Multimedia signal processing, or media processing [1], is the processing of digital multimedia information in a programmable processor. Digital multimedia information includes visual information like images, video, graphics, and animation, audio information like voice and music, and textual information like keyboard text and handwriting. With general-purpose computers processing more multimedia information, multimedia instructions for efficient media processing have been defined for the instruction set architectures (ISAs) of microprocessors. Meanwhile, digital processing of video and audio data in consumer products has also resulted in more sophisticated multimedia processors. Traditional digital signal processors (DSPs) in music players and recorders and mobile telephones are becoming increasingly sophisticated as they process multiple forms of multimedia data, rather than just audio signals. Video processors for televisions and video recorders have become more versatile as they have to take into account high-fidelity audio processing and real-time three-dimensional (3-D) graphics animations. This has led to the design
of more versatile media processors, which combine the capabilities of DSPs for efficient audio and signal processing, video processors for efficient video processing, graphics processors for efficient 2-D and 3-D graphics processing, and general-purpose processors for efficient and flexible programming. The functions performed by microprocessors and media processors may eventually converge. In this chapter, some of the key innovations in multimedia instructions added to microprocessor ISAs are described, which have allowed high-fidelity multimedia to be processed in real-time on ubiquitous desktop and notebook computers. Many of these features have also been adopted in modern media processors and DSPs.

Subword Parallelism

Workload characterization studies on multimedia applications show that media applications have huge amounts of data parallelism and operate on lower-precision data types. A pixel-oriented application, for example, rarely needs to process data that is wider than 16 bits. This translates into low computational efficiency on general-purpose processors where the register and datapath sizes are typically 32 or 64 bits, called the width of a word. Efficient processing of low-precision data types in parallel becomes a basic requirement for improved multimedia performance. This is achieved by partitioning a word into multiple *subwords*, each subword representing a lower-precision datum. A *packed data type* will be defined as data that consists of multiple subwords packed together. These subwords can be processed in parallel using a single instruction, called a *subword-parallel instruction*, a *packed instruction*, or a *microSIMD instruction*. SIMD stands for “single instruction multiple data,” a term coined by Flynn [2] for describing very large parallel machines with many data processors, where the same instruction issued from a single control processor operates in parallel on data elements in the parallel data processors. Lee [3] coined the term microSIMD architecture to describe an ISA—where a single instruction operates in parallel on multiple subwords within a single processor.

Figure 39.1 shows a 32-bit integer register that is made up of four 8-bit subwords. The subwords in the register can be pixel values from a grayscale image. In this case, the register is holding four pixels with values 0xFF, 0x0F, 0xF0, and 0x00. The same 32-bit register can also be interpreted as two 16-bit subwords, in which case, these subwords would be 0xFF0F and 0xF000. The subword boundaries do not correspond to a physical boundary in the register file; they are merely how the bits in the word are interpreted by the program. If we have 64-bit registers, the most useful subword sizes will be 8-, 16-, or 32-bit words. A single register can then accommodate 8, 4, or 2 of these different sized subwords, respectively.

To exploit subword parallelism, packed parallelism, or microSIMD parallelism in a typical word-oriented microprocessor, new subword-parallel or packed instructions are added. (The terms “subword-parallel,” “packed,” and “microSIMD” are used interchangeably to describe operations, instructions and architectures.) The parallel processing of the packed data types typically requires only minor modifications to the word-oriented functional units, with the register file and the pipeline structure remaining unchanged. This results in very significant performance improvements for multimedia processing, at a very low cost (see Fig. 39.2).

Typically, packed arithmetic instructions such as *packed add* and *packed subtract* are first introduced. To support subword parallelism efficiently, other classes of new instructions such as subword permutation instructions are also needed. Typical subword-parallel instructions are described in the rest of this chapter, pointing out interesting arithmetic or architectural features that have been added to support this style of microSIMD parallelism. In the subsection on “Packed Add and Packed Subtract Instructions,” *packed add* and *packed subtract* instructions described are, as well as several variants of these. These instructions can all be implemented on the basic Arithmetic Logical Units (ALUs) found in programmable processors, with minor modifications. Such partitionable ALUs are described in the subsection on “Partitionable ALUs.” *Saturation arithmetic*—one of the most interesting outcomes of
subword-parallel additions—for efficiently handling overflows and performing in-line conditional operations is also described. A variant of packed addition is the packed average instruction, where unbiased rounding is an interesting associated feature. Another class of packed instructions that can use the ALU is the parallel compare instruction where the results are the outcomes of the subword comparisons.

The subsection on “Packed Multiply Instruction” describes how packed integer multiplication is handled. Also described are different approaches to solving the problem of the products being twice as large as the subword operands that are multiplied in parallel. Although subword-parallel multiplication instructions generally require the introduction of new integer multiplication functional units to a microprocessor, the special case of multiplication by constants, which can be achieved very efficiently with packed shift and add instructions that can be implemented on an ALU with a small preshifter, is described.

The subsection on “Packed Shift and Rotate Operations” describes packed shift and packed rotate instructions, which perform a superset of the functions of a typical shifter found in microprocessors, in parallel, on packed subwords.

The subsection on “Subword Permutation Instruction” describes a new class of instructions, not previously found in programmable processors that do not support subword parallelism. These are subword permutation instructions, which rearrange the order of the subwords packed in one or more registers. These permutation instructions can be implemented using a modified shifter, or as a separate permutation function unit (see Fig. 39.3).

To provide examples and illustrations, the following first and second generation multimedia instructions in microprocessor ISAs are used:

- IA-64 [4,5], MMX [6,7], and SSE-2 [8] from Intel,
- MAX-2 [9,10] from Hewlett-Packard,

![FIGURE 39.2 MicroSIMD parallelism uses packed data types and a partitionable ALU.](image)

![FIGURE 39.3 Typical datapaths and functional units in a programmable processor.](image)
Historical Overview

The first generation multimedia instructions focused on subword parallelism in the integer domain. These are described and compared in [14]. The first set of multimedia extensions targeted at general-purpose multimedia acceleration, rather than just graphics acceleration, was MAX-1, introduced with the PA-7100LC processor in January 1994 [15,16] by Hewlett-Packard. MAX-1, an acronym for “multimedia acceleration extensions,” is a minimalist set of multimedia instructions for the 32-bit PA-RISC processor [17]. An application that clearly illustrated the superior performance of MAX-1 was MPEG-1 video and audio decoding with software, at real-time rates of 30 frames per second [18]. For the first time, this performance was made possible using software on a general-purpose processor in a low-end desktop computer. Until then, such high-fidelity, real-time video decompression performance was not achievable without using specialized hardware. MAX-1 also accelerated pixel processing in graphics rendering and image processing, and 16-bit audio processing.

Next, Sun introduced VIS [19], which was an extension for the UltraSparc processors. VIS was a much larger set of multimedia instructions. In addition to packed arithmetic operations, VIS provided very specialized instructions for accessing visual data, stored in predetermined ways in memory.

Intel introduced MMX [6,7] multimedia extensions in the dominant Pentium microprocessors in January 1997, which immediately legitimized the valuable contribution of multimedia instructions for ubiquitous multimedia applications.

MAX-2 [9] was Hewlett-Packard’s multimedia extension for its 64-bit PA-RISC 2.0 processors [10]. Although designed simultaneously with MAX-1, it was only introduced in 1996, with the PA-RISC 2.0 architecture. The subword permutation instructions introduced with MAX-2 were useful only with the increased subword parallelism in 64-bit registers. Like MAX-1, MAX-2 was also a minimalist set of general-purpose media acceleration primitives.

MIPS also described MDMX multimedia extensions and Alpha described a very small set of MVI multimedia instructions for video compression.

The second generation multimedia instructions initially focused on subword parallelism on the floating-point (FP) side for accelerating graphics geometry computations and high-fidelity audio processing. Both of these multimedia applications use single-precision, floating-point numbers for increased range and accuracy, rather than 8-bit or 16-bit integers. These multimedia ISAs include SSE and SSE-2 [8] from Intel and 3DNow! [11,12] from AMD. Finally, the PowerPC’s AltiVec [13] and the Intel-HP IA-64 [4,5] multimedia instruction sets are comprehensive integer and floating-point multimedia instructions. Today, every microprocessor ISA and most media and DSP ISAs include subword-parallel multimedia instructions.

Packed Add and Packed Subtract Instructions

Packed add and packed subtract instructions are similar to ordinary add and subtract instructions, except that the operations are performed in parallel on the subwords of two source registers. Add (nonpacked) and packed add operations are shown in Figs. 39.4 and 39.5, respectively. The packed add in Fig. 39.5 uses source registers with four subwords each. The corresponding subwords from the two source registers are summed up, and the four sums are written to the target register. A packed subtract operation operates similarly.

Partitionable ALUs

Very minor modifications to the underlying functional units are needed to implement packed add and packed subtract instructions. Assume that we have an ALU with 32-bit integer registers, and we want to extend this ALU to perform a packed add that will operate on four 8-bit subwords in parallel.

1 3DNow! may be considered as having two versions. In June 2000, 25 new instructions were added to the original 3DNow! specification. In this text, this extended 3DNow! architecture will be considered.
To achieve this, the carry propagation across the subword boundaries has to be blocked. Because each subword is interpreted as being independent of the neighboring subwords, by stopping the carry bits from affecting the neighboring subwords, the packed add operation can be realized.

In Fig. 39.6, the packed integer register $R_a=[0xFF|0x0F|0xF0|0x00]$ is being added to another packed register $R_b=[0x00|0xFF|0xFF|0x0F]$. The result is written to the target register R_c. In an ordinary add instruction, the overflows generated by the addition of the second and third subwords will propagate into the first two sums. The correct sums, however, can be achieved easily by blocking the carry bit propagation across the subword boundaries, which are spaced 8-bits apart from one another.

As shown in Fig. 39.7, a 2-to-1 multiplexer placed at the subword boundaries of the adder can be used to control the propagation or the blocking of the carry bits. If the instruction is a packed add, the multiplexer control is set such that a zero is propagated into the next subword. If the instruction is an ordinary add, the multiplexer control is set such that the carry from the previous stage is propagated. By placing such a multiplexer at each subword boundary and adding the control logic, partitionable ALUs are achieved at insignificant cost.

By using 3-to-1 multiplexers instead of 2-to-1 multiplexers, we can also implement packed subtract instructions. The multiplexer control is set such that:

- For packed add instructions, zero is propagated into the next stage.
- For packed subtract instructions, one is propagated into the next stage.
• For ordinary add/subtract instructions, the carry/borrow bit from the previous stage is propagated into the next stage.

When a zero is propagated through the boundary into the next subword in the packed add instructions, we are essentially ignoring any overflow that might have been generated. Similarly, when a one is propagated through the boundary into the next subword in the packed subtract instructions, we are essentially ignoring any borrow that might have been generated. Ignoring overflows is equivalent to using modular arithmetic in add operations. Although modular arithmetic can be necessary or useful, other occasions arise when the carry bits should not be ignored and have to be handled differently.
Handling Parallel Overflows

Overflows in packed add/subtract instructions can be handled in the following ways:

- The overflow may be ignored (modular arithmetic).
- A flag bit may be set if at least one overflow is generated.
- Multiple flag bits (i.e., one flag bit for each addition operation on the subwords) may be set.
- A software overflow trap can be taken.
- Saturation arithmetic: the results are limited to a certain range. If the outcome of the operation falls outside this range, the corresponding limiting value will be the result.

Most nonpacked integer add/subtract instructions choose to ignore overflows and perform modular arithmetic. In modular arithmetic, the numbers wrap around from the largest representable number to the smallest representable number. For example, in 8-bit modular arithmetic, the operation 254+2 will give a result of 0. The expected result, 256, is larger than the largest representable number, which is 255, and therefore is wrapped around to the smallest representable number, which is 0.

In multimedia applications, modular arithmetic frequently gives undesirable results. If the numbers in the previous example were pixel values in a grayscale image, by wrapping the values from 255 down to 0, white pixels would have converted into black ones. One solution to this problem is to use overflow traps, which are implemented in software.

A flag bit is an indicator bit that is set or cleared depending on the outcome of a particular operation. In the context of this discussion, an overflow flag bit is an indicator that is set when an add instruction generates an overflow. Occasions arise where the use of the flag bits are desirable. Consider a loop that iterates many times and in each iteration, executes many add instructions. In this case, it is not desirable to handle overflows (by taking overflow trap routines) as soon as they occur, because this would negatively impact the performance by interrupting the execution of the loop body. Instead, the overflow flag can be set when the overflow occurs, and the program flow continues as if the overflow did not occur. At the end of each iteration, however, this overflow flag can be checked and the overflow trap can be executed if the flag turns out to be set. This way, the program flow would not be interrupted while the loop body executes.

An overflow trap can be used to saturate the results so that the aforementioned problems would not occur. A result that is greater than the largest representable value is replaced by that largest value. Similarly, a result that is less than the smallest representable value is replaced by that smallest value. One problem with this solution will be its negative effects to performance. An overflow trap is handled in software and may take many clock cycles to resolve. This can be acceptable only if the overflows are infrequent. For nonpacked add/subtract instructions, generation of an overflow on a 64-bit register by adding 8-bit quantities will be rare, so a software overflow trap will work well. This is not the case for packed arithmetic operations. Causing an overflow in an 8-bit subword is much more likely than in a 64-bit register. Also, since a 64-bit register may hold eight 8-bit subwords, multiple overflows can occur in a single execution cycle. In this case, handling the overflows by software traps could easily negate any performance gains from executing packed operations. The use of saturation arithmetic solves this problem.

Saturation Arithmetic

Saturation arithmetic implements in hardware the work done by the overflow trap described above. The results falling outside the allowed numeric ranges are saturated to the upper and lower limits by hardware. This can handle multiple parallel overflows efficiently, without operating system intervention. Two types overflows for arithmetic operations are:

- A positive overflow occurs when the result is larger than the largest value in the defined range for that result
- A negative overflow occurs when the result is smaller than the smallest value in the defined range for that result
If saturation arithmetic is used in an operation, the result is clipped to the maximum value in its defined range if a positive overflow occurs, and to the minimum value in its defined range if a negative overflow occurs.

For a given instruction, multiple saturation options may exist, depending on whether the operands and the result are treated as signed or unsigned integers. For an instruction that uses three registers (two for source operands and one for the result), there can be eight different saturation options. Each one of the three registers can be treated as containing either a signed or an unsigned integer, which gives 2^3 possible combinations. Not all of the eight possible saturation options are equally useful. Only three of the eight possible saturation options are used in any of the multimedia ISAs surveyed:

a) **sss** (signed result–signed first operand–signed second operand): In this saturation option, the result and the two operands are all treated as signed integers. The most significant bit is considered the sign bit. Considering n-bit subwords, the result and operands are defined in the range $[-2^{n-1}, 2^{n-1} - 1]$. If a positive overflow occurs, the result is saturated to $2^n - 1$. If a negative overflow occurs, the result is saturated to -2^{n-1}. In an addition operation that uses the **sss** saturation option, since the operands are signed numbers, a positive overflow is possible only when both operands are positive. Similarly, a negative overflow is possible only when both operands are negative.

b) **uuu** (unsigned result–unsigned first operand–unsigned second operand): In this saturation option, the result and the two operands are all treated as unsigned integers. Considering n-bit integer subwords, the result and the operands are defined in the range $[0, 2^n - 1]$. If a positive overflow occurs, the result is saturated to $2^n - 1$. If a negative overflow occurs, the result is saturated to zero. In an addition operation that uses the **uuu** saturation option, since the operands are unsigned numbers, negative overflow is not a possibility; however, for a subtraction operation using the **uuu** saturation, negative overflow is possible, and any negative result will be clamped to zero as the smallest value.

c) **uus** (unsigned result–unsigned first operand–signed second operand): In this saturation option, the result and the first operand are treated as unsigned numbers, and the second operand is treated as a signed number. Although this may seem like an unusual option, it proves useful because it allows the addition of a signed increment to an unsigned pixel. It also allows negative numbers to be clipped to zero. Its implementation has logical symmetry to the **sss** case.

In addition to the efficient handling of overflows, saturation arithmetic also facilitates several other useful computations. For instance, saturation arithmetic can also be used to clip results to arbitrary maximum or minimum values. Without saturation arithmetic, these operations could normally take up to five instructions for each pair of subwords. That would include instructions to check for upper and lower bounds and then to perform the clipping. Using saturation arithmetic, however, this effect can be achieved in as few as two instructions for all the pairs of packed subwords.

Saturation arithmetic can also be used for in-line conditional execution, reducing the need for conditional branches that can cause significant performance degradations in pipelined processors. Some examples are the **packed maximum** and **packed absolute difference** operations shown in Figs. 39.8(a, b).

Table 39.1 contains examples of operations that can be performed using saturation arithmetic [15]. All of the instructions in the table use three registers. The first register is the target register. The second and the third registers hold the first and the second operands respectively. **PADD** and **PSUB** denote **packed add** and **packed subtract** instructions. The three-letter field after the instruction mnemonic specifies which saturation option is to be used. If this field is empty, modular arithmetic is assumed. All the examples in the table operate on 16-bit integer subwords.

Table 39.2 contains a summary of the register and subword sizes and the saturation options found in different multimedia ISAs. Table 39.3 is a summary of the **packed add/subtract** instructions in several multimedia ISAs. The first column contains descriptions of common packed instructions. The symbols a_i and b_i represent the corresponding subwords from the two source registers. The symbol c_i represents the corresponding subword in the target register.
The IA-642 architecture has 64-bit integer registers. Packed add and packed subtract instructions are supported for subword sizes of 1, 2, and 4 bytes. Modular arithmetic is defined for all subword sizes whereas the saturation options (sss, uuu, and uus) exist for only 1 and 2-byte subwords.

The PA-RISC MAX-2 architecture also has 64-bit integer registers. Packed add and packed subtract instructions operate on only 2-byte subwords. MAX-2 instructions support modular arithmetic, and the sss and uus saturation options.

The IA-32 MMX architecture defines eight 64-bit registers for use by the multimedia instructions. Although these registers are referred to as separate registers, they are aliased to the registers in the FP data register stack. Supported subword sizes are 1, 2, and 4 bytes. Modular arithmetic is defined for all subword sizes whereas the saturation options (sss and uus) exist for only 1- and 2-byte subwords.

The IA-32 SSE-2 technology introduces a new set of eight 128-bit FP registers to the IA-32 architecture. Each of the 128-bit registers can accommodate four single-precision (SP) or two double-precision (DP) numbers. Moreover, these registers can also be used to accommodate packed integer data types. Integer subword sizes can be 1, 2, 4, or 8 bytes. Modular arithmetic is defined for all subword sizes whereas the saturation options (sss and uus) exist for only 1- and 2-byte subwords.

The PowerPC AltiVec architecture has thirty-two 128-bit registers for multimedia instructions. Packed add/subtract instructions are supported for 1-, 2-, and 4-byte subwords. Modular or saturation arithmetic (uuu or sss) can be used, although sss saturation is only supported for packed add.

2All the discussions in this chapter consider Intel’s IA-64 as the base architecture. Evaluations of the other architectures are generally carried out by comparisons to IA-64.
TABLE 39.1 Examples of Operations That are Facilitated by Saturation Arithmetic

<table>
<thead>
<tr>
<th>Operation</th>
<th>Instruction Sequence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip a_i to an arbitrary maximum value v_{max}, where $v_{max} < 2^{15} - 1$.</td>
<td>PADD.sss R_s, R_a, R_b</td>
<td>R_c contains the value $(2^{15} - 1 - v_{max})$. If $a_i > v_{max}$, this operation clips a_i to $2^{15} - 1$ on the high end.</td>
</tr>
<tr>
<td>Clip a_i to an arbitrary minimum value v_{min}, where $v_{min} > -2^{15}$.</td>
<td>PSUB.sss R_s, R_a, R_b</td>
<td>R_c contains the value $(-2^{15} + v_{min}).$ If $a_i < v_{min}$ this operation clips a_i to -2^{15} at the low end.</td>
</tr>
<tr>
<td>Clip a_i to within the arbitrary range $[v_{min}, v_{max})$, where $-2^{15} < v_{min} < v_{max} < 2^{15} - 1$.</td>
<td>PADD.sss R_s, R_a, R_b</td>
<td>R_c contains the value $(2^{15} - 1 - v_{max}).$ This operation clips a_i to $2^{15} - 1$ on the high end.</td>
</tr>
<tr>
<td>Clip the signed integer a_i to an unsigned integer within the range $[0, v_{max}]$, where $0 < v_{max} < 2^{15} - 1$.</td>
<td>PSUB.uus R_s, R_a, R_b</td>
<td>This operation clips a_i to v_{max} at the high end and to zero at the low end.</td>
</tr>
<tr>
<td>Clip the signed integer a_i to an unsigned integer within the range $[0, v_{max}]$, where $v_{max} < 2^{16} - 1$.</td>
<td>PADD.uuu R_s, R_a, R_b</td>
<td>If $a_i < 0$, then $c_i = 0$ else $c_i = a_i$.</td>
</tr>
<tr>
<td>$c_i = \max(a_i, b_i)$</td>
<td>PSUB.uuu R_s, R_a, R_b</td>
<td>If $a_i > b_i$, then $c_i = (a_i - b_i)$ else $c_i = 0$.</td>
</tr>
<tr>
<td>Packed maximum operation</td>
<td>PADD R_s, R_a, c_i</td>
<td>If $a_i > b_i$, then $c_i = a_i$ else $c_i = b_i$.</td>
</tr>
<tr>
<td>$c_i =</td>
<td>a_i - b_i</td>
<td>$</td>
</tr>
<tr>
<td>Packed absolute difference operation</td>
<td>PADD R_s, R_a, R_b</td>
<td>If $a_i > b_i$, then $c_i =</td>
</tr>
</tbody>
</table>

Note: a_i and b_i are the subwords in the registers R_s and R_b, respectively, where $i = 1, 2, \ldots, k$, and k denotes the number of subwords in a register. Subword size n is assumed to be two bytes (i.e., $n = 16$) for this table.

TABLE 39.2 Summary of the Integer Register, Subword Sizes, and Subtraction Options Supported by the Different Architectures

<table>
<thead>
<tr>
<th>Architectural Feature</th>
<th>IA-64</th>
<th>MAX-2</th>
<th>MMX</th>
<th>SSE-2</th>
<th>Altivec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of integer registers (bits)</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Supported subword sizes (bytes)</td>
<td>1, 2, 4</td>
<td>2</td>
<td>1, 2, 4</td>
<td>1, 2, 4, 8</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>Modular arithmetic</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Supported saturation options</td>
<td>sss, uuu, uus</td>
<td>sss, uus</td>
<td>sss, uuu</td>
<td>uuu, uuu</td>
<td>uuu, sss</td>
</tr>
</tbody>
</table>

| Supported saturation operations | for 1, 2 byte | for 2 byte | for 1, 2 byte | for 1, 2 byte | for 1, 2, 4 byte |

Packed Average

Packed average instructions are very common in media applications such as pixel averaging in MPEG-2 encoding, motion compensation, and video scaling. In a packed average, the pairs of corresponding subwords in the two source registers are added to generate intermediate sums. Then, the intermediate sums are shifted right by one bit, so that any overflow bit is shifted in on the left as the most significant bit. The beauty of the average operation is that no overflow can occur, and two operations (add followed by a one bit right shift) are performed in one operation. In a packed average instruction, $2n$ operations are performed in a single cycle, where n is the number of subwords. In fact, even more operations are performed in a packed average instruction, if the rounding applied to the least significant end of the result is considered. Here, two different rounding options have been used:
• **Round away from zero:** A one is added to the intermediate sums, before they are shifted to the right by one bit position. If carry bits were generated during the addition operation, they are inserted into the most significant bit position during the shift right operation (see Fig. 39.9).

• **Round to odd:** Instead of adding one to the intermediate sums, a much simpler OR operation is used. The intermediate sums are directly shifted right by one bit position, and the last two bits of each of the subwords of the intermediate sums are ORed to give the least significant bit of the final result. This makes sure that the least significant bit of the final results are set to 1 (odd) if at least one of the two least-significant bits of the intermediate sums are 1 (see Fig. 39.10).

<table>
<thead>
<tr>
<th>Integer Operations</th>
<th>IA-64</th>
<th>MAX-2</th>
<th>MMX</th>
<th>SSE-2</th>
<th>3DNow!</th>
<th>Altivec</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_i = a_i + b_i)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c_i = a_i + b_i) (with saturation)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c_i = a_i - b_i)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c_i = a_i - b_i) (with saturation)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c_i = \text{average}(a_i, b_i))</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>([c_{i+1}, c_{i+1}] = [a_{i+1}, b_{i+1}, a_{i+2} + b_{i+2}])</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\text{lsbit}(c) = \text{carryout}(a_i + b_i))</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\text{lsbit}(c) = \text{carryout}(a_i - b_i))</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c_i = \text{compare}(a_i, b_i))</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Move mask</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c_i = \max(a_i, b_i))</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c_i = \min(a_i, b_i))</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(c = \sum</td>
<td>a_i - b_i</td>
<td>)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

\(^*\) This operation is realized by using saturation arithmetic.

FIGURE 39.9 \(\text{PAVG}_{\text{R}_c}, \text{R}_a, \text{R}_b\): Packed average instruction using the round away from zero option.
This rounding mode also performs unbiased rounding under the following assumptions. If the intermediate result is uniformly distributed over the range of possible values, then half of the time the bit shifted out is zero, and the result remains unchanged with rounding. The other half of the time the bit shifted out is one: if the next least significant bit is one, then the result loses –0.5, but if the next least significant bit is a zero, then the result gains +0.5. Because these cases are equally likely with a uniform distribution of the result, the round to odd option tends to cancel out the cumulative averaging errors that may be generated with repeated use of the averaging instruction.

Accumulate Integer

Sometimes, it is useful to add adjacent subwords in the same register. This can, for example, facilitate the accumulation of streaming data. An accumulate integer instruction performs an addition of the subwords in the same register and places the sum in the upper half of the target register, while repeating the same process for the second source register and using the lower half of the target register (Fig. 39.11).

Save Carry Bits

This instruction saves the carry bits from a packed add operation, rather than the sums. Figure 39.12 shows such a save carry bits instruction in Altivec: a packed add is performed and the carry bits are written to the least significant bit of each result subword in the target register. A similar instruction saves the borrow bits generated when performing packed subtract instead of packed add.

Packed Compare Instructions

Sometimes, it is necessary to compare pairs of subwords. In a packed compare instruction, pairs of subwords are compared according to the relation specified by the instruction. If the condition is true for a subword pair, the corresponding field in the target register is written with a 1-mask. If the condition is
false, the corresponding field in the target register is written with a 0-mask. Alternatively, a true or false bit is generated for each subword, and this set of bits is written into the least significant bits of the result register. Some of the architectures have compare instructions that allow comparison of two numbers for all of the 10 possible relations,\(^3\) whereas others only support a subset of the most frequent relations. A typical packed compare instruction is shown in Fig. 39.13 for the case of four subwords.

When a mask of bits is generated as in Fig. 39.13, often a move mask instruction is also provided. In a move mask instruction, the most significant bits of each of the subwords are picked, and these bits are placed into the target register, in a right aligned field (see Fig. 39.14). In different algorithms, either the subword mask format generated in Fig. 39.13 or the bit mask format generated in Fig. 39.14 is more useful.

Two common comparisons used are finding the larger of a pair of numbers, or the smaller of a pair of numbers. In the packed maximum instruction, the greater of the subwords in the compared pair gets written to the corresponding subword in the target register (see Fig. 39.15). Similarly, in the packed minimum instruction, the smaller of the subwords in the compared pair gets written to the corresponding subword in the target register. As described in the earlier section on saturation arithmetic, instead of special instructions for packed maximum and packed minimum, MAX-2 performs packed maximum and

\(^3\)Two numbers \(a\) and \(b\) can be compared for one of the following 10 possible relations: equal, less-than, less-than-or-equal, greater-than, greater-than-or-equal, not-equal, not-less-than, not-less-than-or-equal, not-greater-than, not-greater-than-or-equal. Typical notation for these relations are as follows respectively: =, <, <=, >, >=, ! =, ! <, ! <=, ! >, ! >=.
FIGURE 39.13 Packed compare instruction. Bit masks are generated as a result of the comparisons made.

FIGURE 39.14 Move mask R_b, R_c.

FIGURE 39.15 Packed maximum instruction.
packed minimum operations by using packed add and packed subtract instructions with saturation arithmetic (see Fig. 39.8). An ALU can be used to implement comparisons, maximum and minimum instructions with a subtraction operation; comparisons for equality or inequality is usually done with an exclusive-or operation, also available in most ALUs.

Sum of Absolute Differences

A more complex, multi-cycle instruction is the **sum of absolute differences** (SAD) instruction (see Fig. 39.16). This is used for motion estimation in MPEG-1 and MPEG-2 video encoding, for example. In a SAD instruction, the two packed operands are subtracted from one another. Absolute values of the resulting differences are then summed up.

Although useful, the SAD instruction is a multi-cycle instruction with a typical latency of three cycles. This can complicate the pipeline control of otherwise single cycle integer pipelines. Hence, minimalist multimedia instruction sets like MAX-2 do not have SAD instructions. Instead, MAX-2 uses generic packed add and packed subtract instructions with saturation arithmetic to perform the SAD operation (see Fig. 39.8(b) and Table 39.1).

Packed Multiply Instructions

Multiplication of Two Packed Integer Registers

The main difficulty with packed multiplication of two \(n \)-bit integers is that the product is twice as long as each operand. Consider the case where the register size is 64 bits and the subwords are 16 bits. The result of the packed multiplication will be four 32-bit products, which cannot be accommodated in a single 64-bit target register.

One solution is to use two packed multiply instructions. Figure 39.17 shows a packed multiply high instruction, which places only the more significant upper halves of the products into the target register.
Figure 39.18 shows a packed multiply low instruction, which places only the less significant lower halves of the products into the target register.

IA-64 generalizes this with its packed multiply and shift right instruction (see Fig. 39.19), which does a parallel multiplication followed by a right shift. Instead of being able to choose either the upper or the lower half of the products to be put into the target register, it allows multiple different 16-bit fields from each of the 32-bit products to be chosen and placed in the target register. Ideally, saturation

4 In IA-64 the right-shift amounts are limited to 0, 7, 15, or 16 bits, so that only 2 bits in the packed multiply and shift right instruction are needed to encode the four shift amounts.
arithmetic is applied to the shifted products, to guard for the loss of significant “1” bits in selecting the 16-bit results.

IA-64 also allows the full product to be saved, but for only half of the pairs of source subwords. Either the odd or the even indexed subwords are multiplied. This makes sure that only as many full products as can be accommodated in one target register are generated. These two variants, the packed multiply left and packed multiply right instructions, are depicted in Figs. 39.20 and 39.21.

Another variant is the packed multiply and accumulate instruction. Normally, a multiply and accumulate operation requires three source registers. The PMADDWD instruction in MMX requires only two source registers by performing a packed multiply followed by an addition of two adjacent subwords (see Fig. 39.22).

Instructions in the AltiVec architecture may have up to three source registers. Hence, AltiVec’s packed multiply and accumulate uses three source registers. In Fig. 39.23, the instruction packed multiply high and accumulate starts just like a packed multiply instruction, selects the more significant halves of the products, then performs a packed add of these halves and the values from a third register. The instruction packed multiply low and accumulate is the same, except that only the less significant halves of the products are added to the subwords from the third register.

Multiplication of a Packed Integer Register by an Integer Constant

Many multiplications in multimedia applications are with constants, instead of variables. For example, in the inverse discrete cosine transform (IDCT) used in the compression and decompression of JPEG images and MPEG-1 and MPEG-2 video, all the multiplications are by constants. This type of multiplication can be further optimized for simpler hardware, lower power, and higher performance simultaneously by using

FIGURE 39.19 The generalized packed multiply and shift right instruction.
packed shift and add instructions [14,15,20]. Shifting a register left by \(n \) bits is equivalent to multiplying it by \(2^n \). Since a constant number can be represented as a binary sequence of ones and zeros, using this number as a multiplier is equivalent to a left shift of the multiplicand of \(n \) bits for each \(n \)th position where there is a 1 in the multiplier and an add of each shifted value to the result register.

As an example, consider multiplying the integer register \(R_a \) with the constant \(C = 11 \). The following instruction sequence performs this multiplication. Assume \(R_a \) initially contains the value 6.

\[
\begin{array}{c|c|c}
\text{Instruction} & \text{Operation} & \text{Result} \\
\hline
\text{Shift left 1 bit } R_b, R_a & R_b = R_a \ll 1 & R_b = 1100, R_a = 12 \\
\text{Add } R_b, R_a, R_a & R_b = R_a + R_a & R_b = 1100, + 0110 = 010010, = 18 \\
\text{Shift left 3 bit } R_c, R_a & R_c = R_a \ll 3 & R_c = 0110, \ast 8 = 110000, = 48 \\
\text{Add } R_c, R_a, R_c & R_b = R_c + R_c & R_b = 010010, + 110000, = 1000010, = 66 \\
\end{array}
\]
This sequence can be shortened by combining the shift left and the add instructions into one new shift left and add instruction. The following new sequence performs the same multiplication in half as many instructions and uses one less register.

Initial values: $C = 11 = 1011_2$ and $R_a = 6 = 0110_2$

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift left 1 bit and add R_b, R_a, R_a</td>
<td>$R_b = R_a \ll 1 + R_a$</td>
<td>$R_b = 18$</td>
</tr>
<tr>
<td>Shift left 3 bit and add R_b, R_a, R_a</td>
<td>$R_b = R_a \ll 3 + R_a$</td>
<td>$R_b = 66$</td>
</tr>
</tbody>
</table>

Multiplication of packed integer registers by integer constants uses the same idea. The shift left and add instruction becomes a packed shift left and add instruction to support the packed data types. As an example consider multiplying the subwords of the packed integer register $R_a = [1|2|3|4]$ by the constant $C = 11$. The instructions to perform this operation are:

Initial values: $C = 11 = 1011_2$, and $R_a = [1|2|3|4] = [0001|0010|0011|0100]_2$

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift left 1 bit and add R_b, R_a, R_a</td>
<td>$R_b = R_a \ll 1 + R_a$</td>
<td>$R_b = [3</td>
</tr>
<tr>
<td>Shift left 3 bit and add R_b, R_a, R_a</td>
<td>$R_b = R_a \ll 3 + R_a$</td>
<td>$R_b = [11</td>
</tr>
</tbody>
</table>

The same reasoning used for multiplication by integer constants applies to multiplication by fractional constants. Arithmetic right shift of a register by n bits is equivalent to dividing it by 2^n. Using a fractional constant as a multiplier is equivalent to an arithmetic right shift of the multiplicand by n bits for each nth position where there is a 1 in the multiplier and an add of each shifted value to the result register. By using a packed arithmetic shift right and add instruction, the shift and the add instructions can be combined into one to further speed such computations. For instance, multiplication of a
packed register by the fractional constant 0.0112 (=0.375) can be performed by using just two packed arithmetic shift right and add instructions.

Only two single-cycle instructions are required to perform the multiplication of four subwords by a constant, in this example. This is equivalent to an effective rate of two multiplications per cycle. Without subword parallelism, the same operations would take at least four integer multiply instructions. Furthermore, the packed shift and add instructions use a simple ALU with a small preshifter, whereas the integer multiply instructions need a more complex multiplier functional unit. In addition, each multiplication operation takes at least three cycles of latency compared to one cycle of latency for a preshift and add operation. Hence, for this example, the speedup for multiplying four subwords by a constant is six times faster (4 × 3/2), comparing implementations with one subword multiplier versus one partitionable ALU with preshifter.

MAX-2 in PA-RISC and IA-64 are the only multimedia ISAs surveyed that have these efficient packed shift left and add instructions and packed shift right and add instructions. The preshift

FIGURE 39.23
In the packed multiply high and accumulate instruction in AltVec, only the high-order bits of the intermediate products are used in the addition.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic shift right 3 bit and add R_b, R_a, 0</td>
<td>R_b = R_a >> 2 + 0</td>
<td>[0.125, 0.25, 0.375, 0.5]</td>
</tr>
<tr>
<td>Arithmetic shift right 2 bit and add R_b, R_a, R_b</td>
<td>R_b = R_a >> 2 + R_b</td>
<td>[0.375, 0.75, 1.125, 1.5]</td>
</tr>
</tbody>
</table>

Initial values: C = 0.375 = 0.0112, and \(R_a = [1|2|3|4] = [0001|0010|0011|0100]_2 \)
amounts allowed are by one, two, or three bits, and the arithmetic is performed with signed saturation, for 16-bit subwords.

Vector Multiplication

So far, this chapter has examined relatively simple packed multiply instructions. These instructions all take about the same latency as a single multiply instruction, which is typically 3–4 cycles compared to an add instruction normalized to one cycle latency. For better or worse, some multimedia ISAs have included very complex, multiple-cycle operations. For example, AltiVec has a packed vector multiply and accumulate instruction, using three 128-bit packed source operands and a 128-bit target register (see Fig. 39.24). First, all the pairs of bytes within a 32-bit subword in two of the source registers are multiplied in parallel and 16-bit products are generated. Then, four 16-bit products are added to each other to generate a “sum of products” for every 32 bits. A 32-bit subword from the third source register is added to this “sum of products.” The resulting sum is placed in the corresponding 32-bit subword field of the target register. This process is repeated for each of the four 32-bit subwords. This is a total of sixteen 8-bit integer multiplies, twelve 16-bit additions, and four 32-bit additions, using four 128-bit registers, in a single VSUMMBM instruction. This can perform a 4×4 matrix times a 4×1 vector multiplication, where each element is a byte, in a single instruction, but this single complex instruction takes many cycles of latency. While a multiplication of a 4×4 matrix with a 4×1 vector is a very frequent operation in graphics geometry processing, the precision required is usually that of 32-bit single-precision floating-point numbers, not 8-bit integers. Whether the complexity of such a compound VSUMMBM instruction is justified depends on the frequency of such 4×4 matrix-vector multiplications of bytes. Table 39.4 summarizes the packed integer multiplication instructions described.

FIGURE 39.24 AltiVec’s VSUMMBM instruction: only one-fourth of the instruction is shown. Each box represents a byte. This process is carried out for each 32-bit word in the 128-bit source registers.
TABLE 39.4 Packed Integer Multiplication Instructions

<table>
<thead>
<tr>
<th>Integer Operations</th>
<th>IA-64</th>
<th>MAX-2</th>
<th>MMX</th>
<th>SSE-2</th>
<th>3DNow!</th>
<th>AltiVec</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_i = \text{lower}_\text{half}(a_i \ast b_i)$</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_i = \text{upper}_\text{half}(a_i \ast b_i)$</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_i = \text{lower}_\text{half}[(a_i \ast b_i) >> n]$</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packed multiply left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[c_{i0}, c_{i1}1] = a_{i0} \ast b_{i0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packed multiply right</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[c_{i0}, c_{i1}1] = a_{i0+1} \ast b_{i0+1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packed multiply and accumulate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[c_{i0}, c_{i1}1] = a_{i0} \ast b_{i0} + a_{i0+1} \ast b_{i0+1}$</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_i = \text{upper}_\text{half}(a_i \ast b_i) + c_i$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_i = \text{lower}_\text{half}(a_i \ast b_i) + c_i$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packed shift left and addb</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_i = (a_i << n) + b_i$, for $n = 1, 2$ or 3 bits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packed shift right and addc</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_i = (a_i << n) + b_i$, for $n = 1, 2$ or 3 bits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packed vector multiply and accumulate (VSUMMEM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[d_{i0}, d_{i10}, d_{i11}, d_{i12}, d_{i13}] = \sum_{j=0}^{4} a_{i0+j} \ast b_{i0+j}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMSUMxx instructions of AltiVec (general form)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[d_{i0}, d_{i11}] = a_{i0} \ast b_{i0} + a_{i0+1} \ast b_{i0+1} + [c_{i0}, c_{i11}]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Shift amounts are limited to 0,7,15, or 16 bits.

b For use in multiplication of a packed register by an integer constant.

c For use in multiplication of a packed register by a fractional constant.

Packed Shift and Rotate Operations

Most microprocessors have one or more shifters in addition to one or more ALUs (see Fig. 39.3). Just as the ALU is partitionable, so is the shifter, for subword-parallel operation. A packed shift instruction performs blocking shifts of the subwords packed in a register. Any bits shifted to the left are blocked from affecting the adjacent subword on the left; any bits shifted to the right are blocked from affecting the adjacent subword on the right.

For the packed shift instruction, the shift can be logical (zeros substituted for vacated bits) or arithmetic (zeros substituted for vacated bits on the right and sign-bit replicated for vacated bits on the left). The shift amount can be given by an immediate operand or by a register operand. When the shift amount is given by a register, each subword is usually shifted by the same amount, given by the least significant log$_2 n$ bits of a second source register, for shifting the n bits of a first source register (see Fig. 39.25). In a more complicated, but more versatile form, each subword in a packed register can be shifted by a different amount (see Fig. 39.26).

Similarly, the packed rotate instruction performs rotations on each subword in parallel. The amount to be rotated can be specified by an immediate in an instruction, by a single rotate amount in a register, or by different rotate amounts for each subword (see Fig. 39.27). Data-dependent rotations, where the single rotate amount is given in a register, have been proposed for symmetric cryptography algorithms like RC5.

Packed shift instructions may also be used to multiply or divide subwords by a constant that is a power of two. When used in this way, it may be necessary to apply saturation arithmetic with parallel left shifts used for multiplication. It may also be desirable to apply rounding with parallel arithmetic right shifts. Such saturation and rounding complicate the circuitry for the shifter functional unit, and is not implemented by any of the current multimedia ISAs. Hence, packed shift instructions should be used for multiplication or division only when no overflow can occur on left shifts, and sufficient precision can be preserved on right shifts. For multiplication by an integer or fractional constant, packed shift and add instructions, described in the subsection on “Multiplication of a Packed Integer Register by an Integer Constant,” are preferable. These can better control accuracy in the multiplication.
Table 39.5 summarizes the multimedia instructions involving packed shift and packed rotate operations. In the table, n is used to represent a shift or rotate amount that is specified in the immediate field of an instruction. For example, in the operation denoted as $c_i = a_i \ll n$, each subword of c is shifted to the left by the amount given in the immediate field of the corresponding instruction. Similarly, in the operation $c_i = a_i \ll b$, each subword of c is shifted to the left by the amount specified in the source register b. In $c_i = a_i \ll b$, each subword of c is shifted to the left by the amount specified in the corresponding subword of the source register b. Shift left is represented by \ll, shift right by \gg, and rotate by $\ll\ll$.

FIGURE 39.25 Packed shift instruction. Shift amount is given in the second operand. Each subword is shifted by the same amount.

FIGURE 39.26 Packed shift instruction. Shift amount is given in the second operand. Each subword can be shifted by a different amount.
Subword Permutation Instructions

Initially, the rearrangement of subwords in registers manifested only as packing and unpacking operations. MAX-2 first introduced general-purpose subword permutation instructions for more versatile reordering of subwords packed into one or more registers.

Pack Instructions

Pack instructions convert from larger subwords to smaller subwords. If the value in the larger subword is greater than the maximum value that can be represented by the smaller subword, saturation arithmetic is performed, and the resulting subword is set to the maximum value of the smaller subword. Figure 39.28 shows how a register with smaller packed subwords can be created from two registers with subwords that are twice as large. Pack instructions differ in the size of the supported subwords and in the saturation options used.

Unpack Instructions

Unpack instructions are used to convert smaller packed data types to larger ones. The subwords in the two source operands are written sequentially to the target register in alternating order. Because, only one-half of each of the source registers can be used, the unpack instructions come with two variants.
unpack high or unpack low. The high/low unpack instructions select and unpack the high or low order subwords of a source register, when used with register zero as the second source register.\(^5\)

Subword Permutation Instructions

Ideally, it is desirable to be able to perform all possible permutations on packed data. This is only possible for small numbers of subwords. When the number of subwords increases, the number of control bits required to specify arbitrary permutations becomes too large to be encoded in an instruction. For the case of \(n\) subwords, the number of control bits used to specify a particular permutation of these \(n\) subwords

\(^5\)Register zero gives a constant value of “zero” when used as a source register.
Table 39.6 shows how many control bits are required to specify any arbitrary permutation for different numbers of subwords. When the number of subwords is 16 or greater, the number of control bits exceeds the number of the bits available in the instruction, which is typically 32 bits. Therefore, it becomes necessary to use a second register to contain the control bits used to specify the permutation. By using this second register, it is possible to get any arbitrary permutation of up to 16 subwords in one instruction.

Because AltiVec instructions have three 128-bit source registers, a subword permutation can use two registers to hold data, and the third register to hold the control bits. This allows any arbitrary selection and re-ordering of 16 of the 32 bytes in the two source registers in a vperm instruction.

Only a small subset of all the possible permutations is achievable with one subword permutation instruction, so it is desirable to select permutations that can be used as primitives to realize other permutations. A permute instruction can have one or two source registers as operands. In the latter case, only half of the subwords in the two source operands may actually appear in the target register. Examples of these two cases are the mux and mix instructions respectively, in both IA-64 and MAX-2.

Mux in IA-64 operates on one source register. It allows all possible permutations of four packed 16-bit subwords, with and without repetitions (see Fig. 39.31). An 8-bit immediate field is used to select one of the 256 possible permutations. This is the same operation performed by the permute instruction in the earlier MAX-2.

In IA-64, the mux instruction can also permute eight packed 8-bit subwords. For the 8-bit subwords, mux has five variants, and only the following permutations are implemented in hardware (see Fig. 39.32):

- mux.rev (reverse): Reverses the order of bytes.
- mux.mix (mix): Performs the Mix operation (see below) on the bytes in the upper and lower 32-bit halves of the 64-bit source register.

mux in IA-64 operates on one source register. It allows all possible permutations of four packed 16-bit subwords, with and without repetitions (see Fig. 39.31). An 8-bit immediate field is used to select one of the 256 possible permutations. This is the same operation performed by the permute instruction in the earlier MAX-2.

In IA-64, the mux instruction can also permute eight packed 8-bit subwords. For the 8-bit subwords, mux has five variants, and only the following permutations are implemented in hardware (see Fig. 39.32):

- mux.rev (reverse): Reverses the order of bytes.
- mux.mix (mix): Performs the Mix operation (see below) on the bytes in the upper and lower 32-bit halves of the 64-bit source register.

*This second register needs to be at least 64-bits wide to fully accommodate the 64 control bits needed for 16 subwords.
Mux, shuffle): Performs a perfect shuffle on the bytes in the upper and lower halves of the register.

• Mux.alt (alternate): Selects first the even indexed bytes, placing them in the upper half of the result register, then selects the odd indexed bytes, placing them in the right half of the result register.

• Mux.brcst (broadcast): Replicates the least significant byte into all the byte locations of the result register.

Mix is a very useful permutation operation on two source registers. A mix left instruction picks even subwords alternately from the two source registers and places them into the target register (see Fig. 39.33). A mix right instruction picks odd subwords alternately from the two source registers and places them into the target register (see Fig. 39.34).

The versatility of Mix is demonstrated [9, 14], for example, in performing a matrix transpose. Mix can also be used to perform an unpacking function similar to that done by Unpack High and Unpack Low. The usefulness of Mix and Mux (or Permute) has also been validated in [21] as general-purpose subword permutation primitives for processing of two-dimensional data in microSIMD architectures.

Extract, Deposit, and Shift Pair Instructions

A more sophisticated shifter can also perform extract and deposit bit-field operations, as in PA-RISC [17, 10]. An extract instruction picks an arbitrary contiguous bit-field from the source operand and places it right aligned into the result register (Fig. 39.35). Extract instructions may be limited to work

The bytes indexed from 0 to 7. 0 corresponds to the most significant byte, which is on the left end of the registers.
on subwords instead of bit-fields (Fig. 39.36). Extract instructions clear the upper bits of the target register.

A deposit instruction picks a right-aligned contiguous bit-field from the source register and patches it into an arbitrary location in the target register (Fig. 39.37). The unpatched bits of the target register remain unchanged. Alternatively, they are cleared to zeros in a zero and deposit instruction [17]. Deposit instructions may be limited to work on subwords instead of arbitrarily long bit-fields and arbitrary patch locations (Fig. 39.38).
A very useful instruction for rearranging subwords from two registers is the *shift pair* instruction in IA-64 (see Fig. 39.39). This instruction, which was first introduced in the PA-RISC ISA [10,17], is essentially a *shift* instruction for bit-strings that span more than one register. *Shift pair* concatenates the two source registers to form a 128-bit intermediate value, which is shifted to the right by *n* bits. The least significant 64 bits of the shifted value is written to the result register. If the same register is specified for both operands, the result is a *rotate* operation. Rotates can be realized this way, so IA-64 does not have a separate *rotate* instruction. This *shift pair* instruction is more general than a *rotate*, allowing flexible combination of two bit-fields from separate registers. Table 39.7 summarizes the subword permutation instructions on packed data types.

Floating-Point MicroSIMD Instructions

High-fidelity audio and graphics geometry processing require the higher precision and range of floating-point numbers. Usually, single-precision (32-bit) floating-point (FP) numbers are sufficient, but 16-bit integers or fixed-point numbers are not. Double-precision (64-bit) floating-point numbers are not really needed for such multimedia computations.

Because floating-point registers are at least 64-bits wide in microprocessors to support double-precision (DP) FP numbers, it is possible to pack two single-precision (SP) FP numbers in a 64-bit register, to support subword parallelism, or packed parallelism, or microSIMD parallelism on the FP...
functional units and registers. The precision levels supported by different ISAs are shown in Table 39.8. SP and DP numbers are 32 and 64 bits long, respectively, as defined by the IEEE-754 FP number standard. Only SSE-2 supports packed DP FP numbers. MAX-2 and MMX do not support packed FP instructions.

Packed Floating-Point Arithmetic Instructions

Packed FP Add

Figure 39.40 shows a packed FP add, where four pairs of single-precision FP numbers in two 128-bit registers are added using floating-point addition. Packed FP subtract instructions are similar. While the packed FP instruction looks very similar to the packed integer equivalents (see Fig. 39.5), implementation of packed FP add is not as simple as blocking carries at the subword boundary as in packed integer addition (see Fig. 39.7). It is much more difficult to partition a FP functional unit for subword parallelism because of the nature of FP arithmetic acting on FP numbers represented in sign, mantissa, and exponent format. Another difference is that in floating-point number representation, considerations like modular arithmetic or saturation arithmetic are not applicable.

Packed FP Multiplication

Multiplication of two packed FP registers involves multiplication of corresponding FP subwords from the source registers, where the products are written to the corresponding subword in the target register (see Fig. 39.41). In multiplication of two single-precision numbers, the product is also single-precision, and hence the same width. Therefore, packed FP multiply does not have the problem associated with packed integer multiply instructions, where the product is twice the width of the operands.
The most important FP operation in audio, graphics, and digital signal processing is the FP multiply and accumulate operation. Recognizing this, many ISAs have implemented this as the basic FP operation, needing three source registers. For example, IA-64 implements packed FP multiply and add (FPMA), packed FP multiply and subtract (FPMS), and packed FP negative multiply and add (FPNMA). It then realizes packed FP add, packed FP subtract, and packed FP multiply operations by using FPMA and FPMS instructions. IA-64 architecture specifies 128 FP registers, which are numbered FR0 through FR127. Of these registers, FR0 and FR1 are special. FR0 always returns the value +0.0 when sourced as an operand, and FR1 always reads +1.0. When FR0 or FR1 are used as source operands, the FPMA and FPMS instructions can be used to realize packed FP add or packed FP subtract operations and packed FP multiply operations (see Table 39.9).

Packed FP Multiply and Add

The most important FP operation in audio, graphics, and digital signal processing is the FP multiply and accumulate operation. Recognizing this, many ISAs have implemented this as the basic FP operation, needing three source registers. For example, IA-64 implements packed FP multiply and add (FPMA), packed FP multiply and subtract (FPMS), and packed FP negative multiply and add (FPNMA). It then realizes packed FP add, packed FP subtract, and packed FP multiply operations by using FPMA and FPMS instructions. IA-64 architecture specifies 128 FP registers, which are numbered FR0 through FR127. Of these registers, FR0 and FR1 are special. FR0 always returns the value +0.0 when sourced as an operand, and FR1 always reads +1.0. When FR0 or FR1 are used as source operands, the FPMA and FPMS instructions can be used to realize packed FP add or packed FP subtract operations and packed FP multiply operations (see Table 39.9).

The format of the FPMA (Fig. 39.42) instruction is FPMA Rd, Ra, Rb, Rc and the operation it performs is \(R_d = R_a \times R_b + R_c \). If FR1 is used as the first or the second source operand, a packed FP add operation is realized. Similarly, a FPMS instruction can be used to realize a packed FP subtract operation. Using FR0 as the third source operand in FPMA or FPMS results in a packed FP multiply operation.

Table 39.10 is a summary of the packed FP instructions supported by multimedia ISAs. Several packed FP instructions operate like their packed integer equivalents, except that they operate on packed FP subwords.
rather than packed integer (or fixed-point) subwords. These include packed FP add, packed FP subtract, packed FP multiply, packed FP negate, packed FP absolute value, packed FP compare, packed FP maximum, and packed FP minimum. IA-64 also has the packed FP maximum absolute value and the packed FP minimum absolute value. These put the larger or smaller of the absolute values of the pairs of FP subwords into the result subwords in the target register, respectively.

Packed FP Compare

The packed FP compare instruction compares pairs of FP subwords according to the relation specified by the instruction. If the condition is true for a subword pair, the corresponding field in the target register is written with a 1-mask. If the condition is false, the corresponding field in the target register is written with a 0-mask. The only difference is that two additional relations, ordered and unordered, are possible for floating-point numbers in addition to the 10 relations already specified for comparing integers (see

TABLE 39.9 IA-64 uses FPMA and FPMS Instructions for packed FP add, packed FP subtract, and packed FP multiply

<table>
<thead>
<tr>
<th>IA-64 Instruction</th>
<th>Operation</th>
<th>Equivalent Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPMA R_d, FR1, R_b, R_c (packed FP multiply and add)</td>
<td>R_d = FR1 * R_b + R_c = 1.0 * R_b + R_c = R_b + R_c</td>
<td>Packed FP add</td>
</tr>
<tr>
<td>FPMS R_d, FR1, R_b, R_c (packed FP multiply and subtract)</td>
<td>R_d = FR1 * R_b − R_c = 1.0 * R_b − R_c = R_b − R_c</td>
<td>Packed FP subtract</td>
</tr>
<tr>
<td>FPMA R_a, R_b, R_c, FR0 (packed FP multiply and add)</td>
<td>R_d = R_a * R_b + FR0 = R_a * R_b + 0.0 = R_a * R_b</td>
<td>Packed FP multiply</td>
</tr>
</tbody>
</table>

FIGURE 39.42 Packed FP multiply and add instruction in IA-64.
subsection “Packed Compare Instruction”). Some ISAs have packed FP compare instructions that allow all the 12 possible relations,\(^8\) whereas others support a more limited subset of relations.

Packed FP Compare Bounds

An interesting comparison instruction is the packed FP compare bounds (VCMPBFP) instruction of AltiVec. This instruction compares corresponding FP subwords from the two source registers, and depending on the relation between the compared numbers, it generates a two-bit result, which is written to the target register. The resulting two-bit field indicates the relation between the two compared FP numbers. For instance, in VCMPBFP \(R_c, R_a, R_b\), the FP number pairs \((a_i, b_i)\) are compared, and a two-bit field is written into \(c_i\) such that:

- Bit 0 of the two-bit field is cleared if \(a_i \leq b_i\), and is set otherwise.
- Bit 1 of the two-bit field is cleared if \(a_i > (−b_i)\), and is set otherwise.
- Both bits are set if any of the compared FP numbers is a NaN.

\(^8\)Two floating-point numbers \(a\) and \(b\) can be compared for one of the following 12 possible relations: equal, less-than, less-than-or-equal, greater-than, greater-than-or-equal, unordered, not-equal, not-less-than, not-less-than-or-equal, not-greater-than, not-greater-than-or-equal, ordered. Typical notation for these relations are as follows respectively: =, <, <=, >, >=, ?, !=, |<, |<=, |>, |>=, |?.
The two-bit result field is written to the high-order two bits of \(c_i \); the remaining bits of \(c_i \) are cleared to 0. Table 39.11 gives examples of input pairs that result in each of the four different possible outputs for this instruction.

The SSE-2 architecture also includes a packed FP square root instruction. This instruction operates on packed single-precision or double-precision numbers and computes the square roots to SP or DP accuracy. IA-64 has the packed FP reciprocal square root instruction and the packed FP reciprocal instruction. Both are very useful for graphics computations.

Subword Permutation Instructions

FP Permutation Instructions

SSE-2 has an FP permute (see Fig. 39.43) instruction that allows any arbitrary permutation of the four 32-bit SP subwords in one of its 128-bit multimedia registers. This operates just like the permute instruction in MAX-2 and the \(\text{max} \) instruction (2-byte subword version) in IA-64 (see Fig. 39.31).

IA-64 only has two single-precision subwords in its packed format, so all possible permutations of two subwords can be achieved with a much simpler operation, FP swap. This instruction just exchanges the two subwords. IA-64 also allows two variants of this: after swapping the subwords, the sign of either the left or the right FP value is negated.

FP mix is a useful operation that performs a permutation on two packed FP registers. A FP mix instruction picks alternating subwords from two source registers and places them into the target register. FP mix in IA-64 appears in three variants. The first one (Fig. 39.44) is called the FP mix left and uses the odd indexed FP subwords of the source registers in the permutation, starting from the leftmost subword. The second variant, FP mix right (Fig. 39.45) uses the even indexed FP subwords of the source registers, ending with the rightmost subword. The third variant, FP mix left right (Fig. 39.46) uses the odd indexed FP subword of the first source register, and the even indexed subword of the second

Table 39.11 Result of the VCMPBFP Instruction for Different Input Pairs

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>(b_i)</td>
</tr>
<tr>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>-8.0</td>
<td>5.0</td>
</tr>
<tr>
<td>8.0</td>
<td>5.0</td>
</tr>
<tr>
<td>3.0</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

FIGURE 39.43 FP permute \(R_b, R_a \): FP permute instruction.

The two-bit result field is written to the high-order two bits of \(c_i \); the remaining bits of \(c_i \) are cleared to 0. Table 39.11 gives examples of input pairs that result in each of the four different possible outputs for this instruction.
FIGURE 39.44 FP mix left R_a, R_b, R_c: FP mix left instruction in IA-64.

FIGURE 39.44 FP mix left R_a, R_b, R_c: FP mix left instruction in IA-64.

FIGURE 39.45 FP mix right R_a, R_b, R_c: FP mix right instruction in IA-64.

FIGURE 39.45 FP mix right R_a, R_b, R_c: FP mix right instruction in IA-64.

FIGURE 39.46 FP mix left right R_a, R_b, R_c: FP mix left right instruction in IA-64.

FIGURE 39.46 FP mix left right R_a, R_b, R_c: FP mix left right instruction in IA-64.
These three FP mix instructions, together with the Shift Pair instruction described earlier, allow any one of the four combinations of the SP subwords packed into two IA-64 registers to be achieved with only one instruction.

FP Unpack

Packing and unpacking subwords has a different interpretation for FP numbers than for integers. In general, there is sufficient precision in single-precision numbers, and there is no need to unpack it to a double-precision number; however, the FP unpack can be regarded as a useful subword permutation instruction like FP mix. It performs a shuffle by interleaving the subwords from two registers. The FP unpack instructions operate just like the equivalent integer unpack instructions (see Figs. 39.29 and 39.30). They come in two “flavors”: FP unpack high and FP unpack low. Note that the SSE-2 employs FP unpack, after unpack in MMX, and IA-64 employs FP mix, after mix in MAX-2.

FP Pack

In the integer domain, pack instructions are used to create smaller packed data types from larger data types. The FP pack instruction in IA-64 creates two packed SP numbers from two 82-bit source registers. All IA-64 FP registers are 82-bit extended precision FP format with two extra guard bits for computational accuracy. First, the two 82-bit numbers are converted to standard 32-bit SP representation. These two SP numbers are then concatenated and the result is stored in the significand field (which is 64 bits) of the 82-bit target FP register. The exponent field of the target register is set to the biased exponent for 2.0^{63}, which indicates a packed FP format, and the sign bit is set to zero, indicating a positive number.

Conclusions

Section 39.1 described multimedia instructions for programmable processors by broad classes according to the functional units used, first in the integer domain then in the floating-point domain. For integer subwords, packed add and packed subtract instructions, and different variants of these, use the ALU. Packed multiply instructions use the multiplier functional unit, although very efficient multiplication by constants can be implemented with packed shift and add instructions, which only need an ALU with a preshifter. Packed shift and packed rotate instructions use the shifter. Packed subword permutation instructions can either be implemented on a modified shifter or in a new permutation unit. For packed floating-point subwords, less leverage of hardware seems possible. The basic functional units are a floating-point adder, multiplier, and FP subword permutation unit. IA-64 combines the FP adder and multiplier into an FP multiply-add unit. For each of these instruction classes, interesting multimedia instructions introduced in current microprocessors were described, for example, in the IA-64, MMX, and SSE-2 from Intel; MAX-2 from Hewlett-Packard; 3DNow! from AMD; and AltiVec from Motorola.

The key feature in these multimedia instructions is the concept of subword parallelism, also called packed parallelism or microSIMD parallelism. This is implemented for packed integers or fixed-point numbers in the integer datapaths, and for packed floating-point numbers in the floating-point datapaths. Visual multimedia data like images, video, graphics rendering and animation involve pixel processing, which can fully exploit subword parallelism on the integer datapath. Higher-fidelity audio processing and graphics geometry processing require single-precision floating-point computations, which exploit subword parallelism on the floating-point datapath. Typical DSP operations such as multiply and accumulate have also been added to the multimedia repertoire of general-purpose microprocessors. These multimedia instructions have embedded DSP and visual processing capabilities into general-purpose microprocessors, providing native signal processing (sometimes referred to as NSP) for multimedia data. In fact, most DSPs and media processors have also adopted subword parallelism in their architectures, as well as other features often first introduced in microprocessors for multimedia signal processing.

More unusual computer arithmetic issues arising from subword-parallel multimedia instructions in microprocessors are saturation arithmetic, integer rounding alternatives, integer multiplication problems and solutions, and subword permutation instructions.
Some of the multimedia ISAs introduced in microprocessors adhere to the “less is more” minimalist architecture approach, defining as few instructions as necessary for high-performance, with each instruction executable in a single pipeline cycle. Others embody the “more is better” approach, where complex sequences of operations are represented by a single multimedia instruction, with such an instruction taking many cycles for execution. An example is the packed vector multiply and accumulate instruction in AltiVec (Fig. 39.24). These two trends represent different stylistic preferences, akin to reduced instruction set computer (RISC) and complex instruction set computer (CISC) architectural preferences. In fact, sometimes, RISC-like multimedia instructions have been added to CISC processor ISAs, and CISC-like multimedia instructions to RISC processor ISAs. The remarkable fact is that subword-parallel multimedia instructions have achieved such rapid and pervasive adoption in both RISC and CISC microprocessors, DSPs and media processors, attesting to their undisputed cost-effectiveness in accelerating multimedia processing in software.

To simplify software compatibility and interoperability of multimedia software across different processors, it is highly desirable to refine the best ideas from the different multimedia ISAs into a coherent set of subword-parallel instructions. If this is a small yet powerful set, it is more likely to be implemented in all future microprocessors and media processors, allowing algorithm and compiler optimizations to exploit microSIMD parallelism with confidence that benefits would be realized across almost all processors. While slight differences in multimedia instructions across processors may not affect the potential performance provided by each ISA, they make it difficult to design an optimal algorithm and a set of compiler optimizations that achieve the best multimedia performance for every processor. The challenge for the next phase of multimedia ISA design is to understand which ISA features are truly effective for multimedia signal processing, and encapsulate these insights into the design of third-generation multimedia ISA for both microprocessors and media processors.

Acknowledgments

The author thanks her student, A. Murat Fiskiran, for surveying SSE-2, 3DNow! and AltiVec, and for his invaluable help in preparing the figures and tables.

References

39.2 DSP Platform Architecture for SoC Products

Gerald G. Pechanek

Introduction

The development of wireless, networking, communications, video, and consumer products has shifted toward low-power high-functionality systems-on-chip (SoC) semiconductors [1]. Driving this development is the availability of deep sub-micron technology allowing more complete system designs to be embedded in silicon. Some of these improvements include increasing on-chip memory capacity, the use of more fully programmable solutions using DSPs, and the inclusion of specialized interfaces and functions.

To make these high-value SoC products widely available at low cost requires the use of standard design practices that allow them to be fabricated at multiple semiconductor suppliers. This means that custom designed SoCs, optimized to a particular manufacturing process, cannot be used. Consequently, as the complexity and functionality of SoC products continues to increase with stringent power requirements, the standard approach of increasing clock speed on an existing design to meet higher performance requirements is infeasible.

The need to support multiple standards, and to quickly adapt to changing standards, has become a product requirement [2]. To satisfy this need, programmable DSPs and control processors are being increasingly used as the central SoC design component. These processors form the basis of the SoC product platform and permeate the overall system design including the on-chip memory, DMA, internal busses, etc. Consequently, choosing a flexible and efficient processor, which can be manufactured by multiple semiconductor suppliers, is arguably the most important intellectual property (IP) decision that needs to be made in the creation of an SoC product.

In recent years, a class of high-performance programmable processor IP has emerged that is appropriate for use in high-volume embedded applications such as digital cellular, networking, communications, and console gaming [3,4]. Section 39.2 briefly describes the ManArray thread coprocessor as an example of the architectural features needed for demanding SoC requirements. The next subsection provides a brief description of the ManArray thread coprocessor architecture. The subsection “The ManArray Thread