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Abstract.  In this paper, we present architectural enhancements for ensuring secure 
execution of programs on embedded processors.  The primary motivation behind this 
work is that software attacks often originate from unknown vulnerabilities in trusted 
programs. We propose two techniques to achieve secure program execution. They 
include (i) hardware-assisted monitoring of a trusted program’s control flow to detect 
deviant control flow, and (ii) hardware-assisted validation of a program’s data properties 
that may be violated in the event of an attack. Experiments show that the proposed 
architecture can be very effective in preventing a wide range of security threats. 

1. Introduction 

Various studies [1,2,3] indicate that software attacks today are not only increasing in 
number, but are also beginning to target a diverse range of electronic systems. Software 
attacks due to viruses, worms, and trojan horse applications have proliferated not only to 
personal computers, but also to embedded appliances such as cellphones and PDAs, 
automotive electronics, and networked sensors. This trend is attested to by the emergence of 
attacks on mobile phones such as the Skulls, Cabir, and Lasco viruses [4]. Given that 
embedded systems are ubiquitously deployed in several mission-critical and pervasive 
applications, it is not surprising that security of an embedded system is becoming a major 
and immediate concern to manufacturers and users, alike. 

In the desktop and enterprise world, conventional software security solutions such 
as software certificates, software vulnerability patches, ant-virus software updates, etc. have 
achieved only limited success. This observation has led to the development of various 
architectural mechanisms to augment software security solutions, and many of these 
technologies are emerging today as commercial products/solutions. For example, processors 
from Intel and AMD now feature a non-executable bit that can be enabled to make selected 
regions of a program’s address space non-executable [8]. This makes the programs that they 
execute less vulnerable against buffer overflow attacks. Similarly, chips designed for next-
generation cellphones, such as TI’s OMAP 2420 [6] and NEC’s MP211 [7] systems-on-a-
chip (SoCs)  feature a wide range of security measures including secure bootstrapping, and 
protection of the code and data spaces associated with sensitive applications. Another recent 
technology applicable to embedded SoCs is ARM’s TrustZone [5], which attempts to 



provide a secure execution environment for a selected set of applications called trusted 
applications. The basic objective is to provide protection for the code and data spaces of 
trusted applications against tamper by untrusted applications. 
 Our work also falls in the domain of architectural support for security. The 
objective is to provide higher security assurance when a trusted program executes, so that 
the system can be protected against software attacks that can even originate from a 
vulnerability in the trusted program. We have developed two techniques to address this 
objective, which include: 

• Hardware-assisted control flow monitoring: Many attacks, such as stack-based 
buffer overflows, execute malicious code by exploiting vulnerabilities in a trusted 
program. Protecting against such attacks is, therefore, a critical objective. Our 
solution is based on a simple observation that the execution of malicious code will 
result in behavior or control flow that is different from the normal program 
behavior. In other words, if the trusted program can be characterized to have a 
normal execution behavior (in the absence of an attack), then any deviation from 
the said behavior can be flagged as an attack. We implement the proposed solution 
by designing a separate hardware monitor that models and enforces the 
characterized program behavior by monitoring the program’s execution on the 
processor. The proposed framework shows that a program’s function call graph, 
basic block control flow graph, etc. are invariants that can be statically derived, 
and enforced by the monitor at run-time, with minimum overheads, and in a 
minimally intrusive fashion.  

• Hardware-assisted validation of program’s data properties: Some attacks do not 
modify the control flow of a program, but only modify the data associated with a 
program in the program’s stack or heap. Similar to control flow, a program’s 
behavior with respect to data accesses can also be encoded and enforced as security 
policies during the program’s execution. This led to the development of a HW/SW 
framework that can enforce various security policies. This framework is shown to 
be effective in preventing various kinds of software attacks, including heap-based 
and format string attacks. 

The rest of this paper is organized as follows. Section 2 discusses related work. Sections 3  
and 4 detail the two techniques. Section 5 presents experimental results, and Section 6 
concludes the paper. 

2. Related Work 

Many techniques including code scan and review tools attempt to strengthen software 
security by eliminating vulnerabilities during the software design phase. Various solutions 
have been developed to address specific kinds of attacks such as stack-based buffer 
overflow attacks [9], heap overflow attacks [10], etc. Apart from such mechanisms, 
researchers have proposed a wide range of runtime monitoring techniques [11, 12] to 
enforce various security policies. However, software-based runtime monitoring techniques 



suffer from various drawbacks including performance overheads, limited coverage of 
security vulnerabilities, etc. 

More recently, researchers have focused on augmenting processor architectures for 
secure program execution. Examples of these works include enhanced processor 
architectures, such as XOM [13] and AEGIS [14], which attempt to provide code integrity 
and privacy in the presence of untrusted memory. However, these techniques do not 
safeguard an application from its own vulnerabilities.  A more detailed survey of work 
related to this paper can be found in [15] and [16]. 

3. Hardware-assisted Control Flow Monitoring 

We first present an example attack to motivate the proposed architecture, which we then 
describe in detail. 

3.1. Example Attack 

File: wav.c
int st_wavstartread (ft_t * ft)
{

uint32_t len;
char text[256];
…
//get length of data from header
len = findChunk (ft, ”data” );
//read len bytes into text[]
st_reads (ft, text, len);
…

}
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Fig.1. A simple example of a “stack smashing” attack 

Fig.1(a) presents a code snippet from SoX (Sound eXchange), a popular audio 
conversion utility. The function st_wavstartread() reads len bytes from an input file into a 
local array text[]. Fig. 1(b) shows the stack layout, when the function is called during 
program execution. An attacker creates an input wav file containing a payload of malicious 
code and len>256. This causes a buffer overflow for text[], resulting in corruption of the 
local variables and function’s return address stored on program stack. The input file can be 
constructed so that the corrupted return address points to the start of malicious code, which 
is executed when the function st_wavstartread() returns. 

While the vulnerability in the above example could be easily addressed through input 
validation, bugs in large, complex programs can be much more subtle and elusive. In 
addition to software attacks, embedded systems are also susceptible to physical attacks that 
involve tampering with system properties such as voltage levels and memory contents.  
Irrespective of their origin, most attacks manifest as a subversion of “normal” program 



execution. Therefore, we concentrate our efforts on defining this behavior and monitoring 
execution to enforce it, using hardware support to make such extensive checking feasible. 

3.2. Proposed Architecture 
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Fig.2. Hardware-assisted monitoring: (a) Block diagram, and  (b) Detailed architecture 

Fig. 2(a) shows the block diagram of the proposed hardware-assisted monitoring 
architecture. The figure shows a 5-stage, in-order RISC processor pipeline that has been 
enhanced with a separate hardware unit or monitor. The monitor receives inputs from the 
program counter (PC), instruction register (IR) and the pipeline status from the pipeline 
control unit. The monitor’s outputs include a stall signal and an invalid signal. When the 
monitor detects a violation of permissible behavior, it asserts the invalid signal resulting in a 
non-maskable interrupt to the processor. The stall signal is asserted if the monitor is unable 
to keep pace with the processor. This is handled as a normal processor stall, and the pipeline 
stages are “frozen” till the stall signal is de-asserted. 

The monitor is composed of three sub-blocks, which check program properties at 
different granularities. The structure is hierarchical and follows from the natural structure of 
programs – the top-most level works at the application level and verifies that the inter-
procedural control flow is in accordance with the program’s static function call graph, the 
second level validates the intra-procedural control flow by validating each branch/jump 
instruction within a function and finally, the lowermost level verifies the integrity of the 
instruction stream. This hierarchical structure allows the designer to trade-off checking 
granularity and coverage for area and/or performance. 

Fig. 2(b) details the design of each of these sub-blocks. The call graph of the program is 
modeled as a finite state machine (FSM), with each function represented as a state and 
caller-callee relationships denoted by valid FSM transitions. The FSM monitors all 
call/return instructions and transitions to the next state accordingly. There is a common 
invalid state to which the FSM transitions if a function attempts to call or return to another 
function it was not permitted to.  Tables TABcall and TABret maintain the mapping from 
program addresses to FSM state identifier and feed it to the FSM. Intra-procedural control 



flow is also modeled as an FSM with a state for each basic block in the control flow graph 
of the function. The information for a basic block bi is represented as a tuple 
(index,offset,S0,S1) where index is its state identifier, offset is the address offset of bi from 
function start, and S0, S1 are indices of basic blocks that are its possible successors. This 
FSM is stored in the table TABbb and the associated control/checking logic verifies that the 
branches and jumps made during execution correspond to the information stored in this 
table. The instruction integrity checker checks the integrity of executing instruction stream 
by computing a cryptographic hash of each basic block and comparing it against a pre-
specified value. For this, the program loads the basic block hashes for a set of (sensitive) 
functions into the monitor before execution and the monitor verifies that the instructions are 
not modified during execution. This sub-block consists of a pipelined hashing unit and 
buffers to store the instructions while the hash of a previous basic block is being computed, 
so as to not stall the processor too frequently. 

4. Hardware-assisted Validation of Program Data Properties 

We first use an example attack to motivate the proposed architecture, which we then 
describe in detail. 

4.1. Example Attack 

int main (int argc, char** argv)
{

FILE* fd;
static char buf[16];
static char* fname = ”my.txt”;
printf (“Filename %s ”,fname);
//vulnerable function call
gets (buf);
…
fd = fopen (fname, ”w”);
if (fd)

printf (“Opening %s ”,fname);
fclose (fd);
…

}
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Fig.3. Program data corruption via heap overflow 

Fig. 3 shows a typical heap overflow attack. The code contains two static variables, 
buf[] and fname on a program’s heap. The program uses a vulnerable C function gets() to 
get input from the user and store it in buf[]. A malicious user can provide a long input that 
overflows buf[] and overwrites *fname, tricking the program into writing to a completely 
different (sensitive) file. There are two points worth noting here: (i) it is possible to corrupt 
program data without altering its control flow behavior, and (ii) neither the OS nor the 
processor architecture provide any mechanism to prevent transgressions by one part of an 
application against another. We address these two limitations in this work in the context of 
program data protection. Data protection is significantly harder than protecting code, since 
unlike code (which is mostly known after compilation), data are highly dynamic, and may 
be allocated, initialized, and changed at run-time. 



4.2. Proposed Architecture 
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Fig.4. Run-time data validation: (a) Proposed framework  (b) Architecture 

Fig.4(a) shows the overall design flow for the proposed framework. We augment a 
program’s abstract data state with a new field – SECTAG (SECurity TAG) that encodes its 
security-specific attributes. These attributes may be derived from application-specific 
policies, e.g., allowing only some functions to access specified data structures, or they may 
be universally applicable, e.g., disallowing writes to unallocated memory. The former 
require modification to application source code while the latter may be implemented with 
help from run-time libraries or the compiler. The flow produces an enhanced binary, which 
is run on the enhanced processor that has extra storage and control to manage SECTAGs of 
data and a dedicated hardware checker to check these SECTAGs and validate data accesses. 

Fig. 4(b) shows the details of the architecture with new/modified parts highlighted. We 
assume a cache configuration with unified L2 cache and split Instruction and Data L1 (I-L1 
and D-L1) caches. Different design considerations guided this architecture. In L1 design, to 
minimize impact on L1 hit time, extra storage - SECTAGL1 - is added on-chip to store 
SECTAGs of data in D-L1. When the processor accesses a datum in D-L1, the checker 
accesses its SECTAG in parallel and verifies if the data access is allowed by the semantics 
of the SECTAG. For L2, a design similar to above is infeasible as most processors have 
large unified L2 caches, and having a separate tag area for each cache line would lead to 
large hardware overheads. Therefore, we designate lines in L2 to store SECTAGs of other 
L2 lines and modify cache tags to maintain bookkeeping information about where in L2 the 
SECTAGs of a particular data line are kept. Cache hit/miss handling policies are modified 
to fetch SECTAGs from memory and manage them during execution.  

The checker is a programmer-visible peripheral that can be configured via registers. For 
example, the program can specify the address range of data to be checked, exact SECTAG 
value to be matched on every read/write, SECTAG bound to be compared against on every 
access, etc. Lastly, the instruction set is augmented with and extra instruction (tsb $rs, $rt) 
that sets the SECTAG of the address in $rs to the value in $rt.  This framework is capable 
of supporting a wide range of security policies including preventing reads from uninitialized 
memory, segregating data into security levels and restricting access by functions belonging 



to different parts of a program, restricting access to stack variables of a function by its 
callees, etc.  

5. Experiment and Results 

To evaluate the proposed techniques, applications were selected from the embedded 
benchmark suites, Mediabench and Mibench benchmark suites. Cycle-accurate simulations 
were performed by modifying Simplescalar [17] to simulate the enhanced architectures. 

5.1. Hardware-assisted Control Flow Monitoring 

We performed area estimation by synthesizing the monitors for several applications at 
different granularities. With a base case of ARM920T 32-bit processor core, the average 
area overheads for inter-procedural, intra-procedural and instruction integrity checking were 
0.72%, 2.44%, and 5.59% respectively. 

Performance estimation also revealed minimal overheads – the penalty was <1% for 
inter-procedural checking, 1.77% for intra-procedural checking in detection mode (when the 
processor is allowed to continue while the monitor is checking and stalled only on a control 
instruction), and 4.94% for intra-procedural checking in prevention mode (no new 
instruction is permitted to commit before checking completes). Instruction integrity 
checking usually results in substantial overhead, but it can be virtually eliminated by using a 
pipelined hash engine.  

5.2. Hardware-assisted Validation of Program Data Properties 
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Fig.5. Performance penalty for checking heap accesses with (a) varying L2 sizes, and (b) varying SECTAG 

bit-widths 
Fig. 5(a) shows the performance impact for implementation of the policy: disallow reads/ 
writes to unallocated memory. Library routines malloc() and free() are modified to maintain 
a 1-bit SECTAG for all allocated memory. This policy catches heap overruns, access to 
freed memory, after it has been freed and exploits that operate by corrupting the malloc 
chunk header. The average and maximum execution time penalty for the default L2 cache 
size (64K) are 7.6% and 32.7%. Fig. 5(b) shows the scalability of this approach in 



supporting higher bit-width SECTAGs. The incremental performance loss to go from a 
single-bit tag to widths of 2, 4 and 8 is 2.6%, 11.2% and 43.5% respectively.  

6. Conclusions 

Ensuring secure execution of software is a critical aspect of modern embedded systems.  
This paper presented two techniques for ensuring secure program execution. The techniques 
exploit a combination of hardware and software modifications to achieve this objective, by 
monitoring pre-defined control and data properties.  Experimental results indicate that the 
proposed modifications are reasonable in terms of the overheads incurred, and ensure that a 
wide range of security attacks can be prevented. 
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