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Abstract

Cryptographic processing is a principal enabler of many secure computing systems. Using

cryptographic techniques such as encryption and secure hashing, we can satisfy several

essential security requirements for networks, computers, and data against a diverse set of

threats.

This thesis proposes four architectural solutions to problems associated with enabling

cryptographic processing in software and hardware. Two of the solutions involve protecting

cryptographic keys, which are small secrets upon which cryptographic security critically

depends. The other two solutions improve performance and reduce vulnerabilities in cryp-

tographic software implementations.

First, since the security provided by cryptographic processing depends on the secrecy

and integrity of cryptographic keys, we describe a flexible system for shielding a user’s

keys while in storage, transmission, and use on networked computing devices. Second,

we present a new broadcast encryption system that enables the identification of users who

contribute to piracy by divulging cryptographic keys that can be used to decode protected

information. Third, since software rather than specialized hardware often supplies cryp-

tographic functionality, we describe a method for alleviating performance problems suf-

fered by cryptographic software implementations. In particular, we propose new processor

instructions to improve the performance of bit-level mappings employed by several com-

mon cryptographic operations. Fourth, we present a processor-based method for mitigating

certain software vulnerabilities in both cryptographic and general software. The method

provides built-in and dynamic protection against buffer overflow attacks, which compose
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one of the most common classes of software exploits. By applying these four contributions

individually or in concert, we can achieve improved cryptographic security in existing and

future systems.
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Chapter 1

Introduction

As society, government, and enterprises become increasingly dependent on information

technology, system security becomes essential.

However, despite growing awareness of threats and more proactive approaches to se-

curity, the number and virulence of security vulnerabilities are increasing rapidly. The

Computer Emergency Response Team (CERT) states that security problems are growing

exponentially: the number of reported information technology security incidents increased

at a mean rate of 85% per year from 2000 to 2003 [31]. Participants in the 2004 CSI/FBI

Computer Crime and Security Survey reported average annual losses of over $555,000 per

company due to security breaches [33], which translates into collective corporate losses

ranging in the tens of billions of U.S. dollars. Privacy and data secrecy issues are also

significantly affecting the value of enterprises. Large public corporations that experienced

a publicized privacy or data secrecy breach between the years 1995 and 2000 suffered an

average short-term market capitalization reduction of over 5% [23].

Many reasons exist for the increase in security vulnerabilities. These reasons include

the increasing complexity of computing systems, the reluctance to adopt security technolo-

gies because of cost or performance issues, and inadequate security designs. Complexity,

in particular, can be computer security’s worst enemy [140]. However, due to intense con-

sumer demand for improved functionality and connectivity, there is no near-term indication

1



CHAPTER 1. INTRODUCTION 2

that system capabilities and complexity will be reduced for the sake of security. This is ev-

idenced by the continuing exponential growth of processor transistor counts [61] and the

number of lines of code involved in operating systems [161].

For the past three decades, in systems based upon programmable microprocessors, soft-

ware has performed the majority of security functions. The system hardware has provided

few features for protecting resources and data. Furthermore, security responsibilities in

software are sometimes relegated to secondary modules instead of core software compo-

nents. That is, in some systems, security is interpreted and implemented as an application

rather than a fundamental design goal.

Given the enormous resources that are becoming available in hardware, computer ar-

chitects have an unprecedented opportunity to improve security by incorporating new pro-

tection features into the heart of computing systems. Moore’s Law continues to hold: the

number of transistors per die is doubling every eighteen months [61]. By 2007, the number

of transistors in advanced general-purpose processors is expected to exceed one billion [61].

Most of these transistors will be applied to construct enormous on-die memory caches and

complex microarchitectural mechanisms that provide increasingly diminishing improve-

ments to overall performance. Why squander millions of logic gates and memory cells

to marginally accelerate the performance of general software? Some of these hardware

resources can be better applied to address more critical problems. Issues that truly war-

rant the attention of hardware architects include enabling low-power operation, supporting

system recoverability, and theraison d’̂etreof this thesis: enhancing security.

Hardware can be applied to enable certain security mechanisms and acceleration fea-

tures that are not realizable in software-only systems. In particular, processors and hard-

ware platforms can be employed to store special secrets and perform special operations that

are not available to any system software. This leads to numerous opportunities for enabling

secure software execution by relying on trusted hardware. Furthermore, in order to facili-

tate the adoption of secure systems, specialized hardware-based techniques can and should
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be implemented to minimize undesirable side effects of security features. Such undesirable

side effects may include performance degradation, increased monetary cost, and increased

energy consumption.

By enhancing security with hardware, processors and platforms do not necessarily need

to be fundamentally re-engineered. Rather, low-cost synergistic hardware and software

techniques can provide immediate and potent results.

1.1 Thesis Contributions

This thesis investigates a set of topics in secure computing. Specifically, this thesis presents

four architectural techniques for providing and enriching security. Each of the contributions

provides a means for enabling secure and efficient cryptographic software, which is a core

component of many security mechanisms and systems. The contributions are by no means

intended to collectively serve as a security panacea; instead, this thesis demonstrates that

hardware can be employed to mitigate crucial vulnerabilities and to assuage performance

problems associated with existing approaches to security.

The first contribution of this thesis is a hardware and software system for defending

users’ core secrets in general-purpose platforms such as desktop computers and personal

digital assistants (PDAs). Most conventional computing systems do not provide adequate

protection for small quantities of secret information upon which security often depends,

such as cryptographic keys. This thesis proposes a set of low-cost hardware architecture

enhancements and a privileged software library that allow general-purpose processors to

perform flexible, high-performance, and protected cryptographic computation. With this

system, which we call Virtual Secure Coprocessing, users can employ their secret keys to

safely and flexibly complete cryptographic operations in the presence of potentially vulner-

able software applications and operating systems.
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The second contribution of this thesis is an efficient scheme that enables the identifi-

cation of users involved in the piracy of protected broadcasts. In this application scenario,

sensitive information may be broadcast to many hardware devices, but only authorized

hardware devices should contain the cryptographic keys needed to decode and make use of

the information. However, some authorized entities, called traitors, may extract the crypto-

graphic keys in order to construct and distribute devices that enable piracy. To identify such

traitors, an information content provider may employ atraceability schemefor broadcast

systems. Following the confiscation of a pirate decoding device in a traceability scheme,

at least one user in a collusion of up tok traitors that contributed to the device can be

identified. This thesis presents a new traceability scheme based on the RSA encryption

algorithm. The proposed scheme significantly improves upon the decryption performance

of past proposals while providing the same or better level of security. In the proposed so-

lution, decryption only requires approximately one modular exponentiation, whereas past

proposals requireO(k) or greater computationally expensive operations per decryption.

The third contribution of this thesis is a set of architectural enhancements for accelerat-

ing the performance of bit-level permutations and mappings, which are employed in bulk

encryption and hash operations. Bulk encryption and secure hashing are often employed to

provide confidentiality and integrity for data in secure communications and secure storage

scenarios. In conventional architectures, however, bit-level permutations and mappings are

not natively supported by the processor, and therefore performing the mappings in soft-

ware can be highly time consuming. Thus, by improving the throughput of these opera-

tions, the potential negative performance impact of current and future cryptographic secu-

rity procedures can be alleviated. This thesis proposes instruction set architecture (ISA)

improvements, hardware enhancements, and software modifications for achieving high-

performance permutations and mappings of 1-bit or larger subwords packed in ann-bit

word. These enhancements significantly accelerate the mappings, and they also acceler-

ate the popular Data Encryption Standard (DES) and the Triple Data Encryption Standard
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(3DES) algorithms.

The fourth contribution is a processor-based mechanism that addresses one of the most

common types of remote attacks on software: buffer overflows. This mechanism mitigates

common security vulnerabilities in cryptographic security software as well as in general

software by thwarting buffer overflow attacks involving procedure return address corrup-

tion. This thesis describes low-cost processor and operating system enhancements that

effectively and transparently preclude such buffer overflow attacks and thus lessen the fre-

quency of insertion and execution of malicious code. The proposed processor and operating

system (OS) enhancements can be applied in tandem with other software countermeasures

to provide robust protection.

1.2 Thesis Organization

The organization of this thesis is as follows.

Chapter 1 introduces the contributions of this thesis and the philosophy of applying

hardware to improve the security offered by software-only techniques.

Chapter 2 introduces important security concepts and discusses the role of cryptogra-

phy in secure systems. The chapter also identifies core issues and problems relating to

cryptographic processing that are addressed by the contributions of this thesis.

Chapter 3 presents Virtual Secure Coprocessing. The chapter begins by characterizing

the paradigm shifts that motivate the design of this system. Next, processor, platform, oper-

ating system, and software enhancements are presented that provide critical protection for

keys in general-purpose platforms. Processor simulation results demonstrate that the pro-

posed enhancements cause a negligible (i.e., less than 1%) performance impact on affected

programs. This chapter is based in part on work presented by the author in [95, 108, 109].

Chapter 4 presents a new traitor tracing scheme based on RSA. Methods for user ini-

tialization, encryption, decryption, and traitor tracing are presented and evaluated. The
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strength of the scheme is evaluated via formal proofs of security. This chapter is based in

part on work presented by the author in [110, 111, 112].

Chapter 5 presents architectural enhancements for accelerating bit-level permutations

and mappings for general-purpose processors. Instruction set architecture changes, mi-

croarchitectural and circuit implementations, and corresponding software enhancements

are investigated. Using a processor simulator, performance improvement is demonstrated

for the permutations and the mappings in the popular DES and 3DES encryption algo-

rithms. This chapter is based in part on work presented by the author in [104, 105].

Chapter 6 presents a processor-based mechanism for preventing procedure return ad-

dress corruption resulting from buffer overflow. The chapter introduces a set of processor

modifications and operating system enhancements needed to achieve the design goals and

investigates the impact of varying values of design parameters. Processor simulation results

for a set of representative programs show that the buffer overflow defense does not signif-

icantly affect the performance of programs on general-purpose processors. This chapter is

based in part on work presented by the author in [93, 94, 103].

Chapter 7 concludes the thesis and provides directions and opportunities for future re-

search.



Chapter 2

Cryptographic Processing

This chapter explores methods for and issues in implementing cryptographic primitives in

secure systems. Cryptographic primitives effectively combat a diverse set of threats against

networks, computers, and information. However, as this chapter demonstrates, many fun-

damental issues remain to be addressed relating to the secure and dependable implemen-

tation of cryptographic functionality. In subsequent chapters, solutions are proposed for

several of the identified implementation problems.

This chapter is organized as follows. Section 2.1 establishes definitions of important

security concepts, including secure systems, trust, threats, and security goals. Section 2.2

presents selected methods and standards for evaluating security functionality. Section 2.3

introduces and describes cryptographic primitives, such as encryption and hashing. Sec-

tion 2.4 discusses how cryptography can be employed to satisfy common security goals in

communications and storage systems. Section 2.5 identifies important issues in enabling

cryptographic processing and proposes architectural approaches for addressing these is-

sues. Section 2.6 summarizes this chapter.

7
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2.1 Defining Security

To properly evaluate security, we must first establish a definition of asecure system. This

thesis uses the following definition, which is based on statements articulated by Anderson

in [4]:

A secure system is a system that remains dependable in the face of malice,

error, or mischance.

This definition is based on dependability as a general concept rather than a specific

technical goal. In the context of the complex systems that we wish to secure, which include

operating systems and software applications, dependability relates to many factors. These

factors include — but are not limited to — the desired feature set, the threat model, and the

system security goals.

2.1.1 Threats

A secure system is often defined and described in the context of itsthreat model. A threat

model is a description of potential vulnerabilities and attacks of concern to a system. In

this thesis, we focus on threats against which cryptographic processing can provide needed

protection. A few examples of threats to networks and computers are listed below:

• Network eavesdropping. As computer networks continue to proliferate, unautho-

rized parties can obtain sensitive data using very simple equipment to eavesdrop

inconspicuously on network communications. This is especially true for wireless

networks that broadcast information using the public spectrum.

• Physical data media theft.Attackers can physically steal laptops, PDAs, etc., which

may contain sensitive data or that may enable access to protected resources.
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• Entity impersonation. In systems that use weak authentication mechanisms, such

as short user passwords, attackers can undetectably impersonate authorized users and

gain access to sensitive information or valuable resources.

• Data and code piracy. Users may acquire sensitive information in an authorized

or unauthorized fashion and subsequently (and perhaps anonymously) divulge the

content to unauthorized users.

• Data and code tampering.Attackers may modify data or code (ranging from 1 bit

to many gigabytes in size) without being detected by relevant authorities.

Ideally, to protect against present and future threats more effectively, threats should be

generalized, and defenses should be designed to thwart general classes of attacks.

2.1.2 Security Goals

Given a threat model, thesecurity goalsof the system define the security and protection

required for information, access, and system resources against the identified threats. A few

common security goals are described below:

• Data confidentiality. Data confidentiality, which is sometimes termeddata secrecy,

means that only authorized entities may access the target data. Though the term

privacyhas been used synonymously with confidentiality in the past, privacy should

be reserved for the protection of personal information in modern contexts.

• Data integrity. Data integrity means that only authorized entities may modify data

in authorized ways and implies that unauthorized entities should not be able to unde-

tectably modify data in any way.

• Data origin authentication. Data origin authentication means that an authorized

entity that supplies or modifies data can be identified. That is, it is not feasible for

the origin of the data to be forged.
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• Entity authentication. Entity authentication involves the identification of a com-

municating entity. Strong entity authentication systems prevent the impersonation of

entities by adversaries, and therefore entity authentication is sometimes called host

authentication or user authentication.

Other examples of system security goals include non-repudiation, access revocability,

and traitor traceability, to name a few. The techniques chosen to realize security goals

depend on the characteristics of the target system, the threat model, and the application

domain. For instance, to ensure confidentiality against physical theft of a sensitive report

that is written on paper, security engineers may choose to seek adequate confidentiality by

simply storing the report in a fortified vault. However, such a vault would obviously not

be appropriate to protect a report that is maintained digitally within hundreds of desktop

computers that may be connected to the Internet. When seeking to protect information and

computing resources, cryptography is often employed (in conjunction with other security

mechanisms such as software-enforced access control).

It is important to distinguish the concept of asecure systemfrom the concept of atrusted

system. We use the NSA definition of a trusted system, which is a system that can defeat

a security policy if it fails [4]. Furthermore, thetrusted boundaryof a system is a physical

and/or virtual boundary that separates the untrusted environment from the resources and

data that are designated as trusted. The physical exterior or software interface of a device is

often defined to be the trusted boundary. Alternatively, a trusted boundary in an enterprise

scenario might encompass all the information technology assets behind a firewall. The

notions of a trusted system and atrustworthy systemare also somewhat different: a trust-

worthy system is designed and expected to function correctly and to successfully realize a

security policy.
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2.2 Evaluating Security

Security evaluation is difficult due to innumerable ways that users and adversaries may

interact with a system. This problem is exacerbated by growing system complexity. The

transistor counts of high-end general-purpose processors currently range in the hundreds

of millions and continue to grow exponentially. The complexity of defining and evaluating

correct hardware operation grows at a similar or faster rate [61]. Furthermore, application

software and modern operating systems support thousands of features via millions of lines

of source code [161], and these features continue to grow in capability and number. As evi-

denced by the increasing number of publicized software vulnerabilities [31], threat models

and security goals for software continue to be difficult to define and achieve, respectively.

Though the quantification and qualification of system security remains an unsolved

problem, various methodologies for achieving security assurance do exist. The Trusted

Computer System Evaluation Criteria (TCSEC) [42], which is commonly known as the

“Orange Book”, was published in 1985 by the National Computer Security Center, an

arm of the U.S. National Security Agency. Though the Orange Book is becoming less

relevant as computing systems evolve, the Orange Book was one of the first comprehensive

sets of standards for structured security evaluation. Several other standards known as the

“Rainbow Books” were published by the National Computer Security Center to address

more specific systems such as networks and databases.

The Orange Book classifies a system into one of several security ratings, namely D, C1,

C2, B1, B2, B3, and A1. The rating assigned to a system depends on several characteristics,

which include the following:

• Security Policy. This set of criteria relates to mechanisms for discretionary and

mandatory access control as well as for device and object labeling.

• Accountability. This set of criteria involves system features for identification, au-

thentication, audit, and trusted paths.
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• Assurance.These criteria evaluate the capabilities of the independent architectural,

software, and configuration components designed to achieve the policy and account-

ability requirements.

• Documentation. These criteria relate to design documentation, testing documenta-

tion, and users’ manuals.

A rating of D implies that a system essentially possesses no security mechanisms. A

rating of A1 implies that a system is highly secure and that its security policy (but not

necessarily the system itself) has been formally verified. Formal verification essentially

involves the construction of a mathematical proof that a system always satisfies a particular

security policy. Although known formal techniques can be effectively applied to simple,

contained systems, such techniques are not practical for conventional complex systems

such as desktop computers. Due to the continuing push for features and performance over

security in software and hardware, developers do not allocate sufficient resources to apply

comprehensive methods for ensuring that software is correct and devoid of vulnerabilities.

Instead, security analysis performed on commercial software tends to be ad hoc.

A system, product, or device that is being evaluated using the Orange Book or related

criteria is sometimes called the target of evaluation (TOE). Though the Orange Book is

extensive in scope, the Orange Book criteria are based on a specific security model, which

limits the types of TOE’s that can be evaluated. Most commercial systems employ a dif-

ferent security model than that specified by the Orange Book, as the Orange Book was

intended for government (especially military) computing systems. Thus, since the release

of the Orange Book, other organizations and governments have published improved guide-

lines for evaluating system security. These publications include the Information Technol-

ogy Security Evaluation Criteria (ITSEC) [70], which was composed by representatives

from several European nations, and the Canadian Trusted Product Evaluation Criteria (CT-

PEC) [24]. In 1996, Version 1.0 of the Common Criteria (CC) was released [28], which
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integrates the approaches of the Orange Book, ITSEC, and CTPEC. Version 2.0 of the

Common Criteria was standardized by the International Standards Organization (ISO) in

1999 [69], and this version is often used today to evaluate security for many systems.

The Common Criteria seek to provide companies and government agencies with flex-

ibility in defining the security model to be evaluated. To this end, the CC employ the

concepts of protection profiles and security targets. Aprotection profileis an abstract de-

scription of the functional needs and assurance needs for the TOE. Asecurity targetis a

detailed and concrete description of how a protection profile is realized for the TOE. For

every security component outlined in the protection profile, there is a corresponding com-

ponent included in the security target. A Common Criteria evaluation for a TOE is based

upon the statement of the security target.

Other standardized methods for evaluating smaller, more restricted secure systems also

exist. One example of such methods is the Federal Information Processing Standard (FIPS)

140-2 [122]. This standard establishes security requirements for cryptographic modules.

FIPS 140-2 defines four levels of security for these modules, 1 being the lowest, and 4 being

the highest. The evaluation process is based upon implementation correctness, software

security, and physical security. Levels 2 and higher involve some degree of physical tamper

detection or resistance.

These federal and international standards are intended to evaluate restricted systems

with static goals and pre-defined threat models. This approach is effective in some scenar-

ios, such as in defense-related government agencies. However, in an increasingly dynamic

and interconnected world, security evaluations based on these standards are often inade-

quate [4]. Conventional systems involve unpredictable users, frequent updates to compo-

nents, and rapidly evolving threats, and these characteristics are not well accommodated

by the Common Criteria and related standards.

Much work remains to be completed in the enormous task of analyzing security in

modern computers and networks that comprise multiple complex subsystems. Given this
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fact, this thesis doesnot attempt to provide a complete framework for enabling robust sys-

tem security. Rather, this thesis presents new results that address a select set of previously

unsolved problems in cryptographic processing.

2.3 Cryptography

Cryptographyis a mathematical toolbox for achieving certain important security goals. Ex-

amples of such security goals include confidentiality, integrity, and authentication. Crypto-

graphic primitives differ in the degree of security provided as well as in the degree of flex-

ibility. Examples of cryptographic primitives include encryption algorithms and pseudo-

random number generators. The former can be employed to provide services such as confi-

dentiality, integrity, and user authentication, but the latter may be applied only to generate

pseudorandom bits for use by other operations.

Most conventional cryptographic primitives satisfy the design requirements articulated

by the Flemish cryptographer Auguste Kerckhoffs in 1883 [77]. Specifically, Kerckhoffs

stated that the security of a cryptographic method should not depend on the secrecy of

the method. Rather, the cryptographic algorithm should be publicly known and available,

and the security of the system should be based on small quantities of information known

as cryptographic keys. The cryptographic algorithms that are employed by many non-

government secure systems have been thoroughly and publicly analyzed by the security

community and are resilient to known attacks. Thus, assuming the scrutinized algorithms

are implemented correctly within properly constructed security protocols, their security de-

pends on the measures taken to establish and protect key material rather than on the mea-

sures taken to ensure the secrecy of the algorithms. Presented below are selected classes

of cryptographic primitives that are employed in this thesis and that align with Kerckhoffs’

principles.
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2.3.1 Symmetric-key Encryption

Encryptionis the process of translating data into a disguised form. An encryption algo-

rithm, which is also known as acipher, accepts input data known asplaintextand outputs

encoded plaintext known asciphertext. Furthermore, the encryption algorithm encodes

the plaintext into ciphertext using a quantity of information known as theencryption key.

Many encryption algorithms disguise data by performing operations on the plaintext and

the key material to achieve goals known asconfusionanddiffusion[143]. Confusion opera-

tions obfuscate the relationship between the ciphertext and the inputs. Diffusion operations

spread the redundancy of the plaintext and key bits across the ciphertext.Decryptionis

the inverse of encryption; a decryption algorithm translates input ciphertext into plaintext

using adecryption key.

In symmetric-key encryption, which is also known assecret-key encryption, a single

key is used for both encryption and decryption. This key is kept secret by both the encrypt-

ing party and the decrypting party. Symmetric-key ciphers can be employed to provide

confidentiality, integrity, and some forms of message and entity authentication.

Symmetric-key encryption involving two parties is illustrated in Figure 2.1. To follow

the cryptographic community’s tradition, these two parties are named Alice and Bob (based

on the letters “A” and “B”). First, a secret keyk must be distributed to both Alice and Bob

via some secure means, e.g., an encrypted channel or a physically secure channel.1 Then,

Alice can encrypt a secret plaintext messagep by inputtingp andk into the encryption

algorithm,E. E outputs a ciphertext messagec, which can be safely transmitted over a

public channel to Bob. Upon receipt ofc, Bob can obtainp by inputtingc and his copy of

k into the decryption algorithm,D. E andD can be publicly known, butk must be kept

secret by both parties.

If a secure symmetric-key encryption algorithmE is implemented correctly within an

appropriate security protocol andk is kept secret, then eavesdropping adversaries on the

1This key distribution is a nontrivial problem which we discuss in further detail later in this chapter.
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Figure 2.1: Symmetric-key encryption and decryption

unsecured channel cannot obtainp. That is, given onlyc and a reasonable amount of time,

storage, and computation resources, the adversaries cannot deduce any bit ofp with proba-

bility significantly greater than 1/2. This security forp against eavesdroppers with knowl-

edge ofc is also known as resilience againstciphertext-only attacks. Secure symmetric-key

ciphers are also resilient against several other types of attacks. For example, if the cipher

is secure against aknown-plaintext attack, then an adversary cannot obtain the secret keyk

given plaintextp and corresponding ciphertextc. If the cipher is secure against achosen-

plaintext attack, then an adversary cannot obtain the secret keyk given the ciphertextc

corresponding to any plaintextp chosen by the adversary.

Two classes of symmetric-key encryption algorithms exist:block ciphersandstream

ciphers. A block cipher performs encryption operations over fixed-length message blocks,

using the same key for multiple block encryptions. The message to be encrypted can be of

any length; it is divided into fixed-length blocks with padding of the last block, if necessary,

before being encrypted. Typical block sizes range between 64 and 256 bits. A stream cipher

essentially performs encryption operations on blocks of size one bit or one byte using a key

stream rather than a fixed key. The key stream is provided using akey stream generator.

The key stream generator output is simply a function of a secret input known as the seed.

As the generator produces key bits, the value of the seed can be periodically updated by the
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generator.

Popular symmetric-key encryption algorithms include the Data Encryption Standard

(DES) [119], Triple DES (3DES) [114], the Advanced Encryption Standard (AES) [120],

RC5 [132], RC6 [134], IDEA [87], and Twofish [141]. The security of most symmetric-key

algorithms is based on ad hoc techniques rather than formal proofs of security or reduc-

tions to number-theoretic problems. Popular symmetric-key algorithms that are regarded

as being secure have been shown to be resilient against known cryptanalytic techniques

(well-known examples of which include linear and differential cryptanalysis [114]). Com-

mon key sizes for implementations of popular symmetric-key ciphers range from 112 bits

to 256 bits.

Symmetric-key encryption and other primitives are implemented using various crypto-

graphicmodes of operation. Such modes are often trivial extensions of the cryptographic

primitive itself, but the extensions can lead to striking security differences. For example,

two commonly employed modes of operation relating to symmetric-key block ciphers are

Electronic Code Book (ECB) and Cipher Block Chaining (CBC) [114, pp. 228–233]. The

encryption ofn blocks using the ECB and CBC modes is displayed in Figure 2.2. In ECB,

a plaintext blockpi is simply encrypted with the secret keyk to generate a ciphertext block

ci. In CBC, each ciphertext blockci for i > 1 is a function of both the plaintext blockpi

and the previous ciphertext blockc(i−1). The first plaintext block in CBC is XORed with

a value known as the initialization vector (IV). When using ECB, an attacker may not be

able to decrypt blocks, but an attacker can infer some information about the plaintext, e.g.,

whether or not a particular plaintext block is repeated. CBC, however, prevents such ex-

posure. Furthermore, CBC is more resilient against attacks that seek to inconspicuously

substitute a forged block for an encrypted block.
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2.3.2 Asymmetric-key Encryption

Asymmetric-key encryption, which is also calledpublic-key encryption, differs significantly

from symmetric-key encryption in terms of operation, capability, and computation cost.

This class of encryption algorithms enables data confidentiality and entity authentication

over public channels. In addition, this class enables other security services such as digital

signatures.

Figure 2.3 depicts asymmetric-key encryption involving two parties. Like symmetric

key encryption, there exists an encryption key, a decryption key, an encryption algorithm,

and a decryption algorithm. Unlike the symmetric-key case, however, the encryption key

ke is different from the decryption keykd. Given the encryption keyke, it should not be

feasible to deduce the corresponding decryption keykd. The encryption key, which can

be exposed to the public, is called thepublic key. The decryption key, which must be

kept secret by the decrypting party, is called theprivate key. Thus, the distribution of the

public key can occur over unencrypted channels.2 This provides significant advantages

over symmetric-key cryptography in many scenarios. Also, though Bob’s public keyke

may be generated by Bob, Bob does not need to assume full responsibility for distributing

ke to relevant parties. Instead, Bob can employ a trusted third party to distributeke over

public channels to parties such as Alice.

As shown in Figure 2.3, upon obtaining Bob’s public encryption key, Alice can encrypt

a secret plaintext messagep using the public keyke and the encryption algorithm,E. E

outputs a ciphertext messagec, which can be transmitted over a public channel to Bob.

Upon receipt ofc, only Bob or other parties with knowledge of Bob’s private keykd can

recoverp by inputting c and kd into the decryption algorithm,D. Parties that possess

knowledge ofke but do not know the value ofkd will not be able to recoverp givenc with a

tractable or feasible amount of computation and storage. Furthermore, the asymmetric key

2Although the distribution channel does not need to be encrypted (to provide confidentiality), measures
must be taken to guarantee the integrity, origin, and freshness of the public key.
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Figure 2.3: Asymmetric-key encryption and decryption

algorithm should be constructed such that parties that possesske and a reasonable number

of (p, c) pairs should not be able to recover the correspondingkd.

Examples of asymmetric-key encryption algorithms include RSA [133], Diffie-Hellman

(DH) [45], elliptic curve cryptosystems (ECC) [113], McEliece [102], and ElGamal [48].

The security properties of these algorithms are reducible to the intractability of computa-

tional problems for which no efficient solution is known (i.e., no solution is known within

the complexity classP).3 For instance, the difficulty of recovering a private decryption key

corresponding to a known public encryption key in RSA is equivalent to the difficulty of

integer factorization. The integer factorization problem is known to be inNP4, is believed

to not be inP, and is believed to not beNP-complete5. In extreme cases and certain

implementations, however, many attacks on asymmetric-key algorithms are known (e.g.,

[83, 149, 17]), and care must be taken to maintain security in software and hardware im-

plementations. Common key lengths in secure implementations of asymmetric-key ciphers

3The complexity classP contains decision problems which can be solved by a polynomial-time determin-
istic Turing machine. In general, problems and in this class are considered to be “tractable”.

4The complexity classNP contains decision problems that have solutions that can be verified using a
polynomial-time deterministic Turing machine. It is commonly believed (though not proven) thatNP includes
problems that cannot be solved with any polynomial-time algorithm, i.e.,P⊂ NP.

5The complexity classNP-completecontains decision problems that, in terms of computation require-
ments, are the most difficult to solve in the classNP.
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are 163 bits or higher for elliptic curve cryptography and 1024 or 2048 bits for RSA.

Though asymmetric-key encryption can be used to enable more flexible protocols than

symmetric-key encryption, it costs more to implement than symmetric-key encryption.

Software implementations of asymmetric-key algorithms encrypt data 100 to 1000 times as

slowly as common symmetric-key ciphers [139]. Thus, in many systems, both symmetric-

key and asymmetric-key encryption are used to achieve security goals. Asymmetric-key

encryption is often employed to enable authentication and key exchange, and symmetric-

key encryption is used to provide confidentiality and integrity for bulk data.

2.3.3 Cryptographic Hash Functions

Cryptographic hash functions, which are also called secure hash functions, accept arbitrarily-

sized messages as inputs, and they output small, fixed-sizemessage digests. A message

digest, often called afingerprint, may range from 128 bits to 512 bits in size. The purpose

of a digest is to serve as an efficient “identifier” for an input message, for no two mes-

sages should yield the same digest value in practical scenarios. Two critical features that

distinguish cryptographic hash functions from regular hash functions such as CRC check-

sums arepreimage resistance, weak collision resistance, andstrong collision resistance.

The preimage resistance property ensures that given a random fingerprint, it is not feasi-

ble (with a tractable amount of computation and storage) to construct an input message

that corresponds to that fingerprint. This property is therefore also calledone-wayness.

The weak collision resistance property ensures that given a message and the message’s

respective fingerprint, it is not feasible to obtain another message that yields the same fin-

gerprint. The strong collision resistance property guarantees that it is not feasible to find

two messages that yield the same fingerprint. Secure hash functions are both one-way and

collision-resistant.

Hash functions that incorporate the notion of a secret cryptographic key are known as
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keyed hash functions. These functions can be used to provide data integrity, entity authenti-

cation, and components of digital signature generation and verification. One common man-

ifestation of a keyed hash function is the Hash Message Authentication Code, or HMAC

[85].

Figure 2.4 illustrates a simplified overview of HMAC computation and verification for

ensuring data integrity. The process involves a messagem, a publicly-known cryptographic

hash functionH, and a secret keyk. In the figure,H ′ represents the HMAC function,

which consists of a small number of invocations ofH performed overm andk. Prior to the

HMAC operation, the secret keyk must be established and distributed to Alice and Bob

via a secured channel or via a physically secure method (e.g., an armored truck). Then,

Alice can perform a series of hash operations over the messagem and the keyk to produce

the digestg. The digestg is then bundled with the messagem, and the bundle can be

transmitted to Bob over a public (unencrypted) channel. Upon receipt, Bob performs an

identical sequence of operations usingm, k, andH ′ to computeg′. By the properties

of keyed hash functions, ifg′ equalsg, then the message has not been modified by any

adversaries that do not possess knowledge ofk. If g′ does not equalg, then unauthorized

data modification or data corruption is detected.

Popular cryptographic hash functions include SHA-1 [121], SHA-256 [121], and MD5

[131]. Furthermore, primitives based upon block ciphers such as AES and 3DES may be

employed to serve as keyed or unkeyed hash functions [114, pp. 338–343]. One such

method of applying a cipher as a keyed hash function is CBC-MAC. In this construction, a

message of any size is encrypted using a cipher in CBC mode with an IV and a secret key

k. Then, the output of the last block encryption is used as the hash result.
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Figure 2.4: HMAC computation and verification

2.3.4 Other Primitives

In many secure systems, multiple cryptographic primitives are performed in order to imple-

ment a single useful primitive. One such primitive is apseudorandom number generator

(PRNG). These primitives are critical components of many authentication and key estab-

lishment protocols. PRNG’s can utilize a series of encryption operations to produce a

pseudorandom integer and then update a secret PRNG seed employed by the generation

process. The PRNG seed is an integer value that may range from 64 bits to kilobytes in

size. A pseudorandom number can also be generated in other ways. For example, the seed

or the generation function can be based on a truly physically random source.

A digital signatureis a security primitive that, among other features, can flexibly en-

able the verification of the source and integrity of a message, file, or network transmis-

sion. Digital signatures are often realized by composing cryptographic hash functions with

asymmetric-key encryption. If a sender wishes to digitally sign a message, an unkeyed

cryptographic hash is computed over the entire message. Next, the hash of the message is
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encrypted using the private key of the sender’s asymmetric encryption key pair. The output

of the asymmetric key encryption is known as the digital signature and may be attached to

the message. Any party that obtains the sender’s public key can then verify the authenticity

of the signature and the integrity of the message. This verification involves comparing the

result of the hash of the received message to the result of decrypting the digital signature

with the sender’s public key.

2.4 Applying Cryptography

In many system scenarios, methods such as software-based access control are not sufficient

to fulfill basic security requirements. If an attacker physically steals a laptop and removes a

hard drive containing sensitive information, the password prompt traditionally required at

boot up will not prevent the thief from extracting secrets from the device. Fortunately, we

can apply cryptographic techniques to such problems to achieve necessary and powerful

security goals.

2.4.1 Security Protocols

Secure systems often apply cryptographic primitives usingsecurity protocols. A security

protocol is simply a sequence of steps required of one or more parties to achieve a desired

security goal. The protocol steps may involve simple operations, such as incrementing

an integer, as well as sophisticated cryptographic primitives, such as digital signatures.

Care must be taken in properly designing and implementing protocols. Security threats

and goals should be well articulated, each protocol step should be explicitly defined, and

relevant underlying assumptions should be called out. Failure to adequately perform any

of these design duties can lead to security vulnerabilities.

We now examine sample security protocols that employ cryptography to address two
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classic security problems: secure data transmission and secure data storage. For both prob-

lems, we define a set of relevant threats and security goals; we discuss typical cryptographic

mechanisms used to address these goals; and we identify critical implementation problems

that remain.

2.4.2 Secure Data Transmission Protocol Example

Protecting information in transmission between two or more points is perhaps the quintessen-

tial data security problem. Moreover, cryptographic systems that defend sensitive commu-

nications are certainly not new. Ciphers were used during the reigns of the Roman and

Egyptian empires to protect messages [140]. Today, improved ciphers and security mech-

anisms provide flexible protection for information traveling over the Internet, local area

networks, and wireless networks.

The threat models and security requirements of conventional communications systems

vary widely. In this section, we discuss a cryptographically enabled security protocol for

protecting network transmissions between a single authorized sender and a single autho-

rized receiver. The threats of concern are unauthorized entities that may only perform the

following actions on messages that are transmitted between the two authorized entities:

1. Observe the contents of any messages

2. Modify or inject information into the contents of any intercepted messages, without

being detected

3. Send a forged message to the authorized receiver purporting to originate from an

authorized sender, without being detected (which is known asspoofing)

4. Resend a message to the authorized receiver that was previously transmitted between

the two authorized entities, without being detected (which is known as areplay at-

tack)
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The trusted boundaries in this scenario are defined to be the physical exteriors of the

two computers belonging to the sender and receiver. Given this boundary definition and

the threat model, we seek to achieve three security goals: data confidentiality, data origin

authentication, and data integrity. To guarantee data confidentiality, only the sender and

receiver should be able to interpret bits of plaintext messages. To guarantee data origin

authentication, the receiver must be able to ensure that received messages were constructed

only by an authorized user. Lastly, to guarantee data integrity, the receiver must be able

to (i) validate that received messages have not been altered in any way by an unauthorized

user and (ii) validate that received messages are fresh, i.e., ensure protection against replay

attacks. Note that we do not attempt to defend against threats involving the destruction or

redirection of messages in transit between the two authorized parties.

We now describe a cryptographic protocol for efficiently implementing these security

requirements between the trusted boundaries. Note that the following description is not

novel; the structure of this protocol is similar to many protocols in use today. Secure

point-to-point communication protocols generally involve two steps: handshake and bulk

data protection. The handshake is the initialization of the secure channel between the two

trusted boundaries. During this step, the entities authenticate the identities of each other and

securely exchange cryptographic keys that will be required to perform bulk data protection.

The handshake may be performed with public key cryptographic techniques using one or

more protocols such as Kerberos (initiated in [156]) or Internet Key Exchange (IKE) [63].

Upon completing the handshake, the two parties can securely transmit a large number

of messages or data. We focus our attention on this bulk data protection step. Nearly

all of the world’s electronic communications travel over Internet Protocol (IP) networks

[40, 127]. IP and associated transport protocols, such as the Transmission Control Protocol

(TCP) [128], are the basis of the interoperability between the many heterogeneous networks

that compose the Internet. We consider an implementation of the IP Security Protocol

(IPsec) [76], which is used to achieve bulk data protection for messages that traverse IP
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networks. IPsec is an integral component of common secure networking systems such

as virtual private networks. Within IPsec, the Encapsulating Security Payload (ESP) [75]

and the Authentication Header (AH) [74] protocols enable the desired confidentiality and

integrity features.

Figure 2.5 illustrates the operation of IPsec for the protection, transmission, and access

of a single IP packet sent from Alice to Bob. Any digital message can be represented using

one or more IP packets. In the figure, the dashed lines depict the trusted boundaries for

Alice and Bob.P is the IP packet payload to be protected, andC is P in encrypted form.

Esym andDsym are the symmetric-key encryption and decryption algorithms in CBC mode,

respectively. The IV is the initialization vector used to enable CBC mode, andksym is the

secret encryption/decryption key.H ′ is an HMAC function,khash is the secret key for use

with H ′, andg is the hash result. Lastly,seq is a monotonically increasing packet sequence

number that is used if protection against replay attacks is desired.

It is assumed that Alice and Bob securely established and exchanged the values ofksym,

khash, andseq during the handshake phase and prior to the IPsec operations. To protect an

IP packet payload, Alice performs symmetric-key encryption over the payload for data con-

fidentiality and then performs a keyed hash over the encrypted result for data integrity. The

keyed hash is also performed over information such as the monotonically increasing packet

sequence number, which prevents replay attacks. Data origin authentication is implicitly

provided, as only Alice (or Bob) who possesses the secret keys will be able to construct a

valid keyed hash of an encrypted packet and a sequence number.

Upon receipt of the protected packet, Bob employs his secret keys to decrypt the pay-

load, validate the integrity of the packet, validate that the packet was generated by Alice,

and validate the freshness of the packet. The characteristics of the cryptographic primitives

enable the sender and receiver to ensure the security goals with overwhelming probability

against an adversary who has access to reasonable amounts of computation and storage.

This cryptographic protocol effectively achieves the security goals against the defined
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threat model, but two critical implementation problems remain. First, most systems fail to

properly maintain security within trusted boundaries. Due to increasing number and seri-

ousness of software vulnerabilities within computing systems, remote attackers can readily

penetrate the boundaries defined above. Upon penetrating a trusted boundary, the attacker

can expose or modify keys and data, thus circumventing the security features provided

by IPsec. Second, encryption and hashing can be computationally intensive in general-

purpose platforms. Potentially, each bit that enters a device from an external network may

be encrypted and hashed, and therefore the cryptographic processing requirements increase

as network bandwidth increases. As a result, the performance slowdown associated with

the security mechanisms may inconvenience users or inhibit adoption. This thesis inves-

tigates approaches to enabling and securing cryptographic processing by addressing these

two important problems.

2.4.3 Secure Data Storage Protocol Example

With the advent of networked storage and the increasing use of mobile computing devices,

secure data storage systems are needed to combat new threats and attacks. We examine

a simple approach to securing storage that operates similarly to the Pretty Good Privacy

(PGP) file encryption protocol [8]. This protocol enables an individual entity to protect a

unit of data storage, i.e., a file, and securely share the protected file with any number of

other trusted entities.

We seek to defend against threats from unauthorized entities that may perform only the

following actions on files while in storage or in transmission:

1. Observe the contents of a file

2. Modify or inject content into a file without being detected

3. Insert a forged file purporting to originate from an authorized user without being

detected (i.e., spoofing)
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As in the secure data transmission system, the trusted boundaries in this secure storage

scenario are defined to be the physical exteriors of any authorized device or computer that

seeks to access a file. Data that is stored outside of the computer — or even within the

computer on the local hard drive or main memory in some cases — is subject to the threats

elucidated above.

Given this boundary and threat model, we seek to achieve two security goals: data

confidentiality and data integrity. Conventional storage systems are often exposed to many

more threats and seek to enable many more security goals, but these two important goals

will suffice for the purposes of this discussion. To guarantee data confidentiality, only

authorized entities should be able to interpret bits of plaintext files. To guarantee data

integrity, authorized entities must be able to (i) validate that a file has not been altered in

any way by an unauthorized party and (ii) determine whether or not a file was created by

an authorized party.

Note that we do not attempt to defend against attacks involving “file rollbacks,” which

are similar to replay attacks in the secure transmission scenario. In a file rollback attack,

an attacker replaces the current version of a protected file with a different, “stale” version

of the protected file. Furthermore, we do not attempt to defend against the destruction of

files.

We now introduce a typical cryptographic protocol for achieving these security goals

for files and other stored data. Like the secure transmission protocol, the secure storage

protocol consists of two components: key distribution and bulk data protection. Prior to

protecting a file that may be accessed by a set of authorized entities, the protecting entity

must obtain the public encryption key associated with that set of entities. Also, before an

entity can access a file to which the entity is privileged to view or modify, the entity must

obtain the public digital signature verification key associated with the authorized entity

that originally protected the file. This key generation and distribution is not trivial, but

for the purposes of this discussion, we assume that all authorized users have previously
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obtained a public encryption key and a public signature verification key for each of the

other authorized users in the set. Such pre-distribution could be performed using a variety

of different public key infrastructures and techniques (e.g., [63]). Furthermore, for the sake

of simplicity, we assume that the size and members of the set of authorized users are fixed

and pre-determined. It is easy to extend this protocol to support variably sized dynamic

sets of authorized users.

We now turn our attention to the bulk data protection of files. Figure 2.6 illustrates

the protection of a fileF followed by a subsequent access by an authorized user. In the

figure, the trusted boundaries are depicted with dashed lines. Alice protects a file such

that only authorized users Alice and Bob may access or properly modify the protected file

in the future. It is assumed that, prior to the protection of the file, Alice and Bob securely

establish and exchange public encryption keys and public signature verification keys. Also,

Alice and Bob do not reveal their private decryption keys or their private signature keys to

each other; Alice and Bob keep these keys secret.

To protect a file, Alice first computes a digital signaturesig for the fileF by computing

a cryptographic hashg over F and then using an asymmetric-key encryption algorithm

with her private (secret) signature key to encrypt the hash. The encrypted result is the

signature,sig. This signature serves to ensure data integrity and to provide assurance that

Alice, as opposed to any other user, generated the protected file. If a user other than Alice

modifies the file in any way, that user cannot feasibly compute a new valid signature that

appears to originate from Alice for the modified file. Next, Alice randomly generates a

secret keykfile and an initialization vector IV that are used to encrypt the pair (F , sig)

using a symmetric-key encryption algorithm in CBC mode. The keykfile is then encrypted

twice, once with the public encryption key of Alice and once with the public encryption key

of Bob, to obtainRAlice andRBob, respectively. We encrypt the keykfile twice so that both

Alice and Bob can decrypt and verify the file contents at any future time. These file and

key encryption operations ensure the confidentiality of the file. That is, an unauthorized
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user will not be able to interpret the contents of the file or the digital signature without

knowing either the private decryption key of Alice or the private decryption key of Bob.

Confidentiality of the file therefore depends on the degree of secrecy of Alice’s and Bob’s

private decryption keys. Finally, the two ciphertexts (RAlice andRBob) are then stored with

the encrypted result of (F , sig) as the protected file. The protected file may be stored inside

or outside of the trust boundaries.

Upon retrieving the protected file, Bob decrypts the file encryption keykfile using his

private encryption key, which is known only to Bob. Next, Bob decrypts the fileF and Al-

ice’s digital signaturesig usingkfile. Bob then decryptssig using Alice’s public signature

verification key to obtain the expected hashg of the fileF . Lastly, Bob verifies the validity

of the signature by computing a hash over the decrypted fileF and comparing that hash

result tog. If the signature is valid, by the properties of the cryptographic primitives in-

volved,F is guaranteed to be authentic (i.e., created by an authorized user); uncorrupt (i.e.,

not modified by unauthorized users); and confidential (i.e., not accessible to unauthorized

users). Many enhancements to this protocol may be applied to improve efficiency as well

as to enable special security features.

With these cryptographic techniques, we can satisfy the security requirements against

the threat model. However, this protocol suffers from the same two problems experienced

by the secure transmission scenario. First, in most realistic systems, the trust boundary

is not fortified. Attackers can breach the trust boundary via software vulnerabilities or

physical attacks to obtain secret keys and sensitive plaintext data. Such breaches enable

unauthorized parties to expose, inconspicuously modify, or spoof stored data. Second, in

situations with intensive file I/O, the cryptographic procedures involved in the bulk data

encryption may significantly negatively affect performance. Thus, the security and the

efficiency of the secure storage protocol fundamentally depend on the measures taken to

protect cryptographic keys and accelerate cryptographic primitives within the traditional

trust boundary.
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2.5 Architectural Opportunities for Cryptographic

Software Security and Performance

In the past, software has assumed most of the responsibility for implementing security in

general-purpose systems. Although specialized hardware modules may enable specific se-

curity functionality, general-purpose hardware provides few if any security features. How-

ever, software implementations of cryptographic protocols can suffer from vulnerabilities

and performance issues that can prohibit or hinder the benefits offered by the protocols.

Given the abundant hardware resources available in modern computing systems, many

opportunities exist for using these resources to improve security. By applying low-cost

enhancements to platforms and processors, we can enable more efficient and secure cryp-

tographic processing than is currently available in software-only systems.

This section identifies a selected set of important challenges in enabling secure cryp-

tographic processing that this thesis seeks to address. These challenges include protect-

ing cryptographic keys in the presence of insecure software or hardware, accelerating bulk

cryptographic primitives, and reducing security vulnerabilities in general and cryptographic

software. This section presents overviews of the challenges and of the proposed archi-

tectural remedies. Subsequent chapters provide detailed analyses of past work and full

descriptions of the proposed techniques for addressing the challenges.

2.5.1 Protecting Cryptographic Keys

The security provided by cryptographic primitives for many network and computer systems

depends on the measures taken to ensure the secrecy and integrity of cryptographic keys.

The exposure or corruption of such keys negates the benefits of secure transmission sys-

tems, secure storage systems, and other systems designed to satisfy security requirements

for individuals, organizations, and enterprises. In many systems, vulnerabilities in software
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that resides within the trusted boundary threaten these critical keys. With enhancements to

the processor and hardware platform, however, a higher degree of protection can be pro-

vided for keys and sensitive key computations. Specifically, special data and functions

can be embedded in general-purpose hardware components that are not accessible by ap-

plication and OS software. Using such hardware mechanisms in conjunction with special

cryptographic software modules, we can provide strong and flexible protection for keys.

This thesis investigates architectural approaches to protecting keys in two generalized

scenarios. The first scenario involves any type of keys that are utilized on a user’s trusted lo-

cal device. The second scenario involves special cryptographic keys that may be distributed

to remote devices. Existing solutions to key protection problems suffer from a combina-

tion of disadvantages, including high cost, incomplete security, and poor throughput. By

enlisting general-purpose hardware and new algorithmic techniques to defend and securely

exercise cryptographic keys, systems can benefit from improved security and performance.

2.5.2 Accelerating Cryptography

Cryptographic techniques are integral to the protection of bulk data in communications

and storage systems, but the computation requirements of cryptographic primitives can

be highly expensive. It is well known that encryption and hashing can significantly de-

crease system performance by taxing memory bandwidth and processor resources (e.g.,

[22, 27, 73]). For example, the Secure Socket Layer (SSL) protocol [55], which provides

cryptographically-enabled network security for HTTP transactions, may degrade system

performance by a factor of 5 to 7 [73]. As secure systems become more pervasive, an

increasing proportion of data and instructions that travel between the processor and the

memory or I/O subsystems may be cryptographically protected by software. This trend

will only exacerbate this performance problem.

In scenarios such as the secure storage and secure communications systems described
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above, the required cryptographic computation can be divided into two categories: (i)

public-key encryption and (ii) symmetric-key encryption and cryptographic hashing. Al-

though the public-key encryption is much slower than the symmetric-key and hashing op-

erations, the public-key encryption routines are performed relatively rarely. That is, in the

secure communication system, the handshake and public-key encryption may be performed

once over a few kilobytes of data prior to performing the bulk symmetric-key encryption of

gigabytes of data. As a result, in many instances, the total computation required to support

bulk data protection exceeds the total computation required to perform key exchange and

related public-key operations during the handshake [22, 27, 51, 52, 129]. Thus, to mini-

mize the potential performance impact of the needed security operations, special attention

should be paid to the acceleration of symmetric-key cryptography.

Several software-based techniques exist for accelerating symmetric-key cryptographic

primitives. Examples of these techniques include general code optimization and new cryp-

tographic algorithms for improved performance. For instance, recent symmetric-key en-

cryption algorithms such as AES have been designed to execute very efficiently in soft-

ware. Other software methods, such as compressing data prior to encryption [106, 107],

can also lead to substantial performance gains.

There exist many opportunities to improve the performance of symmetric-key encryp-

tion by adding special features to the processor hardware. By enriching the instruction set

architecture (ISA) with new instructions that incur low implementation costs, symmetric-

key encryption routines can be greatly accelerated. In particular, the highly popular Data

Encryption Standard (DES) and other encryption algorithms employ bit-level permutations

and mappings to achieve the cryptographic property of diffusion [144]. Existing general-

purpose processors cannot perform bit-level mappings efficiently, however.

This thesis proposes a set of general-purpose processor architecture enhancements for

accelerating bit-level permutations and mappings. We can apply these enhancements to
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significantly improve the software performance of certain cryptographic primitives. Con-

sidering that stored data and network traffic is cryptographically protected with increasing

frequency, such built-in changes to the general-purpose hardware are certainly prudent and

desirable.

2.5.3 Mitigating Common Software Vulnerabilities

The general software vulnerabilities that plague operating systems and application software

can also undermine the security offered by cryptographic software. If such a vulnerability is

exploited within a cryptographic software module, the attacker may expose or corrupt criti-

cal cryptographic keys. Furthermore, if software weaknesses are employed to compromise

non-cryptographic privileged software modules running in the system, those compromised

modules may be employed to extract secret keys from cryptographic procedures that are

running in other system threads. Thus, to ensure protection for cryptographic keys and

computations, we must address common security vulnerabilities in general software.

Two common classes of low-level software vulnerabilities includeformat string vulner-

abilities andbuffer overflow vulnerabilities. Format string vulnerabilities enable attackers

to exploit particular weaknesses in programs that employ C libraries. Specifically, an at-

tacker can provide special inputs to applications that are subsequently passed to C functions

such asprintf andscanf and expose or corrupt data stored in memory. Recent propos-

als such as the FormatGuard seek to prevent format string exploits via software defenses

[35].

We focus on buffer overflows, which have proven to be the most frequent vulnerability

involved in system security breaches [4]. Buffer overflow attacks involve the input of a

specially crafted string to a software module that exceeds the size of a memory buffer. As a

result, particular contents of memory may be undesirably overwritten. Buffer overflows can
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occur in the stack (e.g., [1]) or in the heap (e.g., [34]); the overflows often involve the cor-

ruption of pointer values or corruptions of branch, jump, or return addresses. PointGuard

is one example of a software defense that addresses pointer corruption [36].

This thesis considers the most common buffer overflow attack: overflows in the soft-

ware stack that overwrite procedure return addresses. With this attack, adversaries can

remotely inject and execute malicious code, which may enable the adversary to seize con-

trol of a victim system. This thesis proposes a hardware approach to preventing software

buffer overflow attacks. Low-cost architectural enhancements can be employed to trans-

parently prevent buffer overflow attacks involving procedure return address corruption for

cryptographic software or any other software that is running on the system. Such built-

in protection is an important step towards mitigating inevitable security vulnerabilities in

complex software.

2.6 Summary

Cryptography is an essential tool for achieving system security goals. As computing de-

vices become increasingly interconnected, cryptography will be increasingly employed to

satisfy security requirements such as confidentiality, integrity, and authentication. Popu-

lar cryptographic primitives include symmetric-key encryption, secure hash functions, and

asymmetric-key encryption. The security offered by these operations fundamentally de-

pends on the secrecy and integrity of small pieces of information known as cryptographic

keys.

Secure data communications and storage systems often employ multiple cryptographic
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primitives to provide security against threats that occur outside of a defined trusted bound-

ary. Considering the increasing number of software vulnerabilities and the growing com-

plexity of computing systems, however, new measures must be taken to protect crypto-

graphic keys and cryptographic software inside and outside of the trusted boundary. Fur-

thermore, as cryptography becomes more pervasive, steps must be taken to accelerate prim-

itives to avoid significantly impacting system performance.

Traditionally, processors and platform hardware have supported few security features.

As the value of information and computing resources continues to grow rapidly, however,

hardware architects can and should take advantage of the plentiful hardware and processor

transistor resources to improve security. Specifically, low cost hardware enhancements can

be implemented to protect cryptographic keys, accelerate cryptographic primitives, and

prevent common attacks on software.

The remainder of this thesis proposes and examines architectural techniques for im-

proving cryptographic security and performance. Chapters 3 and 4 present new techniques

for efficiently protecting users’ and content providers’ cryptographic keys, respectively.

Chapter 5 proposes architectural enhancements for accelerating subword permutations and

mappings that significantly improve the performance of popular encryption algorithms.

Chapter 6 presents a hardware-based defense that mitigates certain vulnerabilities in soft-

ware by preventing buffer overflow attacks. Chapter 7 concludes the thesis.



Chapter 3

Virtual Secure Coprocessing

Cryptographic processing is a principal enabler of secure network, computer, and data

processing systems. However, the protection offered by cryptographic processing greatly

depends on the methods employed to manage, store, and exercise a user’s cryptographic

keys. Existing mechanisms for cryptographic key protection suffer from combinations of

user inconvenience, inflexibility, performance penalties, and high cost.

This chapter presents Virtual Secure Coprocessing, VSCoP (which is pronouncedvees-

cop), for the protection of users’ cryptographic keys. We describe architectural and soft-

ware enhancements for defending keys in general-purpose platforms against diverse phys-

ical and software attacks. The contributions of this chapter are based in part on the work

previously published by the author in [109, 108, 95].

This chapter is organized as follows. Section 3.1 introduces threats to cryptographic

keys. Section 3.2 discusses and compares past work in cryptographic key protection. Sec-

tion 3.3 presents a new approach for protecting keys in general purpose platforms: VSCoP.

Section 3.4 details the hardware and software enhancements involved in the implementa-

tion of the proposal. Section 3.5 explains how such an enhanced system can serve as a

virtual secure coprocessor via user initialization, device initialization, and protected op-

eration. Section 3.6 analyzes the security benefits of VSCoP. Section 3.7 investigates the

performance impact of the proposal. Section 3.8 discusses possible extensions and design

40
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alternatives, and Section 3.9 summarizes the chapter.

3.1 Threats to Cryptographic Keys

For the purposes of this chapter, cryptographic keys consist of any secret information that

is used directly or indirectly as the input key in a cryptographic operation. Examples of

keys therefore include AES keys [120], decryption exponents, passphrases, PINs, biomet-

ric data, and even credit card numbers. We refer to a user’s collection of cryptographic

keys as the user’skey ring. In common platforms such as personal computers, users often

perform cryptographic operations “in the clear”. Performing operations in the clear means

that the users temporarily or permanently store their secret keys and associated sensitive

information in unprotected system memory or other storage devices. When a user exer-

cises secret keys in an unprotected manner, an unauthorized party may inspect the contents

of memory to obtain the secret key material. As publicized by CERT [32] and the FBI

[138], such system penetration can be realized by exploiting one of the numerous security

vulnerabilities that occur in operating systems and application software. In addition, since

the secret key is often a small quantity of information — perhaps only 16 bytes in size —

an attacker may expose and make use of the secret key faster than the user can react to an

intrusion.

Following the compromise of a key ring, the user must initiate the painful process of

revoking certificates, resetting PINs, changing passwords, etc. If the user is unaware of such

exposure or the user requires considerable time to complete the key revocation process,

a malicious party can inflict significant damage. Such damage may include irreversible

disclosure of medical records, theft of private correspondence, and unauthorized access to

copyrighted audio and video. If cryptographic keys protect valuable assets such as online

banking accounts, the results of key compromise can be truly devastating. The management

and protection of cryptographic keys are therefore critical components of secure computing
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systems that utilize cryptographic operations.

We are concerned with the four classes of threats to cryptographic keys: threats to

keys in storage, threats to keys in transport, threats to keys exercised by software, and

threats to keys exercised by hardware. These classes, which we describe below, include

several common and imminent threats against which we can construct practical defenses.

In the descriptions of the classes, “authorized” means permitted or accepted within a given

security policy, and “unauthorized” means not permitted or accepted within a given security

policy.

3.1.1 Threats to Keys in Storage

This class includes threats to the confidentiality, integrity, and freshness of keys maintained

in any electronic storage device. The set of possible storage devices includes (but is not

limited to) tapes, disks, main memory, caches, and processor registers. With respect to

these threats, key confidentiality implies that an unauthorized entity may not explicitly

or indirectly obtain actual bits or other information about the key material. Key integrity

implies that unauthorized entities may not inconspicuously spoof or transpose key material.

Spoofing involves the substitution of key material with forged key material that purports

to be valid. Transposition, which is also known as splicing, involves the rearrangement

of bits within the key material. Key freshness implies that unauthorized parties cannot

inconspicuously substitute valid key material with key material that was previously valid

but now expired.

3.1.2 Threats to Keys in Transport

This class includes threats to the confidentiality, integrity, and freshness of keys during

transport between two or more trusted boundaries (as defined in Chapter 2). Examples of

transport vehicles for keys include the Internet, Ethernet networks, USB cables, and PCI
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I/O buses. The definitions of the threats to confidentiality, integrity, and freshness of keys

in this class are the same as those described for threats to keys in storage.

3.1.3 Threats to Keys Exercised by Software

This class includes threats stemming from software instructions executed on sensitive key

material. Such code may threaten the confidentiality, integrity, and freshness of user keys.

In addition to manifestations of these threats caused by malicious code, these threats can

stem from incorrectly implemented trusted code or from compromised trusted code that

employs keys to perform cryptographic operations.

3.1.4 Threats to Keys Exercised by Hardware

This class includes threats relating to any hardware device that performs operations on

cryptographic keys or that executes software that exercises cryptographic keys. Examples

of such hardware devices include general purpose or embedded processors. Like the code-

related threats, this class includes threats to the secrecy, integrity, freshness, and authorized

use of keys. Hardware involved in this class should be distinguished from storage and

transport mechanisms that maintain or transmit key material but do not exercise the key

material to perform any useful computation.

Note that the four threat classes are not mutually exclusive. Corruption of a thread’s virtual

memory space that contains both code and data pages, for instance, could be included in

more than one of the classes. Furthermore, for each threat class, there exist bothphysical

andsoftwaremanifestations of the attacks. Physical attacks involve mechanisms such as

bus probing or physical theft that lead to the undetectable modification or exposure of keys.

Software attacks involve the locally or remotely launched execution of software, such as a

virus that erases keys or spyware that reveals keys.
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3.2 Past Work

Given these threats, many solutions have been proposed for the protection of keys. Due

to the numerous security vulnerabilities that continue to plague software, however, local

software-only key protection techniques are unsatisfactory. A software intrusion that ex-

ploits a common vulnerability may enable an attacker to remotely penetrate a network-

connected device and expose keys that provide access to all of a user’s sensitive informa-

tion. Therefore, as we describe below, more robust key protection schemes involve a set

of distributed hosts or a protected hardware device. However, these existing key protection

mechanisms suffer from combinations of disadvantages, which may include high cost, poor

performance, inconvenience to users, lack of adequate software compartmentalization, and

protection that only covers limited types of keys.

We summarize prior work concerning distributed software-based and hardware-based

key management schemes. Some techniques protect vendors and content providers from

copyright violations and software piracy in untrusted hosts, and other techniques protect

users from physical theft and attacks by malicious code.

3.2.1 Software-based Techniques

Several distributed software-only approaches protect certain types of cryptographic keys

by forcing an adversary to compromise several hosts in a short time period in order to

reveal those keys. Other distributed software-only approaches enable effective revocation

mechanisms when key information is exposed. Some proposals allow a user to recon-

struct cryptographic keys prior to use by engaging in a secure protocol that involves the

participation of several servers (e.g., [53, 58]). In other approaches, users can perform cer-

tain cryptographic primitives (such as encryption) that employ secret keys with the aid of

separate servers. Using particular mathematical features of certain ciphers, a key can be

securely split into two or more shares that are distributed to two or more machines. By the
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construction of the system, a certain number or subset of these key shares and participating

machines are required to complete a cryptographic operation. Thus, when a client device or

a server is compromised, the keys can be permanently disabled by destroying or modifying

some of the key shares (e.g., [101]).

These and other distributed schemes only effectively defend against specific attacks that

involve limited types of keys, e.g., RSA decryption keys. This restriction results from the

fact that most distributed schemes employ mathematical characteristics of certain ciphers

that are not present in several other common ciphers (such as AES).

3.2.2 Cryptographic Coprocessors and Tokens

One of the first proposals to suggest using physically secure hardware processing devices

to enable security features unattainable by software-only techniques was presented in [12].

Since that time, researchers have proposed a rich variety of applications and architectures

for such hardware (e.g., [62, 164]). These physically secure devices perform cryptographic

operations and other services using secret information that cannot be extracted from the

hardware device. Examples of such devices include highly fortified cryptographic modules

and cryptographic smart cards.

The IBM secure coprocessor boards are high-end tamper-resistant hardware modules

that perform cryptographic operations (using secret keys), secure booting, and secure pro-

gram loading for applications requiring a high level of security such as banking systems

[47, 152, 153]. These products offer exceptional physical security for cryptographic keys,

but they are too costly, inconvenient, and bulky for mobile and desktop computers. In

addition, they are often shipped with factory-installed secrets, which may lead to several

security and privacy problems resulting from threats to a factory’s database.

Extremely low-cost, portable alternatives to cryptoprocessors and secure coprocessors

are cryptographic tokens. These devices include smart cards, PDAs [9], and other small,
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physically tamper-resistant hardware components [4]. Some tokens simply protect user se-

crets by requiring a password to access the information stored within the token, and other

tokens perform cryptographic primitives using the stored secrets without leaking key in-

formation to the untrusted environment [4, 14]. These devices cannot provide the same

degree of security as powerful cryptoprocessors, but they cost much less and they facilitate

increased user convenience. However, these devices have restricted capabilities: perfor-

mance can be poor and the number of supported cryptographic primitives and protocols

is often limited. Also, these devices are highly susceptible to loss and theft, and physical

tamper resistance is difficult to implement at low costs [5, 84].

3.2.3 Trusted Computing Platforms

Existing, publicly known trusted computing platforms provide some degree of protection

for users’ cryptographic keys. The Trusted Computing Group (TCG) [163], which was for-

merly known as the Trusted Computing Platform Alliance; Intel’s LaGrande Technology

(LT) [68]; and ARM’s TrustZone technology [6] seek to provide certain hardware-enabled

security features for computing devices. These technologies support varying combinations

of system attestation, protection of system inputs, secure booting, and process isolation. In

these systems, secret information that is inaccessible to the end user is embedded in hard-

ware modules such as on-board cryptographic coprocessors or general-purpose processors

(in LaGrande systems). Microsoft’s Next Generation Secure Computing Base (NGSCB)

[115], formerly known as Palladium, seeks to provide resources for secure (i.e., validated

and isolated) code execution via trusted hardware computing platforms. With such operat-

ing system support, a trusted device can complete operations such as verifying the integrity

of installed software and preventing unauthorized access to copyrighted media and code.

A user can employ certain hardware resources provided by a trusted computing plat-

form to encrypt sensitive cryptographic keys for storage on a single device, but keys must
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be exposed to software in the system to perform computations. Furthermore, the platform

may ensure that the keys are only released to trusted software environments, but these

trusted environments might be vulnerable to compromise. That is, trusted components are

designed and engineered for high assurance, but the trusted software environment still may

be vulnerable to software bugs that could lead to the exposure of sensitive cryptographic

keys. As evidenced by software vulnerability reports, bugs in kernel and application soft-

ware are commonplace and can enable the complete subversion of the trusted computing

platform mechanisms that provide protection for user secrets.

In addition, the current TCG Trusted Platform Module and Microsoft’s NGSCB do

not defend against attacks on the device hardware. For instance, by physically monitoring

and/or modifying data in the system buses and main memory, some security features of the

trusted computing platform can be defeated.

3.2.4 General-purpose Architecture for Secure Computation

Techniques for incorporating cryptographic functionality into general-purpose processor

architecture have also been proposed. Recent work has addressed processor-based mech-

anisms for authenticating trusted software and verifying the integrity of physical mem-

ory [59, 81, 160]. In addition, by adding encryption and data authentication capabili-

ties to general-purpose processors, it is possible to enable shielded program execution

[60, 100, 160]. Such systems, e.g., eXecute Only Memory (XOM) [100] and AEGIS [160],

prevent unauthorized modification and observation of software execution by untrusted com-

ponents outside of the processor chip. This involves cryptographically authenticating in-

structions as well as shielding or obfuscating sensitive data via hardware compartmental-

ization or via encryption and secure hashing.

The primary objective of protected execution in these proposals is the prevention of

software-based tampering or of proprietary code exposure. These proposals enable the
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protection of external parties’ software when being employed on an end user’s machine,

but they do not provide strong mechanisms with which users can protect their secrets on

their machines from external parties. For example, XOM can shield the local execution of

digital rights management (DRM) software that is provided by a remote content provider.

In this scenario, XOM can protect the provider’s keys that are used by the DRM software

to verify and/or enable user access to the valuable content.

XOM and AEGIS were not designed to protect users’ keys, however, and therefore

issues relating to user key security remain to be addressed. First, these two proposals

do not support the mechanisms for securely transporting users’ keys to protected storage

within the processor. Second, although XOM and AEGIS can shield program execution,

they are not designed to restrict the nature of the operations performed by software. These

proposals allow any software to potentially access and employ all of a user’s secrets. Thus,

malicious code or buggy programs (such as the SSL module in a web browser) may reveal

sensitive user information. Third, XOM requires public-key encryption techniques and key

values to be incorporated into the processor at the factory. This may lead to performance

and privacy issues.

3.3 A New Approach to Key Protection

Our goal is to efficiently improve security for users’ secret keys while in storage, in trans-

port, or in use on general-purpose platforms. Because of increasing network connectivity

and the growing exploitation of software security vulnerabilities, remotely launched soft-

ware attacks are our principal concern in this chapter. Although we can prevent some

physical attacks, our efforts are focused on software-based attacks. We seek to defend keys

against common threats by achieving the following security goals:

• Confidentiality (secrecy), integrity, and freshness for certain data that (i) represents

secret keys or that (ii) can be used to infer useful information concerning secret keys
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• Integrity and authorization of certain software that performs computations on secret

keys

3.3.1 Virtual Secure Coprocessing

To realize the security goals described above, we introduce Virtual Secure Coprocessing

(VSCoP). In VSCoP, the general-purpose processor effectively shields cryptographic keys

and operations when needed. VSCoP enables secure and efficient key utilization, storage,

and transport in the presence of potentially vulnerable networks, application software, and

operating systems. The performance and implementation costs of VSCoP are modest; VS-

CoP does not require any auxiliary processors or additional hardware devices. From the

point of view of the user and of application software, however, a virtual secure coprocessor

functions as a separate secure coprocessor. By preventing unauthorized exposure or use of

sensitive keys, VSCoP can enhance security for many applications.

VSCoP protects keys by effectively constricting the traditional trusted boundary and

modifying the traditional access control paradigm in relation to users’ cryptographic keys.

The trusted boundary of a computing device is the boundary that separates the trusted

domain from the untrusted environment. In many systems, disks, memory, and other pe-

ripherals are treated as trusted and are assumed to be safe from external threats. However,

many relatively simple software and physical attacks can successfully obtain sensitive key

information that may be stored in these devices. Such attacks include the inspection of sen-

sitive swap files stored to disk, examination of other applications’ virtual memory spaces,

and network sniffing in distributed shared memory applications.

As illustrated in Figure 3.1, to thwart such attacks, VSCoP restricts the trusted boundary

(indicated by the dashed lines) for cryptographic keys in the system to the physical bound-

ary of the general-purpose processor chip. Memory that is off the processor chip, network

interface cards, disks, buses, and any other peripherals will now be treated as untrusted.
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In systems where the OS enjoys access to all system secrets, if the OS is penetrated,

then all system secrets will be exposed. Thus, to avoid reliance on a potentially vulnerable

operating system, we create a new disjoint region in the access control paradigm. This

change to the access control paradigm is shown in Figure 3.2. The new region consists of

processor-protected secrets that are inaccessible from the application software as well as

from the OS kernel. The OS and other software can only perform operations using the se-

crets through a special hardware/software interface, which is illustrated by the dotted lines

in Figure 3.2(b). The new region is not included within the kernel because operations that

are permitted to execute within the new region do not require (and should not be allowed

to) access all system secrets.
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Although trusted computing platforms seek to achieve a isolated trusted domain (e.g.,

[163]) similar to that of VSCoP, the platforms do not ensure special protection for users’

keys. That is, the compartmentalization features of existing trusted computing platforms

can only provide the long-term protection of keys if the OS and certain application software

prove to be perpetually impenetrable. The approach proposed in this chapter can provide

protection for keys in certain scenarios where the OS or application software suffers a

security breach.

We emphasize that the proposed new approach isnot designed to replace trusted com-

puting platform components. Trusted computing platform services, such as secure bootup

and attestation, are essential to achieving robust system security. By enabling additional

protection for highly sensitive pieces of information, e.g., cryptographic keys, the new ap-

proach complements rather than supplants the security services provided by these trusted

computing platforms.

3.3.2 VSCoP Components

VSCoP consists of mechanisms that efficiently provide protection for keys while in storage,

in transport, and in use. We provide a summary of the mechanisms here, and detailed

architectural implementations are presented in Section 3.4.

Key Storage Protection

To protect keys in storage on devices outside of the processor’s trusted boundary, VSCoP

defines a special user key ring structure that is encrypted and cryptographically hashed.

Since the ring is cryptographically protected for confidentiality and integrity, the ring can

be deposited in any trusted or untrusted storage device. The key ring is only decrypted and

exposed when being employed within the processor’s trusted boundary.
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Key Transport Protection

The encryption and hashing of key rings protects the rings while in transport between de-

vices. Furthermore, to protect user authentication information while in transport from the

user to the processor, VSCoP provides a protected I/O path. This protected path is imple-

mented by the hardware platform and is designed to shield the sensitive information from

any potentially vulnerable software (which includes the operating system kernel).

Key Exercise Protection

VSCoP protects key rings during use by shielding operations performed on users’ secret

keys on general-purpose processors against observation and tampering by attackers. In VS-

CoP, this goal is realized via the Concealed Execution Mode (CEM) and the Cryptographic

Operations Library (COL). To securely exercise keys, software applications make calls to

the COL (which runs in the CEM) as if the COL were a physically secure coprocessor.

The Concealed Execution Mode is a mode of operation in which the general purpose

processor cryptographically protects and authenticates any data or code that enters or leaves

the processor’s trusted boundary. User key rings can only be accessed or modified by a

thread running in the CEM. Invoking the Concealed Execution Mode does not require the

suspension of ordinary threads, however. VSCoP enables secure context switching between

CEM and non-CEM threads, and therefore multithreading functionality is not sacrificed.

The Cryptographic Operations Library (COL) is the only software module that is per-

mitted to execute within the Concealed Execution Mode and exercise a user’s cryptographic

key ring in unencrypted (i.e., exposed) form.1 The COL consists of cryptographic routines

that perform operations on a user’s secret keys. Most legacy application code does not

need to be changed to implement VSCoP. Only applications that wish to invoke concealed

execution would need to be modified to call the Cryptographic Operations Library.

1The operating system and other applications can readily obtain a user’s key ring in protected (i.e., en-
crypted) form.
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3.3.3 VSCoP Benefits

VSCoP provides many benefits for individual users, which include the following:

• Improved Security. Users can employ secret keys to perform computations on

general-purpose platforms with improved protection against the potentially vulnera-

ble software and hardware environment.

• Protection for Many Key Types. We seek to ensure the security of any crypto-

graphic keys, whereas some key management schemes protect only limited classes

of keys such as RSA keys.

• Ubiquitous Key Access.Users can conveniently and securely access their crypto-

graphic key ring fromanynetwork-enabled device (that contains our enhancements).

Furthermore, users do not have to carry and use a smart card or other protected,

auxiliary hardware devices, which are susceptible to loss and theft. VSCoP-enabled

devices also do not need to be pre-authorized in order to securely utilize secret keys,

as may be required in existing systems.

• Flexible Cryptographic Functionality. Since the cryptographic primitives that we

provide to applications are implemented in software instead of hardware, the system

can support a wide range of evolving security functions.

• Improved Performance. Users also benefit from the high performance of general-

purpose processors as opposed to the potentially low performance of constrained

cryptographic processors found in some smart cards and other cryptographic tokens.

3.4 Architectural Implementation

The architecture of VSCoP is based upon two secrets that are stored and protected within

the general-purpose processor: theuser secretand thedevice secret. The user secret is the
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master key of the user’s cryptographic key ring. This user master key is used to provide

protection for the entire key ring via encryption and authentication, and it is maintained by

the processor in protected volatile memory for limited periods of time. The device secret

is used by the processor to perform a variety of security functions that enable protected

storage and utilization of the user’s secret keys. This device secret is maintained in the

processor in protected non-volatile memory for extended periods of time.

This section describes the architectural enhancements that enable protection for keys

and secrets while in storage, in transit, and in use by the processor. These enhancements

begin with the definition and maintenance of a protected key ring structure for secure key

storage. Next, we present the protected I/O path for securely transporting the user secret

and the device secret to the processor. Lastly, we discuss the enhancements that support

protected key utilization, which include a new software library, processor modifications,

ISA additions, and minor OS modifications.

3.4.1 Key Ring Structure

We define a structure for a user’s cryptographic key ring that facilitates ease of use and

strong protection even when stored in untrusted devices. Figure 3.3 shows an example

of the organization of a cryptographic key ring, which potentially can contain many more

keys than depicted in the figure. A key ring includes a single user master key that is used to

encrypt and authenticate the integrity of all of the other keys, and thus the security of the key

ring fundamentally depends on the measures taken to protect the master key. In addition,

since all the keys in a key ring are cryptographically protected by the user master key, a user

can deposit his key ring (minus the master key) in a publicly accessible network or storage

device without risking key exposure, undetectable forgery, or undetectable corruption.

In this paper, we define user master keys to be 128-bit keys for use in symmetric-key

encryption or keyed hashing algorithms. Furthermore, we define this user master key to be
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the output of a cryptographically-strong one-way hash of the user’s passphrase (although

this could certainly be supplemented with hardware token information in practice). Hence,

users should carefully select passphrases with sufficient entropy to thwart off-line attacks

[151, pp. 87–94].

Figure 3.4 depicts the organization of an individual key. Each key consists of a key

identification number (KIN), the key size, an algorithm identifier, the key itself in ciphertext

form (encrypted with the user master key), the key hash, and an expiration information

field. The KIN is a non-secret 256-bit integer that uniquely identifies the key. To avoid

possible attacks where an attacker may specify a KIN that would lead to a collision with

a KIN of another key, VSCoP provides a pseudorandom number generation mechanism

(described below) in the trusted processor that can be used to randomly generate KINs.

Since the KIN is 256 bits in size and is randomly generated, the probability is negligible

that a KIN would be used more than once. The key size is simply a 64-bit integer that

represents the size in bytes of the individual key structure. The algorithm identifier specifies

the algorithm (or set of algorithms) permitted to use the key. This field may also be used to

specify other relevant information about the nature and proper use of the key.

The key is encrypted with the user master key. Furthermore, during key creation, the

VSCoP pseudorandom number generator can be used to generate pseudorandom key bits.

The key hash is the keyed cryptographic hash message authentication code (HMAC) based

on the user master key for the entire key data structure (minus the key hash) that we can

use to verify the integrity of the key. This hash guards against adversaries that seek to forge

or inject bogus keys into a user’s key ring. Examples of algorithms and modes that we can

use to perform the encryption and hashing include AES-128-CBC and HMAC-SHA-256,

respectively [114].

The expiration information field is a 64-bit integer that may be used to assist in a key

expiration and revocation protocol. Such a protocol is not presented in detail here, but if

a trusted clock is available and the expiration field is set to an appropriate value at key
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creation time, VSCoP can securely enforce the expiration of a key. However, if the user

deletes a key from the key ring at an arbitrary time, the protocol may not fully prevent an

attacker from successfully launching a “rollback attack”, which is the storage analogue of

a transmission replay attack. In this attack, the latest version of a key ring may be replaced

inconspicuously with a stale version (i.e., a formerly valid but not currently valid version)

of the key ring.

We identify two methods for preventing such rollback attacks in VSCoP. In the first

method, upon key revocation, the entire key ring is re-encrypted and re-hashed with a new

master key that is based on a new passphrase. In the second method, the user must employ

a trusted hardware device (e.g., a smart card or a USB token) during authentication or key

ring retrieval. This device would store a small quantity of information, such as a key ring

hash fingerprint, which could be employed to verify the freshness of the key ring retrieved

from untrusted storage. Both of these methods achieve security against rollback attacks but

may inconvenience users.

We encode keys and key rings for storage as searchable trees to facilitate efficient key

ring traversal by software. Users can implement alternative secure key ring structures if

other security and usability features are desired. For example, users can employ a hierar-

chical key ring based on a tree structure where parent keys (in addition the user master key)

encrypt child keys [109, 108, 95].

3.4.2 Platform Enhancements and Protected Paths

In VSCoP, the hardware platform assumes responsibility for securely transporting the user

secret to the processor and for securely resetting the device secret. That is, the hardware

platform implements the protected I/O path for transporting and managing the secrets upon

which the VSCoP architecture is built. The new platform features that enable this protected

path include an “Authenticate” button, a “Device Reset” button, and a three-color VSCoP
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Status Light, which are all located on the exterior of the device. The Authenticate button

primarily relates to the user secret key, and the Device Reset button primarily relates to the

device secret.

Upon receiving a used or new device, the new device owner should reset the device

secret. The VSCoP device secret will be used to cryptographically protect the new user’s

keys, so it is critical to guarantee that neither the factory nor a previous owner will have

knowledge of the device secret employed by the new user. Also, for similar reasons, before

transferring the device to an untrusted party, it is necessary to reset the device secret to a

random value or to zero. Thus, we must provide support for resetting (i.e., zeroizing) the

device secret stored within non-volatile memory in the processor.

Furthermore, this feature needs to be tied to a physical action in order to prevent a

software attacker from replacing the device secret with one that the attacker may use to

expose key bits. We can prevent such an attack by implementing a physical “Device Reset”

button (similar to that of many PDAs) that must be physically pressed while the device

is turned on in order to reset the device secret registers in the processor to zeroes. The

platform can confirm a successful reset by illuminating a new VSCoP Status Light (or

LED) on the exterior of the device to “red” when the device secret equals zero. Upon

writing new values to the device secret registers, which the processor will permit to occur

only after the device secrets have been physically reset, the VSCoP Status Light is set to

“blue”. Note that only the platform hardware (and not any software) can respond to the

Device Reset button or influence the VSCoP status light. This is enforced simply by not

providing an interface with which OS or application software could observe or interact with

the Device Reset button and VSCoP status light hardware.

The hardware platform (rather than the potentially vulnerable OS) also assumes respon-

sibility for gathering and hashing the user authentication information to generate the user

secret. During user authentication, the platform temporarily prevents keyboard or similar

input from reaching OS I/O buffers. Instead, the platform sends these user inputs (e.g.,
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a passphrase) directly to the processor chip. The processor then hashes the information

to obtain the user’s master key (which is the user secret). A user initiates this procedure

by pressing a special “Authenticate” button on the device. While the user authentication

information is being inputted (via a keyboard or another input device), the VSCoP Sta-

tus Light blinks “green”. After the operation is complete, which occurs after the “Enter”

key is pressed, the platform turns the Status Light to a solid green to indicate that user

authentication information is loaded into the processor.

Although the platform hardware can inform the OS that the user is entering authentica-

tion information, the hardware does not allow any software to intercept this authentication

data. Hence, we avoid “man in the middle” attacks from malicious or corrupted kernels.

However, we do not prevent more complex physical attacks in which an adversary steals a

device, installs a “sniffer” that can intercept user authentication information at the hardware

level, and then returns the device to the oblivious user.

After a user has used his keys to complete a particular task (such as a remote electronic

vote), the user may wish to wipe all traces of his key ring from the device. By performing

such a wipe, no future system software or hardware security breaches can reveal or employ

any of the user’s keys. To achieve this goal, the user can press the “Authenticate” button

to inform the processor to clear the user secret and any sensitive state information from all

relevant locations in the processor. Following the successful wipe, the platform turns the

VSCoP Status Light from “green” to “blue” to indicate that the user secret is no longer

contained in the device.

3.4.3 Cryptographic Operations Library

We now turn our attention to support for protected key use. The Cryptographic Operations

Library (COL) is a trusted code module that applications can employ to securely perform

cryptographic procedures with a user’s secret keys. This library is the only software that



CHAPTER 3. VIRTUAL SECURE COPROCESSING 61

is authenticated using the device secret and permitted to employ the Concealed Execution

Mode. We envision the COL as being an operating system component, but application

software developers could certainly develop and distribute this library as well.

Calls to the COL by applications can occur using one of two methods, as shown in Fig-

ure 3.5. In the first method, as illustrated in Figure 3.5(a), applications make calls directly

to the COL interface. The arrows represent function calls, and the rectangles along the

interface represent software function entry points. In the second method, as illustrated in

Figure 3.5(b), applications make calls to a COL wrapper that is presented by the underly-

ing OS. Then, the OS may or may not propagate the call by making a subsequent call to

the COL on behalf of the application. The second method allows the OS to restrict access

to the COL to privileged or highly trusted software applications. In the remainder of this

chapter, we assume that we implement VSCoP using the second (i.e., OS-mediated) COL

calling method.

The COL does not run as an independent application or thread; instead, the COL is a

shared library that can be dynamically loaded (much like a DLL in Windows operating sys-

tems). Thus, the COL will share the same virtual memory space as the calling application,

which facilitates ease of use for application programmers. When using the OS-mediated

COL calling model, employing the COL as a shared, dynamically loaded library is natural.

Figure 3.6 lists a few functions from the COL application programming interface (API).

The COL API is structured similarly to PKCS # 11, the Cryptographic Token Interface

Standard [135]. A software application interprets the COL API like entry points to proce-

dures implemented by a hardware device. The COL also contains functions that allow an

application to generate and add keys to the user key ring.

Consider the high-level operation of the COL functionEncrypt . This function ac-

cepts virtual address pointers to input and output buffers, the buffer sizes, the desired mode

of operation of the encryption algorithm (e.g., CBC), a virtual address pointer to the user’s

cryptographic key ring, the KIN of the key that should be used to perform the encryption
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Figure 3.5: Application and COL interfacing via (a) direct calls and (b) OS-mediated calls
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int Encrypt(input, output, isize, osize, mode,   

        keyring, KIN, algorithm, initial_info) 

int KeyedHash(input, output, isize, osize, KIN, 

        keyring, mode, algorithm, initial_info) 

int AddKeyToRing(algorithm, parent, KIN,  

        keyring, initial_info, output, osize) 

Figure 5.  Example functions in the COL API
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Figure 3.6: Example functions in the COL API

operation, an encryption algorithm identifier, and other data such as initialization vectors.

Following a call toEncrypt , the application program jumps to the appropriate func-

tion and enters the Concealed Execution Mode. The COL then traverses the key ring to

obtain the appropriate user key or keys. Next, with the user’s master key stored in the

processor, the COL decrypts and verifies the integrity of the user’s specified key. The COL

then applies the decrypted key to perform the desired encryption operation on the input

data, and the result is copied to the memory range specified by the output data pointer.

Upon completion, the COL will terminate concealed execution, and control will be re-

turned to the calling application. If a failure occurs at any point in this process, the COL

will gracefully exit the called COL function by returning an error code. Examples of possi-

ble failures and errors include a key integrity check failure, the attempted use of an expired

key, and the attempted use of invalid algorithm identifiers.

The COL functions must be implemented carefully to avoid leaking any keys or sen-

sitive intermediate information [15]. The function will fail gracefully if, for example, a

buffer address points to unallocated memory, the key is not authorized for use in the algo-

rithm specified in the function call, or the key integrity check fails. By “fail gracefully”,

we mean that the COL will return an error condition without crashing or revealing secret

information. To simplify the necessary architectural support and eliminate certain security

vulnerabilities, we require that the COL be entirely self-contained. That is, the COL cannot

call a function in external library, and the COL cannot make any system calls to the kernel.



CHAPTER 3. VIRTUAL SECURE COPROCESSING 64

This means that all necessary libraries must be statically linked into the COL at compile-

time. In addition, the COL must statically allocate any memory that may ultimately be

required to securely store intermediate data variables.

The structure of the key ring prevents software applications from using the COL to

obtain decrypted key values. The COL defines the KIN of the user master key to be zero,

and no function will allow a KIN of zero to be specified as an argument (meaning the

function will promptly return an error code upon receiving an input KIN of zero). That

is, COL functions such asDecrypt will not allow an application to employ the user

master key; only internal COL operations involving key ring traversal can exercise the user

master key. Thus, since each key is encrypted with the user master key, and since the

application cannot directly use the master key, the plaintext key values are inaccessible to

calling applications.

While a user master key is loaded into the processor, it is conceivable that an attacker

could compromise the operating system and then attempt to instruct the COL to perform

cryptographic computations with secret keys (although an attacker will not be able to obtain

the plaintext key values). To provide added protection against such malicious code execu-

tion that may occur between the loading and the clearing of the user master key, VSCoP

can be integrated with the attestation, secure booting, and general code verification tech-

niques provided by proposed trusted computing platforms and related technologies (e.g.,

[81, 115, 163]). Attestation involves mechanisms for verifying that a system is using a

known hardware and software configuration. Secure boot techniques seek to guarantee that

a system boots to a trusted state. Mechanisms for providing secure bootup include boot

sequence verification and the enforcement of the integrity of the BIOS, the boot sector, and

other booting code. Code verification techniques include any static or dynamic mechanisms

for verifying the integrity, origin, or correctness of application software. This chapter does

not include a detailed discussion of mechanisms for validating and authenticating software

applications to the COL and vice versa, but this is an important issue to be addressed in
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future research.

3.4.4 Processor Enhancements

The VSCoP enhancements to the processor enable concealed execution and support the op-

eration of COL functions. We choose to enable concealed execution via dynamic memory

protection rather than on-chip protected storage in order to avoid constraining the CEM to a

limited memory space. Thus, the processor architecture support required to implement the

virtual secure coprocessor includes a few new registers in the processor chip, cryptographic

engines at the cache-memory interface, new cache line flag bits, and a pseudorandom num-

ber generator (PRNG). Figure 3.7 illustrates a typical processor with the new components

shown in bold. We assume that the processor die contains split first level (L1) data and

instruction caches and a unified second level (L2) cache. However, we could easily modify

the system to support other configurations.

First, we create special storage within the processor for the user secret, the device secret,

and state information for the Concealed Execution Mode. We implement a minimum of

four new registers: the 128-bit Device Master Key, the 128-bit User Master Key, the 256-

bit PRNG seed, and the 2-bit CEM Status register. The system does not permit the contents

of the first three of these four registers to ever exit the processor. Also, none of these

register values are set at the factory; the user defines the register contents in the field. The

user secret comprises the contents of the User Master Key register, and the device secret

comprises the contents of the Device Master Key and the PRNG seed.

The master key of a user’s cryptographic key ring is stored in the User Master Key

register. The 2-bit CEM Status register consists of two 1-bit flags that indicate whether

any thread on the system is currently employing the CEM and whether the CEM is in

use for the current instruction stream. We do not need to nor want to preserve these two

registers in the device when power is turned off, so we implement these registers using
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volatile SRAM. When power is removed, the contents of these registers will be drained

(i.e., cleared to zeroes).

The Device Master Key, which is used to authenticate software and to protect memory,

must be maintained in the processor when power is turned off. The seed register for the

pseudorandom number generator must also be preserved when power is removed, for the

processor does not have an existing mechanism for securely generating a random seed

value for the PRNG that an attacker could not predict. Thus, we use one of many possible

non-volatile memory technologies to implement these two registers. The PRNG is used

to provide pseudorandom bits to the COL and to enable secure context switching. Many

pseudorandom number generators exist; we suggest applying AES encryption to generate

a pseudorandom number using the 256-bit PRNG seed register similarly to the method

described in ANSI X9.17 [2].

The remaining processor enhancements support concealed execution of trusted COL

software. This involves verifying the authenticity of COL code as well as ensuring the

secrecy and integrity of sensitive data. The processor performs the hash verification of

COL code and protected data using a hardware-based hash engine as instructions enter the

on-chip L2 cache from external caches or main memory. We append to each cache line

a keyed MAC. We compute this MAC over the memory address of the first word in the

cache line, the secret Device Master Key, and the contents of the (data or instruction) cache

line itself. This keyed MAC can be a 16-byte AES-CBC-MAC [114, 120], which is an

acronym for the Advanced Encryption Standard employed in cipher block chaining mode

to produce a message authentication code. The three inputs to the hash function serve

to prevent unauthorized code or data transpositions within protected memory, to preclude

hash forgeries, and to prevent the unauthorized modification of the code or data cache line,

respectively. If the cache line hash read from memory does not correspond to the hash

calculated by the processor, the processor triggers an interrupt.2

2This hashing approach works only if the COL code and data arealwaysloaded into same contiguous
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To reduce the overhead associated with embedding hash results in code and data, we

compute hashes for entire cache lines rather than for individual bytes or words. Hence,

for a processor with 64-byte cache lines, the hash message authentication code information

increases code size by 25%. In addition, we can implement an optional address translator in

hardware that converts hashed code and data addresses to and from regular code addresses.

With such a translator, CEM programs are not required to accommodate the awkward 16-

byte hash values.

Upon verifying the instructions or data, the hash values are discarded rather than stored

in the L1 or L2 caches. Assuming that we do not allow self-modifying code to execute

in the Concealed Execution Mode, there is no need to maintain hash values within the

processor chip or to re-verify code and data prior to use. Hence, we discard hash values

following verification, but we add a CEM Verified flag bit to each cache line that indicates

whether the hash for that line has been validated. During concealed execution, if fetched

code or data does not possess a valid MAC, the processor can either throw an exception or

simply exit the Concealed Execution Mode with an error condition.

Sensitive data that leaves the processor chip during concealed execution is encrypted

via the AES cipher [120] or some other symmetric-key encryption algorithm in cipher

block chaining (CBC) mode [114]. Cache line encryption and decryption is performed at

the processor boundary outside of the L2 cache using the Device Master Key. We require

another extra bit for each cache line, the CEM Secured bit, which indicates whether any

of the current contents of the cache line contain sensitive information generated during

concealed execution. The processor sets a cache line’s CEM Secured bit when trusted soft-

ware executes a write to secured memory or executes a load that fetches (and validates)

a secured cache line from external memory. If a cache line’s CEM Secured bit is set, the

memory pages or frames for all software processes on a particular device. If the COL can be loaded into
multiple possible pages or frames in memory, the addresses of COL code and data may vary, and the hashes of
COL instruction cache lines created at COL installation time may not be consistent with the hashes computed
by the processor at execution time. To solve this problem, the OS can simply dedicate a fixed physical
memory address range on the device to the COL.
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processor will prohibit non-CEM threads from accessing that cache line. These two new

bits per cache line, CEM Secured and CEM Verified, allow us to implement compartmen-

talized, secure memory in a simple and low-cost manner. With these bits, we can partition

the on-chip cache memory space into secured and non-secured memory very flexibly and

inexpensively on a cache line basis.

There exist attacks on external memory that remain to be addressed: secured data replay

attacks. In some situations, an adversary may replace encrypted data and its associated

hash value (that has been evicted from the processor) in external memory with legitimate

but stale encrypted data and an associated stale hash from previous concealed execution

operations. When the encrypted data is pulled back into the processor, the processor as it

is currently defined cannot differentiate the stale hash from the fresh hash.

We identify two solutions to this problem that experience varying degrees of security

and implementation cost. First, we could construct a processor-based session key using

the pseudorandom number generator during concealed execution. This fresh session key

would be used instead of (or in addition to) the Device Master Key to perform the en-

cryption and hashing operations needed to secure external memory. Since the session key

would change for every invocation of the CEM, this approach would defend against replay

attacks involving encrypted data and hashes from a previous invocation of the Concealed

Execution Mode. However, the COL would not be able to maintain state between function

calls. Furthermore, replay attacks are still possible within the same invocation of the CEM.

As a second option, the memory authentication system presented in [59], which is based

upon Merkle hash trees, could be integrated cleanly with our proposal to provide complete

protection against such replay attacks. Though the system of [59] incurs a higher imple-

mentation cost than that of the first option, we advocate the second option because of its

flexibility and superior level of security.

An attacker can benefit from knowledge of the sequence of instructions fetched during

concealed execution. Hence, while in the CEM, we shield the value of the program counter
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from external observation. The shielding mechanism varies between different processor

architectures, but in general, we achieve this PC shielding goal by never allowing such sen-

sitive information to reach the processor package’s pins while in the Concealed Execution

Mode. For example, in a processor that stores the program counter in one of the general

purpose registers, the shielding mechanism is provided by the existing CEM register pro-

tection (i.e., encryption) features.3 In addition, we must disable testing scan chains and

other processor hardware debugging features that may dump secret information from the

processor during CEM execution. There are many inexpensive ways to realize this goal,

including blowing fuses in the processor directly following factory testing.

The hash engine, encryption engine, and the PRNG can all be implemented using a

single AES module, which requires as few as 25,000 gates [3]. The four new processor

registers consume only 514 bits of register storage with read and write control. Also, the

additional cache line flag bits do not significantly increase the size of the cache memo-

ries. In a processor with 64-byte cache lines, the new cache line flag bits increase storage

requirements by less than 1%. Hence, with the possible exception of the non-volatile mem-

ory required for two of the registers, the implementation cost is small.

3.4.5 New Instructions

We extend the Instruction Set Architecture (ISA) with new instructions to exercise the

processor features that enable the Concealed Execution Mode. These instructions include

device key mv anduser key mv for handling the processor keys,begin cem and

end cem for entering and exiting the CEM mode,cem store andcem load for ac-

cessing protected memory, andprn gen for generating pseudorandom numbers. Some of

these instructions operate similarly to ISA additions described in [100]. We summarize the

3Note that, as currently defined, the VSCoP processor enhancements do not prevent all types of physical
attacks that may indirectly obtain sensitive information relating to instruction flow. For example, by measur-
ing processor energy consumption or by observing main memory access patterns resulting from instruction
cache misses, it may be possible to infer which instructions are being executed.
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Table 3.1: New instructions

Instruction Function
Enters the CEM. CEM Status register bits are set to

begin cem 1’s. All subsequently fetched instructions are
cryptographically validated before execution.
Exits the CEM. CEM-secured cache lines

end cem invalidated; general-purpose registers are reset to
zeroes. CEM Status bits are reset.
Stores a 64-bit datum to secured memory. The

cem store CEM Secured cache line bits are set for every cache
line touched by this instruction.
Loads a 64-bit datum from secured memory. The

cem load CEM Secured cache line bits are checked to
guarantee the integrity and secrecy of the data.
Transfers information from a register to individually

device key mv addressable 64-bit chunks of the Device Master Key
and the PRNG seed.
Transfers 64-bit blocks of information to a register

user key mv from individually addressable 64-bit chunks of the
User Master Key.
Employs the processor pseudorandom number generator

prn gen to write a pseudorandom value to a register, but only
when running in the CEM.

functionality of our proposed instructions in Table 3.1.

At device initialization time,device key mv is used to write values to the PRNG

seed and Device Master Key registers. Thedevice key mv instruction is “one-way”,

however, for it cannot be employed by software to read the contents of those two spe-

cial registers. All operations that require reading the Device Master Key and PRNG seed

registers are implemented in processor hardware.

Only software running in CEM can obtain contents of the User Master Key register via

the user key mv instruction. However,user key mv cannot be used by software to
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write values to the User Master Key; only the processor hardware can write values to that

register.

When an application wishes to enter the Concealed Execution Mode by calling a func-

tion in a privileged library, thebegin cem instruction is executed. This instruction checks

bit 0 of the CEM Status register to ensure that the CEM is not currently in use by any thread,

as only one process may employ the CEM at any given time. This allows the system to

avoid complexities caused by sharing secured memory. If bit 0 of the CEM Status equals

1, then another thread in the system is employing the CEM, so the CEM request will be

denied.4 Otherwise, if bit 0 of the CEM Status equals 0, then no other thread is currently

using the CEM. In this case, the processor sets both CEM Status bits to 1, and all instruc-

tions that enter the processor following the execution ofbegin cemare cryptographically

validated using the Device Master Key or a fresh session key.

During concealed execution, privileged software can securely transfer data to and from

memory using thecem load andcem store instructions. These instructions prevent

spoofing and exposure of data using the processor’s hash engine, encryption engine, and

the new cache line flag bits. Note that programs running in the Concealed Execution Mode

can also complete unsecured memory loads and stores, which are essential for transferring

the inputs and the results of the cryptographic function from and to the relevant software

application. For example, an encryption function running in the CEM must possess the

ability to access unencrypted source data from the unsecured data memory space of the

calling application in order to complete the encryption operation.

In addition, while in the CEM, the privileged software can obtain pseudorandom num-

bers from a trusted source (the processor) by using theprn gen instruction. When this

instruction is executed, the processor writes a 64-bit pseudorandom integer to a specified

4In Section 3.4.6, we discuss OS mechanisms for ensuring that processes cannot misuse this feature to
block access to the CEM by other processes.
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general purpose register, and then the processor writes a new value to the PRNG seed reg-

ister that is a nonlinear function of the original seed. Theprn gen instruction can be used

for many cryptographic applications (and for KIN generation described in Section 3.4.1).

Upon completion of a COL function, the COL executes theend cem instruction to

exit the CEM. At this time, all of the general-purpose register values associated with the

CEM instruction stream are reset to zeroes, and both bits of the CEM Status register are

reset to 0. Cache lines that contain secured CEM data are invalidated using existing cache

line flags to prohibit reuse of results in future CEM invocations. Alternatively, cache line

contents could be cleared to zeroes for extra security.

3.4.6 Operating System Enhancements

To fully enable virtual secure coprocessing, we must implement minor changes to the op-

erating system. We do not wish to suspend the execution of other processes while a CEM

function is executing, so we must provide support for secure OS context switching. We

handle preemptive context switches that occur during concealed execution as follows:

• The PRNG is employed to generate a session key that is used to encrypt and compute

a keyed hash over the sensitive context before evicting it to memory. Note that if

we were to employ the same session key to encrypt the registers for every CEM

context switch, the system would be vulnerable to data replay attacks. When a new

key is requested from the PRNG, the processor writes a new value to the PRNG

seed register that is a nonlinear function of the original seed. Then, the new seed

can be used to generate a fresh session key. The processor can either calculate the

session key on the fly (when needed) using the current value of the PRNG seed, or

the processor can maintain the value of the session key by implementing and using

a new 128-bit volatile session key register. In either case, the processor protects the

session key by never allowing the session key to leave the processor chip (in the same
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manner that the processor protects the device master key).

• Bit 1 of the CEM Status register is then reset to 0 for the incoming non-CEM process.

Bit 0 of the CEM Status register remains 1 to indicate that some thread in the system

(i.e., the outgoing thread) still owns a “lock” on the Concealed Execution Mode.

Until the CEM thread begins executing again, the processor will prohibit any attempt

by a non-CEM process to access sensitive data in the caches or the User and Device Mas-

ter Key registers. If a non-CEM process requires CEM-secured data to be evicted to the

cache, the encryption and hash engines protect the information as described above without

invoking the OS or the CEM thread.

We handle a context switch that restores control to the CEM thread as follows:

• The PRNG-generated session key is used to decrypt the incoming protected context

and to verify the integrity and freshness of that context.

• If the context is decrypted and verified successfully, bit 1 of the CEM Status register

is restored to 1, and CEM thread may begin to access CEM-secured data and execute

again.

In addition, since we only allow one process to employ the CEM at a given time, we

must implement an OS mechanism for queuing CEM requests in order to avoid possible

CEM contention (or blocking) between processes. The Cryptographic Operations Library,

which is the only library that is permitted to use the CEM, does not include routines that

consume unbounded processing time. Hence, deadlock will not occur in processes that are

waiting for another process to relinquish the CEM. Note that related proposals and devices,

such as the IBM secure coprocessors [152], also require that secure execution requests be

performed serially.
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Also, the OS should enable users to access their encrypted key rings from remote stor-

age, i.e., provide a mechanism for fetching an encrypted key ring over a network and de-

livering that encrypted data to the virtual secure coprocessor.

3.5 Applying VSCoP

We now provide a summary of the VSCoP processes involved in applying the new archi-

tectural enhancements to protect users’ keys. We define three primary processes: device

initialization, user initialization, and protected operation.

3.5.1 Device Initialization

Device initialization occurs when a user first obtains a computing device containing our

proposed security features. In this step, the user installs the Cryptographic Operations

Library, the only software module that will be permitted to directly access users’ keys.

First, if the device secrets have not already been reset to zero by the device producer (i.e.,

the factory) or a previous user, the user presses the Device Reset button to wipe the device.

Note that the new user can employ a previously used device to securely store and utilize

his cryptographic keys without the risk of exposing his secrets or previous users’ secrets.

Second, the installation procedure writes new random values to the Device Master Key and

PRNG seed registers.

Third, the user verifies the authenticity of the COL by checking its digital signature us-

ing software-based Public Key Infrastructure (PKI) techniques.5 Then, the COL is signed

5Using cryptographic primitives such as digital signatures, PKI techniques enable users to verify the
origin and integrity of a software module. The verification process, which involves a trusted third party, a
software creator, and a user, may proceed as follows. First, the trusted third party issues a unique certificate
to the software creator. A certificate is a publicly known data block that associates the creator’s name with
his public signature key. Second, the creator digitally signs the software module using his private signature
key that corresponds to the public key in the certificate. Third, upon obtaining the signed module, the user
can employ the creator’s public key obtained from the creator’s certificate to verify the integrity and origin
of the software module. The creator’s certificate also must be verified, however. The user can verify the
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using the Device Master Key via a keyed MAC. Note that PKI and asymmetric encryp-

tion techniques are not implemented in hardware and are not required by the Concealed

Execution Mode; public-key operations are only employed in software at installation time.

During COL installation, a malicious OS kernel can interfere with the MAC generation

process to facilitate the installation of a corrupted and dangerous COL. To prevent such

attacks, the user should install the COL only when the OS kernel is guaranteed to be un-

compromised. This condition is difficult to satisfy at arbitrary times, so it is most prudent

to install the COL immediately following or during the installation of a validated OS kernel

or secure BIOS.

3.5.2 User Initialization

User initialization occurs when a user creates a new cryptographic key ring with an initial-

ized device. This operation simply involves selecting a master key for the key ring, which

is the output of a cryptographically strong one-way hash of a user-supplied passphrase. As

keys are added to the ring, a user can store his encrypted key ring locally or remotely. By

depositing the key ring in on-line accessible storage, the user can access his secret keys and

perform protected computations on any VSCoP-enabled networked device.

3.5.3 Protected Operation

Protected operation is the process in which an initialized user securely employs a secret key

in an initialized device. This process begins with a user securely inputting his passphrase

into the device via the protected path. The system hardware then computes the user’s master

key and stores the result as the user secret.

validity and integrity of the software creator’s certificate by using a separate certificate that is associated with
the trusted third party. Trusted third party certificates are often embedded in operating systems and software
applications.
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Next, when a software application needs to perform a cryptographic primitive that in-

volves one of the user’s secret keys, the application makes an appropriate call to a function

in the Cryptographic Operations Library as if it were an interface to a secure coprocessor.

Thereupon, the processor verifies the integrity of the COL using the device secret. We note

that we do not need to ensure the secrecy of individual library instructions, as the library

routines are not confidential. If verification is successful, the processor enters the Con-

cealed Execution Mode and begins executing instructions in the called COL routine. In

order to prevent a potential attacker from exposing any user secrets during the CEM, the

processor maintains the secrecy and integrity of all sensitive data that is available to other

processes or is released from the processor chip. After completing an operation that re-

quires the use of a key ring, a user can clear the master key of his key ring from the device

by pressing the Authenticate button. As long as the OS or other trusted software is not

compromised before or while the master key is loaded in the processor, a software attack

on a trusted component cannot reveal or access a user’s master key.

3.5.4 Application Example

One application example for VSCoP involves secure email. Upon receiving an encrypted

email, an initialized user may wish to employ his key ring to decrypt email on an initialized

device. To begin this process, the email reader may prompt the user to input his master key

into the device. As described above, the user would press the appropriate physical buttons

and input his passphrase. Then, following either OS or user-initiated notification that the

master key has been received, the email reader or the OS would fetch the user’s encrypted

key ring from a local or remote storage device. The email application would then make a

call to the COL by passing the user’s encrypted key ring and the encrypted email as inputs.

The COL then enters the CEM, uses the master key to decrypt the key ring and the email,

returns the decrypted email result to the unsecured memory space of the email application,
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and exits the CEM. At that point, the user may press the Authenticate button to clear the

master key from the device, and the email can be read by the user.

3.6 Security Analysis

By implementing VSCoP, we can achieve practical and improved security for keys against

threats from each of the threat classes identified in Section 3.1. Below we discuss the

threats prevented by VSCoP as well as the threats that remain to be addressed.

3.6.1 Protection for Keys in Storage

The protected key ring structure and the VSCoP processor enhancements provide strong

protection for key material in storage against software and physical attacks. When the key

ring is in storage in a local or a network-accessible device, the entire ring is cryptographi-

cally protected against any physical or software attacks involving exposure, spoofing, and

transposition attacks that threaten the confidentiality and integrity of the keys. Furthermore,

when a key ring is decrypted in the Concealed Execution Mode by the cryptographically

authenticated COL, sensitive data that directly or indirectly represents keys is cryptograph-

ically protected by the processor before being stored to processor-external caches, main

memory, or swap devices. These processor enhancements defend against physical and

software attacks outside of the processor that involve the exposure, spoofing, transposition,

and replay attacks on key material.

VSCoP does not ensure availability of keys, however: denial of service attacks and

deletion attacks are not prevented.
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3.6.2 Protection for Keys in Transit

VSCoP provides strong protection for keys in the protected key ring during transport

against physical and software attacks. Because the protected key ring is not decrypted until

the processor accesses the ring in the Concealed Execution Mode, any transmissions of the

key ring structure over networks and system buses are protected via the same cryptographic

mechanisms that protect the ring while in storage.

VSCoP also protects the user master key during transport against software attacks. The

user master key that is required to access or modify the key ring is only transferred to

the trusted processor via the platform-enabled protected I/O path. However, the VSCoP

protected I/O path does not defend against any physical attacks (such as active bus probing)

that may occur during master key transport between the user and the trusted processor.

3.6.3 Protection for Keys Exercised by Software

VSCoP defends keys against certain unauthorized use, exposure, or corruption of poten-

tially vulnerable application or OS software. The protection is provided by only allowing

the authenticated COL to directly exercise user keys (in plaintext form), and the key ring

can only be used by the COL when the user master key is loaded into the processor. Dur-

ing COL computations, the processor cryptographically protects any sensitive data that

exits the processor, which prevents other software from obtaining and directly exercising

plaintext key material. If the most secure design options are chosen, an enhanced key ring

structure can preclude any keys from being passed in decrypted form to software applica-

tions (as described in Section 3.4.3). Furthermore, the OS can restrict the set of applications

that are privileged to make calls to the COL interface (as described in Section 3.4.3).

If a user clears the device of his master key following use, an attackercannotexpose or

corrupt the user’s secret key ring during any subsequent penetration of the OS. If the OS

is compromised before or while the user master key is loaded into the processor, however,
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an attackercanuse the compromised OS to exercise secret keys. This is because the COL

does not authenticate software that makes calls to its interface. Thus, to maximize security

of VSCoP, the user master key should be loaded in the processor for the minimum period of

time needed to complete a security task. Such an approach is quite similar to methods that

are sometimes used to apply cryptographic tokens such as smart cards. In those methods,

the token functionality is only provided to applications or the OS for a limited period of

time to minimize risk of token abuse or compromise. In future work, this security issue

may be further addressed via integration with features of trusted computing platforms.

3.6.4 Protection for Keys Exercised by Hardware

The VSCoP enhancements ensure that only the protected I/O path and the hardware on the

processor chip may directly exercise cryptographic keys. Other hardware in the system

that can be accessed or controlled by software cannot perform operations using decrypted

key rings. After a user master key has been loaded into the processor, the VSCoP security

mechanisms ensure that all sensitive key data that enters and exits the processor is crypto-

graphically protected. Thus, any hardware outside of the processor (following master key

loading) that seek to access or tamper with keys will be thwarted and detected, respectively.

Though VSCoP successfully prevents software attacks that employ hardware outside of

the processor to exercise keys, VSCoP is not designed to defend against several physical

attacks on hardware. First, VSCoP does not prevent active physical attacks on the pro-

tected I/O path during master key transport. Second, the processor is not assumed to be

tamper-proof, and therefore VSCoP does not prevent physical attacks that involve probing

the internals of the processor chip while the master key is loaded in the processor. We argue

that such attacks are significantly more difficult to realize than disk probing, network sniff-

ing, or bus probing, and therefore physical attacks on the processor are of lesser concern.

Third, VSCoP does not defend against hardware attacks involving physical theft followed



CHAPTER 3. VIRTUAL SECURE COPROCESSING 81

by hardware tampering and the inconspicuous replacement of the altered device. Fourth,

VSCoP is not designed to prevent all side-channel attacks on the hardware, such as timing

attacks, power analysis, and cache miss pattern observations, which can lead to the leakage

of sensitive key material.

3.7 Performance Analysis

The performance impact of our proposal is negligible for software packages that do not

employ the Cryptographic Operations Library. However, performance changes may be ex-

perienced by programs (such as SSL and secure storage software) that employ user key

rings with the COL. In such software, performance degradation may occur due to the in-

creased quantity and costs of memory accesses during COL operations. By hashing and

possibly encrypting/decrypting some information at the processor boundary, we add la-

tency to external memory accesses.

It is important to note that since the COL contains only cryptographic functions, we

only need to evaluate performance degradation associated with those cryptographic func-

tions. Thus, we obtain performance statistics by simulating the execution of common cryp-

tographic routines in the Concealed Execution Mode: the RSA encryption algorithm [133],

the AES encryption algorithm [120], and the MD5 one-way hash function [131].

To obtain the results, we use a modified version of the SimpleScalar cycle-accurate

superscalar processor simulator [21]. The processor model is based upon the enhanced

processor and memory system described in Section 3.4. We implement the benchmarks in

C and compile for the Alpha instruction set architecture usinggcc with the-O2 optimiza-

tion flag. During execution, we provide the benchmarks with 1 megabyte of input data to

be encrypted or hashed. We conduct simulations for a 4-way superscalar processor, and we

present the processor simulation parameters in Table 3.2.
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Table 3.2: Processor model parameters

Parameters Characteristics
Instruction window 64-entry RUU

Fetch/decode/issue width4 instructions
Commit Width 8 instructions

4 integer ALUs, 1 integer mult.Functional Units
4 FP ALUs, 1 FP multiplier

BTB 4K-entry, 2-way set associative
Hybrid: 4K 2-bit selector

Branch Predictor 4K 2-bit bimodal predictor
1K 2-bit local w/ 10-bit history
64 KB 2-way set-associativeL1 data cache
64 byte blocks, 2 cycle latency, 2 ports
64 KB 2-way set-associativeL1 instruction cache
64 byte blocks, 1 cycle latency
2 MB 4-way set-associativeL2 unified cache
64 byte blocks, 12 cycle latency

Main memory 100 cycle latency
Load/store queue 64 entries
I-TLB and D-TLB 128-entry fully associative
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We model our proposed enhancements to the interface between the L2 cache and ex-

ternal memory as follows. We use 128-bit AES-CBC to enable data encryption/decryption

and 128-bit AES-CBC-MAC to provide code and data authentication [114, 120]. The keys

involved in the AES operation are based upon either the Device Master Key or a session key

generated by the PRNG. The AES-CBC encryption and decryption of 64-byte cache lines

can be completed with 4 serial AES operations and 4 parallel AES operations, respectively.

The initialization vector (IV) is equivalent to the address of the cache line. MAC compu-

tation for authenticating both 64-byte instruction and data cache lines requires a latency of

5 AES operations. We use 5 rather than 4 AES operations to compute the MAC in order

to properly hash all four 16-byte blocks of the cache line as well as the 8-byte address of

the cache line. The AES encryption of a 16-byte datum requires 10 rounds of work, and

the critical path in each AES round simply involves a lookup into 256-entry ROM table, a

hardwired byte-level permutation, and 3 XOR gates. We conservatively estimate that one

AES round can be completed in at most two processor cycles, but it is likely that one round

could be completed in a single cycle. Assuming one AES round can be completed in 1 or 2

cycles, the total latencies involved in encryption/decryption and MAC computation are at

most 80 and 100 cycles, respectively.

We can parallelize the processing of the encryption/decryption and MAC calculation

to improve performance. Figures 3.8, 3.9, and 3.10 depict secure data loads, secure data

stores, and authenticated instruction loads, respectively. In the figures, the AES blocks

represent AES encryption using the Device Master Key or a session key, and the AES−1

blocks represent AES decryption using the same key as the AES encryption blocks. As

shown in Figure 3.8, for secure data cache line loads, the decryption can be performed

in parallel with the MAC computation without incurring any additional latency. Secure

data cache line stores operate similarly to data cache line loads, as Figure 3.9 illustrates.

However, in a secure data cache line store, the first 16-byte AES encryption operation

must be completed before the MAC computation begins. This results from the fact that
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the MAC is performed on encrypted data instead of plaintext data, so encrypted data is

needed for the MAC computation to commence. The remaining encryption operations can

be completed in parallel with the MAC operations. The processing time of secure loads

and secure stores is therefore equivalent to 5 and 6 serial AES operations, respectively. As

displayed in Figure 3.10, authenticated instruction cache line loads require only a complete

MAC computation, so the added latency is 5 serial AES operations. Hence, the maximum

external memory access penalties (per 64-byte cache line) for secure data loads, secure data

stores, and authenticated instruction loads are 100, 120, and 100 cycles, respectively.

Despite the increase in external memory access latencies, our simulations show that the

performance impact of the proposed enhancements for the benchmark programs is negligi-

ble (i.e., less than 1%) when using the parameters described above. This results from the

fact that secured data employed by the benchmarks is rarely evicted to external memory;

most external memory activity involves unsecured data. Also, the number of static instruc-

tions employed by the benchmarks is modest, so the number of instruction fetches (and
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subsequent authentications) from external memory is relatively low.

3.8 Extensions and Alternatives

Architectural alternatives exist for some components in our proposal. For example, we

could use one master key rather than two at the cost of some flexibility. We can employ the

User Master Key to enable all code and data security functions, thus eliminating the Device

Master Key. However, this would require users to “sign” the COL once for each device on

which they expect to employ their secret keys. Also, when multiple users share a device,

maintaining several authenticated COLs for different users could become taxing.

Another design option is to employ the Device Master Key in addition to the User

Master Key to encrypt and authenticate the user’s cryptographic key ring. This scheme

would provide added security by disallowing access to a user’s keys on devices that have

not been previously authorized. This approach would also limit flexibility, however, for

users would be required to engage in the inconvenient process of pre-authorizing individual

devices and re-authorizing devices following COL updates.

An additional possible extension is to augment cryptographic key rings to support mul-

tiple privilege levels; the processor could prevent certain untrusted applications from call-

ing a function in the COL that employs certain highly sensitive keys. Furthermore, we

could implement a processor-based mechanism that enables User Master Key register ex-

piration. That is, the processor forces user logout by periodically zeroizing the User Master

Key register. This would increase security by potentially preventing unauthorized parties

from accessing a user’s key ring if the user neglects to logout and the user’s device is sub-

sequently penetrated or stolen. Such functionality would only require minor additions to

existing on-chip cycle counters.

Instead of supporting dynamic encryption and authentication of data memory, we could

implement on-chip storage for intermediate data values generated during the CEM. Hence,
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there would be no need for encrypting CEM-secured data because all sensitive informa-

tion would be maintained in on-chip protected storage. The processor would ensure that

non-CEM processes could not access or expel data from this protected storage. This de-

sign alternative trades chip area for reduced CEM performance degradation. We choose

to implement dynamic memory encryption rather than on-chip protected storage to avoid

constraining the COL to a limited protected memory space.

Lastly, CEM modes could be added to enable the protected execution of software other

than the COL. For example, a user could permit certain software to employ CEM services

such as data memory encryption but disallow access to secrets such as the User Master Key

register.

3.9 Summary

This chapter presents a new approach to protecting the storage, transmission, and use of

cryptographic keys in general-purpose and embedded platforms through virtual secure co-

processing. Most secure systems depend on cryptographic primitives to achieve security

goals. Thus, the protection of cryptographic keys is essential for defending networks, com-

puters, and data. However, most existing key protection solutions suffer from a combina-

tion of poor performance, inconvenience, high cost, and insufficient security.

We describe architectural and software enhancements that provide flexible, efficient,

and built-in protection of users’ cryptographic keys. These enhancements effectively con-

strict the traditional trusted boundary for cryptographic keys to the boundary of the general-

purpose processor. Also, a new access control paradigm is implemented to protect keys

from potentially vulnerable hardware and software. With these changes, users can store,

transport, and employ their secret keys to safely complete cryptographic primitives and

prevent many physical and software attacks.
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The VSCoP architecture is composed of two sets of components: components that pro-

vide protection for users’ keys in storage and in transit, and components that protect keys

while being exercised by software and hardware. To protect keys in storage and in transit,

we present a protected key ring structure and a hardware-enabled protected path for trans-

mitting master secrets to the processor. To defend keys while in use, we propose processor

modifications and special software support that effectively transform the general-purpose

processor into a virtual secure coprocessor when needed. These modifications include a

special Cryptographic Operations Library and a Concealed Execution Mode. The Crypto-

graphic Operations Library (COL) is the only software that is privileged to directly employ

keys in the system. Applications and operating systems can only access keys through a

special interface to the COL. The Cryptographic Operations Library protects keys during

execution by running in the processor’s Concealed Execution Mode. The Concealed Exe-

cution Mode shields keys by authenticating software that exercises keys and by protecting

data that leaves the processor chip that could otherwise reveal information about the values

of keys.

VSCoP provides a foundation with which users can more securely access their secret

keys on any Internet-connected computing device (that supports VSCoP) without requir-

ing auxiliary hardware such as smart cards. Unlike VSCoP, no past work facilities the

high-performance and secure utilization of key rings from any Internet-connected device;

enables a wide array of cryptographic techniques; avoids the use of potentially expensive,

auxiliary devices such as coprocessors, smart cards, or sets of servers; and provides strong

protection for keys while in storage and use.

We now turn our attention to a different class of key protection mechanisms. While this

chapter focused on architectural techniques for enabling users to protect their own keys,

the next chapter addresses issues relating to the distribution of sensitive cryptographic keys

to potentially untrusted users.



Chapter 4

A Traceability Scheme for Broadcast

Encryption

In broadcast encryption and related systems, a content provider seeks to securely transmit

sensitive information to a set of authorized users. Authorized users can defeat the security

of such systems by providing unauthorized users with valid decryption keys that enable

access to sensitive content. To deter this threat, researchers have proposed traitor trac-

ing schemes. These schemes enable the identification of authorized users that engage in

unauthorized decryption key distribution.

This chapter proposes Traitor Tracing using RSA (TTR), which is a new key traceability

scheme for broadcast encryption systems. Ifk or fewer authorized users collude to create a

pirate decryption device, at least one of the contributing traitors can be identified with cer-

tainty, and innocent users cannot be framed. Thus, TTR protects broadcast decryption keys

by enabling the detection of key misuse. Furthermore, the proposed scheme significantly

improves on the decryption performance of past schemes. The contributions of this chapter

are based in part on the work previously published by the author in [110, 111, 112].

This chapter is organized as follows. Section 4.1 introduces broadcast encryption

schemes, threats to these schemes, and traitor tracing. Section 4.2 discusses past proposals

for broadcast encryption and traitor tracing. Section 4.3 introduces a new traitor tracing

89
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scheme based on the RSA encryption algorithm that improves upon the decryption perfor-

mance of past proposals. Section 4.4 analyzes the security properties of the new scheme.

Section 4.5 presents tracing algorithms that identify traitors upon confiscation of unau-

thorized broadcast decoders. Section 4.6 explores the implementation and performance

impact of the new scheme. Section 4.7 investigates a key issuance and revocation protocol

that exercises this traitor tracing scheme. Section 4.8 summarizes the chapter.

4.1 Broadcast Encryption

Broadcast encryption is beneficial in scenarios where a content provider wishes to securely

distribute the same sensitive information to all or a subset of authorized users. The confi-

dentiality of the broadcast content is ensured with encryption, and only the subset of au-

thorized users should possess the information (e.g., a decryption key) necessary to properly

access the transmitted information.1 Subscription-based satellite television is an example

of a broadcast encryption system. The information is transmitted worldwide, but only pay-

ing users who receive a decoder box can properly access the information. Furthermore,

in some cases, only a subset of those paying users should be able to receive a particular

broadcast (such as a premium channel).

4.1.1 Broadcast Encryption Model

The broadcast encryption model used in this chapter involves the following entities:

• Universe of Users.Broadcast messages are transmitted to the universe of all autho-

rized and unauthorized users,U .

• Authorized Users.Only the members of the set of authorized users,T , are provided

1Broadcast encryption schemes can also support security features such as data integrity using other cryp-
tographic primitives, but this chapter focuses on data confidentiality.



CHAPTER 4. A TRACEABILITY SCHEME FOR BROADCAST ENCRYPTION 91

with the information needed to decode broadcast messages. The maximum number

of authorized users isn, soT = {t1, t2, . . . , tn}, andT ⊆ U .

• Content Provider. The content provider encrypts and broadcasts information to the

universe of possible users,U .

• Privileged Authorized Users.For a particular broadcast, only a subsetT ′ of the set

of authorized usersT should be able to decode the broadcast messages. The members

of this subset are defined by the content provider, and the size of this subset at a given

time is n′, wheren′ ≤ n. Thus,T ′ = {t′1, t′2, . . . , t′n′}, andT ′ ⊆ T . The content

provider can change the members of this subsetT ′ without having to send new keys

to the authorized users. Instead, the content provider can effect such changes toT ′ by

using different encryption keys or different methods to prepare broadcast messages.

Given these sets of entities, the following five components are typically involved in a

secret-key broadcast encryption scheme:

• Provider Initialization. A content provider generates initial values required to pro-

duce the broadcast encryption keys and the user decryption keys.

• User Initialization. An authorized userti is added to the set of authorized users,

T , by requesting that the content provider generate and securely distribute a user

decryption key toti.

• Encryption. The content provider encrypts a message one or more times using one

or more secret encryption keys.

• Transmission.The content provider transmits the encrypted message to all users.

• Decryption. Upon receipt of an encrypted message from the content provider, each

authorized user decrypts the message using his respective decryption key.
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4.1.2 Example Operation

Figures 4.1 and 4.2 illustrate the operation of a broadcast encryption system.

Provider and User Initialization

Prior to transmitting secure broadcast messages, the content provider generates a set of

broadcast encryption keys,E. Also, the provider creates and issues a personal decryption

key DKi to each authorized userti. These personal decryption keys can be distributed

via a secure channel or a physically secure courier service. Furthermore, these keys can

be embedded in software or in tamper-resistant hardware devices such as smart cards. In

both figures, trusted boundaries are depicted with dashed lines. Since the content provider

and the authorized users have knowledge of secret keys, those entities and their respective

computing devices are treated as part of the trusted domain.

Encryption and Transmission

Figure 4.1 depicts the preparation and transmission of broadcast messages to authorized

and unauthorized users. Each broadcast message may consist of two components: acryp-

tographic headerand apayload. In some applications, broadcast messages consist only

of a payload containing code and/or data that has been encrypted multiple times. In the

following description, however, we define broadcast messages to contain both a crypto-

graphic header and a payload. The header contains cryptographic key information needed

for decoding, and the payload consists of the protected content (in encrypted form).

The content provider prepares and transmits broadcast messages as follows.

1. The provider first randomly generates a per-message encryption keyke and a corre-

sponding per-message decryptionkd.

2. The provider useske to encrypt the sensitive content using any publicly-known en-

cryption algorithm. The output of this encryption step is the encrypted payload.
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3. The provider encryptskd multiple times using some or all of the encryption keys in

E. The cryptographic header comprises these multiple encrypted results. The exact

encryption method used to obtain the cryptographic header depends on the charac-

teristics of the specific broadcast encryption scheme. Furthermore, the encryption is

performed such that only members of the privileged subsetT ′ can decrypt the sensi-

tive content. In this example, we assume thatT ′ = T ; therefore all authorized users

will be able to decrypt the broadcast message.

4. The provider transmits a broadcast message that contains the cryptographic header

and the encrypted payload to all of the users inU . The transmission can occur over

a network or via a set of storage devices (e.g., CDs or DVDs).

Decryption

Figure 4.2 illustrates the operations conducted by the authorized users to obtain the sensi-

tive content upon receiving a broadcast message. To decrypt the message, an authorized

userti ∈ T performs the following steps.

1. The authorized user employs his decryption keyDKi and the cryptographic header

to obtainkd. The exact decryption method used to obtainkd depends on the charac-

teristics of the specific broadcast encryption scheme.

2. The authorized userti decrypts the payload usingkd to obtain the sensitive content.

Note that in secure broadcast encryption schemes whereT ′ 6= T , an authorized usertj

belonging toT but not belonging toT ′ should not be able to apply his keyDKj to decipher

the payload.

This is only one of the many possible methods of preparing messages for secure broad-

casts.
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4.1.3 Attacks and Defenses

Though the authorized users inT and their devices are within the trusted domain, they are

not necessarily trustworthy. That is, systems like VSCoP can protect a user’s keys from

other users, but such systems cannot fully protect a user’s keys from intentional misuse

by the user himself. It is well known that current tamper-resistant hardware and software

systems are vulnerable to a variety of attacks [4]. Thus, authorized, trusted users can ex-

tract decryption keys from a legitimate software or hardware decoder. The users can then

circumvent the security of the broadcast system by simply distributing the compromised

decryption keys to unauthorized users. Alternatively, the users can possibly employ the

compromised keys to generate and issue new decryption keys. Authorized users who ille-

gally extract and distribute decryption keys are calledtraitors, and the unauthorized users

who unfairly obtain the keys arepirates. The illegal decoder software or hardware devices

created by the traitors arepirate decoders.

Traitor tracing schemes, which are also calledtraceability schemes, protect keys by

enabling the detection of the misuse of broadcast decryption keys. In systems that incor-

porate a traitor tracing scheme, it is possible to identify at least one of the contributing

traitors upon confiscation of a pirate decoder using atraitor tracing algorithm. For a traitor

tracing algorithm to be valuable, the traceability scheme must beframeproof. The frame-

proof property ensures that a collusion of traitors cannot create a pirate decoder that would

implicate an innocent user as being a traitor when the tracing algorithm is executed.

We define two types of traitor tracing algorithms: “clear-box” algorithms and “black-

box” algorithms. In “clear-box” algorithms, we assume that it is possible to explicitly

extract all keys embedded in a pirate decoder. In “black box” algorithms, we cannot ex-

plicitly obtain the keys in the pirate decoder, but we can infer the values of those keys by

applying special inputs to the decoder and observing the corresponding outputs.
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In this chapter, we focus on traitor tracing schemes where the set of privileged autho-

rized users,T ′, is always equivalent to the set of authorized usersT . This means that all

authorized users can decode any encrypted broadcast message that is sent to any authorized

user. Thus, a key revocation event or a user removal event may require a global re-keying

of all users inT . We note, however, that protocols can be wrapped around suchT ′ = T

traceability schemes that would enable the selective transmission of protected messages to

small subsets ofT [26].

We can construct a naı̈ve traitor tracing scheme as follows. The content provider sim-

ply creates a distinct encryption/decryption key pair for each of then users. The content

provider then securely distributes the decryption keys to the appropriate user and keeps the

encryption keys secret. To send a message, the content provider encrypts and transmits the

message (or the message payload decryption key)n times with then encryption keys, once

for each user. Upon receipt, an authorized user employs his decryption key to decrypt one

of then transmissions. Since each user has a unique key, pirate decoders may be easy to

trace via simple comparisons of keys in the decoder to keys belonging to authorized users.

However, the encryption and communication steps of this scheme are rather inefficient

(i.e.,O(n)). This inefficiency can be problematic for practical usage scenarios with values

of n ranging in the millions. Recent proposals for broadcast encryption and traceability

schemes address these performance issues by applying more sophisticated cryptographic

techniques.

4.2 Past Work

Fiat and Naor introduced broadcast encryption in [49]. In their scheme, there exists a set

of n authorized users, and a content provider can dynamically specify a privileged subset

(of size≤ n) of authorized users that can decrypt certain encrypted messages. A message

can be securely broadcast to such a privileged subset unless a group ofk + 1 or more
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authorized users not belonging to the privileged subset collude to construct a pirate decoder

and recover the message. The communication overhead, i.e., the factor increase in message

size, isO(k2 log2k log n). Also, each user must storeO(k log k log n) decryption keys.

Many improvements to this scheme have been presented, but few enable the identification

of traitors that collude to distribute pirate decryption keys to unauthorized users.

To combat such piracy of decryption keys, Chor, Fiat and Naor introduced traitor tracing

schemes [25, 26]. Table 4.1 compares the performance of the most efficient and relevant

past work to the traceability scheme proposed in this chapter (TTR). In the table,n is

the maximum number of authorized users,k is the maximum tolerable collusion size, and

M is a typical value for an RSA modulus (e.g.,∼ 21024). “Sym. decryption” means a

symmetric-key decryption operation. Each of the schemes cited in the table arefully k-

resilient, which means no traitor collusion ofk or fewer authorized users can successfully

create an untraceable pirate decoder. Ifk or fewer traitors contribute to the construction of

the pirate decoder, at least one of those traitors can be identified. We do not compare the

new scheme to certain proposals such as the probabilistic schemes described in [26], which

do not guarantee traitor traceability upon confiscation of a pirate decoder.

The Encryption Complexity & Communication Overhead column lists the number of

encryption operations performed by the content provider as well as the number of cipher-

texts that must be transmitted by the content provider. The Decryption Complexity column

lists the number of decryption operations that must be performed by a decoding device per

user. Note that in a broadcast encryption system such as the one described in Section 4.1,

these two columns only relate to the cryptographic header of the broadcast message. In

such a system, the broadcast message payload is always encrypted/decrypted only once,

and therefore the encryption complexity, decryption complexity, and communication over-

head only pertain to the cryptographic header. In many other broadcast encryption systems,
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Table 4.1: Traceability scheme comparison

Traitor Encryption Complexity Decryption Number of
Tracing & Communication Complexity Decryption Keys
Scheme Overhead per User per User

1Näıve O(n)
sym. decryption

1

1-level symmetric O(k2 log n)
[25, 26]

O(k4 log n)
sym. decryptions

O(k2 log n)

2-level symmetric O(k2 log2 k log n)
[25, 26]

O(k3 log4 k log(n/k))
sym. decryptions

O(k2 log2 k log(n/k))

Public-key O(k)
[18, 78, 86, 169]

O(k)
exponentiations

O(1)

O(max(k log n, ∼1TTR
k log log M/ log k)) exponentiation

1

however, these two columns would reflect the encryption complexity, decryption complex-

ity, and communication overhead for both the headerand the payload. Lastly, the Decryp-

tion Keys column lists the number of keys that must be persistently stored by a decoder

device per user.

The first row of Table 4.1 lists the costs of the naı̈ve scheme described at the end of

Section 4.1.3. The next two rows of the table list the symmetric-key one-level and two-

level schemes of [25, 26]. In these two schemes, members of a traitor collusion (containing

k or fewer traitors) can be identified with certainty. In the deterministic symmetric-key

one-level scheme, the computation and communication costs depend on the total number

of users,n, and on the largest tolerable collusion size,k. To securely broadcast secret

content to the set of authorized users, each user must storeO(k2 log n) decryption keys,

and each user must performO(k2 log n) operations to decrypt the content upon receipt of

the broadcast transmission. The one-level scheme also increases the communication cost

of broadcasting secret content by a factor ofO(k4 log n). The deterministic symmetric-key
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two-level scheme reduces the encryption complexity and communication overhead relative

to the one-level scheme at the cost of increasing the decryption complexity and the number

of decryption keys per user.

Pfitzmann introducedasymmetrictraitor tracing in [125]. In the context of traitor trac-

ing schemes, the concepts of symmetry and asymmetry differ from those in the context of

encryption. Insymmetrictraceability schemes, the authorized users share all of their key

information with the content provider. Thus, in a symmetric traceability scheme, a dishon-

est content provider can frame an innocent authorized user as being a traitor by building an

“unauthorized” decoder that contains a particular user’s decryption key. In the asymmet-

ric traceability schemes, such as the scheme presented in [125], users do not share all key

information with the content provider. This property can enable the implementation of a

traceability scheme that allows a content provider to unambiguously convince a third party

of a traitor’s guilt.

The fourth row of Table 4.1 summarizes the performance ofpublic-keyk-resilient traitor

tracing schemes (e.g., [18, 78, 86, 169]). In a public-key traceability scheme, publicly

known encryption keys can be used to encrypt and subsequently transmit a secret to the

entire set of authorized users. The authorized users then employ their respective private

decryption keys to decode the transmission. The public-key scheme presented in [18] is

symmetric, and the one described in [86] is asymmetric but requires a trusted third party.

Asymmetric public-key traitor tracing schemes that do not require a trusted third party are

described in [78, 169]. As listed in Table 4.1, the most efficient schemes of [18, 78, 86, 125,

169] incur a communication overhead ofO(k), require each user to store one decryption

key, and require each user to performO(k) exponentiations per broadcast secret.

In some situations, a traitor may decrypt the broadcast information and then transmit the

plaintext result to pirates rather than distribute a pirate decoder that contains valid decryp-

tion keys. Researchers have suggested combining digital fingerprinting and traitor tracing

to prevent such piracy [50, 126, 136]. The systems discussed in [126] employ provably
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secure, robust digital watermark constructions presented in [19, 38]. More efficient and

effective integrated fingerprinting and traceability schemes are described in [50, 136]. The

security of all of these systems depends on the assumption that a traitor cannot reliably re-

move or distort digital fingerprints without greatly sacrificing content quality. However, as

illustrated by the attacks on the Secure Digital Music Initiative (SDMI) technologies, it is

extremely difficult to design a practical digital fingerprinting scheme that a savvy attacker

cannot thwart [39, 168]. In this chapter, we do not consider scenarios in which traitors

command the resources necessary to efficiently distribute decrypted content to pirates. In-

stead, we consider scenarios where authorized users contribute to large-scale piracy by

distributing small keys that enable decryption of broadcast content.

Researchers have presented many other broadcast encryption and traceability schemes

that employ a rich variety of mathematical tools (e.g., [26, 46, 57, 79, 80, 86, 117, 118, 148,

158, 159]). For instance, Kiayias and Yung propose a public key traitor tracing scheme

with “constant transmission overhead” [80]. In that scheme, however, the minimum size of

the broadcast message may be impractical if protection against large collusions is desired.

Furthermore, unlike the proposal of this chapter, some of these previous schemes integrate

T ′ ⊆ T broadcast encryption with traitor tracing (e.g., [57, 117, 158, 159]). Though these

schemes offer several different valuable security services, the decryption performance of

these schemes does not significantly exceed that of the work summarized in Table 4.1.

In summary, recent traitor tracing proposals have focused on reducing the encryption

and network communication requirements while providing an extensive suite of security

services. Decryption in sophisticated traitor tracing schemes can be slow, however. Instead

of requiring a single decryption per user as in the naı̈ve scheme, existing optimized schemes

may require dozens of modular exponentiations or thousands of symmetric-key decryptions

per user per broadcast secret. As network bandwidth is growing exponentially relative

to software performance, the speed of decryption is an increasingly important issue. In

realistic scenarios, the content provider may possess large encryption resources (e.g., a
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room full of servers) and abundant network transmission bandwidth. The computation

resources of the authorized user, however, are often limited to a smartcard or a single

processor in a desktop computer. Thus, to improve the usability of traitor tracing schemes,

decryption performance must be addressed.

4.3 A New Traitor Tracing Scheme

We now present a new fullyk-resilient traceability scheme based on the RSA encryption

algorithm that improves upon the decryption performance of past proposals. Naturally, we

call this new scheme Traitor Tracing using RSA (TTR). Though we utilize RSA, TTR is not

a public-key traitor tracing scheme; we implement RSA as a secret-key cryptosystem rather

than as a public-key cryptosystem. In TTR, only the content provider has knowledge of the

broadcast encryption keys; no user inU or T can directly access or utilize the encryption

keys. We sacrifice public-key operation to avoid RSA common modulus attacks (which are

described in Section 4.4).

The security of TTR is based upon the assumed intractability of the RSA problem and

of the integer factorization problem. These computation problems are defined in Table

4.2. As we will prove in Section 4.4, the TTR encryption scheme prevents unauthorized

users from successfully decrypting broadcast messages if the RSA problem is hard. Also,

we will prove that TTR enables traceability of at least one traitor from a collusion ofk

or fewer traitors without implicating innocent users if the factoring problem is hard. We

will present a clear-box tracing algorithm for TTR that can identify traitors for any type of

pirate decoder, and we will present a black-box tracing algorithm for TTR that can identify

traitors for special (limited) types of pirate decoders.

Essentially, TTR improves decryption performance relative to past proposals at the cost
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Table 4.2: Hard computation problem definitions

Problem Definition
Given an integerM , which is the

Integer factorization problem product of one or more prime integers,
determine the prime factorization forM.
Given (i) an integerM that is the product
of two distinct primesp andq, (ii) a

RSA problem positive integere that is relatively prime
to φ(M), and (iii) an integerb, compute
an integera such thatae ≡ b mod M .

of increasing the computation and transmission requirements of the content provider rela-

tive to past proposals. As shown in Table 4.1, TTR requires only a single modular exponen-

tiation operation and a relatively insignificant number of modular multiplication operations

to conduct decryption upon receipt of a broadcast secret. Though modular exponentiations

are computationally more expensive than symmetric key encryptions, TTR still exhibits the

highest decryption performance for realistic numbers of users and traitors. Furthermore,

TTR only requires each authorized user to store a single decryption key, and the commu-

nication overhead and encryption complexity areO(max(k log n, k log log M/ log k)). We

present detailed comparative performance analysis in Section 4.6.

4.3.1 RSA Preliminaries

Since TTR is based upon the RSA encryption algorithm, we will first briefly describe the

operation of standard RSA. In RSA, security is related to the computational difficulty of

factoring large integers [133]. LetM be the product of two large prime integers,p andq,

wherep andq are roughly the same size. We callM the RSA modulus. Now, find two

integerse andd such thated ≡ 1 modφ(M), whereφ is Euler’s totient function:φ(M) =

(p− 1)(q − 1). The integerse andd are called the encryption exponent and the decryption
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exponent, respectively. The pair〈M, e〉 is the encryption key, and the pair〈M, d〉 is the

decryption key. Given a plaintext blocka ∈ Z∗M , whereZ∗M is the multiplicative group of

ZM , a sender can encrypta to produce a ciphertextc using the public key by computing

c = ae mod M . The receiver can decryptc using the private key by computinga = cd mod

M . There are many minor implementation details required to fortify protocols using RSA

against potential attacks. Boneh summarizes several attacks on RSA implementations in

[17].

Consider a simple traitor tracing scheme based on RSA: the content provider generates

a common modulusM and a key pair〈ei, di〉 for each userti. The provider keeps the en-

cryption exponentei secret (i.e., unknown toti) and passes the decryption key〈M, di〉 to ti.

To broadcast information to authorized users, the provider simply encrypts messages indi-

vidually for each user. However, this scheme is inefficient, since the number of encryption

keys and the communication overhead are the same as the number of users,n.

We can improve upon the performance of this simple scheme. Using the multiplicative

properties of RSA, we can generate ciphertexts with a few encryption keys that can be

decrypted using many decryption keys. The general method, which employs techniques

also used in RSA-based threshold cryptosystems (initiated in [43]), operates as follows.

Given a plaintext blocka and a modulusM , we generateL ciphertextsC = {c1, c2, . . . , cL}
encrypted usingL different non-zero positive encryption exponentse1, e2, . . . , eL:

cj = aej mod M (4.1)

Now, a user can multiply (moduloM ) all L ciphertexts to obtain a “product ciphertext”,

cPROD, that is equivalent to encryptinga one time using a single encryption exponent that

is the sum of theL encryption exponents:

cPROD =
L∏

i=1

ci mod M =

(
L∏

i=1

aei mod M

)
mod M = aeSUM mod M, (4.2)

whereeSUM =
∑L

i=1 ei. A user could subsequently decrypt thecPROD using a decryption
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key that consists of an exponentdSUM of the following form:

dSUM =

(
L∑

i=1

ei

)−1

mod φ(M) (4.3)

In general, upon obtaining theL ciphertext blocks, a user could multiply (moduloM ) a

subset ofC to obtain a different product ciphertext. This new product ciphertext could be

decrypted using a new decryption exponent. Since there exist2L − 1 nonempty subsets of

C, there exist2L−1 product ciphertexts that can be decrypted with2L−1 decryption keys.

Hence, we can generate ciphertexts that can be deciphered using up to2L − 1 decryption

keys by performing onlyL encryptions withL encryption keys.

4.3.2 Components and Parameters

TTR takes advantage of the multiplicative properties of RSA to generate and support many

decryption keys using relatively few encryption keys. TTR incorporates the five broadcast

encryption components described in Section 4.1: Provider Initialization, User Initialization,

Encryption, Transmission, and Decryption. In addition, TTR incorporates one additional

component, Traitor Tracing Algorithms. The five broadcast encryption components of TTR

are described below, and the tracing algorithms are described in Section 4.5. In TTR, the

methods employed to perform encryption and decryption are public, but the keys used to

perform these operations are secret. The content provider does not reveal secret encryption

keys to the users, and authorized users (who are not traitors) do not reveal their personal

decryption keys to other users.

TTR is parameterized byM , n, k, s, L, andα. These parameters are summarized in

Table 4.3. M is an RSA modulus, andn is the number of authorized users inT . The

parameterk represents the maximum tolerable traitor collusion size, ands is the security

parameter of the scheme. For example, in a scenario withk = 10 ands = 20, any collusion

of size at most10 can produce a non-traceable key with probability at most2−20. Also, we

use the parametersL andα, which are based on the values ofM , n, k, ands. L represents
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Table 4.3: TTR parameters

Parameter Expected Value(s) Description

M ∼21024 RSA modulus
n 2 to 10 billion Number of authorized users inT
k 2 ton Maximum tolerable collusion size
s 10 to 80 Security parameter
L O(max(k log n, k log log M/ log k)) Number of encryption exponents

Probability that a Boolean
α 1/k

decryption vector element equals 1

the number of encryption exponents in the scheme, andα relates to the construction of user

decryption keys. We present the precise values and the rationale for the values ofL andα

in Section 4.4.4.

4.3.3 Provider Initialization

During provider initialization, the content provider creates the secret encryption keys and

the information required to generate future user decryption keys. First, the content provider

generates a RSA modulusM = pq, wherep andq are both prime. For reasons that we

describe below, we require thatp andq be safe primes, i.e., the integers(p − 1)/2 and

(q − 1)/2 are also prime. Second, the content provider randomly generates a vectorE of

L unique encryption exponents forM . For eachej ∈ E, ej ∼ M . The content provider

keeps all of the encryption exponents and the values ofp, q, andφ(M) secret.

We assume that the content provider’s secrets are contained in a single device, but

we note that the content provider is not required to be centralized. We could improve

security by using RSA threshold techniques (initiated in [43]) to securely store the con-

tent provider’s secrets and to securely perform key generation operations across multiple

devices. Furthermore, the encryption exponents and operations can be distributed across
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multiple content provider devices using known RSA threshold techniques. Applying such

techniques would require an attacker to compromise most or all of the devices (rather than

compromise only a single device) in order to successfully exposeE or φ(M).

4.3.4 User Initialization

When an authorized userti joins the system, the content provider generates and securely

distributes a user decryption keyDKi to ti as follows:

1. Repeat the following steps until adi is obtained that is probabilistically prime.

(a) Randomly generate anL-dimensional Boolean vectorv(i). Each element in the

vector is set to 1 with probabilityα, and each element in the vector is set to 0

with probability1 − α. In addition,v(i) must not consist of all zeroes, and no

two v(i)’s are the same. Repeat untilv(i) is found where
∑L

j=1 v
(i)
j ej is relatively

prime toφ(M).

(b) Using the extended Euclidean algorithm, calculate a decryption exponentdi

such that:

di =




L∑

j=1

v
(i)
j ej



−1

mod φ(M) (4.4)

Then, perform a probabilistic primality test ondi.

2. DistributeDKi = 〈v(i), di,M〉 to ti via a secure channel.

We note that the system may be implementedwithoutrequiring decryption exponents to

be prime. We choose to require alldi’s to be prime in order to simplify the security analysis.

However, as we will detail in Section 4.4.4, the encryption, decryption, and transmission

performance effects of requiring the decryption exponents to be prime on encryption are

insignificant in realistic scenarios.
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4.3.5 Encryption, Transmission, and Decryption

To encrypt a plaintext messageP using this scheme, the content provider performsL RSA

encryptions onP using each of the encryption exponents inE. The resulting ciphertextC

is as follows:

C = 〈P e1 mod M, ..., P eL mod M〉. (4.5)

To ensure that the ciphertext does not leak any information about the plaintext mes-

sage, all plaintext messagesP should be encoded using Optimal Asymmetric Encryption

Padding (OAEP) [11, 16, 56, 147] or a similar method. OAEP is a provably secure mecha-

nism for padding and encoding plaintext messages prior to RSA encryption. OAEP ensures

that, regardless of the contents of the plaintext message, an adversary must be able to solve

the RSA problem in order to decrypt the message.

The resulting ciphertextC is then broadcast to all users inU .

Upon receiving the ciphertextC, an authorized userti in T can decryptC using his

decryption keyDKi = 〈v(i), di,M〉, as follows:

P =




L∏

j=1

(cj)
v
(i)
j




di

mod M, wherecj = P ej mod M . (4.6)

In this decryption operation, the user first obtains a product ciphertext by multiplying (mod-

ulo M ) the ciphertextscj that correspond to vector elements inv(i) that equal 1. Then, the

user performs an exponentiation operation moduloM on the product ciphertext using the

user’s unique decryption exponentdi. It is easy to see that decryption works by the defini-

tion of the decryption keys.

4.4 Security Analysis

We now evaluate the security of the TTR scheme. We consider two sets of threats: threats

from unauthorized users, and threats from traitor collusions of authorized users. Rather
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than attempt to identify and enumerate all possible attacks that may be launched against

the system, we take a different approach. We formally demonstrate security against general

classes of attacks via provable polynomial-time2 reductions involving intractable computa-

tion problems. That is, we show that if the security of TTR can be defeated with a method

that uses a reasonable amount of time and resources, then that method can also be applied

to efficiently solve a hard instance of an intractable computation problem. Specifically, we

construct reductions using the integer factorization problem and the RSA problem, which

are defined above in Table 4.2.

This section includes several theorems that formalize our security claims.

4.4.1 Security against Unauthorized Users

We first consider threats from unauthorized usersui that exist outside of the trusted domain.

Recall that the focus of this chapter is the secrecy of the broadcast messages (instead of

integrity, freshness, etc.). Thus, the only attacks of concern from unauthorized users are

threats to the secrecy of broadcast messages.

We model the adversary, i.e., a set of unauthorized users, as follows. Unauthorized

users do not possess any encryption or decryption keys, but an unauthorized user may have

access to some or all of the following information:

• A public RSA modulusM used by the content provider and the authorized users

• A polynomial number of previously transmitted plaintext-ciphertext pairs

Given this information, upon receiving a new encrypted broadcast message, the unau-

thorized users may attempt to decrypt that message. We do not attempt to identify all possi-

ble methods that the unauthorized users could use to decode encrypted messages, however.

2Throughout this section, the terms “polynomial number”, “polynomial size”, and “polynomial time”
imply that a number or running time is bounded by a function that is polynomial in a reasonable security
parameter, such ass or the number of bits in the modulusM .
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Instead, we prove that if any such method exists, then that same method could be used to

solve the RSA problem. This is summarized by the following theorem.

Theorem 4.1 Given an RSA modulusM and a polynomial number of known plaintext-

ciphertext pairs, a passive adversary cannot decrypt a new ciphertext with non-negligible

probability assuming the intractability of the RSA problem.

Proof. Assume that there exists a polynomial-time algorithmA such that a passive adver-

sary can use algorithmA to decrypt a new ciphertext with non-negligible probability given

a polynomial number of plaintext-ciphertext pairs. We show how to construct a polynomial

time algorithmB that finds a solution to the RSA problem by usingA as a subroutine.

The inputs to algorithmB are an RSA modulusM , a random encryption exponente,

and a ciphertextc = me mod M . The goal ofB is to output the plaintext messagem with

non-negligible probability. Given the inputs, algorithmB works as follows.

1. Set the first encryption exponente1 = e, which is random. Fori = 2, ..., L, generate

a random valuexi. Defineei to beei = e1xi mod φ(M), but the values ofei are not

calculated explicitly becauseφ(M) is not known toB. Sincee1 is random and all

valuesxi are random, all of the encryption exponentsei will be random.

2. Forr = 1, ..., R, whereR is polynomial in the security parameter, generate a random

plaintextPr and compute the following ciphertext:

Cr = 〈P e1
r , P e2

r , ..., P eL
r 〉. (4.7)

For i = 2, ..., L, P ei
r can be computed without knowing the explicit value ofei as

follows:

P ei
r mod M = P e1xi mod φ(M)

r mod M = (P e1
r mod M)xi mod M. (4.8)
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3. Using the input ciphertextc in the RSA problem, create a new ciphertextCR+1 in the

proposed traitor tracing scheme as follows:

CR+1 = 〈c, cx2 , ..., cxL〉 (4.9)

4. Input all theR plaintext-ciphertext pairs, the new ciphertext, and the modulusM

to A. WhenA outputsPR+1 as the corresponding plaintext forCR+1, algorithmB

outputsm = PR+1 as the plaintext in the RSA problem.

Sincec = me = me1 and fori ≥ 2, cxi = mei, the new ciphertextCR+1 has the proper

form. Upon decryption, the plaintextPR+1 = m mod M .

Thus, in TTR, unauthorized users cannot decode encrypted broadcast messages.

4.4.2 Security against Traitor Collusions

We now consider threats from collusions of up tok authorized users that exist within the

trusted domain. Authorized users already have legitimate access to all TTR broadcast mes-

sages (unlike the unauthorized users), so attacks against the secrecy of messages are not of

concern. Instead, we seek to prevent two classes of attacks from traitor collusions involving

the creation of new decryption keys. The first class of attacks involves the creation of a new

untraceabledecryption key. That is, we wish to prevent collusions ofk or fewer authorized

users from being able to successfully construct a new broadcast decryption key from which

we could not efficiently identify at least one of the contributing traitors. The second class

of attacks involves the creation of a new decryption key that implicates (or “frames”) an

innocent authorized user as being a traitor.

We model the adversary, i.e., a collusion of up tok authorized users, as follows. Collu-

sions of authorized users may have access to some or all of the following information:

• A public RSA modulusM used by the content provider and the authorized users
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• A polynomial number of previously transmitted plaintext-ciphertext pairs

• k or fewer distinct and valid decryption keys (containingk or fewer linearly indepen-

dent decryption vectors andk or fewer distinct decryption exponents)

If the k or fewer decryption vectors of the traitor collusion’s decryption keys are not

linearly independent, then there exists a feasible attack that will allow the collusion to

factorM and defeat the scheme [110]. Thus, the vectors must be constructed such that any

k vectors chosen at random will be linearly independent with overwhelming probability.

As we will detail in Section 4.4.4, the minimum lengthL that we require for the decryption

vectors ensures that the collusion’s decryption vectors are always linearly independent.

We do not attempt to identify all possible methods that the adversary could use to

create an untraceable decryption key or to create a decryption key that frames an innocent

user. Instead, we prove that if any such method exists, then that same method could be

used to solve the integer factorization problem. We show that if the number of encryption

exponents,L, exceeds a particular value, then a collusion of up tok traitors cannot produce

a decryption key that does not implicate at least one member of the collusion as being a

traitor. Furthermore, we show that, for sufficient values ofL, a collusion of up tok traitors

cannot produce any key that implicates an innocent user as being a traitor.

We consider the following two classes of keys that may be produced by a traitor collu-

sion:

• The first class includes new valid decryption keys of the standard form defined by

the scheme.

• The second class includes new decryption keys that arenot of the form as defined

by the scheme but can be used to successfully decrypt ciphertext and obtain correct

plaintext.

We will demonstrate security for TTR against new keys from both of these classes. In

particular, the pirate decryption vector generated by the collusion is not required to be a
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Boolean vector, and the decryption exponents generated by the collusion are not required

to be large prime numbers. Instead, we demonstrate security against pirate decryption keys

in which (i) any vector element can be any integer and (ii) any decryption exponent can be

any integer.

Given this generalized set of possible keys, the decryption process still follows the two

basic steps (for the purposes of the security proofs):

1. Obtaining a product ciphertextcPROD using a decryption vectorv, i.e., cPROD =
∏L

j=1(cj)
vj mod M .

2. Computing the plaintext messageP via modular exponentiation with a decryption

exponentd, i.e.,P = cd
PROD mod M .

We define a “traceable key” as follows. Recall that each authorized user is issued a

distinct key with a distinct decryption exponent. We say that a pirate key is traceable to an

authorized userti if the decryption exponent associated withti divides one of the integer

components of the pirate key. More formally stated, given a userti with a key〈v(i), di,M〉,
a pirate decryption key of the form〈v∗, d∗,M〉 is traceable to the userti if di dividesv∗j for

any1 ≤ j ≤ L or di dividesd∗. Thus, an “untraceable key” produced by a traitor collusion

is a new key in which neither the decryption exponent nor any of the vector elements are

divisible by any of the decryption exponents of the traitors’ original keys.

The security of TTR against traitor collusions is summarized by the following theorems.

First, Theorem 4.2 demonstrates that a collusion ofk or fewer traitors cannot generate

an untraceable key (as defined above) that does not implicate at least one traitor in the

collusion. We prove security against the most powerful adversary, which is a collusion that

possesses knowledge ofM , k decryption keys, and a polynomial number of past plaintext-

ciphertext pairs.

Before we present Theorem 4.2 , we state a lemma that is used by the proof of the

theorem. The lemma demonstrates that given a set ofk or fewer decryption vectors, each
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of a certain minimum lengthL, then there is at least one element in each vector that equals

1 where that same element equals 0 in all the otherk− 1 or fewer vectors. This property is

important for ensuring that a collusion of users cannot generate an untraceable key. For the

lemma, the maximum number of disjoint traitor collusions in a realistic scenario is defined

to ben, which is the case wheren collusions exist that each contain a single traitor. If

this maximum number of collusions were exponential rather than polynomial in size, the

property described by the lemma could be guaranteed by simply increasing the size ofL

by a polynomial factor.

Lemma 4.1 If L ≥ (k − 1) (s + log k + log n) / (e log2 e) and α = 1/k, then given a

maximum ofn groups, each consisting of a maximum ofk decryption vectors constructed

as defined in the scheme, the probability is at least1 − 2−s that, for any vectorv in any

group, there exists an elementλ such thatvλ = 1 and theλth element equals0 in all of the

other vectors in the group.

Proof. Recall thatα is the probability that a vector element equals 1. Givenh decryption

vectors, where2 ≤ h ≤ k, the probabilityS that theλth element equals1 for a specific

vectorv(1) but equals0 for the otherh− 1 vectors fromv(2) to v(h+1) is:

S = (α1)((1− α)h−1). (4.10)

Sinceα = 1/k, it is easy to show thatS is minimized whenh = k. In this case,S =

1/((k − 1)e). We define the eventA1 as the event where no such indexλ exists for a

specific vectorv(1) in a group ofk vectors. We defineP1 to be the probability that eventA1

occurs for a group ofk vectors constructed as defined by the scheme. GivenS, the value

of P1 is therefore at most(1− (1/ ((k − 1) e)))L. Furthermore, the probabilityPi, which

corresponds to the eventAi in which no such indexλ exists for a specific vectorv(i) where

2 ≤ i ≤ k, is also at most(1− (1/ ((k − 1) e)))L.

We now calculate the probabilityPgroup corresponding to the eventAgroup, which is the

event where, for at least one vectorv in a single group, there does not exist an elementλ
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such thatvλ = 1 and theλth element equals0 for all of the other vectors in the group. The

value ofPgroup therefore equals the probabilityPr
(∨k

i=1 Ai

)
. Even though theAi’s are not

independent events, we use the loose boundPgroup ≤ ∑k
i=1 Pi for simplicity of analysis.

GivenPgroup, we now establish an expression for the total probabilityPtotal correspond-

ing to the eventAtotal, which is the event where, for some vectorv in anygroup, there does

not exist an elementλ such thatvλ = 1 and theλth element equals0 for all of the other

vectors in that group. Since the maximum number of disjoint collusions within the set ofn

authorized users isn, Ptotal ≤ nPgroup, soPtotal ≤ n
∑k

i=1 Pi.

We now compute an expression forL such thatPtotal is exponentially small in the

security parameter, i.e.,2−s ≥ Ptotal. By the values of thePi’s:

2−s ≥ nk

(
1− 1

(k − 1) e

)L

. (4.11)

Thus,

L ≥
(

k − 1

e log2 e

)
(s + log2 k + log2 n) . (4.12)

We can use the lemma to prove the following Theorem. A sketch of the proof of this

theorem is presented below, and a detailed proof is presented in [111].

Theorem 4.2 If L ≥ (k − 1) (s + log2 k + log2 n) / (e log2 e) andα = 1/k, then no col-

lusion of k authorized users can create an untraceable decryption key with probability

greater than2−s assuming the difficulty of factoring.

Proof Sketch. Assume that there exists a polynomial-time memoryless algorithmA such

that a collusion ofk authorized users can employ algorithmA to create a new, untraceable

decryption key with non-negligible probability. We show how to construct a polynomial

time algorithmB that factors a given modulusM by usingA as a subroutine.

At a high level, on inputM(= pq), algorithmB operates as follows.B begins by

randomly generatingk valid and unique decryption keysDKi = 〈v(i), di,M〉 of the same
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form described in the scheme. These keys represent the keys of the traitor collusion. Next,

the algorithmB generates an additional(L−k) decryption keys of a special form, where the

decryption exponents are very large and the decryption vectors are very sparse. Using all

L keys,B generates a polynomial number of plaintext-ciphertext pairs that are consistent

with the encryption exponents corresponding to theL keys.B then applies the firstk keys

and the plaintext-ciphertext pairs as inputs toA to obtain a new decryption key,DKNEW .

Using Lemma 4.1, we can show thatB can efficiently apply the firstk valid keys, the key

DKNEW , and the additional(L − k) decryption keys to obtain a multiple ofφ(M). If the

multiple is non-zero,B can efficiently factorM [41]. If the multiple is zero, we can show

that given anL of the required size, the keyDKNEW is traceable. That is, we can show

that at least one of the firstk di’s must divide one of the vector elements or the decryption

exponent ofDKNEW .

Next, Theorem 4.3 demonstrates that a collusion ofk or fewer traitors cannot generate

a new key that implicates an innocent user as being a traitor. Given the definition of a trace-

able key described above, the following theorem shows that a collusion cannot construct a

new key with a decryption exponent or vector element that is an integer multiple of the de-

cryption exponent associated with an innocent user (that does not belong to the collusion).

A sketch of the proof of this theorem is presented below, and a detailed proof is presented

in [111]. As in the proof of Theorem 4.2, the proof of Theorem 4.3 demonstrates security

against the most powerful adversary (i.e., a collusion with knowledge ofM , k decryption

keys, and a polynomial number of past plaintext-ciphertext pairs).

Theorem 4.3 If the number of possible valid decryption keys exceeds2s, then the probabil-

ity is exponentially small ins that a collusion ofk authorized users can create a decryption

key of size that is polynomial ins and that implicates an innocent user as a traitor.

Proof Sketch.Assume that a collusion of up tok authorized users can create a new decryp-

tion key. In the proposed scheme, the selection of the(n − k) innocent users’ decryption
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vectors and exponents can be performed entirely independently of the selection of thek

traitor keys. That is, the keys that represent the innocent authorized users may be any

(n − k)-subset chosen uniformly at random from the set of(2s/ log M − k) possible de-

cryption keys that do not belong to the traitor collusion. Given these facts, we can show

that the probability is exponentially small ins that the new polynomial-sized decryption

key will implicate one of the(n− k) innocent authorized users.

Thus, collusions of sizek or fewer traitors cannot create untraceable decryption keys or

traceable decryption keys that frame innocent users.

4.4.3 Security against Attacks on RSA

The theorems presented above demonstrate the security of the scheme against unauthorized

users and against traitor collusions. In this section, we provide insight as to why the scheme

is resilient against the RSA common modulus attacks described in [41, 149], even though

all authorized users employ the same RSA modulusM .

We classify common modulus attacks into two types. In the first type, if an adversary

has knowledge of two (or more) RSA encryption exponents used to encrypt the same mes-

sage, the adversary can recover the message using the two (or more) ciphertexts without

requiring knowledge ofφ(M) or any decryption exponents [149]. TTR defends against

this attack by treating RSA as asecret-key cryptosystemrather than as apublic-key cryp-

tosystem. The encryption keys employed by the content provider are not revealed to the

authorized users, and therefore neither a collusion of users nor a passive adversary can

implement this attack.

The second type of common modulus attack operates as follows. If an adversary has

knowledge of an encryption key and the corresponding decryption key for a given RSA

modulusM , the adversary can factor the modulus using a probabilistic algorithm or can
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calculate the decryption key corresponding to any encryption key [41]. Neither unautho-

rized nor authorized users can realize such attacks in TTR, however, for they do not possess

knowledge of both the encryption and decryption keys for the modulusM . Even given a

valid decryption exponent, it is not feasible for an authorized user to guess the correspond-

ing encryption exponent: given a random decryption exponent in TTR, the corresponding

encryption exponent is one of an exponential number of equally likely possibilities.

4.4.4 Choosing the Parameters

In this section, we discuss the requirements for the values of the parametersα andL. As

required by Lemma 4.1,α equals1/k, whereα is the probability that a decryption vector

element will be set to 1, and wherek is the maximum collusion size. It may possible for

the value ofα to be increased or decreased; determining the optimal value is a subject for

future work. We note, however, that some values ofα will cause the scheme to be insecure.

For example, settingα to 1/2 prevents traceability in some scenarios [111]. This is because

traitors can combine their keys in a particular way whenα = 1/2 to effectively hide the

identifying values of their decryption exponents.

The value ofL, which is the number of elements in a decryption vector, depends on

several factors. First, to satisfy the conditions of Lemma 4.1 and Theorem 4.2, we require

the following lower bound for the value ofL (wheree is Euler’s constant):

L ≥ (k − 1) (s + log2 k + log2 n) / (e log2 e) (4.13)

Second, we must ensure that there are enough possible distinct decryption keys to ac-

commodate all of the users in the system. Also, to satisfy the Theorem 4.3, we must

ensure that the number of possible distinct decryption keys exceeds2s. Since the expected

number of 1’s in a vector of lengthL is Lα, the number of possible vectors is roughly
(

L
Lα

)
=

(
L

L/k

)
. However, only a subset of these vectors will correspond to a prime (and
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therefore valid) decryption exponent. Considering that the probability that a large expo-

nent is prime is approximately1/log M , we have
(

L
L/k

)
≥ n log M , and

(
L

L/k

)
≥ 2s log M ,

wherelog is the natural logarithm. Using Stirling’s approximation, a simple calculation

shows thatL ≥ (k(s + log2 n + log2 log M))/ log2 ek is sufficient.

Third, as explained in 4.4.2, we must ensure that anyk vectors produced by the scheme

are linearly independent. Otherwise, a traitor collusion of sizek or fewer may be able to

factor M . Hence, to maintain security,L should be large enough such that, with over-

whelming probability, a set ofk randomly generated Boolean vectors of lengthL are lin-

early independent. In [72], it is shown that the probability of linear independence is at least

1−O((1− ε)L) for someε > 0 if k ≤ L. Thus, the lower bound forL cited above is suffi-

cient; the bound above requiresL > s, and therefore the probability of linear dependence

will be exponentially small in the security parameters.

Hence, we have the following expression forL:

L ≥ max

(
(k − 1) (s + log2 k + log2 n)

e log2 e
,
ks + k log2 n + k log2 log M

log2 ek

)
(4.14)

If the security parameters is treated as a constant, the size ofL and the communica-

tion overhead of the scheme isO(max(k log n, k log log M/ log k)). In realistic scenarios,

log n > log log M , so the communication overhead would beO(k log n).

4.5 Identifying Traitors

Upon confiscation of a pirate decoder device, the content provider invokes traitor tracing al-

gorithms to identify at least one of the authorized users that contributed to the construction

of the device. We now describe tracing algorithms that we can use to identify contributing

traitors in a collusion of sizek or fewer.

First, we explore the “clear-box” case, where it is possible to explicitly extract the

representations of all the keys embedded in the pirate decoder. Using the clear-box tracing
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algorithm, we can always efficiently identify at least one of the traitors that conspired to

construct an arbitrary pirate decoder. Second, we present a limited “black-box” tracing

algorithm. In this case, we cannot extract keys from the pirate decoder, but we can apply

inputs to the decoder and observe the resulting outputs. Unlike the clear-box algorithm, the

black-box algorithm only enables the tracing of keys in special cases.

4.5.1 A Clear-box Tracing Algorithm

We assume that a pirate decoder contains easily recognizable representations of one or

more valid decryption keys; these keys are employed by the decoder to perform all message

decryptions. As shown in Section 4.4, a traitor collusion can only generate new decryption

keys of a certain form. That is, traitors cannot create untraceable keys or traceable keys that

implicate innocent users, and therefore we can use the keys in a pirate decoder to identify

contributing traitors.

The clear-box tracing algorithm simply compares components of the decryption keys

within the pirate device to all existing user decryption keys. The algorithm proceeds as

follows:

1. Let〈v∗, d∗,M〉 be a pirate key extracted from a pirate decoder, wherev∗ = {v∗1, ..., v∗L}.
For 1 ≤ i ≤ n, repeat the following for each authorized userti (whose decryption

exponent isdi):

(a) If di dividesv∗j for any1 ≤ j ≤ L or di dividesd∗, then userti is a traitor.

We now present a theorem stating that, without framing innocent users, this clear-box

algorithm can identify at least one of the traitors that colluded to build the pirate decoder.

Theorem 4.4 Given a pirate decryption key generated by a collusion of at mostk traitors

using their respective decryption keys, the clear-box traitor tracing algorithm can identify
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at least one traitor in the collusion with probability exceeding1− 2−s without implicating

any innocent users.

Proof. As shown by Theorem 4.2, no group of traitors of size fewer thank + 1 can

generate a new decryption key with non-negligible probability that does not implicate at

least one of the colluding traitors using the clear-box traitor tracing algorithm. Furthermore,

as shown by Theorem 4.3, no collusion of traitors of size fewer thank + 1 can generate a

new decryption key with non-negligible probability that implicates an innocent user.

Upon discovering the existence of one or more traitors in the proposed scheme, the

content provider must re-issue decryption keys to the set of authorized users (who are not

identified traitors). We can address this issue by constructing a protocol that distributes

new decryption keys to individual, legitimate users at fixed intervals. An example of such

a protocol is described in Section 4.7.

4.5.2 A Limited Black-box Tracing Algorithm

For the black-box algorithm, we wish to achieve the same goals as desired for the clear-

box tracing algorithm, i.e., identification of at least one contributing traitor and no false

implications of guilt. We achieve these goals for a limited set of pirate decoders:limited-

ability single-key decodersandlimited-ability multiple-key decoders. We define a limited-

ability single-key pirate decoder to be a device that employs a single decryption key that is

identical to a valid decryption key issued by the content provider. Furthermore, the device

only uses this single decryption key to perform a single decryption operation per broadcast

message.

We define a limited-ability multiple-key pirate decoder to be a device that containsk

or fewer decryption keys that have been issued by the content provider; any one and only

one of these keys can be used to perform a single decryption for a given broadcast mes-

sage. However, a limited-ability decoder cannot utilize multiple keys to perform multiple
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decryptions per broadcast message and compare the results. If this behavior were possible,

the pirate decoder could employ a technique (such as the one described in [79]) to recog-

nize invalid ciphertexts and defeat the black-box tracing algorithm presented below. Also,

a limited-ability decoder cannot include any valid keys that are not of the form explicitly

issued by the content provider.

Restricting the pirate device model to limited-ability single-key and multiple-key de-

coders is reasonable in many practical situations. In a smart card-based decoder or a mass-

produced ASIC decoder, storage space may only be available for a single decryption key

from a single traitor. Also, recall that decryption involves the computationally expensive

modular exponentiation operation. Therefore, it may not be feasible for a pirate decoder to

perform multiple decryptions per broadcast message and maintain adequate throughput.

In the black-box algorithm, we identify traitors by applying random data as ciphertext

input to the pirate decoder. The decryption of the random data using a decryption key

(issued by the content provider) will yield a different and predictable plaintext result for

each distinct decryption key. Thus, we can infer which keys are stored in a limited-ability

pirate decoder without performing explicit inspection of the pirate device’s contents. The

decryption key for authorized userti is DKi = 〈v(i), di,M〉, and the black-box algorithm

operates as follows:

1. Randomly generate a setC of L dlog2 Me-bit values,C = {c1, c2, ..., cL}.

2. Repeat for alli such that1 ≤ i ≤ n, wheren is the number of authorized users:

(a) Randomly select an integerz such thatv(i)
z = 1.

(b) ConstructC ′ = {c′1, c′2, ..., c′L} such thatc′j = cj for j = z, andc′j = 1 for

j 6= z.

(c) Apply C ′ as the input to the pirate decoder.

(d) Obtain the decrypted result,P , which is the output of the pirate decoder.
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(e) ComputePTEST =
(∏L

j=1(c
′
j)

v
(i)
j

)di

mod M .

(f) If PTEST equalsP , userti is a traitor.

In Step 1 of the black-box algorithm, we generate a random setC of L values that we

will use to construct ciphertext for input to the pirate decoder. For an authorized userti that

may be a traitor, Step 2 of the algorithm operates as follows. In Step 2(a), we identify an

elementz in userti’s decryption element that equals 1. Then, in Step 2(b), we construct a

special ciphertextC ′ such that exactly one of the elements inC ′ equal one of the elements

in C generated in Step 1; the other elements inC ′ are set to 1. When this value ofC ′

is applied to a decoder that is using onlyti’s key to perform decryption, the decoder will

construct a product ciphertext that equals exactly one of the elements ofC. Then, the

decoder will create a value ofP that equals the product ciphertext raised to the power of

di moduloM . This value ofP will be unique to a userti, and therefore a userti can be

identified by comparingP to the expected valuePTEST for thatti.

For example, supposeti’s decryption vector is{1, 1, 0, 1, 0}. Given a randomC =

{c1, c2, c3, c4, c5}, one of many possible values forC ′ would be{1, 1, 1, c4, 1}. Now, when

C ′ is inputted to the pirate decoder that employs only userti’s key to decrypt messages,

then theP outputted by the decoder will equal(c4)
di mod M , which is unique toti.

When ciphertext input is applied to a limited-ability multiple-key decoder, the device

chooses one of its keys and employs that key to perform the decryption operation. As a

result, the black-box tracing algorithm may only identify one of the many keys stored in

the device. To find all traitors with high probability, one can simply repeat the black-box

tracing algorithm a number of times that is a multiple ofk, e.g.,10k times, assuming the

decryption keys are chosen at random by the pirate decoder.

We now present a theorem stating that, without framing innocent users, the black-box

algorithm can identify at least one of the traitors that colluded to build a limited-ability

pirate decoder.
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Theorem 4.5 Given a limited-ability pirate decoder constructed by a collusion of at most

k traitors using their respective decryption keys, then with overwhelming probability, the

black-box traitor tracing algorithm can identify at least one traitor in the collusion without

implicating any innocent users.

Proof. Recall that a limited-ability pirate decoder only contains exact copies of one or

more authorized decryption keys associated with one or more of the contributing traitors.

Also, the limited-ability decoder uses only one of the keys at a time to perform decryption

using the decryption method defined by the scheme.

The black-box tracing algorithm simply involves the application of large integers (cho-

sen uniformly at random fromZ∗M ) as inputs to the pirate decoder. These integers are not

the properly encrypted results of a plaintextP that the decoder would normally receive.

As a result, the limited-ability pirate decoder performs the decryption operation on the

randomly generated integers using a valid decryption key, and the the decoder outputs a

garbage result. Since the number of authorized users is negligible relative to the size of

the RSA modulus in practical scenarios, the probability is negligible that two different user

decryption keys will generate the same garbage result. Hence, the black-box algorithm can

identify a traitor by computing the expected garbage result for all possible authorized de-

cryption keys and subsequently comparing those results to the output of the pirate decoder

device. If the decoder contains multiple traitor decryption keys, the black-box algorithm

will identify all the traitors with high probability after repeating the algorithm for a num-

ber of times that is a multiple of the maximum number of traitors (assuming the decoder

employs each traitor decryption key with equal probability).

4.6 Performance Analysis

This section investigates the computation and storage costs of TTR.
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4.6.1 Provider Initialization Costs

The computation and storage costs of the provider initialization procedure described in Sec-

tion 4.3.3 are as follows. First, the provider must generate two safe primes to produceM .

The probability that an(log M)-bit random number is a safe prime is1/O(log2 M), so the

computation required to generate the modulusM is dominated byO(log2 M) (log M)-bit

random number generations andO(log2 M) (log M)-bit probabilistic primality tests such

as Miller-Rabin (a summary of which can be found in [114]). Second, the generation of the

encryption exponentsE simply requiresL (log M)-bit random number generations. Note

that since the provider initialization is performed only once, the amortized computation

cost of the provider initialization is not significant.

For convenience of user initialization and encryption of broadcast messages, it is pru-

dent for the content provider to storeE, M , andφ(M). Thus, the expected storage require-

ment for the content provider is at minimumLdlog2 Me+ 2dlog2 Me bits.

4.6.2 User Initialization Costs

The computation and storage costs of the three-step user initialization procedure (described

in Section 4.3.4) are as follows.

SinceE and values ofv(i) in Step 1(a) (of the initialization process described in Section

4.3.4) are chosen uniformly at random, the number of possible summations moduloφ(M)

that are relatively prime toφ(M) is φ(φ(M)). Thus, the probabilityβ that the summation

in Step 1(a) is relatively prime toφ(M) is φ(φ(M))/φ(M). Since bothp andq are safe

primes, simple calculation shows thatβ ≈ 1/2. This means that we can consider 1 out of

every 2 vectors as being possible user decryption keys in Step 1(b). If we do not ensure

thatp andq are safe primes, the lower bound for the value ofβ is 1/(6 log log(M −p− q +

1)) [114]. In that case, the number of possible user decryption keys is much smaller, and we

would have to increase the number of encryption exponents,L, to guarantee the existence
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of a sufficient number of unique user decryption keys. By performing extra computation

(with negligible amortized cost) in the provider initialization phase, we can guarantee that

p andq are safe primes, and thus we can significantly decrease the costs of preparing and

distributing broadcast messages by reducingL.

In Step 1(a), the computation includes the generation of a randomL-bit value and the

computation of the sum (moduloφ(M)) of at mostL (log M)-bit integers. The extended

Euclidean algorithm does not need to be explicitly performed to determine if the sum is

relatively prime toφ(M), as any sum that is odd will be relatively prime toφ(M) with

overwhelming probability. Since the probability of the sum not being relatively prime to

φ(M) is 1/2, Step 1(a) will be executed fewer than 2 times per each iteration of Step 1.

In Step 1(b), the computation is dominated by a single probabilistic primality test such

as Miller-Rabin. Since the probability ofdi being prime is approximately1/ log M , Steps

1(a) and 1(b) will be repeated fewer thanlog M times on average. Hence, the total compu-

tation time of alllog M iterations of Step 1 is dominated byO(log M) (log M)-bit proba-

bilistic primality testing operations.

Following key generation, the costs required in Step 2 to securely distribute the user

decryption key highly depend on the method that is chosen to secure the channel.

A user decryption key, which consists of a Boolean vectorv, a prime decryption expo-

nentd, and a modulusM , requires at mostL+2dlog2 Me bits of storage. This equates to a

decryption key size of approximately 256 bytes in realistic scenarios when using a 1024-bit

modulus. The content provider also needs to store a copy of each issued decryption key to

avoid issuing the same decryption key to two different users.
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4.6.3 Encryption and Transmission Costs

To encrypt a broadcast message as described in Section 4.3.5, the content provider must

performL multiple-precision modular exponentiations usingL different encryption expo-

nents. We note that we can significantly reduce the bit length of the encryption exponents

to improve the speed of the encryption operations without compromising security.

Since one encrypted block is transferred for each encryption exponent, the communi-

cation overhead isO(L). Though the sizeL may range in the hundreds, for the broadcast

encryption model described in Section 4.1, the increased transmission costs apply only to

the cryptographic header of the broadcast messages. The message payload does not in-

crease in size.

4.6.4 Decryption Costs

To decrypt a broadcast message header as described in Section 4.3.5, an authorized user

must performαL multiple-precision modular multiplications and a single multiple-precision

modular exponentiation. For reasonable values ofM , n, andk, the computation associated

with theO(αL) = O(max(log n, log log M/ log k)) modular multiplications is much less

than the cost of the single modular exponentiation.

Tables 4.4 and 4.5 list the computation required to perform decryption for various sizes

of n andk. The values in the table are normalized to a single random 1024-bit modular

exponentiation. For example, a value of 1.015 indicates that the decryption operation re-

quires 1.5% more computation than a 1024-bit modular exponentiation. Table 4.4 displays

the computation for the case where2−s = 2−20, and Table 4.5 lists the computation for the

case where2−s = 2−80. Some table cells do not have entries because the maximum col-

lusion sizek cannot exceed the total number of users. As shown by the tables, the cost of

generating the product ciphertext never exceeds 2% of the overall decryption computation.

For example, ifk = 10, 2−s = 2−80, andn equals one million users, then the number
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Table 4.4: Decryption computation cost for2−s = 2−20

Number of Number of exponentiations
Users(n) k = 2 k = 10 k = 100 k = 1000

2 1.002 - - -
10 1.003 1.003 - -
100 1.004 1.004 1.005 -

1,000 1.005 1.004 1.005 1.006
10,000 1.005 1.005 1.006 1.007
100,000 1.006 1.005 1.006 1.007
1 million 1.007 1.006 1.007 1.008
1 billion 1.010 1.007 1.009 1.009

of encryption exponentsL is 237. The number of modular multiplications required to

obtain the product ciphertext is therefore237α − 1 = 237/10 − 1 ≈ 23. If the size of the

RSA modulus is 1024 bits, the exponentiation requires 1535 modular multiplications on

average [114]. Hence, in this case, generating product ciphertext requires only 1.48% of

the computation involved in decryption.

In practice, a 1024-bit modular exponentiation can be 1000 times slower per decrypted

bit than a 128-bit symmetric key decryption operation [114]. However, for realistic num-

bers of authorized users and traitors, the new scheme still exhibits the highest decryption

performance among the past proposals listed in Table 4.1. Assuming a modular exponenti-

ation is 1000 times as slow as a symmetric key decryption operation, Table 4.6 summarizes

the decryption speedups provided by TTR over the one-level symmetric-key-based scheme

of [26]. That is, the speedup values in the table represent the decryption throughput of

TTR (when2−s = 2−80) divided by that of the one-level scheme in [26]. The table entries

that denote positive speedups are highlighted in bold, and some table cells do not have en-

tries because the maximum collusion sizek cannot exceed the total number of users. As

illustrated Table 4.6, whenk is 10 or greater, TTR outperforms the schemes of [26]. In
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Table 4.5: Decryption computation cost for2−s = 2−80

Number of Number of exponentiations
Users(n) k = 2 k = 10 k = 100 k = 1000

2 1.006 - - -
10 1.006 1.012 - -
100 1.007 1.013 1.015 -

1,000 1.007 1.013 1.015 1.016
10,000 1.007 1.014 1.016 1.016
100,000 1.007 1.014 1.016 1.017
1 million 1.008 1.015 1.017 1.018
1 billion 1.010 1.016 1.019 1.019

a realistic implementation — such as a satellite video broadcast — wheren may be one

million andk may be 10, the decryption speedup exceeds 7.86.

4.6.5 Tracing Algorithm Costs

The computation costs of the tracing algorithms described in Section 4.5 are as follows.

Clear-box Traitor Tracing

The clear-box tracing algorithm runs in polynomial time. The algorithm requires at most

O(nL) integer division operations to identify a traitor. We note that the actual computa-

tional complexity of the algorithm is a function ofnCUR, which is the current number of

authorized users, rather thann, which is the maximum number of authorized users. This is

an important distinction, as the values ofnCUR andn can differ by orders of magnitude in

practice.
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Table 4.6: Decryption speedup of TTR

Number of Speedup for maximum collusion sizek
Users(n) k = 2 k = 10 k = 100 k = 1000

2 0.02 - - -
10 0.05 1.31 - -
100 0.11 2.62 261.91 -

1,000 0.16 3.93 392.65 39,237.97
10,000 0.21 5.24 523.25 52,288.93
100,000 0.26 6.55 653.71 65,325.73
1 million 0.32 7.86 784.03 78,348.40
1 billion 0.47 11.77 1,174.15 117,331.91

Limited Black-box Traitor Tracing

The limited black-box tracing algorithm runs in polynomial time. Including the operations

performed by the pirate decoder, the algorithm requires at mostO(n) modular exponen-

tiations andO(nαL) = O(max(n log n, n log log M/ log k)) modular multiplications to

identify a traitor. Also, as in the clear-box case, we can substituten with nCUR, the current

number of users, to obtain tighter bounds on the performance. We note that the values of

PTEST for each user can be precomputed (at user initialization time) and can be stored in

a hash table. Using this precomputed hash table, we can reduce the expected computation

required by the black-box tracing algorithm for single-key decoders to 1 modular expo-

nentiation and an insignificant number (i.e.,O(αL) = O(max(log n, log log M/ log k))) of

modular multiplications.

In the multiple-key case, the computational complexity will increase by a factor of the

number of times that we have to repeat the algorithm. Since we repeat the algorithm a small

multiple of k times, when using the hash table described above, the computation for the

multiple-key case isO(k) modular exponentiations andO(kαL) modular multiplications.
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4.7 A Key Renewal and Revocation Protocol

The traceability scheme presented in this chapter can identify traitors upon confiscation

of a pirate decoder, but the scheme does not include a method for re-issuing keys to the

remaining authorized users. In this section, we describe a simple protocol that incorporates

the proposed traceability scheme and enables renewal and revocation of user decryption

keys. Since every user possesses a unique decryption key, the content provider can broad-

cast special messages that can only be decrypted by individual users. This fact allows us to

construct a simple and efficient key management protocol.

Issuing new decryption keys to the set of authorized users upon every group modifi-

cation event in a broadcast encryption scheme can seriously degrade performance [142].

Such group modification events include users joining the group and users exiting the group

due to key expiration, key theft or key piracy. By re-issuing decryption keys to authorized

users at fixed time intervals rather than at every group modification event, the performance

impact of key updates is significantly reduced [142]. We employ this concept in the pro-

posed protocol, which consists of five operations:INITIALIZE , USERJOIN, USERRENEW,

USERLEAVE, andSWITCHKEYS. These operations employ the components of the pro-

posed TTR scheme described in Section 4.3 with minor amendments. The parties involved

are the content provider and the authorized users.

• I NITIALIZE . The content provider initializes the system by generating two RSA

moduli,Ma andMb. The content provider subsequently generates two sets of encryp-

tion exponents,Ea andEb, using the same procedures described in Section 4.3.3. To

encrypt broadcast messages as per Section 4.3.5, the content provider usesMa and

Ea.

• USERJOIN . When a userti joins the set of authorized users, the content provider

securely issues a decryption keyDKi =
〈
v(i), di,Ma

〉
to that user.DKi is generated

using the modulusMa and the setEa with the technique described in Section 4.3.4.
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• USERRENEW. After a period of time, the content provider issues a new decryption

key to userti. This new decryption key,DK ′
i =

〈
v′(i), d′i,Mb

〉
, is generated using the

modulusMb and the setEb using the same technique presented in Section 4.3.4. The

content provider then encodesDK ′
i as a messageP , andP is encrypted as follows:

C = P x mod Ma, wherex =




L∑

j=1

v
(i)
j ej


 , andej ∈ Ea (4.15)

The encrypted resultC is then broadcast to all users, but it can be shown that only

userti can decryptC and obtainDK ′
i using the decryption keyDKi. Userti then

storesDK ′
i but continues to useDKi to perform decryption operations.

• USERL EAVE . Upon theft, loss, revocation, or piracy of a keyDKi associated with

userti, DKi is no longer considered valid. No explicit action is taken in this opera-

tion, but the user will no longer receiveUSERRENEW messages forDKi that would

enable decryption following the nextSWITCHKEYS operation. In addition, if the

user’s key was stolen or lost (as opposed to pirated by the user or revoked), the con-

tent provider will assign a new identifierj to the user, wherej 6= i, and the content

provider will issue a new decryption keyDKj to the user viaUSERJOIN.

• SWITCH K EYS. After all authorized users have received new decryption keys corre-

sponding to the modulusMb, the content provider issues a special message instruct-

ing users to begin using their new keysDK ′
i. Following this message,DKi ← DK ′

i

for all usersti; the decryption keysDKi are discarded. In addition, the content

provider setsEa ← Eb and Ma ← Mb. Lastly, the content provider generates

new values forEb andMb in anticipation of futureUSERRENEW andSWITCHKEYS

events.

USERRENEW and SWITCHKEYS operations should be executed as often as possible

without significantly impacting performance as discussed in [142]. This periodic key re-

newal system achieves high performance through imperfect security: the latency between
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SWITCHKEYS events may allow unauthorized parties to access encrypted messages for a

short period of time following aUSERLEAVE operation.

4.8 Summary

In broadcast encryption systems, a content provider seeks to securely transmit information

to n subscribing users over public channels. Authorized users can subvert the security of

such systems by replicating or generating valid decryption keys and distributing decoding

devices that include these keys. To deter such piracy, researchers have proposed traitor trac-

ing schemes. Using these schemes, one or more of users who contribute to a pirate decoder

can be identified based upon the behavior or contents of the confiscated decoder. Most

past traitor tracing proposals guaranteek-resilience. This means that tracing is possible for

traitor collusions of sizek or fewer.

This chapter introduces a new traitor tracing scheme for broadcast encryption. The new

scheme applies RSA as a secret-key cryptosystem rather than as a public-key cryptosystem.

A single RSA modulus is shared by all the authorized users, but the system is not vulner-

able to known RSA common modulus attacks. Ifk or fewer authorized users collude to

create a pirate decryption device, at least one contributing traitor can be identified. Further-

more, the scheme prevents traitors from framing innocent users. The scheme also supports

limited black-box tracing. In addition, unlike other traitor tracing proposals that require the

implementation of uncommon cryptographic primitives, the new scheme uses the widely

deployed RSA algorithm. A key issuance and revocation protocol is also described that

can facilitate the incorporation of the new scheme into many different secure computing

architectures.

The scheme significantly improves upon the decryption efficiency of past traitor tracing

proposals. To decrypt a broadcast message, an authorized user essentially performs a single

modular exponentiation. This exceeds the decryption performance of previous schemes,
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which requireO(k) exponentiations or thousands of symmetric key operations per message

decryption. Also, in the new scheme, each authorized user needs to store only a single

decryption key (or two decryption keys if we employ the key renewal protocol described in

Section 4.7).



Chapter 5

Processor Support for Fast Subword

Mappings

Several popular cryptographic primitives, such as symmetric-key encryption algorithms,

employ bit-level permutations and mappings to rapidly achieve a desired level of secu-

rity. However, general-purpose processors cannot complete these mapping operations ef-

ficiently. As a result, cryptographic primitives can cause significant system performance

problems that inhibit the adoption of security technologies.

This chapter describes hardware architectural enhancements for the acceleration of sub-

word permutations and mappings. More specifically, we propose two new processor in-

structions, their hardware implementations, and their associated software usage, with which

we can accelerate subword mappings in cryptographic software. This acceleration can lead

to significant improvement in the throughput of current and future ciphers. The contribu-

tions of this chapter are based in part on the work previously published by the author in

[77, 105].

This chapter is organized as follows. Section 5.1 discusses subword arithmetic and the

mathematics of bit-level and subword mappings. Section 5.2 describes and compares past

work. Section 5.3 presents two new instructions for fast subword permutations and map-

pings. Section 5.4 demonstrates how to apply these instructions to perform mappings for

135
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variably sized subwords packed in 64-bit words or packed in words that are multiples of

64 bits in size. Section 5.5 presents the supporting hardware required to implement the

two new instructions. Section 5.6 analyzes the performance impact of the enhancements

on subword permutations and mappings. This section also evaluates the performance im-

provement effected by the instructions for a popular symmetric-key encryption algorithm.

Section 5.7 summarizes the chapter.

5.1 Subword Processing, Permutations, and Mappings

A data word can be interpreted as a ordered set of data subwords. For example, a 32-bit

word may consist of eight 4-bit subwords. Many multimedia and cryptographic applica-

tions perform operations involving 1-bit or multiple-bit subwords. Due to the commonality

of such operations, several microprocessor instruction set architectures have been extended

to include subword-parallel integer arithmetic instructions that improve performance by

executing several operations on low-precision data in parallel. Some of these extensions

include MAX [88] and MAX-2 [91] for HP PA-RISC, VIS [162] for Sun SPARC, AltiVec

[44] for PowerPC, 3DNow! [123] by AMD, MMX [124] for Intel IA-32, and IA-64 multi-

media instructions [66, 92].

In many application scenarios, it is necessary to rearrange the subwords within a sin-

gle register or between multiple registers using permutation and mapping techniques. A

permutationis an invertible rearrangement of the elements in an ordered set. That is, a

permutation is abijective mappingfrom an ordered setS to itself [7]; each element inS

is mapped to one and only one element inS. Conversely, anon-bijective mappingfrom a

source ordered setS to a destination ordered setD can map an element inS to zero, one,

or multiple elements inD.

For example, ifS is the ordered set(a, b), there exist 2 possible permutations ofS,

(a, b) and(b, a), but there exist 4 possible non-bijective mappings ofS: (a, b), (b, a),
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(a, a), and(b, b). In the remainder of this thesis, we use the term “mappings” to include

both bijective mappings (i.e., permutations) and non-bijective mappings.

We can employ subword permutations to efficiently perform transformations such as

matrix transposition in multimedia applications [89]. Furthermore, several cryptographic

algorithms use subword mappings in conjunction with other operations (such as table

lookups) to achieve diffusion [157] (which is described in Section 2.3.1). Cryptographic

operations that employ such mappings include symmetric-key encryption algorithms such

as DES [119], Twofish [141] and Serpent [13]. Some of the mappings in these crypto-

graphic algorithms are bijections, but others are not. For instance, the “expansion permu-

tation” in DES maps some bits in the source datum to multiple destinations in the result

datum. If no information is lost in a mapping, the mapping is invertible and therefore can be

used in any cryptographic algorithm. Even if information is lost, cryptographic hash func-

tions and encryption algorithms based upon Feistel networks can still employ non-bijective

mappings [139].

5.2 Past Work

Several methods exist for performing mappings in software. In one method, individual bits

of the source datum are selected and shifted to their destination locations using a series

of bitwise AND, bitwise OR, and shift instructions [97]. For an arbitrary mapping of the

bits in ann-bit word, this procedure requires as many as4n instructions. If the architecture

includes instructions such asextract anddeposit [90]1, one can reduce the instruction

count of this procedure to2n, yet this method is still unacceptably slow.

1Theextract anddeposit instructions essentially combine a logical shift instruction and a bitwise
AND instruction into a single instruction. Theextract instruction selects a variable-sized contiguous bit
field from anywhere in a source register and places the field right-aligned in another register. Adeposit
instruction places a right-aligned field of bits from a source register into any location in another register.
These instructions can improve the performance of table lookups by reducing the number of steps needed to
prepare the memory address associated with an index to a table with multi-byte entries.
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Alternatively, we can employ lookup tables to perform mappings in software [97]. First,

we divide then-bit source datum intox groups of bits; each group of bits is then applied

as an index to a unique lookup table corresponding to that group. The output of a lookup

table represents the input group of bits permuted per the desired mapping. The bits of the

table output that do not represent any of the input bits are set to zeroes. Therefore, we

can combine the outputs of thex lookup tables using(x − 1) bitwise OR or bitwise XOR

operations to generate the desired mappedn-bit result.

In general, assuming theextract instruction is available, we require(3x−1) instruc-

tions to complete ann-bit mapping usingx lookup tables. These(3x− 1) instructions are

composed of the following. First, each of thex table lookups requires a singleextract

instruction to generate the table index and a singleload instruction to obtain the desired

table entry. Thus,2x instructions are needed to perform the actual lookups. Second, an

additional(x− 1) XOR instructions are needed to combine thex results of the lookups.

Each of thex lookup tables consists of2(n/x) entries, and each table entry isn bits in

size. Hence, the total size of the tables is(nx) · 2(n/x) bits. This technique is commonly

used but is unattractive because the mappings must be statically encoded in the tables at

compile-time. Furthermore, the space required to store the lookup tables can be large and

expensive. For example, we need 2 megabytes of storage to map a 64-bit datum in 11

instructions using 4 lookup tables. With 8 lookup tables, we require 16 kilobytes of storage

and 23 instructions to map a 64-bit value.

A detailed treatment of existing and proposed permutation support in general-purpose

processors appears in [144]. Multiple instruction set architectures have been amended to

include instructions for mappings of 8-bit or larger subwords. Thepermute instruction

in the MAX-2 extension to PA-RISC supports permutations and non-bijective mappings

of 16-bit subwords in a 64-bit word by statically encoding the mapping function in the

instruction [91]. In IA-64, thepermute instruction supports a small set of mappings of 8-

bit subwords in a 64-bit word and supports all mappings of 16-bit subwords in a 64-bit word
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[66]. Similar topermute in MAX-2, the mapping function is statically encoded in the

permute instruction at compile-time. Thevperm instruction in the AltiVec extension

to the PowerPC instruction set architecture maps the 8-bit subwords of a 128-bit vector

register [44]. This instruction requires three 128-bit register reads and one 128-bit register

write, and the mapping function is encoded in one of the vector source registers. None of

the mapping instructions in popular ISAs efficiently support arbitrary mappings of 4-bit or

smaller subwords.

Recently, researchers have proposed several instructions for performing arbitrary, dy-

namically specified permutations and mappings of 1-bit or larger subwords. Using the

pperm instruction, we can complete an arbitrary mapping ofn bits in O(log n) instruc-

tions [97, 145]. Thexbox instruction performsn-bit permutations in a similar fashion

[22]. We can conduct a 64-bit mapping by executing 8pperm or xbox or instructions fol-

lowed by 7 bitwise XOR or OR instructions to combine the results. Essentially, thexbox

andpperm instructions dynamically configure and invoke ann-by-n crossbar without re-

quiring the processor to maintain any additional state information. Amending an ISA by

requiring additional state variables would be undesirable: such changes require explicit OS

support and increase the complexity of context switches and interrupts. Also, the number

of pperm or xbox instructions that we need to complete an arbitrary mapping does not

decrease as subword size increases (and the total number of subwords to map decreases).

Using thegrp instruction, we can complete an arbitrary (bijective) permutation ofb-

bit subwords packed in ann-bit word in log2(n/b) instructions [97, 145]. The hardware

needed to support thegrp instruction can be expensive, however. Thecross instruction

employs a Benes network to complete an arbitrary permutation usinglog2(n/b) instruc-

tions [97, 174]. Theomflip instruction improves upon thecross instruction by using

more efficient hardware to complete arbitrary permutations in the same number of instruc-

tions [97, 173]. Thebfly and ibfly instructions [146] and the techniques presented

in [98, 99] reduce the number of cycles required to complete an arbitrary permutation to
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O(1). These instructions and techniques achieve this high level of performance via vari-

ous combinations of storing additional state in the processor, treating multiple independent

instructions as atomic instruction bundles, and using VLIW architectural extensions. Al-

thoughgrp , cross , omflip , andbfly/ibfly can perform an arbitrary permutation

of 1-bit subwords quickly, these instructions cannot efficiently perform non-bijective map-

pings.

5.3 New Instructions for Subword Mappings

We propose two new instructions to efficiently support permutations and non-bijective map-

pings of 1-bit or multiple-bit subwords:swperm andsieve . Using these instructions, we

can dynamically specify permutations and mappings during program execution rather than

force the mappings to be statically encoded at compile-time.

5.3.1 Preliminaries

We can encode a mapping by specifying an element in the source setS that is written to a

particular element in the destination setD for all of the elements inD. If the mapping is

arbitrary, the following expression describes the minimum number of bits needed to encode

a mapping:
||D||∑

i=1

log2 ||S|| (5.1)

We examine mappings ofb-bit subwords packed in ann-bit source register that we write to

b-bit subwords of ann-bit destination register. Hence,||S|| is equivalent to the number of

bits in the source register,n, divided by the subword size,b, and||D|| is the number of bits

in the destination register,n, divided by the subword size,b. We can rewrite the expression

as follows:
||D||∑

i=1

log2 ||S|| =
n/b∑

i=1

log2(n/b) =
n

b
log2

(
n

b

)
(5.2)
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Table 5.1: Minimum number of bits needed to specify an arbitrary mapping

Subword Number of Number of bits to encode a
size subwords per 64-bit register 64-bit mapping

32 bits 2 subwords 2 bits
16 bits 4 subwords 8 bits
8 bits 8 subwords 24 bits
4 bits 16 subwords 64 bits
2 bits 32 subwords 160 bits
1 bit 64 subwords 384 bits

We assume that all registers are 64 bits wide; thereforen equals 64. Table 5.1 summarizes

the minimum number of bits needed to specify an arbitrary 64-bit mapping when using

subword sizes ranging from 1 bit to 32 bits.

RISC instructions typically allow two register reads and one register write per instruc-

tion. We wish to design instructions that allow us to dynamically specify mappings at

run-time, so we use one of the 64-bit source registers,rs , to store the information to be

permuted, and we use the other 64-bit source register,rp , to store information concerning

the mapping function. As shown in Table 5.1, for subwords of size greater than or equal

to 4 bits, we require at most 64 bits of information to specify the entire mapping. Hence,

we can describe the entire mapping in a single instruction. Since we can specify 64 more

configuration bits with each additional mapping instruction, mappings of 32 2-bit subwords

require at least 3 RISC instructions, and mappings of 64 1-bit subwords require at least 6

RISC instructions.

5.3.2 Theswperm Instruction

Theswperm instruction maps 4-bit subwords of a 64-bit source registerrs according to

information stored in a 64-bit source registerrp with a single instruction. This instruction
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rs 

s15 s13 s12 s11 s15 s10 s9 s8 s7 s0 s6 s0 s0 s0 s0 s0 
rd 

F D C B F A 9 8 7 0 6 0 0 0 0 0 rp 

 

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0  

Figure 5.1: Example operation of theswperm instruction

writes the mapped result to the 64-bit destination registerrd . The information stored inrp

fully describes the desired mapping, so one can specify the mapping function dynamically.

The instruction format ofswperm is:

swperm rd,rs,rp

We designed this instruction to map subwords of size 4 bits or greater in a single cycle and

to expedite mappings of 1-bit and 2-bit subwords.

Figure 5.1 illustrates an example operation ofswperm . In the figure,si is theith 4-bit

aligned subword of the source registerrs . We express the contents ofrp necessary to

complete the example mapping in hexadecimal. The value of theith 4-bit subword inrp

indicates which aligned 4-bit subword in the source register should be mapped to theith

4-bit subword in the destination register.

5.3.3 Thesieve Instruction

We use thesieve instruction to “filter” bits fromrs and then direct the resulting bits into

particular destinations inrd . While theswperm instruction operatesglobally over the

4-bit subwords ofrs , thesieve instruction operateslocally within the 4-bit subwords of

rs . sieve directs 1 (or 2 bits) from each 4-bit subword ofrs to 4 (or 2) possible locations

in the corresponding 4-bit subword ofrd . Thesieve instruction utilizes a third register,
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rp , to configure the bit filter. In combination with theswperm instruction, we can employ

the sieve instruction to implement arbitrary mappings of 1-bit or 2-bit subwords. The

instruction format forsieve is:

sieve,h,f rd,rs,rp

The 4-bit function code ofsieve consists of a 1-bit value,h (denoted ash in this discus-

sion), and a 3-bit value,f (denoted asf2f1f0 in this discussion).

Figure 5.2 illustrates two example operations of thesieve instruction on theith 4-bit

subword ofrs . In the figure,si,j represents thejth bit of theith subword ofrs , anddi,j

represents thejth bit of theith 4-bit subword ofrd . Thesieve instruction operates in

one of two modes: “1-bit mode” enables mappings of 1-bit subwords, and “2-bit mode”

facilitates mappings of 2-bit subwords. In 1-bit mode, the instruction directs one of the

four bits in theith subword ofrs to one of the four bits of theith subword ofrd ; the

instruction sets the remaining three bits in theith subword ofrd to 0. Similarly, in 2-bit

mode,sieve directs either the leftmost (i.e., most significant) two bits or the rightmost

(i.e., least significant) two bits of theith 4-bit subword ofrs to either the left half or the

right half of theith 4-bit subword ofrd . The instruction sets the remaining two bits of the

ith subword ofrd to 0.

Bits from rp and the function code bith specify which 1-bit or 2-bit subword the

instruction selects from theith subword ofrs . In 1-bit mode, one bit from every 4-bit

subword ofrs is selected and passed tord . Hence, there exist four possible selection

operations perrs subword, so we need two bits to encode the selection operation for each

subword. Since a 64-bit register consists of sixteen 4-bit subwords, we need a total of 32

bits to encode the selection operations for all sixteen subwords. We store these 32 bits in

the registerrp . To minimize the number of memory access instructions that we potentially

need to load the bit selection information into registers, we use one 64-bit register to store

the 32 bits of selection information for twosieve instructions. The function code bith
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0 0

rd ... di,3 di,2 di,1 di,0 
... 

... si,3 si,2 si,1 si,0 ... rs

0
(a) 

0 0

rd ... di,3 di,2 di,1 di,0 
... 

... si,3 si,2 si,1 si,0 ... rs

(b) 

Figure 5.2: Example operation of thesieve instruction (a) in 1-bit mode and (b) in 2-bit
mode
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f2f1f0 = 011

f2f1f0 = 010

f2f1f0 = 001

f2f1f0 = 000

f2f1 = 11 

f2f1 = 10 

Figure 5.3: Effect ofsieve function code bits onrd

indicates whether to use the most significant or least significant 2-bit half of each 4-bitrp

subword to perform thers bit selection. In 2-bit mode, we only require one bit (rather

than two bits) of selection information per 4-bitrs subword. Hence, we encoderp andh

as described above, but the even bits ofrp are ignored.

Figure 5.3 illustrates which bits ofrd receive bits ofrs given different values of the

three function code bitsf2f1f0. In the figure, the boxes containing 64 blocks represent

the 64-bit registerrd . The gray blocks represent bits that receive bits fromrs ; the white

blocks represent the bits ofrd that we set to zeroes.f2 indicates whether to use 1-bit or

2-bit mode. Bitsf1f0 of the function code indicate which bit of each 4-bitrd subword

receives a selected bit fromrs in 1-bit mode. For example, whenf1f0 = 00, only the

zeroth bit of each 4-bitrd subword receives a bit fromrs . In 2-bit mode,f0 is ignored,

andf1 indicates which 2-bit half of each 4-bitrd subword receives selected bits fromrs .

To summarize, thesieve instruction selects a single bit or an aligned pair of bits from

each of the sixteen 4-bit subwords of the source registerrs , but sieve only maps these

selected bits to the destination registerrd in one of six possible ways, as shown in Figure

5.3. Figure 5.4 illustrates a complete example operation of thesieve instruction in 1-bit
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h = 1       f2f1f0 = 011 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0 0 0 0 0 0 00 0 00

1 0 x x 1 1 x x 0 1 x x 0 1 x x 1 1 x x 0 0 xx 01 xx 10 xx 00 xx 11 xx 01 xx 10 xx 0 1 x x 0 0 x x 00 xx 00 xx

rs 

rd 

rp 

Figure 5.4: Complete example operationsieve

mode. For each of the registers, the least significant bit is located on the right end of the

box representing the register. The gray blocks in thers andrd boxes indicate which bits

are selected and the locations where the selected bits are placed, respectively. The 64 1-

bit values in therp box specify the contents of the configuration registerrp required to

complete the examplesieve operation. The right 2-bit halves of each 4-bit subword of

rp possess values of xx, i.e., “don’t care”, becauseh equals 1.

5.4 Applying the Instructions

This section describes how to applyswperm and sieve to perform permutations and

mappings of variable-sized subwords packed in words that are multiples of 64 bits in size.

5.4.1 Mapping 1-bit and 2-bit Subwords

Usingswperm andsieve , we can complete an arbitrary permutation or mapping of 64

1-bit subwords with 11 instructions as shown in Figure 5.5(a). We can perform an arbi-

trary mapping of 32 2-bit subwords with 5 instructions as shown in Figure 5.5(b). In both

cases, we initially store the 64-bit value to be mapped inr1 ; upon completion,r1 will

contain the desired mapped result. For 1-bit subwords,r5 throughr10 store configura-

tion information for theswperm andsieve instructions, and we user1 throughr4 to
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swperm       r2,r1,r5 

swperm       r3,r1,r6 

swperm       r4,r1,r7 

swperm       r1,r1,r8 

sieve,0,000  r1,r1,r9 

sieve,1,001  r2,r2,r9 

sieve,0,010  r3,r3,r10 

sieve,1,011  r4,r4,r10 

xor          r1,r1,r2 

xor          r3,r3,r4 

xor          r1,r1,r3 

 

 

swperm       r2,r1,r3 

swperm       r1,r1,r4 

sieve,0,100  r1,r1,r5 

sieve,1,110  r2,r2,r5 

(a) (b) 

Figure 5.5: Assembly code for performing 64-bit mappings (a) for 1-bit subwords and (b)
for 2-bit subwords

store intermediate values. For 2-bit subwords,r1 andr2 store intermediate values, and

r3 throughr5 store configuration information.

To complete a permutation or mapping of 1-bit subwords, we first perform 4 mappings

of 4-bit subwords usingswperm . Upon completion of these 4 instructions, the 4-bit sub-

words in registersr1 , r2 , r3 , andr4 will contain the zeroth, first, second, and third bits

of the corresponding subwords of the desired mapped result, respectively. For example,

after execution of the firstswperm instruction, one of the four bits contained in theith

subword ofr2 will ultimately be placed in bit position 1 of theith subword of the desired

mapped result. Likewise, following the execution of the secondswperm instruction, one

of the four bits stored in theith subword ofr3 will eventually be placed in bit position 2

of theith subword of the desired mapped result.

The foursieve instructions (in 1-bit mode) move 1 bit from every 4-bit subword of

r1 throughr4 to either the zeroth, first, second or third bit positions of the corresponding

subwords in the destination registers. Upon completion of thesieve instructions, the

desired mapped result is distributed across four 64-bit registers. The 16 bits in the zeroth
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position of each 4-bit subword inr1 are the bits that belong in the zeroth position of

each subword in the desired result. We set the remaining 48 bits ofr1 to zeroes with

the firstsieve instruction. Similarly, the bits located in the first positions of the 4-bitr2

subwords, the second positions of the 4-bitr3 subwords, and the third positions of the 4-bit

r4 subwords belong in the first, second, and third positions of the corresponding subwords

of the desired mapped result, respectively. Thesieve instructions set the bits inr1 , r2 ,

r3 , andr4 that do not correspond to bits of the desired result to zeroes. We collect the

results of the 4sieve instructions into a single register by performing 3 bitwise XOR (or

bitwise OR) operations. Following the completion of thexor instructions,r1 will contain

the 64-bit mapped result.

To permute or map 32 2-bit subwords packed into a 64-bit register, we use the same

method but fewer instructions, as shown in Figure 5.5(b). The last two rows in Figure 5.3

show how the 64-bits of the desired mapped result are distributed over the two registersr2

andr1 after thesieve instructions complete. We can combine these two registers into

the final 64-bit mapped result by performing a singlexor (or a singleor ) instruction.

We assume that the registers used to store configuration information are loaded with

the appropriate data prior to the execution of these code segments. This pre-loading may

require 6 or 3 memory load instructions for mappings of 1-bit or 2-bit subwords, respec-

tively. Cryptographic algorithms often employ the same fixed mapping in every encryption

or hash round, however. One can usually perform a round without spilling any registers to

memory, so one could load the 6 or 3 mapping values into general-purpose registers once

before the execution of thousands of rounds required to encipher or hash kilobytes of data.

As a result, the amortized cost of the loads would be negligible. Alternatively, these con-

figuration registers may be intermediate encryption or hash results; therefore, no memory

loads would be required.
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5.4.2 Mapping 4-bit or Larger Subwords

We can perform a permutation or mapping of 4-bit or larger subwords using a single

swperm instruction. An example of a 64-bit mapping of 4-bit subwords is illustrated

in Figure 5.1. Given a registerr1 that stores a 64-bit value to be mapped and a 64-bit

registerr2 that contains the configuration information necessary to conduct the mapping,

the following instruction completes a mapping of 4-bit subwords in a single cycle:

swperm r1,r1,r2

The swperm instruction stores the desired mapped result inr1 . One can also complete

64-bit permutations or mappings of 8-bit, 16-bit, and 32-bit subwords by executing a single

swperm instruction. We can divide 8-bit or larger subwords into 4-bit subwords, and it is

easy to translate a mapping encoding for 8-bit or larger subwords into a mapping encoding

usable byswperm for 4-bit subwords.

5.4.3 Generating the Configuration Information

We describe an efficient and simple algorithm that runs inO(n) time, wheren is the number

of bits in a register, which produces the configuration information necessary to complete an

arbitrary 64-bit mapping. Choosing the appropriate instructions to use, as described above,

is a trivial operation that only depends on the subword size. Generating the configuration

registers for these instructions is a more complicated process, however. We present source

code that produces the mapping configuration information when provided with a simple

description of the desired mapping.

The C functionGenMapInfo , displayed in Figure 5.6, generates therp values for

the sieve andswperm instructions involved in a 64-bit mapping. In the figure,i64

is a type declaration for a 64-bit unsigned integer (i.e.,unsigned long long ). The

function accepts three inputs:sigma , sigma size , andinverse . The inputsigma

is an array of integers withsigma size elements;sigma size must be a power of
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2 and less than or equal to 64, as the function computes the configuration information

necessary to complete a permutation of at most 64 elements. The contents of the array,

which are specified by the programmer, represent the desired mapping of a 64-bit register.

The array elementsigma[i] indicates which subword from the source register should be

directed to thei th subword in the mapped result. The number of subwords therefore equals

sigma size , and the size of each subword (in bits) equals 64 divided bysigma size .

In some situations, it may be desirable to generate configuration information required

by swperm and sieve to perform the inverse of a given mapping. If the value of

inverse is 1, and the mapping specified bysigma[] is a bijection (and therefore is a

permutation and is invertible), thenGenMapInfo produces the configuration information

required to conduct the inverse of the permutation specified bysigma[] . The algorithm

generates this information by first quickly computing the inverse of the provided permuta-

tion. Then,GenMapInfo produces configuration information for the inverse permutation

by performing the same procedure used to generate configuration information for a regular

(i.e., non-inverted) mapping.

GenMapInfo outputs two integer arrays:swperm rp[] andsieve rp[] . Upon

completion of theGenMapInfo routine, these two arrays contain the appropriate values

of the rp registers required by thesieve and swperm instruction(s) to complete the

desired mapping. The algorithm operates by simply extracting bits from the elements of

sigma[] and placing them in pre-specified destination locations inswperm rp[] and

sieve rp[] . For instance, suppose we wish to generate configuration information for

a mapping of 64 1-bit subwords. In this case,sigma size equals 64. Each element

of sigma[] is an integer between 0 and 63, inclusive, so we require six bits to encode

each element.GenMapInfo extracts the two least significant bits from all of the ele-

ments ofsigma[] and writes those bits to appropriate locations insieve rp[0] and

sieve rp[1] . The algorithm also extracts the four most significant bits from each

6-bit element ofsigma[] and places those bits in certain locations in the elements of
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void GenPermInfo (i64 sigma[], i64 sigma_size, 
                  i64 swperm_rp[], i64 sieve_rp[],
                  i64 inverse) { 

  i64 j,k,limit,subword_size,sigma2[64]; 
  subword_size = 64/sigma_size; 

  /* Initialize configuration register values */ 
  for (j=0;j<4;j++) swperm_rp[j]=sieve_rp[j>>1]=0; 

  /* Produce inverse permutation */ 
  if (inverse==1) { 
    for (j=0;j<sigma_size;j++) sigma2[sigma[j]]=j; 
    sigma = sigma2; } 

  /* Now generate configuration register values
     for up to 4 swperm and 4 sieve instructions */ 

  /* For mappings of 64 1-bit subwords */ 
  if (subword_size == 1) { 
      for (j=0;j<64;j++) { 
      swperm_rp[j&0x3]     |= (sigma[j]>>2)
        << (j&0x3C); 
      sieve_rp[(j>>1)&0x1] |= (sigma[j]&0x3)
        << ((j&0x3C)+((j&0x1)<<1)); } } 

  /* For mappings of 32 2-bit subwords */ 
  else if (subword_size == 2) {
    for (j=0;j<32;j++) { 
      swperm_rp[j&0x1] |= (sigma[j]>>1)
        << ((j&0x1E)<<1); 
      sieve_rp[0]      |= (sigma[j]&1)
        << (1+(j<<1)); } } 

  /* For mappings of sixteen 4-bit, eight 8-bit, 
     four 16-bit, or two 32-bit subwords */ 
  else /* (subword_size >= 4) */ { 
    limit = subword_size/4; 
    for (j=0;j<sigma_size;j++)
      for (k=0;k<limit;k++) 
        swperm_rp[0] |= (sigma[j]*limit+k)
          << ((j*limit+k)<<2); } } 

Figure 5.6: C source code for configuration data generation
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swperm rp[] . Observe thatsigma size and inverse are the only input variables

upon which the destination locations of the bits extracted fromsigma[] depend.

Performing a (bijective) permutation usingswperm and sieve requires the same

number of instructions as completing its inverse using these instructions. Therefore, the

size of theGenMapInfo output is independent of the value ofinverse . For 64-bit

mappings of 1-bit subwords,GenMapInfo outputs six 64-bitrp values for 4swperm

and 4sieve instructions. For 2-bit subwords,GenMapInfo outputs three 64-bitrp val-

ues for 2swperm and 2sieve instructions. In addition, if the subword size is 4 bits or

greater, the function generates a single 64-bitrp value for a singleswperm instruction.

Inspection of the function reveals that the maximum number of steps is a constant mul-

tiplied by the number of bits in a register,n. Hence, the running time of the algorithm is

O(n). For thesieve andswperm instructions presented in this chapter,n = 64.

5.4.4 Mappings in Large Values

The techniques presented above involve arbitrary permutations and non-bijective mappings

of a 64-bit word with 1-bit or larger subwords. It may be desirable, however, to complete

an arbitrary mapping of 128-bit, 256-bit, or larger words that are distributed across multiple

64-bit registers. We describe a method of applying theswperm andsieve instructions

to complete such arbitrary mappings of large words. Letm be the size of the large word

in bits. Letm be a multiple of 64, andx = m/64. Therefore, we havex 64-bit blocks in

the initial large word andx 64-bit blocks in the destination (mapped) large word. Each of

thex blocks of the initial word can contribute 0 to 64 bits to each of thex blocks of the

destination word.

We perform a large word mapping as follows. For each block in the initial word, we

performx 64-bit mappings, which is one mapping for each block in the destination word.

After each 64-bit mapping, we perform a bitwise AND operation on the 64-bit mapped
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result and a 64-bit mask. The mask corresponding to a particular 64-bit initial block and

64-bit destination block pair contains a 1 in bit positioni if and only if a bit from the initial

block should be mapped to bit positioni in the destination block. Since we require one

mask for each 64-bit initial block and 64-bit destination block pair, at mostx2 unique masks

will be required to conduct the mapping. Upon completing all of the 64-bit mappings and

masking operations for a single 64-bit destination block, thex 64-bit results are collected

into a 64-bit destination block by performing(x− 1) bitwise XOR operations. By making

only minor changes to the configuration information generation code presented in Figure

5.6, it is possible to efficiently and dynamically generate both the configuration registers

and the masks necessary to conduct a mapping of a large word. Such changes to the code

would increase the computational complexity of the configuration generation by at most a

factor ofO(x2) = O(m2/4096).

We present a block diagram that conceptually illustrates the operations needed to com-

plete an arbitrary mapping of a 128-bit word in Figure 5.7. In the figure, the 64-bit Map

objects include the instructions required to complete an arbitrary mapping of a 64-bit word.

Depending on the size of the subwords, this code sequence may consist of 11, 5, or 1 in-

struction(s), as described above. We assume that the initial large word, the masks, and

the configuration information for thesieve and swperm instructions have been pre-

viously loaded into registers. Hence, ify is the number of instructions needed to per-

form an arbitrary mapping of a 64-bit word, the total number of instructions required to

complete a mapping of a 128-bit word is4y + 6. In general, for a large word of size

m ≥ 128, the maximum number of instructions required to complete an arbitrary mapping

is x2(y +1)+x(x− 1) = yx2 +2x2−x. When using 4-bit subwords, mappings of 128-bit

and 256-bit words require at most 10 instructions and 44 instructions, respectively. To map

128 1-bit subwords stored in two 64-bit registers, we require 50 instructions.
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Figure 5.7: Mapping of a 128-bit word
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5.5 Hardware Implementation

We now describe the CMOS hardware implementation for theswperm andsieve in-

structions. First, we present the Selection Unit, which enables the execution of theswperm

instruction. We can implement the Selection Unit by building a 4-bit 16-to-1 multiplexer

for every 4-bit subword inrd . Such a design is extremely expensive in hardware, however.

Using a reduced crossbar, we can greatly decrease the transistor and wire cost. The reduced

crossbar only requires one decoder for every 16 intersections betweenrs andrd tracks as

opposed to one decoder for each intersection in a full crossbar.

A high-level representation of the reduced crossbar is illustrated in Figure 5.8(a).si

is the ith 4-bit subword ofrs , dj is thejth 4-bit subword ofrd , andpj is thejth 4-bit

subword ofrp . A rectangle represents a single cell, and we present an example cell in

Figure 5.8(b). Each cell consists of a 4-input AND gate, 4 n-type transistors, and 0, 1, 2,

3 or 4 inverters. Recall that theswperm instruction directs thesi to dj if and only if pj

equalsi. In the example cell, the leftmost and bottommost wires are the most significant

bits of the subwords. From inspecting the negation bubbles on the inputs to the AND gate,

we know thati = 5 in Figure 5.8(b). Hence, ifpj = 5, only the fifth 4-bit subword,s5, is

enabled ontodj. The other fifteen 4-bit subwords fromrs similarly connected todj are

not enabled ontodj whenpj equals 5.

We now discuss the hardware cost of this implementation in terms of transistor and

track counts. Since we need 16 cells for each of the sixteen 4-bit subwords ofrd , the total

number of cells in the reduced crossbar is 16· 16 = 256. On average, there are 2 negation

bubbles on the inputs to the AND gate per cell, so the average number of transistors per

cell is 16. These 16 transistors include 8 transistors to implement a 4-input AND gate, 4

transistors to implement 2 inverters, and 4 n-type transistors controlled by the output of the

AND gate. The reduced crossbar consists of 256 cells, so the total transistor count is 4096.

Note that this count does not include any buffers that we may potentially need to drive the
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s1   s2            s16 

 p2, d2 

 p1, d1 

 p16, d16 

dj 

pj 

si 

(a) (b) 

Figure 5.8: The hardware implementation of the Selection Unit: (a) the high-level organi-
zation and (b) an example of a cell

long wires.

We define a track to be a wire routing lane that is reserved for connections between

different cells. The number of vertical tracks is roughly the number of bits inrs , 64, and

the number of horizontal tracks is the number of bits inrd plus the number of bits inrp ,

128. The critical path latency of this circuit is the time needed for a signal to traverse two

long wires (that each span the width of sixteen Selection Unit cells) plus the logic delay

through a single Selection Unit cell. This is at most the sum of the propagation delays of

two long wires, a 4-input AND gate, an inverter, and an n-type transistor. Assuming the

delays through the wires are not extremely high, the Selection Unit can complete aswperm

instruction in a single cycle. In a deeply pipelined processor, however, the propagation

delays through wires could force multiple-cycle execution ofswperm instructions.

We present a block diagram of the Filter Unit, which supports thesieve instruction,

in Figure 5.9(a). Each rectangle represents a single 4-bit slice, and we can implement a

4-bit slice with four 1-bit 5-to-1 multiplexers. Each of these multiplexers simply select the

bit value “0” or one of four input bits from a 4-bit subword ofrs ; the multiplexer output
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si si,3 si,2 si,1 si,0

Ai Bi

di,3 di,2 di,1 di,0di 

0 0 00 0 00 0 
Di Ei Fi Ci

(b)

  h, f 

s1    p1   s2    p2  s3    p3 s16   p16  

 
 … 

 … 

d1 d2 d3 d16 … 
(a)

Figure 5.9: Hardware implementation of the Filter Unit: (a) High-level organization and
(b) Structure of a 4-bit slice

is directed to a single bit in the corresponding 4-bit subword ofrd . Using the 4-bit slice

structure illustrated in Figure 5.9(b), however, we can reduce the transistor count without

increasing the critical path latency by eliminating redundant logic operations. We replicate

the slice shown in Figure 5.9(b) sixteen times, once for each 4-bit subword inrd . The

variablesi,j represents thejth bit of theith subword ofrs ; the variabledi,j represents the

jth bit of theith subword ofrd . Each 4-bit slice requires two 1-bit 2-to-1 multiplexers and

four 1-bit 4-to-1 multiplexers. In addition, theith subword slice includes a set of signals

to control these multiplexers:Ai, Bi, Ci, Di, Ei, andFi. We define these signals in Figure

5.10, wherepk is thekth bit of rp , andh, f2, f1, andf0 are function code bits.

We can implement a 2-to-1 multiplexer using 4 transistors, and we can implement a

4-to-1 multiplexer using only 7 transistors each since the two lowest bit inputs are always

zeroes. Using buffers to reduce the fan-out of the function code bits and logic optimization
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Ai = Bi = (h ⋅ p4i+3) + (¬h ⋅ p4i+1) 

Ci,1 = f1 ⋅ (f2 + f0)      Di,1 = f1 ⋅ (f2 + ¬f0) 

Ei,1 = ¬f1 ⋅ (f2 + f0)      Fi,1 = ¬f1 ⋅ (f2 + ¬f0) 

Ci,0 = Ei,0 = (¬f2 ⋅ ((h ⋅ p4i+2) + (¬h ⋅ p4i))) + f2 

Di,0 = Fi,0 = (¬f2 ⋅ ((h ⋅ p4i+2) + (¬h ⋅ p4i))) 

Figure 5.10: Control signals in the Filter Unit

techniques to reduce the transistor count, each 4-bit subword slice requires 116 transistors.

The total number of transistors required for the sixteen 4-bit subword slices of the Filter

Unit is 1856. Nearly all of the data and control for each 4-bit subword slice in the Filter

Unit is local, so we do not require many long vertical or horizontal tracks. We only need 4

horizontal tracks for the 4sieve function code bits. The critical path latency in the Filter

Unit is at most the sum of the propagation delays through a horizontal wire (that spans

the width of sixteen 4-bit slices), a 2-to-1 multiplexer, a 4-to-1 multiplexer, and the logic

required to computeAi. Therefore, it is highly likely that the Filter Unit can complete the

execution of asieve instruction in a single cycle.

The total number of transistors needed to implement a Mapping Unit, which consists

of a Selection Unit and a Filter Unit, is 5952. This transistor count is of the same order

of magnitude as that required to construct a simple 64-bit CMOS ripple-carry adder [171].

We compare the hardware cost of the Mapping Unit to past work in Table 5.2. Due to the

imprecision of the track metric, we compare numbers of tracks usingO-notation in terms of

the number of bits in a register,n. When considering both transistor count and wire area,

it appears that the Mapping Unit is nearly as efficient as a VLSI implementation of the

omflip instruction [173]. The Mapping Unit requires nearly twice as many transistors as

anomflip implementation, but it potentially consumes only half as much wire area due

to constants hidden by theO-notation. The Mapping Unit also requires significantly fewer

transistors and tracks than a crossbar network [173].



CHAPTER 5. PROCESSOR SUPPORT FOR FAST SUBWORD MAPPINGS 159

Table 5.2: Hardware cost comparison

Horizontal Vertical TransistorImplementation
tracks tracks count

Mapping Unit
(swperm/sieve)

O(n) O(n) ∼6000

Omega flip network
(omflip )

O(n) O(n) ∼3100

Crossbar network O(n) O(n log n) > 73,728

5.6 Performance Analysis

This section investigates the performance improvement provided bysieve andswperm

for general subword mappings and for the popular DES encryption algorithm.

5.6.1 Impact on 64-bit Permutations and Mappings

Table 5.3 summarizes the number of instructions, cycles and registers required to complete

arbitrary mappings of different-sized subwords packed into a 64-bit register. For subword

sizes of four bits or larger, we only need 1swperm instruction and 2 registers to complete

an arbitrary 64-bit mapping. Using bothsieve andswperm , arbitrary 64-bit mappings

of 2-bit and 1-bit subwords require 5 and 11 instructions, respectively. In past work, Yang

and Lee demonstrated that theomflip instruction could be used to complete 64-bit bijec-

tive mappings using 5 and 6 instructions, respectively [173]. Theseomflip instruction

sequences must be executed serially, however. Therefore, even on an ultra-wide superscalar

processor, a 64-bit mapping of 1-bit subwords requires 6 cycles usingomflip instructions.

Superscalar execution can accelerate mappings that employsieve andswperm , how-

ever. True data dependencies do not exist between any of theswperm instructions or be-

tween any of thesieve instructions listed in Figure 5.5. Hence, a multiple-issue processor
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Table 5.3: Performance of 64-bit mappings usingsieve andswperm

Subword Max. # of Minimum # of cycles Max. # of
size instructions 1-issue 2-issue 4-issue registers

32 bits 1 1 1 1 2
16 bits 1 1 1 1 2
8 bits 1 1 1 1 2
4 bits 1 1 1 1 2
2 bits 5 5 3 3 5
1 bit 11 11 6 4 10

can improve the performance of an arbitrary 64-bit mapping that employs the proposed in-

structions by executing certain instructions in parallel. On a 4-way superscalar processor,

assuming there are four Mapping Units available, we can complete mappings of 1-bit and

2-bit subwords in as few as 4 and 3 cycles, respectively. For 1-bit subwords, the 4swperm

instructions can be executed in parallel in a single cycle, and the 4sieve instructions can

be executed in parallel in the following cycle. The 3xor instructions must be executed in

2 cycles following the completion of thesieve instructions due to data dependencies.

We compare the performance ofsieve andswperm to past work in Tables 5.4 and

5.5. We consider only past work that relies on the same design assumptions as those of

sieve andswperm . That is, the tables only consider past work that (i) assumes a sin-

gle instruction may only specify a single destination register and two source registers, (ii)

assumes that the processor cannot store any additional state (that could be subject to OS

context switching) to support the implementation of the new instructions, and (iii) assumes

that the new independent instructions cannot be bundled into a single instruction during

execution by the microarchitecture. We note that if we were to relax or change any of

these assumptions,sieve and swperm could certainly be enhanced to provide higher

performance than is listed in the tables below.

Table 5.4 and Table 5.5 list the number of instructions and cycles, respectively, required
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Table 5.4: Instruction count comparison for subword mappings

Instruction(s) Non- Max. # of instructions needed
used to perform bijective to map subwords of bit size:
a 64-bit mapping support 32 16 8 4 2 1
sieve /swperm Yes 1 1 1 1 5 11
pperm andxbox Yes 15 15 15 15 15 15

omflip , cross andgrp No 1 2 3 4 5 6
Existing ISAs Yes 1 1 ≥ 1 23 23 23

Table 5.5: Cycle count comparison for subword mappings

Instruction(s) Non- Max. # of instructions needed
used to perform bijective to map subwords of bit size:
a 64-bit mapping support 32 16 8 4 2 1
sieve /swperm Yes 1 1 1 1 3 4
pperm andxbox Yes 5 5 5 5 5 5

omflip , cross andgrp No 1 2 3 4 5 6
Existing ISAs Yes 1 1 ≥ 1 10 10 10

by the different methods to complete a 64-bit mapping and to write the mapped result to

a single 64-bit register. The bit values in the heading of the table indicate the size of the

subwords to be permuted and/or mapped within a 64-bit word. We determine the cycle

counts using a simulation of a 4-way superscalar processor with four integer execution

units and a single load/store unit.

The Existing ISAs row indicates the minimum number of instructions in conventional

ISAs required to perform a 64-bit permutation or non-bijective mapping using eight lookup

tables or existing subword permutation and mapping instructions for multimedia acceler-

ation (see Section 5.2). Note that instructions in existing ISAs that map 8-bit subwords
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are generally limited to performing a small set of predefined mappings. Also, the instruc-

tion counts listed for mappings of 4-bit and smaller subwords using existing ISAs are only

achievable if the mapping is statically encoded in lookup tables. The cycle counts listed

in Table 5.5 were obtained using a perfect data cache model with a single-cycle access la-

tency. If the data cache were small or initially cold, however, table lookup operations could

require many additional cycles to complete due to cache misses. Hence, the cycle counts

in the Existing ISAs row could be much larger in certain scenarios.

Other thansieve/swperm , only thepperm instruction can efficiently complete both

bit-level bijective and non-bijective mappings. Thecross , omflip , andgrp instructions

only perform (bijective) permutations. However,cross , omflip , andgrp can be ap-

plied to any register sizen that is a power of 2, butswperm andsieve are only defined

for n = 64.

For 64-bit permutations or non-bijective mappings, we observe thatsieve andswperm

perform as well as or better than all previously proposed instructions and existing ISAs

with the exception of the number of instructions required to complete a 64-bit mapping

using 1-bit subwords. Note that the performance improvement provided bysieve and

swperm over existing methods on 2-way and 4-way superscalar processors requires two

or four Mapping Units, respectively. Methods that employcross , grp , andomflip

only require one permutation functional unit to achieve the cycle counts listed in Table 5.5.

5.6.2 Impact on the Data Encryption Standard

We now demonstrate the degree to which the proposed mapping instructions can improve

the performance of a highly popular symmetric-key block cipher, the Data Encryption Stan-

dard (DES) [119]. A large number of secure communications, banking, and storage pro-

tocols employ DES (and its more secure variant, Triple DES) to provide services such as

data confidentiality and data integrity. We begin with an optimized C implementation of the
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DES algorithm that is based upon Eric Young’slibdes [175]. We compile the implemen-

tation for the 64-bit Alpha ISA (augmented with the proposed mapping instructions) using

gcc with the -O2 optimization flag. To improve the performance of the block cipher, we

apply the proposed mapping instructions to four mapping operations within DES: the initial

permutation (IP), the final permutation (FP), the P-box permutation (PP), and the compres-

sion permutation (CP). The CP is actually a non-bijective mapping, although it is called a

permutation by the DES standard. Most software implementations of DES complete these

mappings using a series of table lookup operations. We seek to increase performance by

replacing these table lookup operations with the proposed mapping instructions.

For processors with small and simple caches, we can achieve a significant speedup for

the P-box permutation. In the baseline software implementation, the P-box permutation is

built into the lookup tables used to complete operations known as S-box substitutions. Per-

forming the P-box permutation using the proposed instructions allows us to decrease the

size of the S-box lookup tables and consequently reduce cache misses. Also, the compres-

sion permutation in the round key computation function can consume a large percentage of

the total clock cycles involved in a DES operation. By accelerating the compression per-

mutation using the new mapping instructions, we can greatly improve performance in some

scenarios, which we describe below. We can also accelerate the performance of the IP and

the FP, although these mappings only account for a small percentage of the computation

required per DES operation.

We use the SimpleScalar superscalar processor simulator [21] to obtain cycle-accurate

performance statistics concerning the execution of DES. We perform simulations for four

different processor configurations, which range from a typical embedded processor found

in low-power wireless information appliances to a wide superscalar processor used in high-

end servers. The four microarchitectural configurations consist of a single-issue processor

core with small cache, a 2-issue superscalar processor, a 4-issue superscalar processor, and

an 8-issue superscalar processor. For each model, the fetch, decode, and commit widths
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Table 5.6: Simulation memory parameters

Processor modelsParameter
1-issue 2-issue 4-issue 8-issue

L1 1-way, 1-way, 2-way, 2-way,
data cache 2KB 8 KB 16 KB 32 KB

L1 1-way, 1-way, 2-way, 2-way,
instruction cache 2KB 8 KB 16 KB 32 KB

L2 2-way, 4-way, 4-way,
cache

none
128 KB 256 KB 256 KB

L1/L2 latency 1/- 1/20 1/5 1/5
Memory latency 50 50 100 100
Memory ports 1 1 2 2
L/S queue size 4 16 32 64

equal the issue width. Also, the number of ALUs equals the issue width, and we assume

that each ALU contains a Mapping Unit. In Table 5.6, we summarize the memory system

parameters used in the SimpleScalar simulations. The L2 latency for the 2-way processor

is larger than those of the 4-way and 8-way processors because we model the 2-way su-

perscalar’s L2 cache as being off-die (similar to the off-die L2 caches of 2-way superscalar

processors such as the Pentium II). Also, the main memory latencies for the 1-way and

2-way processors are smaller than those of the 4-way and 8-way processors because more

aggressive microarchitectures are often clocked faster relative to main memory than less

aggressive microarchitectures.

Rather than modify the C compiler to identify and utilize the mapping instructions,

we strategically insert standard RISC integer ALU instructions that represent the mapping

instructions into the DES source code. The DES implementation that uses these special

integer ALU instructions maintains the same instruction-level control dependence and data

dependence structure as that of a DES implementation that employs the proposed mapping

instructions. We carefully choose the special ALU instructions such that the compiler does
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not eliminate or combine any of those instructions during code optimization. In addition,

we modify the SimpleScalar simulator to recognize the special integer ALU instructions

and treat them as mapping instructions.

We obtain performance data by simulating the execution of DES for 8-kilobyte input

data blocks after allowing the caches sufficient time to warm up. The input size is not a

critical simulation parameter, however; we find that once the caches are warm, the perfor-

mance speedup results are independent of the input data size. The speedups achieved by

the proposed mapping instructions are presented in Figure 5.11. The graph illustrates the

speedups associated with each processor configuration for various frequencies of re-keying

events that would require computation of new round keys. We express the re-keying fre-

quency as the number of input bytes per re-keying event, i.e., the number of input bytes

per round key computation. For example, data points associated with the number 32 on

the horizontal axis of the figure corresponds to 8-kilobyte inputs in which the round key

computation is performed one time for each 32-byte block of the input. We use the variable

Z to represent the number of input bytes per round key computation.

Although the simulation results are independent of the total input size, the results are

heavily dependent on the value ofZ. The round key computation must be performed at

least once for each unique key used to complete DES operations. When DES is used for

encryption, a single key is often employed to encrypt all input data. As a result, we only

need to perform the round key computation once during the encryption of an entire input

block. Z is therefore equal to the total input size in this case. However, when DES (or any

other block cipher) is used to implement a cryptographic hash function for digital signature

and data integrity operations, a different key is often employed for each 8-byte input block,

for the key is a function of the 8-byte input block [130, 172]. Hence, we must perform the

round key computation once for every 8 bytes of input, soZ = 8.

Figure 5.11 displays speedup results when we complete the IP, FP and CP (but not

the PP) using the new mapping instructions. The speedup results for this case are also
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Table 5.7: DES speedups for IP/FP/CP optimization

DES Speedup
Z 1-way 2-way 4-way 8-way

superscalar superscalar superscalar superscalar
8 2.370 1.885 1.711 1.587
16 1.827 1.581 1.455 1.401
32 1.433 1.363 1.280 1.264
48 1.283 1.275 1.213 1.211
64 1.196 1.226 1.176 1.183
96 1.108 1.175 1.137 1.155
128 1.057 1.148 1.117 1.140
160 1.036 1.131 1.104 1.131
192 1.014 1.120 1.096 1.125
224 1.004 1.112 1.090 1.121
256 0.994 1.105 1.085 1.117

summarized in Table 5.7. We attain speedups of 2.37 and 1.71 whenZ = 8 on a single-

issue processor and a 4-way superscalar processor, respectively. As the number of input

bytes per round key computation increases, the speedups decrease to 1.11 or less, however.

This occurs because the relative computational cost of the CP decreases as the number

of input bytes per round key computation increases. Consequently, the CP performance

acceleration caused by the mapping instructions becomes less significant.

We obtain different results when we complete all DES permutations of interest, i.e.,

the IP, FP, CP, and PP, usingsieve andswperm . The speedup results for this case are

summarized in Table 5.8. For a single-issue processor with a small cache, we achieve a

speedup of 3.71 whenZ = 8. As the number of input bytes per round key computation

increases, the speedup falls to 1.57. The single-issue processor experiences a much larger

performance improvement for all values ofZ in the IP/FP/CP/PP optimization case than

in the IP/FP/CP case due to memory system behavior. When the PP is built into the S-box

lookup tables, the amount of memory required to store the tables and intermediate values
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Table 5.8: DES speedups for IP/FP/CP/PP optimization

DES Speedup
Z 1-way 2-way 4-way 8-way

superscalar superscalar superscalar superscalar
8 3.707 1.669 1.527 1.402
16 2.854 1.357 1.266 1.190
32 2.227 1.144 1.093 1.055
48 1.982 1.061 1.026 1.003
64 1.830 1.015 0.990 0.977
96 1.722 0.967 0.955 0.950
128 1.664 0.943 0.937 0.937
160 1.628 0.927 0.925 0.928
192 1.604 0.917 0.917 0.923
224 1.586 0.910 0.912 0.919
256 1.573 0.904 0.908 0.916

exceeds the size of the single-issue processor’s data cache. As a result, performance suffers

due to frequent cache misses. By implementing the PP using the proposed mapping in-

structions, the number of cache misses experienced by the single-issue processor is greatly

reduced, and therefore performance is significantly enhanced.

The wider processors do not suffer many cache misses because their caches easily ac-

commodate the S-box lookup tables. Consequently, reducing the size of the lookup tables

by implementing the PP with mapping instructions actually degrades performance for any

value ofZ greater than 64 on the superscalar processors. This results from the fact that

the PP optimization increases the dynamic instruction count, for the S-box table lookups

must be performed regardless of whether we incorporate the PP into the S-box tables or we

implement the PP using the new mapping instructions. Thus, we achieve the highest per-

formance for 2-way and wider processors when we only use the permutation instructions

to implement the IP, FP, and CP.
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We conclude that we should always employ the proposed mapping instructions to per-

form the IP, FP and CP in software implementations of DES. When using DES as a cryp-

tographic hash function, the performance impact of the proposed mapping instructions is

substantial: we obtain speedups ranging from 1.59 to 2.37. Software implementations of

DES should only use 1-bit mapping instructions to perform the PP if the target processor

contains an extremely small or non-existent cache, however. This is often true for proces-

sors found in smart cards and wireless information appliances. Such processors containing

a Mapping Unit could achieve large speedups for DES encryption without incurring the

cost and power consumption associated with the extra memory required by table lookup

schemes.

5.7 Summary

This chapter examines architectural techniques for improving the performance of crypto-

graphic software. As the popularity of cryptographically-enabled secure systems grows,

cryptographic processing consumes an increasingly larger percentage of processor work-

loads. Hence, in order to avoid significant system performance degradation, cryptographic

algorithms such as bulk encryption should be accelerated. Many popular cryptographic

procedures such as the DES encryption algorithm perform permutations and non-bijective

mappings of subwords packed in registers to achieve desirable security properties. Existing

general-purpose processors do not efficiently support such operations, however.

This chapter proposes two 64-bit processor instructions for accelerating the perfor-

mance of subword permutations and non-bijective mappings:swperm andsieve . In

addition to defining the operation of the instructions, the chapter describes associated soft-

ware routines and efficient hardware implementations for the instructions. Using the en-

hancements, we can complete 64-bit mappings of 4-bit or larger subwords in 1 instruction.
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In addition, we can perform 64-bit mappings of 1-bit and 2-bit subwords using 11 instruc-

tions and 5 instructions, respectively. These instructions are highly parallelizable, and a

4-way superscalar processor can execute these two instruction sequences in 4 cycles and 3

cycles, respectively. This improves upon previous results by requiring fewer instructions

to map or permute 4-bit or larger subwords packed in a 64-bit register and fewer execution

cycles for 1-bit subwords on wide superscalar processors.

We also demonstrate that we can accelerate the performance of the popular DES block

cipher using the proposed instructions. We obtain significant DES performance improve-

ments in constrained embedded environments, and we achieve significant acceleration

when applying DES as a cryptographic hash function on superscalar processors. Further-

more, using these bit-level mapping instructions, cryptographers can design future ciphers

and hash algorithms that obtain a desirable level of diffusion more rapidly. As a result,

fewer encryption rounds may be required to achieve adequate security, and the throughput

of encryption algorithms can be significantly improved [96].



Chapter 6

A Hardware Defense against Buffer

Overflows

This chapter presents a hardware-based solution that prevents a common class of buffer

overflow attacks in software. This mechanism enables built-in security for software that

supplements the cryptographic security and performance enhancement techniques provided

by previous chapters.

Buffer overflow vulnerabilities in the memory stack continue to pose serious threats

to system security. By exploiting these vulnerabilities, a malicious party can strategically

overwrite the return address of a procedure call and obtain control of a system. Following a

successful buffer overflow intrusion, the attacker can use the system to infect other systems

or expose sensitive information such as cryptographic keys.

We add a Secure Return Address Stack (SRAS) to the processor to provide built-in

protection against buffer overflow attacks involving procedure return address corruption.

The protection provided by this processor-based defense is transparent and dynamic, and

it does not require any effort by users or application programmers. Thus, this defense can

mitigate common vulnerabilities in cryptographic, application, and operating system soft-

ware. The contributions of this chapter are based in part on the work previously published

by the author in [93, 94, 103].

171
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This chapter is organized as follows. Section 6.1 defines buffer overflow vulnerabilities

and attacks. Section 6.2 discusses previous approaches to solving the problem. Section 6.3

describes a Secure Return Address Stack. This section discusses hardware return address

stacks in existing processors and presents architectural and OS changes that achieve strong

protection. Section 6.4 considers methods for handling abnormal procedure control flow.

Section 6.5 analyzes the security improvement provided by the proposed enhancements.

Section 6.6 investigates the performance impact of this proposal. Section 6.7 compares

the benefits of the SRAS to the features of previously proposed software-based solutions.

Section 6.8 summarizes this chapter.

6.1 Buffer Overflows and Return Address Corruption

Buffer overflows have caused security problems for decades. In 1988, the Morris Worm

infected a significant percentage of Internet-connected computers using a buffer overflow

attack as a method of intrusion. The Code Red worm and its variants, which peaked during

the summer of 2001, exemplify the severity of problems that buffer overflow vulnerabilities

continue to cause. Code Red spread by taking advantage of a buffer overflow problem

in Microsoft IIS. The total economic cost of Code Red is estimated to be $2.6 billion

[116]. In addition, various intrusion tools that establish distributed denial of service (DDoS)

networks often exploit buffer overflow vulnerabilities to compromise oblivious hosts [65].

Despite existing countermeasures, buffer overflow vulnerabilities continue to plague

computer systems and networks. Table 6.1 shows the percentages of CERT Advisories

from 1996 to 2003 relating to buffer overflows [32].1 In 2003, more than 60 percent of

CERT advisories involved buffer overflow. Furthermore, buffer overflow weaknesses play

a very significant role in the 20 most critical Internet security vulnerabilities identified by

1Since 2003, CERT has been using a new system for informing the public of security alerts and vulnera-
bilities. CERT advisories are now a core component of CERT’s Technical Cyber Security Alerts.
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Table 6.1: CERT buffer overflow advisories

Total Advisories involving PercentYear
advisories buffer overflow buffer overflow

1996 27 5 18.52%
1997 28 15 53.57%
1998 13 7 53.85%
1999 17 8 47.06%
2000 22 2 9.09%
2001 37 19 51.35%
2002 37 22 59.46%
2003 28 17 60.71%

the SANS Institute and the FBI [138].

The majority of buffer overflow attacks involve corruption of procedure return ad-

dresses in the memory stack. During the execution of a procedure call instruction, the

processor transfers control to code that implements the target procedure. Upon complet-

ing the procedure, control is returned to the instruction following the call instruction. This

transfer of control occurs in a LIFO (i.e., Last In First Out) fashion, which is also termed

stack or properly nested fashion. Thus, a procedure call stack, which is a LIFO data struc-

ture, is used to save the state between procedure calls and returns. We describe stack behav-

ior and buffer overflow attacks for the IA-32 architecture [67], but the general procedures

apply to all conventional instruction set architectures (ISAs).

Figure 6.1 illustrates the operation of the memory stack for the example program shown

in Figure 6.2. The memory stack consists of a set of stack frames; a single frame is allocated

for each procedure (e.g.,g) that has yet to return control to an ancestor procedure (e.g.,f ).

The stack pointer (SP) points to the top of the stack frame of the procedure that is currently

executing, and the frame pointer (FP) points to the base of the stack frame for the currently

executing procedure.
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Figure 6.1: Buffer overflow attack

  

buffer overflow attacks for the IA-32 architecture [11], but the 
general procedures apply to all conventional ISAs.   

Figure 1 illustrates the operation of the memory stack for 
the example program shown in Figure 2.  The memory stack 
consists of a set of stack frames; a single frame is allocated for 
each procedure (e.g., ) that has yet to return control to an 
ancestor procedure.  The stack pointer (SP) points to the top of 
the stack frame of the procedure that is currently executing, 
and the frame pointer (FP) points to the base of the stack 
frame for the currently executing procedure. 

When function  calls , a new stack frame is 
pushed onto the stack.  The stack on the left of Figure 1 shows 
the state of the memory stack immediately following the call 
to .  The new frame includes the input pointers  and , 
the procedure return address, the frame pointer, and the local 
variables  and .  Upon completing , the program 
should return to the return address stored in ’s stack frame; 
this address should equal the location of the instruction 
immediately following the call to  in the function .  
The SP and the FP should also be restored to their former 
values, and the stack frame belonging to  should be 
effectively popped from the stack. 

A security vulnerability exists in the code shown in Figure 
2 because  does not perform bounds checking.  In 
the function , if the string to which  points exceeds the 
size of ,  will overwrite data located adjacent to 

 in the memory stack.  A malicious party can exploit this 
situation by strategically constructing a string that contains 
malicious code and a corrupted return address.  If  points to 
such a string,  will copy malicious code into the 
stack, and the return address in ’s stack frame will be set 
to the initial instruction of the malicious exploit code.  This is 
illustrated in Figure 1.  Consequently, once  completes, 
the program will jump to and execute the exploit code instead 
of returning control to .  There are many variations of this 
form of attack [13], but the majority relies on the ability to 
modify the return address.  For example, rather than the 
attacker injecting his own exploit code, the return address may 
be modified to point to legitimate, preexisting code that can be 
used for malicious purposes. 

 

III. PAST WORK  

Researchers have proposed many software-based 
countermeasures for buffer overflow exploits.  These methods 
differ in the strength of protection provided, the effects on 
performance, and the ease with which they can be effectively 
employed.  One solution is to store the stack in non-executable 
pages.  This can prevent an attacker from executing code 
injected into the memory stack.  However, the return address 
may instead be redirected to preexisting code in memory that 
the attacker wishes to run for malevolent reasons.  In addition, 
it is difficult to preserve compatibility with existing 
applications, compilers, and operating systems that employ 
executable stacks.  For instance, Linux depends on executable 
stacks for signal handling. 

StackGuard is a compiler-based solution involving a patch 
to  that defends against buffer overflow attacks that 

corrupt procedure return addresses [7].  In the procedure 
prologue of a called function, a “canary” value is placed on 
the stack next to the return address, and a copy of the canary is 
stored in a general-purpose register.  In the epilogue, the 
canary value in memory is compared to the canary register to 
determine whether a buffer overflow has occurred.  The 
application randomly generates the 32-bit or 64-bit canary 
values, so the application can detect improper modification of 
a canary value resulting from a buffer overflow with high 
probability.  However, there exist attacks that can circumvent 

TABLE I. CERT BUFFER OVERFLOW ADVISORIES 

Year Advisories 

Advisories 

involving buffer 

overflow 

Percent 

buffer 

overflow 

1996 27 5 18.52 % 

1997 28 15 53.57 % 

1998 13 7 53.85 % 

1999 17 8 47.06 % 

2000 22 2 9.09 % 

2001 37 19 51.35 % 

int f() 
{ 
    … 
    g(x, y); 
    … 
} 
 
int g(char * x,  
      char * y) 
{ 
    int a; 
    char b[64]; 
    … 
    strcpy(b, x); 
    … 
    return; 
} 

FIGURE 2.  VULNERABLE CODE EXAMPLE 
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When functionf() callsg() , a new stack frame is pushed onto the stack. The stack

on the left of Figure 6.1 shows the state of the memory stack immediately following the call

to g() . The new frame includes the input pointersx andy , the procedure return address,

the frame pointer, and the local variablesa andb. Upon completingg() , the program

should return to the return address stored ing’s stack frame; this address should equal the

location of the instruction immediately following the call tog() in the functionf() . The

SP and the FP should also be restored to their former values, and the stack frame belonging

to g() should be effectively popped from the stack.

Because the functionstrcpy() does not perform bounds checking, a security vulner-

ability exists in the code shown in Figure 6.2 if the source ofx is not guaranteed to limit the

buffer size to whichx points. In the functiong() , if the string to whichx points exceeds

the size ofb, strcpy() will overwrite data located adjacent tob in the memory stack.

A malicious party can exploit this situation by strategically constructing a string that con-

tains malicious code and a corrupt return address. Ifx points to such a string,strcpy()

will copy malicious code into the stack, and the return address ing() ’s stack frame will

be set to the initial instruction of the malicious exploit code. This is illustrated in Figure

6.1. Consequently, onceg() completes, the program will jump to and execute the exploit

code instead of returning control tof() . In addition, after the exploit code is executed,

the exploit code may return control tof() and therefore a user may not become aware

that an attack actually occurred. There are many variations of this form of attack [82], but

the majority relies on the ability to modify the return address. For example, rather than

the attacker injecting his own exploit code, the return address may be modified to point to

legitimate, preexisting code that can be used for malicious purposes.
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6.2 Past Work

Researchers have proposed many software-based countermeasures for buffer overflow ex-

ploits. These methods differ in the strength of protection provided, the effects on perfor-

mance, and the ease with which they can be effectively employed. One solution is to store

the stack in non-executable pages. This can prevent an attacker from executing code in-

jected into the memory stack. However, the return address may instead be redirected to

preexisting code in memory that the attacker wishes to run for malevolent reasons. In addi-

tion, it is difficult to preserve compatibility with existing applications, compilers, and op-

erating systems that employ executable stacks. For instance, Linux depends on executable

stacks for signal handling [37].

StackGuard is a compiler-based solution involving a patch to the C compilergcc that

defends against buffer overflow attacks that corrupt procedure return addresses [37]. In

the procedure prologue of a called function, a “canary” value is placed on the stack next

to the return address, and a copy of the canary is stored in a general-purpose register. In

the epilogue, the canary value in memory is compared to the canary register to determine

whether a buffer overflow has occurred. The application randomly generates the 32-bit or

64-bit canary values, so the application can detect improper modification of a canary value

resulting from a buffer overflow with high probability. However, there exist attacks that

can circumvent StackGuard’s canaries to successfully corrupt return addresses and defeat

the security of the system [20].

StackGhost employs the SPARC architecture’s register windows to defend against buffer

overflow exploits [54]. Return addresses that have stack space allocated in register win-

dows are partially protected from corruption. The OS has the responsibility of spilling and

filling register windows to and from memory, and once a return address is stored back in

memory, the return address is potentially vulnerable. Various methods of protecting such

spilled stacks are defined. Buffer overflow protection without requiring re-compilation of
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application source code is a benefit of StackGhost, but the technique is only applicable to

SPARC systems [154].

Researchers have also proposed using more secure (or safe) dialects of C and C++, for

a high percentage of buffer overflow vulnerabilities can be attributed to features of the C

programming language. Cyclone is a dialect of C that focuses on general program safety,

including the prevention of stack smashing attacks [64]. Safe programming languages have

proven to be very effective in practice. While programs written in Cyclone may require less

scrupulous checking for certain types of vulnerabilities, the downside is that programmers

have to learn the numerous distinctions from C, and legacy application source code must

be rewritten and recompiled. In addition, safe programming dialects can cause significant

performance degradation and executable code bloat.

Methods for the static, automated detection of buffer overflow vulnerabilities in code

have also been developed [165, 166, 167]. Using such techniques, complex application

source code can be scanned prior to compilation in order to discover potential buffer over-

flow weaknesses. The detection mechanisms are not perfect: many false positives and false

negatives can occur. Also, as true with Cyclone, these techniques ultimately require the

programmer to inspect and often rewrite sections of application source code.

Transparent run-time defenses have also been proposed. The dynamically loaded li-

brarieslibsafe and libverify provide a run-time defense against stack smashing

attacks and do not require programs to be re-compiled [10].libsafe intercepts unsafe

C library functions and performs bounds-checking to protect frame pointers and return ad-

dresses.libverify protects programs by saving a copy of every function and every

return address in the heap. The first instruction of the original function is overwritten to

execute code that stores the return address and jumps to the copied function code. The

return instruction in the copied function is replaced with a jump to code that verifies the

return address before returning.

The downside tolibsafe is that it only defends against buffer overflow intrusions
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resulting from certain C library functions. In addition, static linking of these C library

functions in a particular executable precludeslibsafe from protecting the program. Im-

plementations oflibverify can double the code space required for each process, which

is taxing for embedded devices with limited memory. Also,libverify can degrade

performance by as much as 15% for some applications.

6.3 A Secure Return Address Stack

We now describe low-cost enhancements to the core hardware and software of future pro-

grammable machines that enable the detection and prevention of return address corruption.

The examination of potential solutions at the hardware architecture level is justified by the

frequency of this type of attack, the number of years it has been causing problems, and the

continuing emergence of such problems despite existing software solutions.

We modify the implementation of procedure call and return instructions, employ a spe-

cial hardware return address stack, and present a secure method for swapping the contents

of the hardware stack to and from memory. Since we do not require changes to program-

ming languages or application source code, both legacy and future software applications

can benefit from the security provided by these enhancements.

6.3.1 Hardware Return Address Stacks

The branch target of a procedure return instruction is often calculated using the contents

of one or more registers and/or memory words. Therefore, the target address cannot be

resolved until the return instruction has passed through several stages of the processor

pipeline. This address resolution delay can lead to performance degradation due to pipeline

stalls. Figure 6.3 illustrates a simple 5-page processor pipeline that experiences a multi-

cycle stall due to delayed return address resolution. In the figure,ret (R31) represents a
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Figure 6.3: Pipeline stall caused by a return instruction

return instruction that does not resolve the return address until the memory access (MEM-

ORY) stage of the pipeline, andtarget represents the instruction pointed to by the correct

return address. Thepredecessorandsuccessorinstructions are the instructions that imme-

diately precede and immediately follow the return instruction in the static program, respec-

tively. Upon decoding the return instruction in the DECODE stage, the processor stalls the

FETCH stage until the return address is obtained in the MEMORY stage. In the following

cycle, the successor instruction is discarded, and the return target instruction is fetched.

Thus, the arrow in the figure represents a control dependence, and the total performance

penalty caused by the return instruction is 3 cycles.

Due to the LIFO nature of procedure calls, a simple stack structure that stores return

addresses can alleviate such performance penalties by facilitating highly accurate predic-

tion of the return instruction targets [71, 170]. Many processors, such as the Alpha 21164
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[29] and the Alpha 21264 [30], employ such return address stacks (RAS) to improve per-

formance by predicting procedure return addresses early in the pipeline.

Processor branch predictors can employ a hardware return address stack in conjunction

with a branch target buffer (BTB) as illustrated in Figure 6.4. Branch target buffers are

on-chip memory structures that store expected instruction address targets for non-return

branch instructions. Upon executing a procedure call instruction, an entry from the BTB

that is indexed by the program counter (PC) is used as the predicted target of the call

instruction. The address of the following instruction (i.e., the return address) is pushed

onto the RAS. During the execution of a return instruction, the topmost entry of the RAS

is popped and used as the predicted target (instead of using an entry from the BTB). The

RAS is unaffected during the target prediction of other branch and jump instructions. RAS

structures are often implemented as circular buffers. When overflow of the RAS occurs,

the least recently pushed address is overwritten with the value of the most recent return

address. We henceforth refer to the hardware return address stack as theRAS, and we refer

to the call stack for storing local variables and return addresses in memory as thememory

stack.

Unfortunately, the RAS provides no protection against corruption of the return ad-

dresses in the memory stack. This is because the processor treats the RAS contents as

branch prediction “hints” that are expected to be correct most but not all of the time. When

a call instruction is executed, a valid return address is pushed on to the hardware RAS,

and depending on the ISA, the return address may also be stored in the memory stack.

Suppose the return address is subsequently corrupted by a buffer overflow in memory. At

the moment when a valid return instruction is fetched, the corrupt address is located in a

register or a memory location specified by the return instruction. Upon full execution of

this instruction, the processor learns that the value popped from the hardware RAS does not

equal the return address associated with the instruction. However, rather than jump to the

correct return address popped from the hardware RAS, the processor flushes the pipe and
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Figure 6.4: Branch target prediction with the BTB and the RAS

starts executing instructions beginning at the corrupt return address. The instructions based

upon the correct return address from the RAS, which the processor issued and executed

speculatively, are all nullified.

6.3.2 Architectural Modifications

By using special protected hardware and memory structures, we can defend against return

address corruption in the memory stack. We define a special hardware RAS, the Secure

Return Address Stack (SRAS), which always provides correct, uncorrupt return addresses.

To properly employ the SRAS, we first modify the operation of procedure call and return

instructions. We require that these call and return instructions are clearly recognizable. For

instance, in a RISC ISA, abranch and link instruction is identified as a procedure

call, and abranch to the link register (such asR31) is identified as a procedure return

instruction [90].

We maintain the ISA definitions and visible behavior of call and return instructions, but

we alter the manner in which the processor executes these instructions. Upon executing a
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procedure call instruction, the processor always pushes the return address onto the top of

SRAS. The program counter is set to the target of the call instruction. When a processor

executes a return instruction, the return address popped from the top of the hardware SRAS

— not the target specified by a register or memory value — is assigned to the proces-

sor’s program counter. The processor then determines whether the return address from the

memory stack equals the return address popped from the SRAS. If these addresses differ,

corruption of the memory stack’s return addresses has occurred, and the processor may

terminate the current process, may inform the OS of the corruption by issuing a new in-

valid return address trap, or may continue execution of the program based upon the correct

address popped from the secure RAS.

6.3.3 Swapping Contents of the SRAS

For the SRAS to satisfy the security goals articulated above, the SRAS must maintain all

of the return addresses represented in a program’s memory stack. Though a program may

employ an essentially unbounded degree of nesting, a hardware stack (such as the SRAS)

can only contain a finite number of entries. Thus, to avoid overwriting valid addresses

in the SRAS, we must define an efficient method for the processor to securely swap the

contents of the SRAS to memory when the SRAS becomes completely full. We define the

event in which the SRAS becomes full following a call instruction asSRAS overflow; the

event where the SRAS becomes empty following a return is defined asSRAS underflow.

We discuss the typical stack depth sizes observed for common programs in Section 6.6

The SRAS core consists of ann-address stack implemented as a circular buffer. Upon

overflow, the processor will store then/2 least recently pushed addresses to memory. Upon

underflow, the processor will retrieve up ton/2 most recently pushed addresses from mem-

ory. The processor stores and retrievesn/2 addresses to and from memory rather than alln
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addresses to prevent an SRAS thrashing scenario. In some programs, a policy of transfer-

ring the entire contents of the SRAS could lead to frequent storage of all SRAS addresses

to memory immediately followed by the retrieval ofn SRAS addresses from memory. We

now investigate two different approaches to handling SRAS swapping: operating system-

managed and processor-managed swapping.

OS-managed SRAS Swapping.In the first approach, the operating system assumes

complete responsibility for swapping SRAS entries. In the events of SRAS overflow or

underflow, the processor issues an OS interrupt. The OS then executes code that transfers

contents of the SRAS to or from memory; the application does not observe or participate

in SRAS content transfers. The kernel is responsible for managing the memory structures

required to store the spilled SRAS entries for all threads running on the system. This

is achieved by simply maintaining one stack of spilled SRAS return addresses for each

process. In addition, the virtual memory regions that store the SRAS contents are mapped

to physical pages that can only be accessed by the kernel. Hence, user-level application

threads cannot corrupt the contents of their respective spilled stacks.

Processor-managed SRAS Swapping.In this scheme, we implement hardware en-

hancements to reduce the number of OS invocations associated with SRAS overflow and

underflow. Figure 6.5 illustrates the hardware components required to support this SRAS

swapping approach. We store information in the processor concerning the physical memory

locations of the OS-managed data structures that contain spilled SRAS addresses. Upon

SRAS underflow or overflow, the processor can employ this information to directly transfer

SRAS contents to and from physical memory rather than invoking the OS. To support this

functionality, the processor maintains two pointers to two physical pages that store spilled

SRAS contents for the active process. Also, the processor maintains a counter that indicates

how much space is available in the two physical pages. Although the two pages may be

virtually or physically separated in memory, the two pages are treated as being adjacent to

form a single “superpage”. When the superpage underflows or overflows, the OS is invoked
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Figure 6.5: Hardware enhancements for processor-managed swapping

to allocate a new physical page or deallocate one of the two physical pages.

The processor maintains two pointers to two physical pages rather than one pointer

for one physical page in order to avoid a thrashing scenario in which a page is repeatedly

allocated and immediately deallocated. In such a thrashing situation, the OS could be

invoked for every SRAS spill and fill, and performance would decay. By providing the

processor with access to two physical frames at once, we can avoid calls to the OS caused

by jumping back and forth over a page boundary. The processor logic required to manage

the two pointers and the counter is based upon a simple 4-state machine.

Figure 6.6 illustrates this state machine, which consists of the states A, B, C, and D.

The two bits that represent the state are stored by the processor in the high order bits of

the counter. State A is the starting state of the machine, in which the SRAS has never

overflowed and the two page pointers are empty. B is the state in which the two page

pointers point to the only two pages that have been allocated by the OS for SRAS overflows

in the current process. We call these two pages the “base superpage”. C and D represent

the states in which three or more pages have been allocated by the OS for SRAS overflows

in the current process. State C indicates that Pointer 1 points to the high-order page of

the superpage, and State D indicates that Pointer 2 points to the high-order page of the

superpage. States C and D could be consolidated, but such a consolidated state may require
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the processor to swap the values of Pointers 1 and 2 upon superpage overflow or underflow.

Note that the state machine presented in Figure 6.6 is only one of many possible machines

for supporting the processor-managed swapping scheme.

The OS is invoked much less often in this scheme than in the OS-managed swapping

scheme. For example, if the SRAS consists of 64 8-byte return address entries and the

page size is 8 KB, the OS is invoked only once after8192/((64/2)× 8) = 32 consecutive

SRAS overflows. In the OS-managed scheme, the OS would be invoked for each of those

32 SRAS overflows. In Section 6.6, we compare the performance impact of these two

schemes on a set of benchmark programs.

We also note that since the values popped from the SRAS must always be valid to

preserve correct execution, all of the SRAS contents and any associated configuration state

bits must be transferred to and from memory on context switches.
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6.4 Non-LIFO Procedure Control Flow

If software always exhibited LIFO procedure control flow behavior, the SRAS would trans-

parently provide hardware-based protection of return addresses for all programs. No com-

piler changes or recompilation of existing source code would be necessary; the system

would provide protection for all legacy and future binary executables. Unfortunately, how-

ever, some existing executables use non-LIFO procedure control flow. For example, some

compilers seek to improve performance by allowing certain procedures to return to an ad-

dress located deep within the stack. The memory stack pointer is then set to an address of

a frame buried within the stack; the frames located in between the former top of the stack

and the reassigned stack pointer are effectively popped and discarded. Exception handling

in C++ is one technique that can lead to such non-LIFO behavior.

Other common causes of non-LIFO control flow are the Csetjmp andlongjmp li-

brary functions. These functions are employed to support software signal handling. The

longjmp function may cause a program to return to an address that is located deep within

the memory stack or to an address that is no longer located in the memory stack. More

specifically, a particular return address may be explicitly pushed onto the stack only once,

but procedures may return to that address more than once. Note that tail call optimizations,

which seem to involve non-LIFO procedure control flow, do not cause problems for the

SRAS. Compilers typically maintain proper pairing of procedure call and return instruc-

tions when implementing tail call optimizations.

The security of this proposal depends on the correctness of the address popped from

the top of the hardware SRAS. However, the SRAS mechanism described so far does not

accommodate non-LIFO procedure control flow. We can address this issue in at least four

ways. These four options, which we summarize in Table 6.2, trade varying degrees of

security and non-LIFO support for implementation cost and complexity.

The first two options enable zero or complete support for non-LIFO behavior while
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Table 6.2: Non-LIFO procedure control flow handling options

Non-LIFO Permits Provides ISA Compiler
control flow non-LIFO complete changes changes

handling method control flow protection
None No Yes No No

sras off option Yes No Yes No
Static handling Yes Yes Yes Yes

Dynamic handling Some Yes Yes No

facilitating high or low security against procedure return address corruption, respectively.

The first option is to implement the SRAS as described above and completely prohibit

code and compiler practices that employ non-LIFO procedure control flow. This provides

the highest degree of security against return address corruption. Legacy executables that

exhibit non-LIFO procedure calling behavior will terminate with an error (if not recom-

piled). The second option is to allow users to disable the SRAS with a new privileged

sras off instruction. This enables the execution of potentially insecure code that ex-

hibits any non-LIFO behavior as permitted in systems without an SRAS. After executing

sras off , the OS can re-enable the SRAS at any time by executing a new privileged

sras on instruction.

The third option is to permit certain types of non-LIFO procedure control flow, such as

returning to addresses located deep within the stack. This option requires re-compilation of

some legacy programs. During re-compilation, the compiler must take precautions to en-

sure that the top of the SRAS will always contain the correct target address for an executed

return instruction in programs that use non-LIFO techniques. We define new instructions,

sras push andsras pop , which explicitly push and pop entries to and from the SRAS

without actually calling or returning from a procedure. Compilers can employ these new

instructions to return to an address deep within the SRAS (and to the associated frame in
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the memory stack) when usinglongjmp , C++ exception handling, or other non-LIFO

routines.

The fourth option is to provide dynamic support for common non-LIFO behavior. This

approach does not support all instances of non-LIFO behavior that the second option can

handle via re-compilation, but it does allow execution of some legacy executables (where

the source code is no longer available) that exhibit non-LIFO procedure control flow. First,

we implement thesras push and sras pop instructions described above. We also

need an installation-time or run-time software filter that strategically injectssras push

andsras pop instructions (as well as other small blocks of code) into binaries prior to or

during execution. The software filter inserts these instructions in recognized routines that

cause non-LIFO procedure control flow. For instance, standardized functions likesetjmp

andlongjmp can be identified at run-time via inspection of linked libraries such aslibc .

This option handles only executables that employ known non-LIFO techniques, however.

For new manifestations of non-LIFO procedure control flow, the software filter may not

identify some locations where the new instructions should be inserted.

Regardless of the method(s) used to handle non-LIFO procedure control flow, we re-

quire that the SRAS be “turned on” by default in order to provide built-in protection. To

disable the SRAS, a user (at his own risk) must explicitly “turn off” the SRAS.

6.5 Security Analysis

The primary design goal is to prevent attacks in which hostile code is injected and executed

on innocent hosts by exploiting buffer overflow vulnerabilities that corrupt procedure return

addresses. The modifications described above accomplish this goal: an architecture based

on a Secure Return Address Stack detects and prevents corruption of return addresses. In

the proposed system, only call and return instructions can modify the contents of the SRAS.

Hence, the correct return addresses will be preserved in the event of a standard buffer
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overflow attack that corrupts the values of return addresses in the memory stack. If such

corruption does occur in memory, the processor detects this and can respond appropriately.

Since the SRAS is finite in size, its contents must be securely swapped to and from

memory upon overflow and underflow, respectively, to guarantee security. In both the OS-

managed and processor-managed SRAS schemes, we protect spilled SRAS contents by

storing the addresses in physical pages that are not accessible by the virtual memory spaces

of user-level applications. Because non-kernel processes cannot access the contents spilled

from their respective SRASes, no software bug or buffer overflow vulnerability in such

processes can affect the spilled return addresses.

To provide truly pervasive and comprehensive protection against buffer overflow and

related attacks, the SRAS solution should be implemented in conjunction with existing

software defenses. Such software-based defenses include static scanning methods and safe

programming practices, which can identify and mitigate a variety of security vulnerabil-

ities. The SRAS proposal complements these defenses by offering specialized dynamic

protection for legacy code and by preventing potential attacks in new code that may be

unrecognized by the software defenses. In addition, since we require changes to hardware,

this proposal is meant to be a long-term solution. Software defenses, however, can and

should be applied as they become available.

6.6 Performance Analysis

We now examine the performance impact of spilling and retrieving the contents of the

SRAS to and from memory during program execution. The architectural enhancements that

we propose enable security features for all programs, rather than just for network-based or

cryptographic applications. Because of this, a performance study that examines the impact

of the proposed architectural changes on all programs is more useful than one limited to
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specific applications. Thus, we use the SPEC2000 benchmarks as a representative comput-

ing workload, for this benchmark suite is commonly used to evaluate the performance of

general-purpose processors [155].

6.6.1 Simulation Methodology

To obtain performance data for the benchmarks, we use SimpleScalar, a cycle-accurate

out-of-order superscalar processor simulator [21]. We consider the scenario in which the

operating system is invoked each time a SRAS swap is required and the scenario where

the processor primarily handles SRAS swapping. The OS-managed swapping scheme is

easier to implement, but the processor-managed scheme can provide better performance.

We simulate the execution of 500 million instructions of 12 SPEC2000 integer benchmarks

after skipping at least 1 billion instructions in order to capture steady state behavior [137].

The base processor model closely represents an Alpha 21264 processor [30]. We sum-

marize the processor simulation parameters in Table 6.3. The base processor includes a

hardware return address stack. In some situations, speculative execution based on the pre-

diction of “non-return” branches, which we define to be any branch instructions that are not

procedure return instructions, can pollute the RAS with invalid return addresses. Hence,

to maintain the integrity of the SRAS, the processor must include a perfect repair mecha-

nism to recover from SRAS corruption due to “non-return” branch mispredictions [150].

Such mechanisms involve saving the top-of-stack (TOS) pointer and the return address to

which the TOS points following the prediction of a non-return branch instruction. If the

processor discovers that a particular branch was mispredicted and the wrong program con-

trol path was followed, the processor can use information such as the saved TOS to restore

the SRAS to its former, correct state (preceding the mispredicted non-return branch). Note

that, as described in Section 6.3.2, the processor can distinguish between non-return branch

instructions and return instructions by simply inspecting an instruction opcode.
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Table 6.3: SimpleScalar simulation parameters

Parameters Characteristics
Instruction window 64-entry RUU

Fetch/decode/issue width4 instructions
Commit Width 8 instructions

4 integer ALUs, 1 integer mult.Functional Units
4 FP ALUs, 1 FP multiplier

BTB 4K-entry, 2-way set associative
Hybrid: 4K 2-bit selector

Branch Predictor 4K 2-bit bimodal predictor
1K 2-bit local w/ 10-bit history
64 KB 2-way set-associativeL1 data cache
64 byte blocks, 2 cycle latency, 2 ports
64 KB 2-way set-associativeL1 instruction cache
64 byte blocks, 1 cycle latency
2 MB 4-way set-associativeL2 unified cache
64 byte blocks, 12 cycle latency

Main memory 100 cycle latency
Load/store queue 64 entries
I-TLB and D-TLB 128-entry fully associative
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We gather performance results for all 12 benchmarks, SRAS sizes of 16, 32, 64, 128,

and infinite entries, and page sizes of 8 KB, 16 KB, and 32 KB. To model the SRAS

swapping code in the OS-managed swapping scheme, we wrote a swapping and memory

management routine in C. We also wrote C code that models the allocation and deallocation

of physical pages during OS invocations in the processor-managed swapping scheme. We

compile the SPEC2000 benchmarks and the OS swapping code on an Alpha machine with

full optimizations to produce Alpha executables.

We simulate the execution of the SRAS swapping and page allocation routines assum-

ing the caches are initially cold. We obtain cycle counts for all four OS routines: spilling

the SRAS to memory in the OS-managed scheme, filling the SRAS from memory in the

OS-managed scheme, allocating a new physical page in the processor-managed scheme,

and deallocating a physical page in the processor-managed scheme. We find that each of

these four routines requires between 23,000 and 25,000 cycles to complete. These cycle

counts vary with the size of the SRAS.

In addition, we simulate the spilling and filling of SRAS contents directly to and from

physical memory in the processor-managed SRAS swapping scheme by stalling the proces-

sor for a number of cycles. This stall time represents the number of cycles required to

transfern/2 SRAS entries directly to or from main memory. The bus from the processor

to main memory in the system model can transfer one 64-bit value every two cycles after

an initial latency. In the event of underflow, the first load experiences the main memory

latency of 100 cycles, and then the(n/2− 1) subsequent addresses arrive at the processor

every other cycle for(n−2) cycles. Hence, the total stall time is(98+n) cycles. Similarly,

in the event of overflow in this scheme, the processor stalls for(98+n) cycles to storen/2

addresses to main memory.
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TABLE III. SIMPLESCALAR SIMULATION PARAMETERS 

Parameter Characteristics 

Instruction window 64-entry RUU 

Fetch/decode/issue width 4 instructions 

Commit Width 8 instructions 

Functional Units 
4 integer ALUs, 1 integer mult. 

4 FP ALUs, 1 FP multiplier 

BTB 4K-entry, 2-way set associative 

Branch Predictor 

Hybrid: 4K 2-bit selector 

4K 2-bit bimodal predictor  

1K 2-bit local w/ 10-bit history 

L1 data cache 
64 KB 2-way set-associative 

64 byte blocks, 2 cycle latency 

L1 instruction cache 
64 KB 2-way set-associative 

64 byte blocks, 1 cycle latency 

L2 unified cache 
2 MB 4-way set associative 

64 byte blocks, 12 cycle latency 

Main memory 100 cycle latency 

Load/store queue 64 entries 

Data memory ports 2 ports 

I-TLB and D-TLB 128-entry fully-associative 

TABLE IV. PERFORMANCE IMPACT OF SRAS SWAPPING 

Percent Performance Degradation 

for Different SRAS Sizes 

OS-managed  Processor-managed  

Bench-

mark 

16 32 64 128 16 32 64 128 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

67.9 0.0 0.0 0.0 1.0 0.0 0.0 0.0 

4.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

64.2 29.3 9.2 0.1 0.8 0.2 0.1 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

36.7 0.0 0.0 0.0 0.3 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Our base processor model closely represents an Alpha 
21264 processor [6].  We summarize the processor simulation 
parameters in Table III.  The base processor includes a 
hardware return address stack that is implemented as a circular 
buffer.  In some situations, speculative execution can pollute 
the RAS with invalid addresses.  Hence, to maintain the 
integrity of the SRAS, the processor must include a perfect 
repair mechanism to recover from SRAS corruption due to 
branch mispredictions [19].  Such mechanisms involve saving 
the top-of-stack (TOS) pointer and the return address to which 
the TOS points following the prediction of a branch 
instruction.  If the processor discovers that a particular branch 
was mispredicted and the wrong program control path was 
followed, the processor can use information such as the saved 
TOS to restore the SRAS to its former, correct state 
(preceding the mispredicted branch).   

We gather performance results for all 12 benchmarks, 
SRAS sizes of 16, 32, 64, 128, and infinite entries, and page 
sizes of 8 KB, 16 KB, and 32 KB.  To model the SRAS 
swapping code in the OS-managed swapping scheme, we 
wrote a swapping and memory management routine in C.  We 
also wrote C code that models the allocation and deallocation 
of physical pages during OS invocations in the processor-
managed swapping scheme.  We compile the SPEC2000 
benchmarks and our OS swapping code on an Alpha machine 
with full optimizations to produce Alpha executables.   

We simulate the execution of our SRAS swapping and 
page allocation routines assuming the caches are initially cold.  
We obtain cycle counts for all four OS routines: spilling the 
SRAS to memory in the OS-managed scheme, filling the 
SRAS from memory in the OS-managed scheme, allocating a 
new physical page in the processor-managed scheme, and 
deallocating a physical page in the processor-managed 
scheme.  We find that each of these four routines requires 
between 23,000 and 25,000 cycles to complete.  These cycle 
counts vary with the size of the SRAS.  

In addition, we simulate the spilling and filling of SRAS 
contents directly to and from physical memory in the 
processor-managed SRAS swapping scheme by stalling the 
processor for a number of cycles.  This stall time represents 
the number of cycles required to transfer n/2 SRAS entries 
directly to or from main memory.  The bus from the processor 
to main memory in our model can transfer one 64-bit value 
every two cycles after an initial latency.  In the event of 
underflow, the first load experiences the main memory latency 
of 100 cycles, and then the (n/2 – 1) subsequent addresses 
arrive at the processor every other cycle for (n – 2) cycles.  
Hence, the total stall time is (98 + n) cycles.  Similarly, in the 
event of overflow in this scheme, the processor stalls for (98 + 
n) cycles to store n/2 addresses to main memory. 

B. Performance Results 

Figure 4 illustrates maximum and mean depths of the return 
address stack associated with the benchmarks.  We observe 
that the return address stacks for the SPEC2000 benchmarks 
never exceed depths of 108 addresses.  The mean depths of the 
return address stacks for the SPEC2000 benchmarks range 
from 4.72 to 29.94 addresses.  Although Figure 4 provides an 

appropriate guide for choosing the SRAS size, the figure does 
not present precise information concerning the performance 
impact of the SRAS on the benchmarks.  The SRAS only 
negatively impacts performance when its contents are 
swapped to or from memory.  Hence, instead of hinging on 

Figure 6.7: Return address stack depths

6.6.2 Performance Results

Figure 6.7 illustrates maximum and mean depths of the return address stack associated with

the benchmarks. We observe that the return address stacks for the SPEC2000 benchmarks

never exceed depths of 108 addresses. The mean depths of the return address stacks for the

SPEC2000 benchmarks range from 4.72 to 29.94 addresses. Although Figure 6.7 provides

an appropriate guide for choosing the SRAS size, the figure does not present precise infor-

mation concerning the performance impact of the SRAS on the benchmarks. The SRAS

negatively impacts performance only when its contents are swapped to or from memory.

Hence, instead of hinging on maximum and mean stack depths, performance primarily

depends on the rates at which the memory stack (and thus the SRAS) grows and shrinks.

The performance penalties caused by SRAS swapping in the SPEC2000 benchmarks

are presented in Table 6.4. These statistics represent percent performance degradation
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Table 6.4: Performance impact of SRAS swapping

Percent Performance Degradation
for Different SRAS Sizes

Benchmark OS-managed Processor-managed
16 32 64 128 16 32 64 128

bzip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
crafty 5.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0

eon 67.9 0.0 0.0 0.0 1.0 0.0 0.0 0.0
gap 4.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0
gcc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

gzip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mcf 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

parser 64.2 29.3 9.2 0.1 0.8 0.2 0.1 0.0
perlbmk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

twolf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
vortex 36.7 0.0 0.0 0.0 0.3 0.0 0.0 0.0

vpr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

caused by ann-entry SRAS relative to the base machine model that includes ann-entry

return address stack. The entries listed in bold indicate the situations in which the per-

formance degradation exceeds 1%. For an SRAS size of 16 entries in the OS-managed

scheme, 6 of the 12 SPEC2000 integer benchmarks experience performance reductions

ranging from 4.7% to 67.9%. If the SRAS contains 64 entries, the performance degradation

caused by OS-managed swapping is negligible (i.e., 1% or less) for all benchmarks except

for parser , which sustains performance degradation of 9.2%. Theparser benchmark

is a syntactic parser of English in which the memory stack grows and shrinks quickly; thus,

SRAS swapping penalties can be significant. When the SRAS contains 128 or more entries,

the performance impact is negligible for all of the benchmarks.

In the processor-managed scheme, however, the performance degradation is less than

or equal to 1% for all of the benchmarks when using a SRAS of size 16 entries or greater.
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We therefore conclude that the processor-managed SRAS swapping scheme is superior

to the OS-managed SRAS swapping scheme. The processor-managed scheme achieves

much higher performance than the OS-managed scheme at the cost of a small, incremental

implementation effort. Furthermore, the incremental effort is partially offset by the smaller

number of entries needed in the SRAS to achieve acceptable performance.

6.7 Comparative Analysis

We compare the characteristics of the SRAS solution to past work in Tables 6.5 and 6.6.

Table 6.5 summarizes the system changes required by the different solutions. As shown

in the table, unlike safe programming languages and static analysis techniques, the SRAS

does not require source code changes. Furthermore, unlike StackGuard, the SRAS does

not require compiler changes (unless certain non-LIFO handling features are needed). The

SRAS and the other dynamic solutions (i.e., StackGhost,libsafe , and libsafe )

involve OS changes, and only the SRAS requires hardware enhancements.

Table 6.6 summarizes the capabilities and system impact of the different solutions. We

observe that the SRAS is the only solution that combines the features of strong protec-

tion against procedure return address corruption, wide applicability to various platforms,

a negligible increase in code size, and low performance impact. Furthermore, the SRAS

provides these features for both legacy code and new code.

6.8 Summary

This chapter examines hardware-based defenses against buffer overflow attacks. These

defenses help mitigate vulnerabilities in application and operating system software that

runs on general-purpose platforms.
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Table 6.5: Comparison of required system changes

Technique for defending Required changes
against return Source

address corruption code
Compiler OS Processor

Safe programming languages Yes Yes No No
Static analysis techniques Yes No No No

StackGuard No Yes No No
StackGhost No No Yes No
libsafe No No Yes No

libverify No No Yes No
SRAS No Noa Yes Yes

aCompiler changes may be required for certain programs depending on how non-LIFO procedure con-
trol flow is handled (see Section 6.4).

Table 6.6: Comparison of capabilities and system impact

Technique for defending Provides Applies to Application Adverse
against return complete many code size performance

address corruption protectionb platforms increase impact
Safe prog. languages Yes Yes Can be high Can be high

Static analysis techniques No Yes Varies Varies
StackGuard No Yes Low Moderate
StackGhost Yes No None Low
libsafe No Yes Low Low

libverify Yes Yes High Moderate
SRAS Yes Yes Nonec Low

bBy “complete protection”, we mean complete protection against buffer overflow addresses that directly
corrupt procedure return addresses.

cDepending on how non-LIFO procedure control flow is handled, some programs may experience a
very small increase in code size (see Section 6.4).
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Malicious parties routinely exploit buffer overflow vulnerabilities to enable the inser-

tion or execution of hostile code on an innocent user’s machine by corrupting procedure

return addresses in the memory stack. Such attacks can lead to disastrous consequences,

especially when the buffer overflow affects cryptographic software modules that are privy

to critical secrets such as cryptographic keys. Hence, addressing such buffer overflow vul-

nerabilities is a security priority. Although software-based countermeasures are available,

a processor architecture defense is justified because of the fact that major security problems

stemming from buffer overflows continue to plague networks and computer systems.

This chapter presents a processor-based, built-in, and low-cost layer of protection against

common buffer overflow vulnerabilities. Some processors contain return address stacks to

reduce performance penalties due to delayed branch resolution. We detail how a modi-

fied hardware return address stack can be used to protect return addresses. This modified

hardware-based stack, the Secure Return Address Stack (SRAS), detects and prevents cor-

ruption of procedure return addresses resulting from buffer overflow and other attacks.

The SRAS requires only minor changes to the operating system and to the branch pre-

diction structures found in many microprocessors, so legacy and future software can enjoy

the security benefits without requiring application source code modifications. Since the

SRAS is of finite size, various management and swapping methods are described and eval-

uated. This chapter demonstrates that the SRAS and the proposed management techniques

cause a negligible performance impact in most applications. Furthermore, since the SRAS

leverages branch prediction structures that may already be incorporated into the processor,

the hardware requirements for implementing this mechanism are minor.

This proposal is not meant to be the only defense against such attacks on cryptographic

and general software, however. We recommend that this proposal be used in conjunction

with other techniques to provide more robust protection against potential software vulner-

abilities.



Chapter 7

Conclusion

Many systems and proposals use cryptographic processing to realize certain essential se-

curity requirements. Examples of such requirements include confidentiality, integrity, and

authentication. However, important issues remain unaddressed in cryptographic system de-

signs and implementations. These problems include lack of protection for critical secrets

such as cryptographic keys, poor performance of cryptographic primitives, and general

dependability issues endemic to complex software such as latent buffer overflow vulnera-

bilities.

This thesis studied a set of architectural techniques for addressing these problems by

providing more secure and efficient cryptographic processing. In this chapter, we summa-

rize and reflect on the contributions of this thesis and propose directions for future research.

7.1 Securing and Accelerating Cryptographic Processing

This thesis presented four contributions towards enabling secure cryptographic processing.

These contributions were not intended to address all known cryptographic software security

and performance issues. Rather, these contributions address four important open problems

in security.

The first contribution, described in Chapter 3, is a software and hardware system for

198
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protecting users’ cryptographic keys on general-purpose computing devices. This system,

which is called Virtual Secure Coprocessing (VSCoP), allows users to safely and flexibly

store and exercise their cryptographic keys. Furthermore, VSCoP provides key protection

on devices with OS software and application software that may contain security vulnera-

bilities. The system provides protection against several classes of previously unaddressed

threats without requiring ancillary hardware. VSCoP requires a new cryptographic soft-

ware library and a few changes to the processor, the hardware platform, and the operating

system. The VSCoP modifications and enhancements enable protection for keys by effec-

tively modifying the access control paradigm and restricting the trusted boundary to the

physical boundary of the processor chip. Although modifications are made to several com-

ponents of the computing system, the modifications are low-cost and efficiently provide an

improved level of security for users’ keys.

The second contribution, described in Chapter 4, is a system for protecting certain cryp-

tographic keys that are distributed to other parties. The proposed system, called Traitor

Tracing using RSA (TTR), enables the traceability of decryption keys in broadcast encryp-

tion scenarios. In general, it is difficult to build commodity decryption devices that prevent

users in the field from extracting keys stored in the device and from subsequently divulging

those keys. Thus, in this chapter, instead of focusing on hardening decoding devices, re-

sources are applied to enabling traceability of decryption keys and related information. The

proposed TTR scheme guarantees traceability when the pirate decoding devices are created

by traitor collusions of size fewer than a thresholdk. Following the confiscation of a pirate

device, at least one “traitor” that supplied key information that enabled the creation of the

device can be uniquely identified. Thus, TTR relies on deterrence and mechanisms for attri-

bution to protect keys. Given the identities of one or more traitors, the legitimate owner of

the cryptographic keys can seek retribution or proper remuneration in other venues, e.g., the

judicial system. Furthermore, the new scheme achieves higher performance for decryption

than that of previously proposed traitor tracing systems.



CHAPTER 7. CONCLUSION 200

The third contribution, described in Chapter 5, consists of architectural enhancements

for fast bit-level permutations and mappings. Such bit-level operations consume signifi-

cant shares of the computation in software implementations of several cryptographic al-

gorithms. Hence, by accelerating these operations, the performance of critical security

primitives can be significantly increased. The architectural enhancements are based upon

two new processor instructions,swperm andsieve . This thesis demonstrated that these

instructions can be implemented and exercised via low-cost, high-performance processor

hardware and simple application software. Furthermore, this thesis showed that we can

use the new instructions to significantly improve the performance of the Data Encryption

Standard, especially when we use the algorithm as a hash function.

The last contribution, described in Chapter 6, is a processor-based method for dynami-

cally mitigating common software vulnerabilities. This proposal, called the Secure Return

Address Stack (SRAS), provides built-in, transparent protection against buffer overflow

attacks involving procedure return address corruption. Despite past proposals for software-

based remedies for these attacks, this type of buffer overflow vulnerability continues to

pose a serious threat to software modules. The SRAS prevents any undetectable procedure

return address corruption via low-cost processor and operating system enhancements. In

addition to improving the dependability of cryptographic software, we can apply the SRAS

to provide buffer overflow protection for any software.

7.2 Directions for Future Research

There exist several possible directions for both immediate and long-term extensions to the

contributions of this thesis.

Several of the components of VSCoP can be enhanced to provide additional capabili-

ties and features. We consider two of many possible enhancements here. For example, we

can improve the security provided by VSCoP by strongly authenticating any software that
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invokes the Cryptographic Operations Library (COL) software prior to servicing a COL

request. Furthermore, by abstracting and generalizing the VSCoP design, it is possible

to support multiple security compartments for protecting cryptographic keys and sensi-

tive information. Each of the compartments would be associated with an independent and

cryptographically enforced access and usage policy, which would be especially valuable in

multi-user systems. In the long term, we intend to investigate the efficient integration of

VSCoP with trusted computing platforms and related technologies. Through such integra-

tion, we can provide a more comprehensive foundation for secure computing.

Various aspects of the traitor tracing scheme can be improved and enhanced. By refin-

ing the security analysis of the scheme, we can achieve tighter bounds on certain system

parameters that will enable more efficient operation and decreased overhead. Furthermore,

we can investigate adding new features to the traitor tracing scheme. Such features include

support for public-key encryption or integration with digital fingerprinting techniques. Fu-

ture work in this area may include the exploration of different decoder hardware and soft-

ware architectures that incorporate the traitor tracing functionality.

This thesis proposed techniques for hardware-based acceleration of a limited set of

operations (i.e., bit-level mappings). However, other opportunities exist to improve the

performance of other security operations via architectural methods. One possible research

direction involves the exploration of new subword-parallel and other types of instructions

for accelerating a variety of cryptographic algorithms. Furthermore, future work may in-

clude applying series of the bit-level mapping and permutation instructions proposed by

this thesis to construct new ciphers that achieve the cryptographic property of diffusion

more rapidly. By achieving diffusion faster, less computation would be required to reach

a desired level of security. This could translate into further performance acceleration of

cryptographically-enabled secure systems.

The SRAS proposed by this thesis successfully protects cryptographic and general soft-

ware against a common class of buffer overflow attacks. To provide robust security against
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diverse vulnerabilities, however, we can and should implement additional mechanisms to

provide built-in protection. Future work in this area includes the investigation of transpar-

ent hardware and software defenses against other classes of buffer overflow attacks (e.g.,

heap overflows) and of other common vulnerabilities.

The ultimate goal of security research is achieving robust system security against known

and future threats. Such robust security would extend from the global computing infrastruc-

ture down to the electrons moving between individual transistors in general-purpose proces-

sors. Given the exponentially increasing complexity of information processing systems and

security threats, this is clearly a difficult task. However, it is evident that security function-

ality should be incorporated into systems at a fundamental level in order to approach this

ultimate security goal. Thus, computer architects must play a larger and more central role

in the design and implementation of secure systems. With architectural techniques such as

those proposed by this thesis, systems that protect networks, computers, and data can enjoy

a higher degree of security.
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