu/securecore/

APPENDIX
A. DIFFERENCES WITH USER-MODE SP

ARCHITECTURE
The previous SP [1] architecture, which we call user-mode

SP in this paper, was designed to protect a user’s own se-
crets and provide portability of his secrets across multiple
devices. Portability requires decoupling trust in the device
from trust in the user’s secrets (e.g., his encrypted keychain).
The user can trust multiple devices independently of where
his secrets are stored, and could even access his secrets on
an unprotected device. It is the user’s own responsibility to
choose where it is safe to access his secrets.

We found the CIC and CEM architectural features of the
user-mode SP architecture to be effective for providing a se-
cure execution environment for trusted code and have used
them in our new authority-mode SP architecture. How-
ever, the key-chain and master secrets (User Master Key,
UMK, and Device Master Key, DMK) defined and protected
by user-mode SP, while suitable for a device owned by the
user, could not provide the functionality we need for a device
owned by a remote authority and not the local user. This
functionality included mechanisms providing remote trust,
secrets bound to policies, transient trust guarantees, and
controlled transitive trust that our new authority-mode SP
architecture provides. Before describing each of these key
differences in turn, we first point out an attack on SP.

In user-mode SP, the user must maintain physical control
of the device to be sure his trusted software module (TSM)
has not been replaced by an adversary who gets temporary
access and replaces the Device Master Key (DMK). An at-
tacker can change the DMK to DMK’, and install a malicious
TSM’ using DMK’. In user-mode SP, the user will not be
able to detect this — he may unknowingly enter his keys for
use on a device where an adversary had installed a malicious
TSM’. In our authority-mode SP architecture, the authority
can always detect whether his good TSM is still running,
hashed by the Device Root Key (DRK), which is the secret
the authority shares with the device. By enabling a trusted
authority to check the DRK on the device, authority-mode
SP thwarts the attack of some adversary changing the TSM.

399

Remote trust requires some attestation ability. User-mode
SP has no device attestation capability because no mecha-
nism exists to verify the contents of the DMK. In contrast,
our authority-mode architecture makes remote attestation
possible due to the shared secret (DRK) between the au-
thority and the device. Our new DRK derive instruction
allows generation of derived keys for new communication
sessions, based on this shared DRK secret. The generation
of a correct new session key, according to the communica-
tions protocol implemented by the TSM using the DRK,
proves to the authority that the device still has the correct
DRK.

Without binding secrets to a TSM, policy-controlled ac-
cess is also not guaranteed. In user-mode SP, the user’s
secrets can be accessed on any device with any TSM the
user chooses to trust. Therefore, there is no guarantee that
any policies will be enforced. In our authority-mode SP ar-
chitecture, we bind secrets to policies in our new persistent
secure storage structure, and the authority can ensure that
its good TSM is still running, hence ensuring that the access
control policy specified will be implemented and cannot be
violated by the local user.

User-mode SP does not provide transient trust reliably,
since this requires permanent revocation of keys. While
user-mode SP takes care of register replay attacks during
interrupts and exceptions of the TSM, it does not provide
protection from memory or storage replay attacks using a
key that has been revoked (i.e., deleted from the user’s key-
chain structure). Since user-mode SP does not bind the
user’s secrets (e.g., his keys) to one device, intentionally al-
lowing the user’s key-chain to be usable on multiple devices,
one device will not know of changes or accesses made on a
different device.

Without a hardware root hash (as in our authority mode’s

SRH register), no changes can be made permanent, even on
a single device — the entire key-chain in user-mode SP can
be copied at first and later replayed after changes are made.
Because any hashes for integrity protection can be replayed
along with the data, a user-mode SP device cannot tell that
the data is stale and had been modified. Integrity checking
will still ensure arbitrary modifications are not made, but
any keys that were once valid will always be valid, making
revocation impossible unless the user’s root secret (the User
Master Key in user-mode SP) is changed. Our authority-
mode SP architecture provides reliable revocation of keys
in the persistent secure storage structure, hence enabling
transient trust.

Lastly, user-mode SP does not provide transitive trust be-
cause there is no remote trust mechanism at all. While a
third party can give secrets to the user directly, it has no
guarantee from another trusted party (e.g., an authority)
that its secrets will be protected or used in a particular way.
The third party can also supply its own TSM with its se-
crets directly to a user-mode SP device, but again has no
guarantee that this TSM will not be modified or replaced
by either an adversary or the device user himself. Further-
more, a user-mode SP device only protects confidentiality
of secrets with the user’s root secret, so the third party’s
secrets cannot be hidden from the user.

In summary, while our authority-mode SP architecture
leverages the minimalist design philosophy and some fea-
tures of user-mode SP, it provides significant new security
features and defends against some potential attacks on user-
mode SP. However, it requires the device user to trust an
authority to set up his device in a trusted depot, and does
not support portability of the user’s key chain across multi-
ple devices or privacy of the user’s keys from the authority.
Some of these are areas for future research.

400

