
Architectural Enhancements for Secure
Embedded Processing

Divya ARORAa, Srivaths RAVIb, Anand RAGHUNATHANb and Niraj K. JHAa
aDept. of Electrical Engineering, Princeton University, Princeton

bNEC Laboratories America, Princeton

Abstract. In this paper, we present architectural enhancements for ensuring secure
execution of programs on embedded processors. The primary motivation behind this
work is that software attacks often originate from unknown vulnerabilities in trusted
programs. We propose two techniques to achieve secure program execution. They
include (i) hardware-assisted monitoring of a trusted program’s control flow to detect
deviant control flow, and (ii) hardware-assisted validation of a program’s data properties
that may be violated in the event of an attack. Experiments show that the proposed
architecture can be very effective in preventing a wide range of security threats.

1. Introduction

Various studies [1,2,3] indicate that software attacks today are not only increasing in
number, but are also beginning to target a diverse range of electronic systems. Software
attacks due to viruses, worms, and trojan horse applications have proliferated not only to
personal computers, but also to embedded appliances such as cellphones and PDAs,
automotive electronics, and networked sensors. This trend is attested to by the emergence of
attacks on mobile phones such as the Skulls, Cabir, and Lasco viruses [4]. Given that
embedded systems are ubiquitously deployed in several mission-critical and pervasive
applications, it is not surprising that security of an embedded system is becoming a major
and immediate concern to manufacturers and users, alike.

In the desktop and enterprise world, conventional software security solutions such
as software certificates, software vulnerability patches, ant-virus software updates, etc. have
achieved only limited success. This observation has led to the development of various
architectural mechanisms to augment software security solutions, and many of these
technologies are emerging today as commercial products/solutions. For example, processors
from Intel and AMD now feature a non-executable bit that can be enabled to make selected
regions of a program’s address space non-executable [8]. This makes the programs that they
execute less vulnerable against buffer overflow attacks. Similarly, chips designed for next-
generation cellphones, such as TI’s OMAP 2420 [6] and NEC’s MP211 [7] systems-on-a-
chip (SoCs) feature a wide range of security measures including secure bootstrapping, and
protection of the code and data spaces associated with sensitive applications. Another recent
technology applicable to embedded SoCs is ARM’s TrustZone [5], which attempts to

provide a secure execution environment for a selected set of applications called trusted
applications. The basic objective is to provide protection for the code and data spaces of
trusted applications against tamper by untrusted applications.
 Our work also falls in the domain of architectural support for security. The
objective is to provide higher security assurance when a trusted program executes, so that
the system can be protected against software attacks that can even originate from a
vulnerability in the trusted program. We have developed two techniques to address this
objective, which include:

• Hardware-assisted control flow monitoring: Many attacks, such as stack-based
buffer overflows, execute malicious code by exploiting vulnerabilities in a trusted
program. Protecting against such attacks is, therefore, a critical objective. Our
solution is based on a simple observation that the execution of malicious code will
result in behavior or control flow that is different from the normal program
behavior. In other words, if the trusted program can be characterized to have a
normal execution behavior (in the absence of an attack), then any deviation from
the said behavior can be flagged as an attack. We implement the proposed solution
by designing a separate hardware monitor that models and enforces the
characterized program behavior by monitoring the program’s execution on the
processor. The proposed framework shows that a program’s function call graph,
basic block control flow graph, etc. are invariants that can be statically derived,
and enforced by the monitor at run-time, with minimum overheads, and in a
minimally intrusive fashion.

• Hardware-assisted validation of program’s data properties: Some attacks do not
modify the control flow of a program, but only modify the data associated with a
program in the program’s stack or heap. Similar to control flow, a program’s
behavior with respect to data accesses can also be encoded and enforced as security
policies during the program’s execution. This led to the development of a HW/SW
framework that can enforce various security policies. This framework is shown to
be effective in preventing various kinds of software attacks, including heap-based
and format string attacks.

The rest of this paper is organized as follows. Section 2 discusses related work. Sections 3
and 4 detail the two techniques. Section 5 presents experimental results, and Section 6
concludes the paper.

2. Related Work

Many techniques including code scan and review tools attempt to strengthen software
security by eliminating vulnerabilities during the software design phase. Various solutions
have been developed to address specific kinds of attacks such as stack-based buffer
overflow attacks [9], heap overflow attacks [10], etc. Apart from such mechanisms,
researchers have proposed a wide range of runtime monitoring techniques [11, 12] to
enforce various security policies. However, software-based runtime monitoring techniques

suffer from various drawbacks including performance overheads, limited coverage of
security vulnerabilities, etc.

More recently, researchers have focused on augmenting processor architectures for
secure program execution. Examples of these works include enhanced processor
architectures, such as XOM [13] and AEGIS [14], which attempt to provide code integrity
and privacy in the presence of untrusted memory. However, these techniques do not
safeguard an application from its own vulnerabilities. A more detailed survey of work
related to this paper can be found in [15] and [16].

3. Hardware-assisted Control Flow Monitoring

We first present an example attack to motivate the proposed architecture, which we then
describe in detail.

3.1. Example Attack

File: wav.c
int st_wavstartread (ft_t * ft)
{

uint32_t len;
char text[256];
…
//get length of data from header
len = findChunk (ft, ”data”);
//read len bytes into text[]
st_reads (ft, text, len);
…

}

(a) (b) (c)

SP

Stack
growth

Memory
growth

arguments

return addr.

saved FP

FP arguments

Corrupted
return addr.

Previous FP

text[256]

Corrupted
input

attack
code

previous
Stack frame

previous
stack frame

Fig.1. A simple example of a “stack smashing” attack

Fig.1(a) presents a code snippet from SoX (Sound eXchange), a popular audio
conversion utility. The function st_wavstartread() reads len bytes from an input file into a
local array text[]. Fig. 1(b) shows the stack layout, when the function is called during
program execution. An attacker creates an input wav file containing a payload of malicious
code and len>256. This causes a buffer overflow for text[], resulting in corruption of the
local variables and function’s return address stored on program stack. The input file can be
constructed so that the corrupted return address points to the start of malicious code, which
is executed when the function st_wavstartread() returns.

While the vulnerability in the above example could be easily addressed through input
validation, bugs in large, complex programs can be much more subtle and elusive. In
addition to software attacks, embedded systems are also susceptible to physical attacks that
involve tampering with system properties such as voltage levels and memory contents.
Irrespective of their origin, most attacks manifest as a subversion of “normal” program

execution. Therefore, we concentrate our efforts on defining this behavior and monitoring
execution to enforce it, using hardware support to make such extensive checking feasible.

3.2. Proposed Architecture

Hash
engine

Buffers

controlchecker

BB offset S0 HashS1

ptr. to
BB #0

Ret.
addr.

State
Index

return
BB#

State
Index

Call
addr.

control

checker

Stall detection

Invalid detection

Intra-proc. control flow checker

Inter-proc. control flow checker

Instruction Integrity checker

TABbb

TABstart

TABret

No match (to invalid detn)

invalid
transition

FSMIP

to stall detn

to
proc.

L1 I-
Cache

PROCESSOR PIPELINE

Pipeline
control

Inter-procedural control flow checker

Intra-procedural control flow checker

Instruction integrity checker

IF ID EX MEM WB

MONITOR

IR PC
proc.
stat

e

stall/
invalid

(a) (b)
Fig.2. Hardware-assisted monitoring: (a) Block diagram, and (b) Detailed architecture

Fig. 2(a) shows the block diagram of the proposed hardware-assisted monitoring
architecture. The figure shows a 5-stage, in-order RISC processor pipeline that has been
enhanced with a separate hardware unit or monitor. The monitor receives inputs from the
program counter (PC), instruction register (IR) and the pipeline status from the pipeline
control unit. The monitor’s outputs include a stall signal and an invalid signal. When the
monitor detects a violation of permissible behavior, it asserts the invalid signal resulting in a
non-maskable interrupt to the processor. The stall signal is asserted if the monitor is unable
to keep pace with the processor. This is handled as a normal processor stall, and the pipeline
stages are “frozen” till the stall signal is de-asserted.

The monitor is composed of three sub-blocks, which check program properties at
different granularities. The structure is hierarchical and follows from the natural structure of
programs – the top-most level works at the application level and verifies that the inter-
procedural control flow is in accordance with the program’s static function call graph, the
second level validates the intra-procedural control flow by validating each branch/jump
instruction within a function and finally, the lowermost level verifies the integrity of the
instruction stream. This hierarchical structure allows the designer to trade-off checking
granularity and coverage for area and/or performance.

Fig. 2(b) details the design of each of these sub-blocks. The call graph of the program is
modeled as a finite state machine (FSM), with each function represented as a state and
caller-callee relationships denoted by valid FSM transitions. The FSM monitors all
call/return instructions and transitions to the next state accordingly. There is a common
invalid state to which the FSM transitions if a function attempts to call or return to another
function it was not permitted to. Tables TABcall and TABret maintain the mapping from
program addresses to FSM state identifier and feed it to the FSM. Intra-procedural control

flow is also modeled as an FSM with a state for each basic block in the control flow graph
of the function. The information for a basic block bi is represented as a tuple
(index,offset,S0,S1) where index is its state identifier, offset is the address offset of bi from
function start, and S0, S1 are indices of basic blocks that are its possible successors. This
FSM is stored in the table TABbb and the associated control/checking logic verifies that the
branches and jumps made during execution correspond to the information stored in this
table. The instruction integrity checker checks the integrity of executing instruction stream
by computing a cryptographic hash of each basic block and comparing it against a pre-
specified value. For this, the program loads the basic block hashes for a set of (sensitive)
functions into the monitor before execution and the monitor verifies that the instructions are
not modified during execution. This sub-block consists of a pipelined hashing unit and
buffers to store the instructions while the hash of a previous basic block is being computed,
so as to not stall the processor too frequently.

4. Hardware-assisted Validation of Program Data Properties

We first use an example attack to motivate the proposed architecture, which we then
describe in detail.

4.1. Example Attack

int main (int argc, char** argv)
{

FILE* fd;
static char buf[16];
static char* fname = ”my.txt”;
printf (“Filename %s ”,fname);
//vulnerable function call
gets (buf);
…
fd = fopen (fname, ”w”);
if (fd)

printf (“Opening %s ”,fname);
fclose (fd);
…

}

0 1 2 15

buf = “aaaabbbbccccdddd/etc/hosts”

m y . t x t

a a d / e t c s t s/ h o

buf fname

Fig.3. Program data corruption via heap overflow

Fig. 3 shows a typical heap overflow attack. The code contains two static variables,
buf[] and fname on a program’s heap. The program uses a vulnerable C function gets() to
get input from the user and store it in buf[]. A malicious user can provide a long input that
overflows buf[] and overwrites *fname, tricking the program into writing to a completely
different (sensitive) file. There are two points worth noting here: (i) it is possible to corrupt
program data without altering its control flow behavior, and (ii) neither the OS nor the
processor architecture provide any mechanism to prevent transgressions by one part of an
application against another. We address these two limitations in this work in the context of
program data protection. Data protection is significantly harder than protecting code, since
unlike code (which is mostly known after compilation), data are highly dynamic, and may
be allocated, initialized, and changed at run-time.

4.2. Proposed Architecture

ApplicationLibraries

Compile + link

Properties
specified in

lib. functions

Appl.-specific
properties

Properties
integrated

with compiler

Text (checker config. +
setting SECTAGs) Data Enhanced

binary

Main
memory

Processor

Checker

I-$

D-$
SECTAG

Data bus
Verify

Data access

IF

ID

EX

MEM

WB

I-
L1

D-L1
controller

U-L2
controller

SE
CT

A
G L

1

Addr.
tag Data

Checker

Unified L2

Addr.
tag Data

Extra L2 tag

Memory address

Sy
st

em
 m

em
or

y
bu

s

D-L1

Processor
pipeline

(a) (b)
Fig.4. Run-time data validation: (a) Proposed framework (b) Architecture

Fig.4(a) shows the overall design flow for the proposed framework. We augment a
program’s abstract data state with a new field – SECTAG (SECurity TAG) that encodes its
security-specific attributes. These attributes may be derived from application-specific
policies, e.g., allowing only some functions to access specified data structures, or they may
be universally applicable, e.g., disallowing writes to unallocated memory. The former
require modification to application source code while the latter may be implemented with
help from run-time libraries or the compiler. The flow produces an enhanced binary, which
is run on the enhanced processor that has extra storage and control to manage SECTAGs of
data and a dedicated hardware checker to check these SECTAGs and validate data accesses.

Fig. 4(b) shows the details of the architecture with new/modified parts highlighted. We
assume a cache configuration with unified L2 cache and split Instruction and Data L1 (I-L1
and D-L1) caches. Different design considerations guided this architecture. In L1 design, to
minimize impact on L1 hit time, extra storage - SECTAGL1 - is added on-chip to store
SECTAGs of data in D-L1. When the processor accesses a datum in D-L1, the checker
accesses its SECTAG in parallel and verifies if the data access is allowed by the semantics
of the SECTAG. For L2, a design similar to above is infeasible as most processors have
large unified L2 caches, and having a separate tag area for each cache line would lead to
large hardware overheads. Therefore, we designate lines in L2 to store SECTAGs of other
L2 lines and modify cache tags to maintain bookkeeping information about where in L2 the
SECTAGs of a particular data line are kept. Cache hit/miss handling policies are modified
to fetch SECTAGs from memory and manage them during execution.

The checker is a programmer-visible peripheral that can be configured via registers. For
example, the program can specify the address range of data to be checked, exact SECTAG
value to be matched on every read/write, SECTAG bound to be compared against on every
access, etc. Lastly, the instruction set is augmented with and extra instruction (tsb $rs, $rt)
that sets the SECTAG of the address in $rs to the value in $rt. This framework is capable
of supporting a wide range of security policies including preventing reads from uninitialized
memory, segregating data into security levels and restricting access by functions belonging

to different parts of a program, restricting access to stack variables of a function by its
callees, etc.

5. Experiment and Results

To evaluate the proposed techniques, applications were selected from the embedded
benchmark suites, Mediabench and Mibench benchmark suites. Cycle-accurate simulations
were performed by modifying Simplescalar [17] to simulate the enhanced architectures.

5.1. Hardware-assisted Control Flow Monitoring

We performed area estimation by synthesizing the monitors for several applications at
different granularities. With a base case of ARM920T 32-bit processor core, the average
area overheads for inter-procedural, intra-procedural and instruction integrity checking were
0.72%, 2.44%, and 5.59% respectively.

Performance estimation also revealed minimal overheads – the penalty was <1% for
inter-procedural checking, 1.77% for intra-procedural checking in detection mode (when the
processor is allowed to continue while the monitor is checking and stalled only on a control
instruction), and 4.94% for intra-procedural checking in prevention mode (no new
instruction is permitted to commit before checking completes). Instruction integrity
checking usually results in substantial overhead, but it can be virtually eliminated by using a
pipelined hash engine.

5.2. Hardware-assisted Validation of Program Data Properties

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

epic

mpeg2decode
gsm (toast)

susan
bitcnts cjpeg

pegwit (-d
)
dijkstra

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

16K
32K
64K
128K

0

0.5

1
1.5

2
2.5

3

3.5

4

epic

mpeg2decode
gsm (toast)

susan
bitcnts cjpeg

pegwit (-d
)

dijkstra

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

SECTAG width 1
2
4
8

(a) (b)
Fig.5. Performance penalty for checking heap accesses with (a) varying L2 sizes, and (b) varying SECTAG

bit-widths
Fig. 5(a) shows the performance impact for implementation of the policy: disallow reads/
writes to unallocated memory. Library routines malloc() and free() are modified to maintain
a 1-bit SECTAG for all allocated memory. This policy catches heap overruns, access to
freed memory, after it has been freed and exploits that operate by corrupting the malloc
chunk header. The average and maximum execution time penalty for the default L2 cache
size (64K) are 7.6% and 32.7%. Fig. 5(b) shows the scalability of this approach in

supporting higher bit-width SECTAGs. The incremental performance loss to go from a
single-bit tag to widths of 2, 4 and 8 is 2.6%, 11.2% and 43.5% respectively.

6. Conclusions

Ensuring secure execution of software is a critical aspect of modern embedded systems.
This paper presented two techniques for ensuring secure program execution. The techniques
exploit a combination of hardware and software modifications to achieve this objective, by
monitoring pre-defined control and data properties. Experimental results indicate that the
proposed modifications are reasonable in terms of the overheads incurred, and ensure that a
wide range of security attacks can be prevented.

7. References

[1] IBM, Global Business Security Index Report. http://www.ibm.com, 2005.
[2] P. Kocher, R. Lee, G. McGraw, A. Raghunathan and S. Ravi, “Security as a New Dimension in Embedded

System Design,” in Proc. ACM/IEEE Design Automation Conference, pp. 753-760, June 2004.
[3] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in embedded systems: Design challenges,”
 in ACM Trans. on Embedded Computing Sys, pp. 461-491, Aug. 2004
[4] Secure Mobile Systems, Mobile Threats. http://security.fb-4.com/mobilealerts.html
[5] R. York, A New Foundation for CPU Systems Security, ARM Limited, 2003 (Available at
 http://www.arm.com/armtech/TrustZone?OpenDocument.)
[6] Texas Instruments Inc., OMAP Platform(Available at http://focus.ti.com/omap/docs/omaphomepage.tsp)
[7] MP21x mobile application processors. NEC Electronics Corp. (Available at

http://www.necel.com/en/ techhighlights /application_processor/).
[8] M. Kanellos, AMD, Intel put antivirus tech into chips. CNET Networks Inc.

(http://news.zdnet.com/2100-1009_22-5137832.html?tag=nl).
[9] C. Cowan et al., “Stackguard: Automatic adaptive detection and prevention of bufferoverflow attacks,” in

Proc. USENIX Security Symp., Jan. 1998, pp. 63–77.
[10] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur, “Run-time detection of heap-based overflows”, in Proc.

USENIX Large Installation Systems Administration Conf., pp. 51- 60, Oct. 2003.
[11] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure execution via program shepherding,” in Proc.

USENIX Security Symp., pp. 191-206, Aug. 2002
[12] S. H. Yong and S. Horwitz., “Protecting C programs from attacks via invalid pointer dereferences,” in Proc.

European Software Engineering Conf., pp. 307-316, Sept. 2003
[13] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C. Mitchell, and M. Horowitz, “Architectural

support for copy and tamper resistant software,” in Proc. Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 168–177, Nov. 2000

[14] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS: Architecture for tamper-evident
and tamper-resistant processing,” in Proc. Int. Conf. on Supercomputing, pp. 160–171, June 2003

[15] D. Arora, S. Ravi, A. Raghunathan and N. K. Jha, “Secure Embedded Processing through Hardware-assisted
Runtime Monitoring”, in Proc. ACM/IEEE Design, Automation, and Test in Europe (DATE), March 2005

[16] D. Arora, A. Raghunathan, S. Ravi, and N. K. Jha, “Enhancing Security Through Hardware-assisted Run-
time Validation of Program Data Properties”, in Proc. ACM/IEEE International Conference on Hardware
Software Co-design and System Synthesis (CODES+ISSS), Sept. 2005

[17] D. Burger and T.M. Austin, “The simplescalar toolset, Version 2.0,” Comp. Sciences Dept, UW, Tech. Rep.,
June 1997.

