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Abstract 

We describe a datapath-scalable, minimalist cryptographic processor, called PAX, for mobile 
environments where the communication with the outside world is done on wireless connections. 
PAX is designed to fully utilize the high data rates of the newest and developing wireless 
technologies. Today, these rates exceed 2 Mbps for cellular/PCS connections, and 50 Mbps for 
WLAN connections. Future rates are expected to be about 20 Mbps and 100 Mbps for 
cellular/PCS and WLAN respectively. 

In designing PAX, we first select a cipher suite that is suitable for mobile environments. 
This provides all basic security functions such as confidentiality, data integrity, user 
authentication, and digital signatures. We then define the PAX instruction set, which contains 
few new instructions that provide huge speedups for key sections of the algorithms in our cipher 
suite. We compute the processor speeds required for secure communications at data rates that 
can be supported by the newest and developing wireless technologies. For bulk encryption and 
hashing, a 7 MHz 32-bit single-issue PAX processor is sufficient to match the 2.4 Mbps data rate 
of future 3G cellular networks. To match the 54 Mbps data rate of the IEEE 802.11a/g WLAN 
connections, the clock rate needs to be 150 MHz. Both figures are significantly under the 400 
MHz rate used by the processors in today’s mobile information appliances such as PDAs. 

Datapath scalability refers to the feature that the same instruction set can be implemented 
in processors with different word sizes. This feature, first introduced in the PLX multimedia 
instruction set, provides extra flexibility in balancing the performance and cost of a system. We 
test the usefulness of datapath scalability by varying the word size from 32 bits to 64 bits to 128 
bits. For public-key cryptography and bulk encryption, datapath scalability provides 10× to 20× 
additional speedup. 



1. Introduction 

Security requirements of a mobile device that communicates wirelessly differ from a wired 

device in two important ways. First, a wireless channel is always public, which makes it 

inherently vulnerable to passive attacks such as eavesdropping. Second, the mobile device is 

likely to have far fewer computational resources when compared to a wired device (such as a 

desktop computer) to perform the compute-intensive cryptographic operations to attain a desired 

level of security. This imposes certain restrictions on the designers in their choice of hardware 

and cryptographic algorithms that can be used in the device to achieve sufficient security at a low 

enough cost.  

 In this paper, we describe a datapath-scalable, minimalist cryptographic processor, called 

PAX, that can support all basic security functions at high-enough throughputs so that it can meet 

the link speeds, or available bandwidths, offered by the newest and developing wireless 

technologies. Datapath scalability refers to the property that the same instruction set can be 

implemented in processors with different word sizes. This feature was first introduced in PLX, 

which is a minimalist, high-performance multimedia instruction set [1-3]. Datapath scalability 

provides extra flexibility to a designer in balancing the cost and performance of a system. 

In designing PAX, we first select a cipher suite that supports the four basic security 

functions that must be implemented by any cryptographic processor: user authentication, 

confidentiality, integrity, and digital signature. Second, we define a concise and powerful 

instruction set for this processor so that it can perform these security functions at very high data 

rates. PAX is designed to be a concise and efficient processor for cryptography, so that it can be 

used either as an embedded processor, a cryptographic co-processor alongside a general-purpose 

processor, or a security module in a system-on-chip. 



 The rest of the paper is organized as follows. In Section 2, we describe the major wireless 

technologies and compare their data rates. In Section 3, we describe the cryptographic algorithms 

in our cipher suite. In Section 4, we describe the PAX architecture. In Section 5, we present our 

performance results. Section 6 is the conclusion. 

 

2. Major wireless technologies 

Wireless technologies are broadly classified into two major groups: cellular/PCS (Personal 

Communication Service) and WLAN (Wireless Local Area Network) [4]. 

Cellular/PCS uses the FCC-regulated 800 MHz and 1900 MHz frequency bands [4, 5]. 

Signals are transmitted at high power, which provides a long range to devices that use these 

technologies. Cellular/PCS technologies are classified into generations depending on their 

capabilities (Table 1). Most systems currently in use are second generation (2G), and have low 

data rates (for example 14.4 kbps for IS-95.) The 3G systems are designed to provide much 

higher data rates, for example 2.4 Mbps for stationary users using the IS-856 technology [5]. A 

hybrid generation, denoted 2.5G, is an interim solution for the current 2G networks to have 3G-

like capabilities. 2.5G data rates fall between 2G and 3G data rates, such as the 64 kbps for IS-

95B. 4G systems are currently in the design stage, and they have minimum target data rates of 

10-20 Mbps. 

Table 1 Major cellular/PCS technologies 

Generation Examples Data Rate 
2G IS-136, IS-95 (cdmaOne), GSM, PDC 14.4 kbps for IS-95 

2.5G IS-95B, EDGE, HSCSD, GPRS 64 kbps for IS-95B 

3G W-CDMA, CDMA2000 (IS-2000), 
CDMA 2000 1xEV-DO (IS-856) 2.4 Mbps for IS-856 

4G In development 10-20 Mbps for stationary users,  
2 Mbps for vehicular users 

 



The second major group of wireless technology, the WLAN, uses the unregulated 2.4 GHz ISM 

(Industrial, Scientific, and Medical) frequency bands for transmission [4]. Compared to 

cellular/PCS, WLANs have shorter range but higher data rate. Major WLAN technologies and 

their maximum data rates are: Bluetooth [6], 723 kbps; IEEE 802.11b (Wi-Fi) [7], 11 Mbps; and 

IEEE 802.11a/g [7], 54 Mbps (Table 2). UWB (Ultra Wide Band) is a developing technology 

that promises very high data rates at short ranges while consuming very little power [4]. 

Currently however, the usage of UWB for practical applications is uncommon. 

Table 2 Major WLAN technologies 

Technology or Standard Range Data Rate 

Bluetooth 
6 m in low power mode, 

10 m in medium power mode, 
100 m in high power mode 

Max. 723 kbps 

IEEE 802.11b (Wi-Fi) 50 m indoors typical Max. 11 Mbps, 
decreases with distance 

IEEE 802.11a/g 25 and 50 m indoors typical 
respectively for 802.11a and 802.11g 

Max. 54 Mbps, 
decreases with distance 

UWB (in development) Tested at ∼10 m Tested at 50-100 Mbps 
 

3. Cipher suite 

A minimalist cipher suite must include at least one algorithm for each of the following security 

functions: user authentication, confidentiality, integrity, and digital signature. In this section, we 

describe the algorithms that we selected for each of these functions (Table 3) and our rationale 

for this selection.  

 

3.1. ECC for user authentication and digital signature 

Elliptic curve cryptography (ECC) [8, 9] is a faster and simpler alternative for providing user 

authentication and digital signatures as compared to the integer public-key algorithms such as 

RSA or DH (Diffie-Hellman) [10]. Compared to these integer algorithms, ECC offers a much 

higher security per key bit, so that a desired level of security can be attained using smaller keys. 



For example, eDH (elliptic-curve DH) with 163-bit keys provides more security than DH with 

1024-bit keys (Table 4). More importantly, smaller keys are more preferable in mobile 

environments since they require less storage space and fewer computations, as well as consume 

less bandwidth during transmission. For our cipher suite, we have chosen the NIST-

recommended 163-bit, 233-bit, and 283-bit key sizes [11], which provide sufficient security for 

all practical purposes. We use eDH [12] and eEl-Gamal (elliptic-curve El-Gamal) for user 

authentication, and eDSA (elliptic-curve Digital Signature Algorithm) [11] for digital signatures. 

 
Table 3 Cipher suite 

Function Algorithm 
User authentication eDH, eEl-Gamal 

Confidentiality AES with 128-bit key 
Integrity SHA-1, SHA-256, AES-hash 

Digital signature eDSA 
 

 

Table 4 Key size for equivalent security 

Integer algorithm key 
size in bits (e.g. DH) 

Elliptic-curve algorithm 
key size in bits (e.g. eDH) 

512 
768 

1024 
2048 

21000 

106 
132 
160 
210 
600 

 

3.2. AES for confidentiality 

AES is the US federal standard for block encryption [13]. It operates on 128-bit blocks of data, 

using 128-bit, 192-bit, or 256-bit keys. When 128-bit key is used, the cipher involves 10 rounds. 

AES has been designed to have very fast software and hardware implementations in both desktop 

and constrained environments. We use the optimized implementation described in [14], which 

relies on frequent table lookups.  

An overview of the AES round structure is shown in Figure 1. The input to the round is 

the 128-bit block made up of four 32-bit words. AES uses four 1 kB tables, labeled TA, TB, TC, 

and TD. Each table has 256 entries, and each entry contains 4 bytes. During the round, the least-

significant byte of each word is used as an index into TA; the next byte is used as an index into 

TB; and so on, until all tables are accessed four times. Finally, the four table lookup results (for 

each input word) are XORed among themselves and with the corresponding round key. 
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Figure 1 Overview of one AES round 

 

In [15], we describe how the table lookups in this AES implementation can be accelerated using 

efficient addressing in load instructions. In this paper, we further optimize the AES execution by 

using small on-chip tables separate from the main memory, and new instructions to access these 

tables in parallel (Section 4). 

 

3.3. SHA-1, SHA-256, and AES-hash for integrity 

For integrity, we use two of the hash algorithms recommended in the Secure Hash Standard 

(SHS) [16]: SHA-1 and SHA-256. Both algorithms are designed for 32-bit datapaths and operate 

on 512-bit blocks. They produce 160-bit and 256-bit hashes respectively.  

We also include a third hash algorithm, called AES-hash [13], to demonstrate that our 

AES optimizations can also be used to provide integrity. AES-hash generates a 256-bit hash, and 

it is derived from AES with 256-bit keys.  



4. PAX instruction set 
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Figure 2 Single-issue PAX processor with 3 functional units 

The datapath of a single-issue PAX processor is shown in Figure 2. The instructions are executed 

by three functional units: the arithmetic-logic unit (ALU), the shift-permute unit (SPU), and the 

polynomial multiplier (MUL) with 3 pipeline stages. The inputs and the output of the multiplier 

are word-sized, and only the lower or the higher half of the product is computed. There are eight 

on-chip lookup tables, labeled T0-T7, that are used for fast symmetric-key cryptography. The 

size, structure, and usage of these tables will be explained in Section 4.3. There are 32 integer 

registers, numbered R0 through R31. R0 is hardwired to 0.  

 

4.1. ALU and shift instructions 

In Table 5, we list the PAX instructions organized into major groups. The default word size of a 

PAX processor is 32 bits (PAX32), and it can be scaled up to 64 bits (PAX64) or 128 bits 

(PAX128). The default size of 32 bits is motivated by the fact that AES, SHA-1, and SHA-256 

all have special optimized implementations for this word size. The only exception to datapath 

scalability is that the 32-bit versions of four instructions must be included in the instruction set 

even when the word size is 64 bits or 128 bits. This is necessary in order not to incur 

performance degradation in SHA-1 and SHA-256 at these larger word sizes. These four 

instructions are: add, roti, load, store. 



Table 5 PAX instructions1 

Arithmetic and Load Immediate Instructions 
Mnemonic Description 

add2 bac +←  
addi immac +←  
sub bac −←  
subi immac −←  

loadi.z.s Load imm into the 16-bit subword s of 
c; clear other subwords. 

loadi.k.s Load imm into the 16-bit subword s of 
c; keep other subwords unchanged. 

  
Logical Instructions 

and bac &←  
andi immac &←  
or bac |←  

xor bac ⊕←  
xori immac ⊕←  
not ac ←  

  
Shift Instructions 

sll bac <<←  
slli immac <<←  
srl bac >>← , with zero extension 
sra bac >>← , with sign extension 
srai immac >>← , with sign extension 
roti2 immac <<<←  
shrp L])||[( immbac >>←  
hibit See text 

  
Permute Instructions 

shuffle.low See text 
shuffle.high See text 

 
Branch Instructions 

beqz Branch if 0=a  
bnez Branch if 0≠a  

 

Branch Instructions (continued) 
bg Branch if ba >  
bge Branch if ba ≥  
jmp Branch unconditionally 

  
Other Program Flow Control Instructions 

call Call subroutine 
return Return from subroutine 
trap Trap 

  
Load/Store and Table Lookup Instructions 

load2 ]MEM[ immac +←  

store2 ]MEM[ immac +→  

load.update 
]MEM[ immac +← , 

immaa +←  
store.update immaa +← , ]MEM[ac →  

ptlu.subword.table 
.offset.step See text 

ptlw.table.offset See text 
  

Multiply Instructions 
polmul.low L)( bac ⊗←  

polymul.high H)( bac ⊗←  
 
1 c, a, and b correspond to the values in the 
destination and source registers respectively. imm 
represents an immediate value given in the 
instruction word. Subscripts L and H indicate the 
lower and higher halves of a quantity respectively. 
MEM is the memory array. ⊕  denotes xor. <<< 
denotes a rotate. || denotes concatenation. ⊗  denotes 
polynomial multiplication. Multiply instructions are 
pipelined and have 3-cycle execution latency; all 
other instructions are single-cycle. 
 
2 The 32-bit version of this instruction must be 
included in the instruction set at all word sizes. 

 

PAX has the basic ALU and logical instructions: add, subtract, and, xor, or, not, with some of 

these having both register and immediate versions. Loading of a register by an immediate is done 

with loadi.z.s and loadi.k.s as in PLX [3]. In loadi.z.s, one 16-bit subword of the destination 

register (selected via the s field) is written with the 16-bit immediate given in the instruction 



word. The remaining subwords are cleared to zero. In loadi.k.s the remaining subwords are kept 

unchanged. 

 Of the shift instructions, the 32-bit rotate immediate (roti) is very frequently used in 

SHA-1 and SHA-256. Therefore, it is necessary that the 32-bit version of this instruction is kept 

even in 64-bit and 128-bit datapaths.  

In the shrp (shift right pair) instruction, two source registers are concatenated and shifted 

right by a number of bits given in the immediate field of the instruction. The lower half of the 

shifted result is then written to the destination register (Figure 3). This is instruction is very 

useful to shift data objects that span multiple words, such as the 163-bit binary polynomials that 

are used frequently in ECC.  
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Figure 3 Shuffle.low, shuffle.high, shrp instructions 

 

hibit is a new instruction that is very useful in polynomial arithmetic (used in ECC), especially 

in computing the multiplicative inverse of a polynomial [12, 17], which is the most costly 

polynomial operation. hibit writes the index of the most significant bit of the source register plus 

1 to the destination register. If the source register is all 0s, then 0 is written to the destination 

register. In particular, hibit provides a huge speedup in computing the degree of a polynomial, 

which is a frequent operation in polynomial inversion [12].  

 



4.2. Permute instructions 

PAX has two bit permutation instructions: shuffle.low and shuffle.high. Both instructions read 

individual bits alternating between the two source registers, and write these bits to the destination 

register (Figure 3). In shuffle.low, the lower halves of the source registers read, in shuffle.high 

the higher halves are read.  

Shuffle instructions are very useful in computing the square of a binary polynomial. (A 

binary polynomial is a polynomial whose coefficients are either 0 or 1. Because our ECC 

implementation uses binary fields where each field element is represented as a binary 

polynomial, such polynomial arithmetic constitutes the bulk of the ECC workload.) For example, 

let a(x) = x3 + x2 + 1. In binary, a(x) will be represented as (1101)2. The square of a(x) can be 

computed by multiplying it with itself: 

a2(x) = a(x) × a(x) = (x3 + x2 + 1) × (x3 + x2 + 1) = x6 + x4 + 1 + 2x5 + 2x3 + 2x2 = x6 + x4 + 1 

Note that the x5, x3, and x2 terms have vanished because all operations on the coefficients are 

modulo 2. The binary representation of the above is: 

a2(x) = a(x) × a(x) = (1101)2 × (1101)2 = (1010001)2 

Notice that the squaring of a(x) corresponds to interleaving the original bits in the binary 

representation of a(x) with 0s. This is valid for all binary polynomial. The interleaving of the 

consecutive bits of a register with 0s corresponds to a shuffle with R0 (Figure 3). Using 

shuffle.low and shuffle.high, the squaring of a 163-bit polynomial can be completed in only 11 

instructions if the word size is 32 bits, and in only 3 instructions if the word size is 128 bits. 

 

4.3. Load, store, and ptlu instructions 

The basic load and store instructions use base+displacement addressing. 32-bit variants of these 

instructions must also be preserved at all word sizes because many cryptographic algorithms are 



optimized for a 32-bit memory pipe. In the update versions, post-modify is used for loads; pre-

modify is used for stores. 

The ptlu instruction is used to access the eight on-chip tables and perform parallel table 

lookups. This instruction has the following format: 

ptlu.subword.table.offset.step Rd, Rs 

The subword, table, offset, and step are given as immediates in the instruction. The 3-bit table 

field is used to select one of the eight tables for lookup (T0 through T7). These tables have 256 

entries each, and each entry is word-sized. The total size of the tables is 8 kB, 16 kB, and 32 kB 

for PAX32, PAX64, and PAX128 respectively. The byte-sized indices used to access the tables 

are read from Rs. Because there are no effective address computations, the table accesses can be 

performed in the execution stage of the instruction, and the read values can be immediately 

forwarded and used by another instruction in the next cycle. (In a regular load instruction, the 

load-use interlock will normally prohibit such immediate using of the loaded data.) Another 

benefit of using an on-chip table is the invariability of the access time for any single table 

lookup. Unlike the data memory, where a single lookup can take either a single cycle (if it is a 

cache hit) or many cycles (if it is a cache miss), a ptlu access always takes a single cycle. This 

allows us to report more accurate performance results for our symmetric-key ciphers since we 

know the exact table access latency. 

The 4-bit offset field is used to select the first index in Rs that will be used to access the 

table. The 4-bit step field gives the distance (in bytes) between the subsequent bytes in Rs that 

are used as indices when multiple lookups are performed. The subword field selects the size of 

the data that is read from the table. Because certain combinations of the four subop fields will not 

be meaningful, the programmer or the compiler is responsible for avoiding these. 
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Figure 4 Examples of the ptlu instruction in PAX32 (a), PAX64 (c), and PAX128 (c) 

 

Figure 4 contains four examples of the ptlu instruction. Figure 4a shows the ptlu used in PAX32 

to perform a single lookup from T6, using the third byte of Rs as index. Such lookups are very 

common in symmetric-key ciphers, where they are called S-box lookups and are used to achieve 

cryptographic confusion. Figure 4b shows four parallel lookups from T3, where the index for 

each lookup is a different byte of Rs. This type of lookup is used in AES key expansion.  



Figure 4c is for PAX128, and it depicts how we use ptlu for fast AES implementation. 

Consider the four TB lookups in the AES round shown in Figure 1, and assume that T0-T3 have 

been initialized to TA-TD respectively. In PAX128, four lookups of the same table (T1) can be 

performed with the single instruction ptlu.4.1.1.4 Rd, Rs (Figure 4c). Two separate ptlu 

instructions would be needed in PAX64 to perform the same four lookups, and four ptlu 

instructions are needed in PAX32. All of the 16 table lookups in an AES round can be completed 

using just four ptlu instructions in PLX128, with each instruction performing four parallel 

lookups and the table field changing from 0 to 1 to 2 to 3. Because the number of simultaneous 

lookups quadruples as the word size is increased from 32 bits to 128 bits, the performance of 

AES also quadruples. Such linear performance scaling is unattainable with a simple RISC 

instruction set, or with the optimizations in [15]. 

The writing of the tables T0-T7 is done with the ptlw instruction, which has the 

following format: 

ptlw.table Rs1, Rs2  

The 3-bit table field selects one of the eight tables, and the least significant byte of Rs2 selects 

one of the 256 entries in this table. The data to be written to the selected entry of the table is read 

from Rs1. 

 

4.4. Multiply instructions 

Only the multiplication of two binary polynomials is required by the algorithms in our cipher 

suite. Similar to the polynomial squaring (Section 4.2), the coefficients of the product 

polynomial are computed component-wise. For example, let a(x) = x3 + 1 and b(x) = x2 + x. The 

binary representations of a(x) and b(x) are (1001)2 and (0110)2 respectively. The product of a(x) 

and b(x) is computed as: 



a(x) × b(x) = (x3 + 1) × (x2 + x) = x5 + x4 + x2 + x 

Or, in binary representation as: 

a(x) × b(x) = (1001)2 × (0110)2 = (110110)2 

A standard integer multiplier cannot be used to perform such polynomial multiplication. 

Software methods, such as the shift-and-xor algorithm [17, 18], are very slow. Hardware 

solutions recommend the usage of either a dedicated polynomial multiplier (also known as a 

binary field multiplier), or dual-field multiplier, which can perform both integer multiplication 

and polynomial multiplication. Because no integer multiplication is required for the algorithms 

in our cipher suite, we use a polynomial multiplier, which can execute two instructions: 

polymul.low and polymul.high. Both instructions have 3-cycle execution latency. Because the 

multiplier is pipelined, the full latency of these may be hidden through instruction scheduling. In 

polymul.low, the multiplier generates only the lower half of the product; in polymul.high, it 

generates only the higher half. 

 PAX also has one unconditional (jmp) and four conditional (beqz, bnez, bg, bge) branch 

instructions. The call and return instructions are used to branch to a subroutine and return from 

a subroutine respectively. 

 

5. Performance 

We now compare the performance of PAX with the results reported in [17] for a Pentium II 

workstation (for public-key cryptography), and with the results from a basic RISC instruction set 

(for symmetric-key cryptography). In all cases, we also show the additional speedup that can be 

obtained with the datapath scalability feature by varying the word size from 32 bits to 64 bits to 

128 bits. 

 



5.1. ECC 

Table 6 summarizes the results of the arithmetic operations for the 163-bit, 233-bit, and 283-bit 

binary polynomials used in ECC. The first column gives the execution times for the Pentium II 

(PII) workstation [17]; the second column is for a single-issue 32-bit PAX processor, denoted 

PAX32/1. The last three columns of Table 6 show the speedups that can be obtained if the word 

size in PAX were doubled and quadrupled. For polynomial addition, squaring, and 

multiplication, an additional 10× to 20× speedup over PAX32/1 is provided by datapath 

scalability.  

Table 7 shows the execution times for elliptic-curve point multiplication (the key 

operation in ECC) for 163-bit, 233-bit, and 283-bit keys, and Table 8 shows the execution times 

for eDH, eEl-Gamal encryption, and eEl-Gamal decryption for the 163-bit key. The speedup of 

the PAX32/1 processor over the PII is more than 2× for each algorithm, and this increases as the 

word size increases. 

Table 6 Execution times for binary field arithmetic operations 

Execution time (cycles) Speedup over PII Field size 
(bits) Operation PII  PAX32/1 PAX32/1 PAX64/1 PAX128/1 

163 

Addition 
Squaring 

Multiplication 
Reduction 
Inversion 

40 
160 

1200 
72 

16104 

18 
28 

142 
149 

11873 

  2.2× 
5.7 
8.5 
0.5 
1.4 

  13.3× 
20.0 
33.3 
0.7 
2.1 

  20.0× 
53.3 
92.3 
2.5 
2.7 

233 

Addition 
Squaring 

Multiplication 
Reduction 
Inversion 

48 
220 

2028 
88 

29220 

37 
42 

315 
256 

29960 

1.8 
5.8 
6.9 
0.5 
1.0 

5.3 
27.5 
32.7 
0.9 
2.2 

24.0 
55.0 

144.9 
3.4 
3.4 

283 

Addition 
Squaring 

Multiplication 
Reduction 
Inversion 

52 
300 

2492 
140 

38596 

41 
49 

387 
343 

37196 

1.7 
6.7 
7.7 
0.6 
1.0 

4.3 
23.1 
25.4 
1.1 
2.2 

17.3 
60.0 
75.5 
3.2 
3.0 

 



Table 7 Execution times for elliptic curve point multiplication 

 Execution time  
(cycles in thousands) Speedup over PII 

Field size (bits) PII PAX32/1 PAX32/1 PAX64/1 PAX128/1 
163 
233 
283 

1296 
3079 
4641 

576 
1225 
1882 

  2.3× 
2.5 
2.5 

  4.5× 
6.6 
6.0 

  13.9× 
24.3 
16.9 

 

Table 8 Execution times for 163-bit eDH, eEl-Gamal encryption, and eEl-Gamal decryption 

 Execution time  
(cycles in thousands) Speedup over PII 

Operation PII PAX32/1 PAX32/1 PAX64/1 PAX128/1 
eDH 

eEl-Gamal encryption 
eEl-Gamal decryption 

2592 
2593 
1313 

1152 
1153 
588 

  2.3× 
2.3 
2.2 

  4.5× 
4.5 
4.4 

  13.9× 
13.9 
13.2 

 

Table 9 shows the execution time for 163-bit eDSA signature generation and verification for 1 

kB and 1 MB messages. The results for 1 kB signature verification are especially important 

because this corresponds to the time required for the verification of an X.509 digital certificate. 

For short messages, the additional speedup obtained over PAX32/1 through datapath scalability 

is more than 5× for PAX128/1. For long messages, no additional speedup is obtained because the 

execution time is dominated by SHA-1 instead of the elliptic-curve operations.  

Table 9 Execution times for 163-bit eDSA on 1 kB and 1 MB messages 

  Execution time 
(cycles in thousands) Speedup over PAX32/1 

Operation Message size PAX32/1 PAX64/1 PAX128/1 
1 kB 609   1.9×   5.1× Signature generation 

(including SHA-1 hash)   1 MB 19956 1.0 1.0 
1 kB 1186 2.0 5.6 Signature verification 

(including SHA-1 hash)   1 MB 20533 1.0 1.0 
 

5.2. AES 

Table 10 shows the execution times for 128-bit AES key expansion and encryption. We report 

five results for AES. The first is for a basic RISC instruction set that performs table lookups 

using standard load instructions with base+displacement addressing. The second case is for an 



enhanced RISC as described in [15]. The last three results are for the PAX32/1, PAX64/21, and 

PAX128/1, all of which use the ptlu instruction. The speedups over the basic RISC for these 

three cases are 2.3×, 4.6×, and 9.2× respectively.  

Table 10 Execution times for 128-bit AES key expansion and encryption 

Execution time (cycles) Speedup over basic RISC 
Operation Basic RISC Basic RISC with 

fast addressing PAX32/1 PAX32/1 PAX64/1 PAX128/1 

Key expansion 330 210 210   1.6×   1.6×   1.6× 
Encryption 840 360 360 2.3 4.6 9.2 

 

Table 11 Execution times on PAX32/1 for SHA-1 and SHA-256 

Algorithm Hash size 
(bits) 

Cryptographic 
strength (bits) Block size (bits) Execution time per block (cycles) 

SHA-1 160 80 512 1182 
SHA-256 256 128 512 2512 

 

Table 12 Execution time for AES-hash 

    Execution time per block (cycles) 

 Hash size 
(bits) 

Cryptographic 
strength (bits) Block size (bits) PAX32/1 PAX64/1 PAX128/1 

AES-hash 256 128 256 1140 780 600 
Speedup over SHA-256 (normalized to equal block size) →  1.1× 3.2× 4.2× 

 

5.3. SHA-1, SHA-256, and AES-hash 

Table 11 shows the execution times for SHA-1 and SHA-256. Only PAX32/1 results are 

reported because these hashing algorithms have extremely serial structures, and therefore do not 

benefit from datapath scalability. For AES-hash, where datapath scalability is useful, we report 

results for the three word sizes, and also show the speedups over SHA-256 (Table 12). 

 

5.4. WTLS 

Security protocols on the Internet usually use encryption and hashing together in order to ensure 

both the confidentiality and the integrity of the transmitted data. One well-known example is the 



WTLS protocol [19], which stands for Wireless Transport Layer Security, and which is very 

similar to the TLS (Transport Layer Security) protocol used in wired networks.  

Each WTLS session between a host and a client starts with the client’s authenticating the 

host. This step, which is called a WTLS handshake, involves a series of cryptographic 

computations such as verification of the digital certificate of the host, exchanging of a session 

key, etc. The execution time for the aggregate of these steps for PAX32 is shown in Table 13, as 

well as the additional speedups that can be obtained through datapath scalability.  

Table 13 Execution time for WTLS handshaking 

Execution time 
(cycles in thousands) Speedup over PAX32/1 

PAX32/1 PAX64/1 PAX128/1 
2929 2.0× 5.9× 

 

Table 14 Throughput of AES, SHA-1, and WTLS-record at various clock rates 

Throughput in Mbps at these clock rates Algorithm Processor 100 MHz 200 MHz 400 MHz 800 MHz 

AES encryption 
PAX32/1 
PAX64/1 

PAX128/1 

35.6 
71.1 

142.2 

71.1 
142.2 
284.4 

142.2 
284.4 
568.8 

284.4 
568.9 

1137.8 
SHA-1 PAX32/1 43.3 86.7 173.3 346.5 

WTLS-record (includes 
SHA-1 based HMAC and 

AES encryption) 

PAX32/1 
PAX64/1 

PAX128/1 

14.7 
20.2 
25.0 

29.4 
40.5 
49.9 

58.7 
80.1 
99.9 

117.5 
161.9 
199.7 

 

After the handshake is complete, the WTLS protocol enters the record mode, where each 

message that is sent is first appended with a SHA-1 based HMAC (keyed hash), and then 

encrypted with a symmetric-key algorithm, which, in our case, is AES. We show the throughput 

of the WTLS-record phase for PAX in Table 14. 

 

5.5. Performance summary 

We observe that a PAX32/1 processor can perform exceptionally fast public-key cryptography 

using ECC. This is achieved by using four key instructions: shuffle.low and shuffle.high (used 



in polynomial squaring); polymul.low and polymul.high (used in polynomial multiplication); 

and hibit (used in polynomial inversion). Compared to a PII workstation, these instructions 

provide speedups of 5.7×, 8.5×, and 1.4× respectively for squaring, multiplication, and inversion. 

Moreover, when the word size is increased to 128 bits through datapath scalability, these 

speedups increase to 53.3×, 92.3×, and 2.7× respectively. If 233-bit keys are used instead of 163-

bit keys, the speedups further increase to 55.0×, 144.9×, and 3.4×.  

In Table 14, we showed the throughputs for encryption and hashing on PAX processors 

at various clock speeds. The results for the 400 MHz clock are especially significant because this 

corresponds to the speed commonly used by today’s high-end mobile information appliances 

such as the HP iPAQ and Jornada series Personal Digital Assistants (PDAs). 

For AES and SHA-1, PAX32/1 performance is sufficient to match all data rates offered 

by existing and developing wireless technologies. By using ptlu instructions, we have achieved 

speedups of 2.3×, 4.6×, and 9.2× in AES compared to a basic RISC instruction set. As a result, a 

60 MHz PAX32/1 processor can match the 20 Mbps target data rate of future 4G networks. This 

is significantly lower than our 400 MHz benchmark clock rate. 

 

Table 15 Percent processor utilization required for AES at various wireless links speeds 

Cellular/PCS Technology WLAN Technology Clock rate 
(MHz) Processor IS-95 

(2G) 
IS-95B 
(2.5G) 

IS-856 
(3G) 4G Bluetooth 802.11b 802.11a/g UWB 

400 
PAX32/1 
PAX64/1 

PAX128/1 

• 
• 
• 

• 
• 
• 

2 
1 
• 

14 
7 
4 

1 
• 
• 

8 
4 
2 

38 
19 
10 

70 
35 
18 

 

• means less than 1%. ♦ means more than 100%. 

Table 16 Percent processor utilization required for SHA-1 at various wireless links speeds 

Cellular/PCS Technology WLAN Technology Clock rate 
(MHz) Processor IS-95 

(2G) 
IS-95B 
(2.5G) 

IS-856 
(3G) 4G Bluetooth 802.11b 802.11a/g UWB 

400 PAX32/1 • • 1 12 • 6 31 58 



Table 17 Percent processor utilization required for WTLS-record at various wireless links speeds 

Cellular/PCS Technology WLAN Technology Clock rate 
(MHz) Processor IS-95 

(2G) 
IS-95B 
(2.5G) 

IS-856 
(3G) 4G Bluetooth 802.11b 802.11a/g UWB 

400 
PAX32/1 
PAX64/1 

PAX128/1 

• 
• 
• 

• 
• 
• 

4 
3 
2 

34 
25 
20 

1 
1 
1 

19 
14 
11 

92 
67 
54 

♦ 
♦ 

100 
 

In Tables 15-17, we show what percentage of a 400 MHz PAX processor’s clock cycles are 

consumed by AES, SHA-1, and WTLS-record at varying word sizes and link speeds. For AES 

encryption at 4G cellular/PCS data rates, only 4% of the clock cycles of a PAX128/1 processor 

are used. For 2G, 2.5G, and 3G networks, less than 1% of the cycles are used. Even for the 100 

Mbps data rate of the experimental UWB technology, only 18% of the cycles are utilized.  

 

6. Conclusions 

In this paper, we described PAX, a datapath-scalable, minimalist cryptographic processor for 

mobile environments, where the communication with the outside world is done wirelessly.  

First, we gave a brief comparative review of the existing and developing wireless 

technologies. The data rates for these vary between 64 kbps (2.5.G) to 2.4 Mbps (3G) for 

cellular/PCS, and between 723 kbps and 54 Mbps for WLAN. 

Second, we selected a set of cryptographic algorithms suitable for mobile environments. 

For key exchanges, user authentication, and digital signatures, we have chosen 163-bit, 233-bit, 

and 283-bit ECC, which offers savings in execution time, storage, bandwidth usage, and 

computation time. For confidentiality and data integrity, we use AES, SHA-1, and SHA-256. In 

addition to being US federal standards, these algorithms have fast optimized implementations. 

Third, we described the PAX instruction set. PAX is similar to PLX [1-3] in design 

philosophy in that it is a minimalist RISC-like instruction set with few new instructions that 



provide huge speedups in key algorithms. In PAX, these instructions are: shuffle.low and 

shuffle.high (used in polynomial squaring); polymul.low and polymul.high (used in polynomial 

multiplication), hibit (used in polynomial inversion); and ptlu and ptlw (used for the table 

lookups in AES and AES-hash). These provide significant overall speedups for both ECC and 

AES. The datapath scalability provides an additional 10× to 20× speedup when the word size is 

increased from 32 bits to 128 bits. 

Finally, we showed the host processor speeds needed to match the data rates offered by 

the wireless technologies we considered in the first step. For AES encryption and SHA-1 

hashing, 7 MHz PAX32/1 is sufficient to match the 2.4 Mbps data rate of future 3G cellular 

networks. To match the 54 Mbps data rate of the 802.11a/g WLAN technology, the clock rate 

needs to be 150 MHz. Both figures are well under the 400 MHz clock rate used in today’s high-

end mobile information appliances such as the HP iPAQ and Jornada series PDAs. 

In summary, we have shown that it is possible to achieve high-performance cryptography 

by using a suitable cipher suite and a simple RISC-like instruction set with few additional 

instructions. With the convergence of cellular and WLAN technologies, and the emergence of 

uniform Internet access on wired and wireless networks, it is necessary for mobile devices to 

support common Internet security protocols at a low-enough cost. We have shown that PAX is 

an excellent candidate to fulfill this requirement, either as an embedded processor, a 

cryptographic co-processor alongside a general-purpose processor, or a security module in a 

system-on-chip. 
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