Workload Characterization of Elliptic Curve Cryptography and other Network Security Algorithms for Constrained Environments

A. Murat Fiskiran and Ruby B. Lee

Princeton Architecture Laboratory for Multimedia and Security

Princeton University

Need for Security?

- Wireless devices: PDAs, multimedia cell phones, tablet PCs ...
- Public channel = need for cryptography
- Limited processing power, memory, power

Class	Function
Public-key	Key exchange, user authentication, digital signature
Symmetric-key	Confidentiality
Hash	Integrity

Algorithm Set

Class	Typical key size	Examples					
Public-key	$1024-2048$ bits (non-elliptic curve)	}{}					
	$163-233$ bits (elliptic curve)						
			$	$			
:---:	:---:	:---:					
Hash	N/A	SHA, MD5					

- Diffie-Hellman is representative of other elliptic-curve algorithms.

Diffie-Hellman on Elliptic Curves

- E is an elliptic curve, $P=(x, y)$ is a point on E.

Alice		Bob
Choose a.		Choose b.
$\mathrm{P} \times \mathrm{a}$	$\mathrm{P} \times \mathrm{b}$	
$(\mathrm{P} \times \mathrm{b}) \times \mathrm{a} \longrightarrow$	$(\mathrm{P} \times \mathrm{a}) \times \mathrm{b}$	

Based on elliptic-curve discrete logarithm problem

Point Multiplication

- $\mathrm{P} \times \mathrm{a}$ is point multiplication. The result is another point on the elliptic curve.
- Computed by a double-and-add chain
- No easy way to compute any arbitrary multiple of P .
- Example: if $a=13$, then:

$$
P \times 13=[(2 \times P+P) \times 2 \times 2]+P
$$

Point Doubling and Addition

$$
\begin{array}{c|c}
\mathrm{P}=(x, y) & \mathrm{P}=\left(x_{1}, y_{1}\right), \mathrm{Q}=\left(x_{2}, y_{2}\right) \\
\mathrm{P} \times 2=\left(x_{f}, y_{f}\right) & \mathrm{P}+\mathrm{Q}=\left(x_{3}, y_{3}\right) \\
\hline \theta=x+\frac{y}{x} & \theta=\frac{y_{2}+y_{1}}{x_{2}+x_{1}} \\
x_{f}=\theta^{2}+\theta+a & x_{3}=\theta^{2}+\theta+x_{1}+x_{2}+a \\
y_{f}=x^{2}+(\theta+1) x_{f} & y_{3}=\theta\left(x_{1}+x_{3}\right)+x_{3}+y_{1}
\end{array}
$$

4 addition, 2 multiplication, 2 squaring, 1 inversion

9 addition, 2 multiplication, 1 squaring, 1 inversion

Binary Fields

- Coordinates of $\mathrm{P}=(\mathrm{x}, \mathrm{y})$ come from a field.
- Fastest implementations are on binary fields.
- Field elements = binary polynomials
- Example:

$$
\mathrm{P}=\left(x+1, x^{2}+1\right)=(0011,0101)_{2}
$$

ECC and Polynomial Operations

Point doubling
 Point addition

4 addition, 2 multiplication, 2 squaring, 1 inversion

9 addition, 2 multiplication, 1 squaring, 1 inversion

Addition	Multiplication	Squaring	I nversion
XOR	Shift-and-addl	Self-multiplication	
	Table-lookup	Table-lookup	Extended Euclidean
	Polynomial multiplier	New instructions	

Orange: basic
Green: optimized

Methodology

- Algorithms coded and optimized in assembly
- 64-bit basic RISC architecture
- Simulated using two algorithm sets: basic and optimized
- 163-bit and 233-bit keys
- Diffie-Hellman, ElGamal, DSA
- AES and SHA (for completeness)

Speedup From Optimized Algorithms

Instruction Distribution

1a. EC-DHKE basic (1.0)
2a. EC-ElGamal basic (1.0)
3a. EC-DSA basic (1.0)

1b. EC-DHKE optimized (14.5)
2b. EC-ElGamal optimized (16.9)
3b. EC-DSA optimized (15.3)

Pathlength Increase: From 163-bit to 233-bit keys

Observations

1. Algorithmic enhancements provide $15 \times$ speedup.

- Mainly by reducing arithmetic operations (up to $30 x$)

2. Memory instructions are as frequent as compute instructions.

- Reasons: Function call overhead, long data types
- Further speedups possible based on memory optimizations (?)

3. Longer keys result in disproportionately large slowdowns.

- Complexity of ECC operations

4. DH and ElGamal have similar distributions.

- DSA is different; includes SHA as hash algorithm.

5. Optimized algorithms use little extra memory ($<1 \mathrm{kB}$).
6. A separate multiplier is not needed.

Summary

1. Selection of algorithms suitable for constrained environments:

- Elliptic-curve versions of DH, EIGamal, and DSA; AES and SHA

2. Description of operations needed; focus on elliptic-curve and polynomial operations
3. Instruction frequencies
4. Sufficiency of a simple RISC processor

Future Work

- Expand algorithm set
- Include block ciphers, other signature and hash algorithms
- Expand arithmetic operations to
- Integers (prime fields)
- Different representation of polynomials (different bases)
- Different coordinate systems (e.g. projective)

