

Evaluating Instruction Set Extensions for Fast Arithmetic on

Binary Finite Fields
x

A. Murat Fiskiran and Ruby B. Lee
Department of Electrical Engineering

Princeton University
{fiskiran, rblee}@princeton.edu

Abstract
Binary finite fields GF(2n) are very commonly used in cryptography, particularly in public-

key algorithms such as Elliptic Curve Cryptography (ECC). On word-oriented programmable
processors, field elements are generally represented as polynomials with coefficients from {0,
1}. Key arithmetic operations on these polynomials, such as squaring and multiplication, are
not supported by integer-oriented processor architectures. Instead, these are implemented in
software, causing a very large fraction of the cryptography execution time to be dominated by a
few elementary operations. For example, more than 90% of the execution time of 163-bit ECC
may be consumed by two simple field operations: squaring and multiplication.

A few processor architectures have been proposed recently that include instructions for
binary field arithmetic. However, these have only considered processors with small wordsizes
and in-order, single-issue execution. The first contribution of this paper is to validate these new
arithmetic instructions for processors with wider wordsizes and multiple-issue (e.g.
superscalar) execution. We also consider the effects of varying the number of functional units
and load/store pipes. We demonstrate that the combination of microarchitecture and new
instructions provides speedups up to 22.4× for ECC point multiplication. Second, we show that
if a bit-level reverse instruction is included in the instruction set, the size of the multiplier can
be reduced by half without significant performance degradation. Third, we compare the benefits
of superscalar execution with wordsize scaling. The latter has been used in recent processor
architectures such as PLX and PAX as a new way to extract parallelism. We show that 2×
wordsize scaling provides 70% better performance than 2-way superscalar execution. Finally,
we suggest a low-cost method, which we call multi-word result execution, to realize some of the
benefits of wordsize scaling in existing processors with fixed wordsizes.

1. Introduction

Binary extension fields GF(2n), which are commonly used in public-key cryptography,
present new datatypes not directly supported by traditional processor architectures with integer
functional units. Binary field elements are usually represented in software as polynomials with
coefficients from {0, 1}. Key arithmetic operations on these, such as polynomial multiplication,
are not supported by integer-oriented architectures commonly used in embedded systems
design, like MIPS32 [1] or ARM [2]. Polynomial arithmetic is implemented in software,
causing the total execution time of cryptography algorithms to be dominated by a few
elementary operations.

A few recent research papers propose instruction set extensions to support binary field
arithmetic in embedded processors. The first contribution of this paper is to evaluate the
performance benefits of these instruction set extensions in word-oriented programmable

This work was supported in part by Kodak (A. Murat Fiskiran is a Kodak Fellow) and by NSF Research Grants CCR-0105677 and
CCR-0326372.

A. Murat Fiskiran and Ruby B. Lee, “Evaluating Instruction Set Extensions for Fast Arithmetic on Binary Finite Fields”, Proc. Int.
Conf. Application-Specific Systems, Architectures, and Processors (ASAP), pp. 125-136, Sept. 2004.

processors. We use 163-bit Elliptic Curve Cryptography (ECC) point multiplication to measure
overall performance [3]. We consider multiple-issue execution with varying degrees of
superscalar issue width and number of functional units. We also propose including a bit-level
reverse instruction in the instruction set, which allows the size of the binary-field multiplier to
be reduced by half without significant performance degradation. Next, we compare the
performance benefits of multiple-issue execution with that of wordsize scaling, and show that
the latter provides 70% higher performance. Finally, we suggest a low-cost method, which we
call multi-word result execution, to realize some of the benefits of wordsize scaling in existing
processors with fixed wordsizes.

Past Work

Some past work on instruction set extensions for public-key cryptography relate to prime fields
GF(p): [4] and [5] present optimized algorithms and microarchitecture methods on the ARM7
architecture to accelerate multi-precision integer exponentiation. [5] also proposes an extended
shift left instruction to accelerate the critical loops in RSA. Two custom multiply-add
instructions are proposed in [6] for a MIPS32 core to accelerate multi-precision multiplication
using the Montgomery algorithm.

A significant amount of literature exists on the design of binary-field and dual-field
multipliers for embedded cryptographic hardware [7]-[11]. Since most of these designs are
either targeted for high-precision applications (greater than 160-bit operands) or depend on the
structure of the primitive polynomial of the field (explained in Section 2), they are not suitable
for programmable processors where wordsizes are smaller and the primitive polynomial may
change from one application to another.

Regarding ISA design, the inclusion of a dedicated functional unit to accelerate binary field
arithmetic was initially proposed in [12]. Later, binary-field multiplication instructions were
added in [13] to a 16-bit RISC processor core. Finally, the PAX cryptographic processor [14]
employed binary-field multiply instructions and bit-level shuffle instructions for primarily ECC
acceleration. However, both [13] and [14] have only considered single-issue execution, while
we consider multiple-issue ILP (instruction level parallelism) in this paper. We do not consider
the more specialized multiplier designs [7]-[11] mentioned above, but only focus on smaller 32-
bit and 64-bit dual-field or binary-field-only multipliers. A dual-field multiplier can be
implemented with minor hardware additions to a standard integer multiplier as described in
[13], and a binary-field multiplier can be very simply realized as an AND-array followed by an
XOR-tree.

The rest of this paper is organized as follows. In Section 2, we review the arithmetic
operations and algorithms used in binary finite fields. In Section 3, we evaluate the ISA
extensions proposed for fast field arithmetic. In Section 4, we compare the performance benefits
of multiple-issue execution with wordsize scaling. In Section 5, we propose multi-word result
execution as a low-cost method to implement wordsize scaling. Section 6 is the conclusion.

2. Overview of arithmetic operations and algorithms in GF(2n)

2.1. Arithmetic in GF(2n)

The binary field denoted GF(2n) contains 2n unique field elements. On word-oriented
programmable processors, polynomial basis representation of the field elements offers the
simplest arithmetic and fastest execution [15]. In polynomial basis, field elements are
represented as polynomials with coefficients from {0, 1}. For example, an element a of the 163-
bit binary field specified in [16] is a polynomial of maximum degree 162:

a = a162x
162 + a161x

161 + … + a1x + a0 = � =

162

0i
i

i xa , ai ∈ {0, 1}

This field is generated by the 163-bit irreducible pentanomial p = x163 + x7 + x6 + x3 + 1. In
software, each field element can be represented as a sequence of 163 bits corresponding to the
polynomial coefficients. With a wordsize of 32 bits, each)2(GF 163∈a spans 6 words, a =
(a[5], a[4], …, a[0]). Addition of two field elements a, b can then be done by XOR’ing the
corresponding pairs of words that contain these coefficients; for example:

for i from 5 down to 0 do c[i] := a[i] ⊕ b[i]

The square of a field element can be simply computed by interleaving the polynomial
coefficients with 0’s. In our baseline software implementation, we use table lookups to speed
this process. For multiplication, we use the fastest method among those surveyed by
Hankerson et al. in [15], which is the left-to-right comb method. The results of both the
squaring and multiplication operations are polynomials of degree maximum 324, which are
reduced to standard size (degree < 163) by a modular reduction operation, which is equivalent
to dividing the result by p and taking the remainder. Of the three methods surveyed in [15] for
field inversion, we use the fastest one, which is based on the Extended Euclidean Algorithm.

We illustrate the relative complexity of these operations in Table 1. Our results and those
reported in [15] are obtained (using C) on 450 MHz and 400 MHz Pentium-II (P-II)
workstations respectively. The third set of data is obtained using C++ on a 300 MHz
UltraSPARC [17]. For all three platforms, the simplest operation is addition, followed by
reduction, squaring, multiplication, and inversion.

Table 1: Execution times for GF(2n) field operations and ECC point multiplication

Our results on 450 MHz
P-II (C)

Hankerson et. al on 400
MHz P-II (C)

Lopez et. al on 300 MHz
UltraSPARC (C++)* Operation

Time (us) Cycles Time (us) Cycles Time (us) Cycles
Addition 0.01 5 0.10 40 0.6 180
Reduction 0.15 68 0.18 72 N/A N/A
Squaring excluding reduction 0.09 41 N/A N/A N/A N/A
Squaring including reduction 0.25 113 0.40 160 2.3 690
Multiplication excluding reduction 2.75 1238 N/A N/A N/A N/A
Multiplication including reduction 2.92 1314 3.00 1200 10.5 3150
Inversion 39.58 15833 30.99 12396 96.2 28860
Point multiplication 3218 1.448 × 106 3240 1.296 × 106 13500 4.050 × 106
* Timing results from this study are reported in single-decimal precision. It is also unclear whether the reported times

for squaring and multiplication include reduction or not. We assumed that they do.

Table 2: Execution time consumed by point multiplication in ECC algorithms

Platform Operation Percent of execution time consumed
by point multiplication

155-bit eDH key exchange 99.1 %
155-bit eElGamal encryption 98.0 % 175 MHz DEC

Alpha 3000
155-bit eElGamal decryption 97.5 %

163-bit eDSA signature generation 94.2 % 450 MHz P-II
163-bit eDSA signature verification 97.1 %

Table 3: Field operations in point multiplication

Per Point Multiplication* Operation
Number of calls Time (us)

% of Total
Execution Time

Squaring including reduction 807.96 210 6.33
Multiplication including reduction 975.95 2895 87.25
Inversion 1 50 1.51
Other N/A 163 4.91
Total = Point multiplication 1 3318 100.00
* Projective coordinates are used in point multiplication.

Diffie-Hellman Key Exchange (DH)* Elliptic-Curve Diffie-Hellman Key Exchange (eDH) Step
Alice Bob Alice Bob

1 Choose random
a ∈ [2, N – 1] Choose random

b ∈ [2, N – 1] Choose random
a ∈ [2, N – 1] Choose random

b ∈ [2, N – 1]

2 Compute
Ta = ga mod p Compute

Tb = gb mod p Compute
Ta = G × a Compute

Tb = G × b

3 Send Ta, receive Tb
Ta →
← Tb

Send Tb, receive Ta Send Ta, receive Tb
Ta →
← Tb

Send Tb, receive Ta

4
Compute shared key

K = (Tb)
a mod p

= gab mod p

Compute shared key
K = (Ta)

b mod p
= gab mod p

 Compute shared key
K = Tb × a = G × ab Compute shared key

K = Ta × b = G × ab

 * In DH, p is a large prime; g is a generator of the multiplicative group Z*
p; and N is the order of g. Both p and g are

known to Alice and Bob prior to the key exchange. In eDH, G is a point on the elliptic curve; N is the order of G.
The elliptic curve equation and G are known to Alice and Bob prior to the key exchange.

Figure 1: Integer and ECC variants of Diffie-Hellman key exchange

2.2. ECC operations

Compared to previous generations of public-key algorithms such as Diffie-Hellman,
ElGamal, and RSA, Elliptic Curve Cryptography (ECC) offers higher security per key bit, so
that smaller keys are sufficient to achieve a desired level of cryptographic resilience [3]. For
example, the security of an elliptic-curve algorithm with 160-bit keys is comparable to 1024-bit
RSA. Smaller keys also enable faster encryption and require less storage, which is an important
factor for very constrained environments such as sensors.

ECC derives its cryptographic strength from the Elliptic Curve Discrete Logarithm Problem
(ECDLP), which is analogous to the Discrete Logarithm Problem used with the integer
multiplicative groups Z*

p [3]. In ECDLP, a base point that lies on the elliptic curve is multiplied
by a scalar k. This operation, called point multiplication, is realized with a series of field
arithmetic operations explained previously. The result of point multiplication is another point on
the elliptic curve, Pfinal = Pbase × k. While it is easy to compute Pfinal, it is computationally
infeasible to recover k when only Pfinal and Pbase are given. By using this one-way property,
elliptic-curve variants of integer-based algorithms can be constructed. Figure 1 shows this for
Diffie-Hellman key exchange, where the modular exponentiation operation in the integer
version (DH) is replaced by point multiplication in the ECC version (eDH) [18]. ECC variants
of ElGamal and DSA can be similarly constructed [16].

Table 2 shows what percentage of the execution time of four ECC algorithms is consumed by
point multiplication. The figures for eDH and elliptic-curve ElGamal (eElGamal) are from [18]
and were obtained on a 175 MHz Alpha workstation. Our results for elliptic-curve Digital
Signature Algorithm (eDSA) are for a 450 MHz P-II workstation. Because point multiplication
dominates the execution time in every case (> 94%), we can use it as a proxy to measure overall
ECC performance [13][15][17]. We use the Montgomery algorithm (with projective
coordinates) described in [17] to implement point multiplication, which is the fastest method
that does not require significant pre-computations and/or storage. We first use gprof to profile
the point multiplication operation and examine how it decomposes into the field arithmetic
operations (Table 3). On average, squaring takes 6.33% of the total execution time and
multiplication 87.25%. The time shown as other is the execution overhead, which primarily
includes the main control loop (which iterates over the point multiplication function). The time
per point multiplication in Table 3 (3318 us) differs from Table 1 (3218 us) because execution
with profiling slightly degrades performance.

2.3. Baseline simulation results

We use the SimpleScalar toolset [19] to evaluate the benefits of instruction set extensions
proposed for binary field arithmetic. To establish baseline results, we first simulate the field

operations and ECC point multiplication on a single-issue processor. Throughout this
discussion, we use the notation n1/n2/n3 to refer to a processor that has n1 integer ALUs (also
equivalent to the issue width), n2 load-store pipes, and n3 multipliers. The single-issue processor
is therefore labeled 1/1/1.

Table 4: Execution cycles on a
single-issue (1/1/1) processor

Operation Cycles
Squaring 309
Multiplication 8722
Point multiplication 10367502

1 1 1

1.971.90 1.941.981.94 1.94

3.14
3.41

3.71 3.55
3.843.85

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Squaring Multiplication Point Multiplication

1/1/1 2/1/1 2/2/1 4/1/1 4/2/1
Speedup

ALU / # Load-Store Pipe / # Multiplier

Figure 2: Speedup at higher issue widths

The baseline results for the single-issue processor and the subsequent speedups obtained for
multiple-issue processors are summarized in Table 4 and Figure 2, where we normalize the
single-issue performance for each operation to a speedup of 1.0×. The performance gains from
multiple-issue execution are very similar for all three algorithms. In each case, two-way
execution provides speedups between 1.90× and 1.97×, while a second memory-pipe has no
additional performance benefit. For squaring and multiplication, four-way execution increases
the speedups to 3.71× and 3.41× respectively, while the second load-store pipe at this issue
width provides small extra benefit (increasing the speedups to 3.85× and 3.84× respectively).

3. ISA support for fast binary field arithmetic

3.1. PAX instruction set architecture

PAX is a minimalist instruction set architecture (ISA) for high performance cryptographic
processing in constrained environments [14]. This includes embedded systems, PDAs, smart
phones and secure sensors. The performance of a PAX-based system can be scaled up with
microarchitectural techniques such as superscalar execution and wordsize scalability (Section
4). In the rest of Section 3, we study the performance provided by some specific PAX
instructions, shuffle (Section 3.2) and bfmul (Section 3.3), and how much this performance may
be further improved with microarchitectural features such as superscalar execution with
different numbers of memory pipes and hardware multipliers.

3.2. Field squaring using shuffle instructions

The first ISA extension we consider is the bit-level shuffle instruction included in PAX [14]
for fast field squaring. This instruction reads individual bits alternating between two source
registers, and writes these to a destination register. The first variant of the instruction, shuffle.lo,
reads the lower halves of the source registers, while shuffle.hi reads the higher halves. Shuffle-
like instructions for multi-bit subwords have been previously included in multimedia instruction
sets IA-64 [20] and PLX [21]. The TI TMS320C64x DSP (C64x) also includes a bit-level
shuffle instruction, but this can only shuffle the two halves of the same 32-bit source register
and has a two-cycle execution latency [22].

Shuffle instructions are useful for field squaring because bits (coefficients) of a polynomial
can be interleaved with 0’s much faster than is possible with table lookups. The first row of
Table 5 shows that with shuffle instructions, the execution time of the squaring operation has
been cut down from 309 cycles to 81 cycles, which is a speedup of 3.81×. In Figure 3, we show
the additional performance improvement obtained with superscalar execution. Here two-way
execution provides a significant speedup of 1.78×, and four-way execution further increases this
to 2.60× when one memory pipe is available, and to 2.99× when two memory pipes are used.

Table 5: Execution cycles and speedup on a single-issue (1/1/1) processor

Operation
(excluding reduction)

Cycles Per
Operation

Speedup over
software*

Squaring with shuffle 81 3.81×
Multiplication with bfmul (writes RH and RL) 349 24.99×
Multiplication with bfmul.lo + bfmul.hi 351 24.85×
Multiplication with bfmul.lo + rev 488 17.87×

* Compared to the table-lookup method for squaring and left-to-right comb method for multiplication.

1

1.78 1.79

2.60

2.99

0

0.5

1

1.5

2

2.5

3

3.5

Squaring with shuffle.lo / shuffle.hi

1/1/1

2/1/1

2/2/1

4/1/1

4/2/1

Speedup
ALU / # Load-Store Pipe / # Multiplier

Figure 3: Speedup of squaring at
higher issue widths using shuffle

0

100

200

300

400

500

600

700

800

bfmul (writes RH and
RL)

bfmul.lo / bfmul.hi bfmul.lo + rev

1/1/1 2/1/1 2/2/1 2/2/2 4/1/1 4/2/1 4/2/2
Cycles

ALU / # Load-Store Pipe / # Multiplier

Figure 4: Execution cycles per field
multiplication including reduction

3.3. Field multiplication using bfmul instructions and variants

A multiply instruction writes its result to the register file in at least three different ways:

Case 1: The higher and lower words of the product are written to two special registers, RH and
RL, respectively. The contents of RH and RL can then be moved to general registers using
additional instructions. MIPS32 [1] and PISA [19] define multiplication this way. We assume
that a binary-field multiply instruction, which we will call bfmul, will work similarly.

Case 2: There are two separate instructions, bfmul.lo and bfmul.hi, that write the lower or
higher word of the product, respectively, to any general register. PAX [14], PLX [21], the 16-bit
RISC core studied in [13], and the ARM7TDMI define multiplication in this way.

Case 3: We consider using a bit-level reverse (rev) instruction that reverses the order of bits in
a register, so that the least-significant bit of the source becomes the most-significant bit of the
result, and all other bits are also swapped symmetrically. PAX processors [14] and TI C64x
DSPs [22] include bit-level reverse instructions with 1 and 2-cycle latencies respectively; IA-64
[20] and PLX [21] only have byte-level reverse instructions. With a bit-level reverse
instruction, a processor can use a smaller multiplier that only executes a bfmul.lo instruction,
and can still generate the higher word of the product. We show this below for a 32-bit
multiplier, and it can be shown similarly for larger multipliers. Let)2(GF, 32∈ba , then:

01
30

30
31

31 ... axaxaxaa ++++= and 01
30

30
31

31 ... bxbxbxbb ++++=

We can split the product a × b = ab into higher and lower halves, such that the higher half, abH,
contains all terms with degrees greater than 31, and the lower half, abL, contains all terms with
degrees less than 31.

32
311131

61
31303031

62
3131H)...(...)(xbabaxbabaxbaab ++++++=

001001
31

310031L)(...)...(baxbabaxbabaab ++++++=

Now, define a function called reverse that performs the same operation as the 32-bit reverse
instruction. Then:

31
30

1
31

0rev ...)(reverse axaxaaa +++== and 31
30

1
31

0rev ...)(reverse bxbxbbb +++==

The lower half of the product arev × brev = arevbrev is:

313131303031
31

310031Lrevrev)(...)...()(baxbabaxbababa ++++++=

We now multiply both sides by x, and apply the reverse function to the lower half of the result:

[] xbaxbabaxbababax 3131
2

31303031
31

311131LLrevrev)(...)...()(++++++=

[]{ } 32
H311131

29
31303031

30
3131revLLrevrev /)...()()(xabbabaxbabaxbabax =+++++=

The left side of the last equation can be written in software as follows, the result of which is
equivalent to bfmul.hi t, a, b:

 rev t1, a # t1 and t2 are temporary variables
 rev t2, b # two rev instructions can be parallelized
 bfmul.lo t1, t1, t2
 slli t1, t1, 1 # logical shift left by 1 bit
 rev t, t1

Therefore, at the expense of four additional instructions (two of which can be executed in
parallel) and two temporary registers, the high word of the product is obtained by using a
multiplier half as large.

We now compare the performances for these three cases while assuming single-cycle
latencies for the rev and bfmul instructions. In the PAX processors, the rev instruction is
executed in the shift unit by adding a 2-to-1 multiplexer to each output line of the barrel shifter
core. This is illustrated in Figure 5 for a 4-bit shifter. When the select signal is 0, the
multiplexers connect the output of the barrel shifter (the lower inputs of the multiplexers) to the
result bus, implementing a normal shift/rotate. To implement a rev instruction, no shift is
performed on the input and the select signal is set to 1. The multiplexers then connect each
result line to the symmetric output line of barrel shifter (the higher inputs of the multiplexers).
The wiring complexity in the last stage can be reduced by first rotating the input by half the
number of bits in a word when implementing a rev. The extra circuitry required for rev does not
impact the cycle time and has small area cost. Our synthesis results using the TSMC’s 90 nm
process technology indicate that the increase in area1 compared to a plain barrel shifter is 6.0%
for 32-bit shifters, 5.7% for 64-bit shifters, and 5.4% for 128-bit shifters.

The single-cycle latency assumed for the bfmul instructions is also justified because field
multiplication has a time complexity approximated by � � XOR2AND log tnt + , where tAND and tXOR
are the delays for AND and XOR gates respectively. Our synthesis results for 32-bit, 64-bit,
and 128-bit input words show that the multiplication delay is similar to that of a carry-save

1 Number of equivalent minimum-sized 2-input NAND gates is used as a proxy for area.

adder/subtractor, which we assume to be a single-cycle functional unit. Even for the multi-cycle
multipliers (this would be the case if a dual-field multiplier was used), the full latency can
usually be hidden by instruction scheduling, achieving an effective pipelined latency of 1 cycle.

The data in the last 3 rows of Table 5 shows the execution cycles required for a single field
multiplication on the single-issue processor (1/1/1), excluding reduction. The execution times
for the first two cases are very similar (349 versus 351 cycles), whereas the third case using the
smaller multiplier with reverse instructions requires 488 cycles. Even though the bfmul
instruction can compute and write a full 64-bit product in a single-cycle, its performance is not
visibly better than the second case, which requires two separate instructions to generate the
same result. This is due to the additional instructions required with the bfmul instruction to
move the multiplier results from the special registers to the general registers.

Data in Figure 4 compares the execution cycles for field multiplication (including reduction)
for multiple-issue processors. While the bfmul instruction gives the best results for single-issue
execution, the second and third schemes become comparably fast for two-way and four-way
execution. This is because: (a) the first scheme cannot utilize the second multiplier unit
effectively as both multipliers need to use the same physical target registers (RH and RL), and
(b) the latency of the binary-field multiply instruction is a single cycle. Perhaps a surprising
result is that while the execution cycles for the third case are the highest for single-issue
execution, its performance matches the other two cases at wider issue widths. This is achieved
with a smaller multiplier and a low-cost reverse instruction.

Barrel
Shifter
Core

Decodershift
amount

in[3]

in[2]

in[1]

in[0] Mux

Mux

Mux

Mux

out[0]

out[1]

out[2]

out[3]

select

Figure 5: Implementation of a 4-bit reverse instruction

Ddd

0

5

10

15

20

25

Software shuffle.lo +
shuffle.hi

pmul pmul +
shuffle.lo +
shuffle.hi

pmul.lo +
pmul.hi

pmul.lo +
pmul.hi +

shuffle.lo +
shuffle.hi

pmul.lo +
rev

pmul.lo +
rev +

shuffle.lo +
shuffle.hi

1/1/1 2/1/1 2/2/1 2/2/2 4/1/1 4/2/1 4/2/2
Speedup

ALU / # Load-Store Pipe / # Multiplier

Figure 6: Speedups for ECC point multiplication from new ISA and

superscalar execution

Table 6: Speedup due to wordsize scaling in PAX

 Single-issue (1/1/1) Two-way (2/2/2)
PAX-32 PAX-64 PAX-128 PAX-32 Operation

Cycles Speedup Cycles Speedup Cycles Speedup Cycles Speedup
Addition 6 1.00 3 2.00 2 3.00 3 2.00
Reduction 149 1.00 106 1.41 41 3.63 86 1.73
Squaring with shuffle.lo + shuffle.hi 28 1.00 8 3.50 3 9.33 15 1.87
Multiplication with bfmul.lo + bfmul.hi 142 1.00 36 3.94 13 10.92 74 1.91
Inversion 11873 1.00 7916 1.50 6156 1.93 10324 1.15
Point multiplication 534468 1.00 185579 2.88 122024 4.38 316253 1.69

3.4. Results for ECC point multiplication

Figure 6 summarizes the overall speedups for ECC point multiplication obtained with new
ISA and superscalar execution. Software implementation for the single-issue processor has been
normalized to a speedup of 1.0×. While multiplication with bfmul.lo+rev (using the smaller
multiplier) gives the lowest overall performance for single-issue execution, the performance
improves at higher issue widths and matches the other two multiplication schemes. Overall,
using a binary-field multiplier (without shuffle) plus superscalar execution gives speedups
between 6.5× to 10.1×. At this point, field squaring begins to dominate the execution time since
multiplication is accelerated by one order of magnitude. If the shuffle instruction is introduced
now, the cumulative speedups exceed 22.4× for the four-way superscalar processors (4/2/2).

4. Wordsize scaling versus superscalar execution

So far, we have assumed a fixed wordsize of 32 bits, and tried to exploit parallelism via
multiple-issue superscalar execution. For the PAX architecture [14], wordsize scalability offers
another very effective way to exploit parallelism. First introduced in the PLX multimedia ISA
[21], wordsize scalability refers to the feature that the same instruction set can be synthesized to
processors with different wordsizes. Both PLX and PAX can be implemented as 32-bit, 64-bit,
or 128-bit processors. For PAX, these are denoted PAX-32, PAX-64, and PAX-128
respectively.

To evaluate the performance due to wordsize scalability, we use PAX assembly and the PLX
and PAX toolset [23][24] to code the field operations and the ECC point multiplication for
PAX-32, PAX-64, and PAX-128. Our results, which are based on single-issue execution, are
shown in Table 6. We also show the results for two-way superscalar PAX-32, which can be
compared to single-issue PAX-64 since both have equivalent levels of operand parallelism. The
results for single-issue PAX-32 are normalized to a speedup of 1.00×. We see that wordsize
scaling is far more effective in exploiting parallelism than multiple-issue execution. This is
because the running times for the dominant squaring and multiplication operations are O(m2),
where m is the number of words needed to store a single field element (163 bits). This number
is reduced by wordsize scaling from PAX-32 (m = 6) to PAX-64 (m = 3), but not by superscalar
execution. The speedups for PAX-64 over PAX-32 are 3.50× for squaring, 3.94× for
multiplication (both excluding reduction), and 2.88× for point multiplication. The
corresponding speedups for PAX-128 rise to 9.33×, 10.92×, and 4.38× respectively. In contrast,
2-way superscalar execution provides speedups of only 1.87× for squaring, 1.91× for
multiplication, and 1.69× for point multiplication.

5. Multi-word result (MR) execution

While wordsize scalability is an effective tool for custom cryptographic processors, it cannot
be retroactively applied to existing programmable processors, which have fixed ISAs with a
fixed wordsize and a fixed number of registers. We now describe multi-word result execution,

which allows some of the benefits of wordsize scalability to be realized on existing multiple-
issue programmable processors.

We define a multi-word result (MR) functional unit as one that generates a result that spans
multiple words, and can write these words to multiple target registers in each cycle of
execution. In contrast to multiply instructions that can write to only two special registers as in
MIPS [1] and PISA [19], MR functional units can write their results to any general register(s).

ALU ALU

H L

MUL

Register File

H L

ALU ALU
MUL

Register File

 (a) (b)

Figure 7: (a) Standard datapath for 2-way superscalar processor
(b) Modified datapath for 2-R multiplier execution

Table 7: Speedups from multi-word result execution

 (a) (b) (c) (d)

Operation Single-issue PAX-32
2-way superscalar
PAX-32 with one

1-R multiplier

2-way superscalar
PAX-32 with one

2-R multiplier

Wordsize doubling to
single-issue PAX-64

Field multiplication
using bfmul.lo + bfmul.hi 1.00 (142 cycles) 1.15 1.61 3.94

Point multiplication 1.00 (534468 cycles) 1.32 1.90 2.88

Figure 7 shows the differences between a standard (1-word result, or 1-R) multiplier and a
multi-word result (2-R) multiplier, both for a 2-way superscalar processor. The 1-R multiplier
executes two instructions, bfmul.lo and bfmul.hi, to write either the lower or the higher word of
the product to the result bus. With the modifications made to the datapath as shown Figure 7(b),
a 2-word result (2-R) multiplier is obtained. The full 64-bit product of two 32-bit multiplicands
can now be generated with a single instruction. A 2-way superscalar processor with two 1-R
multipliers can achieve the same performance as a single 2-R multiplier, but with twice the area
for two multipliers. Hence, multi-word result functional units are more cost-effective.

We can simulate 2-R multiplier execution by dynamically monitoring the instruction
issue window and looking for consecutive bfmul.lo/bfmul.hi pairs using the same source
registers. For example:

bfmul.lo Rd1, Rs1, Rs2
bfmul.hi Rd2, Rs1, Rs2

When such instruction pairs are detected, each pair is issued as a single multiply
instruction, where Rd1 and Rd2 get the low and high words of the product respectively.

In Table 7 we compare the performance of 2-R multi-word result execution with 2-way
superscalar execution and 2× wordsize scaling. All of these three cases have twice the
operand parallelism of single-issue PAX-32. We use the results for single-issue PAX-32
as baseline and normalize it to a speedup of 1.00×. For PAX-32, 2-way superscalar
execution with one standard (1-R) multiplier gives speedups of 1.15× for field
multiplication and 1.32× for point multiplication. When multi-word result execution is

employed with one 2-R multiplier, these speedups increase to 1.61× and 1.90×
respectively. While MR execution does not give as much speedup as 2× wordsize scaling,
it does improve over the standard 2-way superscalar execution. Moreover, MR execution
has the advantage that no ISA changes and only minor microarchitecture changes are
required. Therefore, it can be implemented in existing general-purpose processors with a
fixed wordsize. In contrast, wordsize scaling requires that a larger 64-bit multiplier is
used in PAX-64 (column d) versus a 32-bit multiplier in PAX-32 (columns a-c).

6. Conclusions

Binary extension fields GF(2n), whose elements are generally represented as binary
polynomials in programmable processors, present a new datatype not well-supported by
traditional integer-oriented processor architectures. When the key arithmetic operations of this
datatype are implemented in software, we find that a very high fraction of the execution time of
public-key algorithms like ECC is dominated by a few elementary operations.

In this paper, we first presented a performance evaluation of recent instruction set extensions
aimed at accelerating binary field arithmetic. We used multi-way superscalar execution to
represent any multiple-issue machine where more than one instruction is issued and executed in
a single-cycle. This includes, for example, very long instruction word (VLIW) processors. We
found that compared to an optimized software implementation, multiple-issue execution
provides 3.55× speedup (4/2/1 processor); inclusion of a dedicated binary-field multiplier
provides about 6.5× speedup (1/1/1 processor), and the combined speedup from new ISA
(multiplication only) and superscalar execution reaches 10.1× (4/2/2 processor using
bfmul.lo+bfmul.hi). While a dedicated binary-field multiplier allows an impressive 10.1×
speedup over software, by including a low-cost bit-level shuffle instruction, this speedup can be
further increased to 22.4× (Figure 6). This is achieved by speeding up the field squaring
operation whose fraction of the execution time increases significantly as multiplication is
accelerated by 10×.

Next, we compared the performance benefits of superscalar execution with wordsize scaling.
At equivalent levels of operand parallelism (2× wordsize scaling versus 2-way superscalar
execution), wordsize scaling provides 70% better performance than superscalar execution.
However, wordsize scaling is difficult to apply to existing programmable processors, which
have fixed ISAs with fixed wordsize. So, we showed how to realize some of the benefits of full
wordsize scaling by multi-word result (MR) execution, which is a low-cost method that requires
minimal changes to the datapath.

Our results and findings are applicable to a broad variety of programmable processors. For
example, a minimalist cryptographic processor may utilize the ISA extensions we considered
and may also use wordsize scaling for additional performance without incurring the complexity
costs of multiple-issue processors. An application-specific instruction-set processor (ASIP)
designed for higher performance may utilize a combination of new instructions, superscalar
execution, and wordsize scaling to achieve a desired performance and cost target. A general-
purpose processor may add the discussed ISA extensions to its base instruction set to achieve
higher cryptographic performance. General-purpose processors may also use multi-word result
(MR) execution to achieve some of the benefits of wordsize scaling with only small
microarchitectural changes.

For future work, we will extend our results to binary fields of larger dimensions. We will also
create hardware models for the functional units that implement the new instructions proposed.
These will be used to generate estimates of latency, area, and power requirements, which will be
used for further architectural tradeoff studies. We will also study the applicability of the
proposed ISA features on other applications that use binary extension fields or polynomial
arithmetic.

References

[1] MIPS, “MIPS32 Architecture for Programmers Volume 2: The MIPS32 Instruction Set, v2.00”, available at

<http://www.mips.com>.
[2] ARM, “ARM Instruction Set Quick Reference Card v2.1”, available at <http://www.arm.com>.
[3] Kiyomichi Araki, Takakazu Satoh, and Shinji Miura, “Overview of Elliptic Curve Cryptography”, Lecture Notes

in Computer Science, vol. 1431, Springer-Verlag, pp. 29-48, Feb. 1998.
[4] J.F. Dhem, “Design of an Efficient Public-Key Cryptographic Library for RISC-Based Smart Cards”, Ph.D.

Thesis, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998.
[5] B.J. Phillips and N. Burgess, “Implementing 1,024-Bit RSA Exponentiation on a 32-Bit Processor Core”, Proc.

IEEE. Int. Conf. Application-Specific Systems, Architectures, and Processors (ASAP), pp. 127–137, Jul. 2000.
[6] J. Großschädl and G.-A. Kamendje, “Optimized RISC Architecture for Multiple-Precision Modular Arithmetic”,

Lecture Notes in Computer Science, vol. 2802, Springer-Verlag, pp. 253-270, Mar. 2003.
[7] E.D. Mastrovito, “VLSI Architectures for Computations in Galois Fields”, PhD Thesis, Dept. Electrical

Engineering, Linkoping University, 1991.
[8] B. Sunar and C. Koc, “Mastrovito Multiplier for All Trinomials”, IEEE Tran. Computers, May 1999.
[9] F. Rodriguez-Henriquez and C. Koc, “Parallel Multipliers Based on Special Irreducible Pentanomials”, IEEE

Tran. Computers, 2002.
[10] E. Savas, A.F. Tenca, and C.K. Koc, “A Scalable and Unified Multiplier Architecture for Finite Fields GF(p)

and GF(2m)”, Lecture Notes in Computer Science, vol. 1965, Springer-Verlag, pp. 277-292, Jan. 2000.
[11] L.S. Au and N. Burgess, “Unified Radix-4 Multiplier for GF(p) and GF(2n)”, Proc. IEEE Int. Conf. Application-

Specific Systems, Architectures, and Processors (ASAP), pp. 226-236, Jun. 2003.
[12] E.M. Nahum et al., “Towards High-Performance Cryptographic Software”, Proc. IEEE Workshop Architecture

and Implementation of High-Performance Communication Subsystems (HPCS), pp. 69-72, 1995.
[13] J. Großschädl and G.-A. Kamendje, “Instruction Set Extension for Fast Elliptic Curve Cryptography Over

Binary Finite Fields GF(2m)”, Proc. IEEE Int. Conf. Application-Specific Systems, Architectures, and Processors
(ASAP), pp. 455-468, Jun. 2003.

[14] A.M. Fiskiran and R.B. Lee, “PAX: A Datapath-Scalable Minimalist Cryptographic Processor for Mobile
Environments”, to be published in Embedded Cryptographic Hardware: Design and Security, Nova Science
Publishers, NY, USA.

[15] D. Hankerson, J.L. Hernandez, and A. Menezes, “Software Implementation of Elliptic Curve Cryptography
Over Binary Fields”, Lecture Notes in Computer Science, vol. 1965, Springer-Verlag, pp. 1-24, Jan. 2000.

[16] NIST, “Digital Signature Standard (DSS) – FIPS Pub. 186-2”, Feb. 2000.
[17] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curves over GF(2m) without Precomputation”, Lecture

Notes in Computer Science, vol. 1717, Springer-Verlag, pp. 316-327, 1999.
[18] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck, “Fast Key Exchange with Elliptic Curve

Systems”, Lecture Notes in Computer Science, vol. 963, Springer-Verlag, pp. 43-56, Jan. 1995.
[19] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0”, Computer Architecture News, pp. 13-25,

Jun. 1997.
[20] R.B. Lee, A.M. Fiskiran, and A. Bubshait, “Multimedia Instructions in IA-64”, Proc. IEEE Int. Conf.

Multimedia and Expo (ICME), pp. 281-284, Aug. 2001.
[21] R.B. Lee and A.M. Fiskiran, “PLX: A Fully Subword-Parallel Instruction-Set Architecture for Fast Scalable

Multimedia Processing”, Proc. IEEE Int. Conf. Multimedia and Expo (ICME), pp. 117-120, Aug. 2002.
[22] Texas Instruments, “TMS320C6000 CPU and Instruction Set Reference Guide”, doc. SPRU189F, Oct. 2000,

available at <http://www.ti.com>.
[23] R.B. Lee and A.M. Fiskiran, “PLX: An Instruction Set Architecture and Testbed For Multimedia Information

Processing”, to be published in the Journal of VLSI Signal Processing, submitted Apr. 2004.
[24] Princeton Architecture Laboratory for Multimedia and Security (PALMS), PAX Project,

<http://palms.ee.princeton.edu/PAX>.

