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Need for Security?

• Wireless devices: PDAs, multimedia cell 
phones, tablet PCs …
– Public channel = need for cryptography
– Limited processing power, memory, power

ConfidentialitySymmetric-key

IntegrityHash

Key exchange, user authentication, 
digital signaturePublic-key

FunctionClass



Algorithm Set

• Diffie-Hellman is representative of other 
elliptic-curve algorithms.

DES, AES128 – 256 bitsSymmetric-key
SHA, MD5N/AHash

Class

163 – 233 bits 
(elliptic curve)

1024 – 2048 bits 
(non-elliptic curve)

Typical key size

Diffie-Hellman, 
ElGamal, DSA

Examples

Public-key



Diffie-Hellman on Elliptic Curves

• E is an elliptic curve, P = (x,y) is a point on E.

Based on elliptic-curve discrete logarithm problem

(P × a) × b(P × b) × a

P × bP × a

Choose b.Choose a.

BobAlice



Point Multiplication

• P × a is point multiplication. The result 
is another point on the elliptic curve.

• Computed by a double-and-add chain
– No easy way to compute any arbitrary 

multiple of P.

• Example: if a = 13, then:

P × 13 = [(2 × P + P) × 2 × 2] + P



Point Doubling and Addition
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9 addition, 2 multiplication, 
1 squaring, 1 inversion

4 addition, 2 multiplication, 
2 squaring, 1 inversion

P = (x1,y1), Q = (x2,y2)

P + Q = (x3,y3)

P = (x,y)

P × 2 = (xf,yf)



Binary Fields

• Coordinates of P=(x,y) come from a 
field. 

• Fastest implementations are on binary
fields.
– Field elements = binary polynomials

• Example:

P = (x+1,x2+1) = (0011,0101)2



ECC and Polynomial Operations

Orange: basic Green: optimized

Point additionPoint doubling
9 addition, 2 multiplication, 

1 squaring, 1 inversion
4 addition, 2 multiplication, 

2 squaring, 1 inversion

Extended Euclidean

Almost Inverse

Self-multiplication

Table-lookup

New instructions

Shift-and-add

Table-lookup

Polynomial multiplier

XOR

InversionSquaringMultiplicationAddition



Methodology

• Algorithms coded and optimized in 
assembly

• 64-bit basic RISC architecture

• Simulated using two algorithm sets: 
basic and optimized

• 163-bit and 233-bit keys

• Diffie-Hellman, ElGamal, DSA 

• AES and SHA (for completeness)



Speedup From Optimized Algorithms
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Instruction Distribution
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3a. EC-DSA basic (1.0) 3b. EC-DSA optimized (15.3)



Pathlength Increase:
From 163-bit to 233-bit keys
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Observations

1. Algorithmic enhancements provide 15× speedup.
– Mainly by reducing arithmetic operations (up to 30×)

2. Memory instructions are as frequent as compute
instructions.
– Reasons: Function call overhead, long data types
– Further speedups possible based on memory optimizations (?)

3. Longer keys result in disproportionately large slowdowns.
– Complexity of ECC operations

4. DH and ElGamal have similar distributions.
– DSA is different; includes SHA as hash algorithm.

5. Optimized algorithms use little extra memory (<1kB).

6. A separate multiplier is not needed.



Summary

1. Selection of algorithms suitable for 
constrained environments:

– Elliptic-curve versions of DH, ElGamal, 
and DSA; AES and SHA

2. Description of operations needed; 
focus on elliptic-curve and polynomial 
operations

3. Instruction frequencies

4. Sufficiency of a simple RISC processor



Future Work

• Expand algorithm set
– Include block ciphers, other signature and 

hash algorithms

• Expand arithmetic operations to
– Integers (prime fields)
– Different representation of polynomials 

(different bases)
– Different coordinate systems (e.g. 

projective)


