
Workload Characterization of

Elliptic Curve Cryptography and other

Network Security Algorithms for

Constrained Environments

A. Murat Fiskiran and Ruby B. Lee

Princeton Architecture Laboratory for Multimedia and Security

Princeton University

A. Murat Fiskiran and Ruby B. Lee, "Workload Characterization of Elliptic Curve Cryptography and other Network Security Algorithms for
Constrained Environments," Proceedings of the 5th Annual IEEE International Workshop on Workload Characterization (WWC-5), pp. 127-137,
November 2002.

Need for Security?

• Wireless devices: PDAs, multimedia cell
phones, tablet PCs …
– Public channel = need for cryptography
– Limited processing power, memory, power

ConfidentialitySymmetric-key

IntegrityHash

Key exchange, user authentication,
digital signaturePublic-key

FunctionClass

Algorithm Set

• Diffie-Hellman is representative of other
elliptic-curve algorithms.

DES, AES128 – 256 bitsSymmetric-key
SHA, MD5N/AHash

Class

163 – 233 bits
(elliptic curve)

1024 – 2048 bits
(non-elliptic curve)

Typical key size

Diffie-Hellman,
ElGamal, DSA

Examples

Public-key

Diffie-Hellman on Elliptic Curves

• E is an elliptic curve, P = (x,y) is a point on E.

Based on elliptic-curve discrete logarithm problem

(P × a) × b(P × b) × a

P × bP × a

Choose b.Choose a.

BobAlice

Point Multiplication

• P × a is point multiplication. The result
is another point on the elliptic curve.

• Computed by a double-and-add chain
– No easy way to compute any arbitrary

multiple of P.

• Example: if a = 13, then:

P × 13 = [(2 × P + P) × 2 × 2] + P

Point Doubling and Addition

ff

f

xxy

ax
x
y

x

)1(2

2

++=

++=

+=

θ

θθ

θ

13313

21
2

3

12

12

)(yxxxy
axxx

xx
yy

+++=
++++=

+
+

=

θ
θθ

θ

9 addition, 2 multiplication,
1 squaring, 1 inversion

4 addition, 2 multiplication,
2 squaring, 1 inversion

P = (x1,y1), Q = (x2,y2)

P + Q = (x3,y3)

P = (x,y)

P × 2 = (xf,yf)

Binary Fields

• Coordinates of P=(x,y) come from a
field.

• Fastest implementations are on binary
fields.
– Field elements = binary polynomials

• Example:

P = (x+1,x2+1) = (0011,0101)2

ECC and Polynomial Operations

Orange: basic Green: optimized

Point additionPoint doubling
9 addition, 2 multiplication,

1 squaring, 1 inversion
4 addition, 2 multiplication,

2 squaring, 1 inversion

Extended Euclidean

Almost Inverse

Self-multiplication

Table-lookup

New instructions

Shift-and-add

Table-lookup

Polynomial multiplier

XOR

InversionSquaringMultiplicationAddition

Methodology

• Algorithms coded and optimized in
assembly

• 64-bit basic RISC architecture

• Simulated using two algorithm sets:
basic and optimized

• 163-bit and 233-bit keys

• Diffie-Hellman, ElGamal, DSA

• AES and SHA (for completeness)

Speedup From Optimized Algorithms

1 1 1 1 1 1

14.5

16.9
15.3

12.9

16.3
17.9

0

2

4

6

8

10

12

14

16

18

20

DH-163 ElGamal-
163

DSA-163 DH-233 ElGamal-
233

DSA-233

Instruction Distribution

0%

20%

40%

60%

80%

100%

1a 1b 2a 2b 3a 3b

Other

Memory

Compute

1a. EC-DHKE basic (1.0) 1b. EC-DHKE optimized (14.5)

2a. EC-ElGamal basic (1.0) 2b. EC-ElGamal optimized (16.9)

3a. EC-DSA basic (1.0) 3b. EC-DSA optimized (15.3)

Pathlength Increase:
From 163-bit to 233-bit keys

1 1 1 1 1 1

2.5 2.6 2.6
2.8 2.7

2.2

0

0.5

1

1.5

2

2.5

3

DH-basic ElGamal-
basic

DSA-basic DH-
optimized

ElGamal-
optimized

DSA-
optimized

Observations

1. Algorithmic enhancements provide 15× speedup.
– Mainly by reducing arithmetic operations (up to 30×)

2. Memory instructions are as frequent as compute
instructions.
– Reasons: Function call overhead, long data types
– Further speedups possible based on memory optimizations (?)

3. Longer keys result in disproportionately large slowdowns.
– Complexity of ECC operations

4. DH and ElGamal have similar distributions.
– DSA is different; includes SHA as hash algorithm.

5. Optimized algorithms use little extra memory (<1kB).

6. A separate multiplier is not needed.

Summary

1. Selection of algorithms suitable for
constrained environments:

– Elliptic-curve versions of DH, ElGamal,
and DSA; AES and SHA

2. Description of operations needed;
focus on elliptic-curve and polynomial
operations

3. Instruction frequencies

4. Sufficiency of a simple RISC processor

Future Work

• Expand algorithm set
– Include block ciphers, other signature and

hash algorithms

• Expand arithmetic operations to
– Integers (prime fields)
– Different representation of polynomials

(different bases)
– Different coordinate systems (e.g.

projective)

