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Abstract 
Binary finite fields GF(2n) are very commonly used in cryptography, particularly in public-

key algorithms such as Elliptic Curve Cryptography (ECC). On word-oriented programmable 
processors, field elements are generally represented as polynomials with coefficients from {0, 
1}. Key arithmetic operations on these polynomials, such as squaring and multiplication, are 
not supported by integer-oriented processor architectures. Instead, these are implemented in 
software, causing a very large fraction of the cryptography execution time to be dominated by a 
few elementary operations. For example, more than 90% of the execution time of 163-bit ECC 
may be consumed by two simple field operations: squaring and multiplication. 

A few processor architectures have been proposed recently that include instructions for 
binary field arithmetic. However, these have only considered processors with small wordsizes 
and in-order, single-issue execution. The first contribution of this paper is to validate these new 
arithmetic instructions for processors with wider wordsizes and multiple-issue (e.g. 
superscalar) execution. We also consider the effects of varying the number of functional units 
and load/store pipes. We demonstrate that the combination of microarchitecture and new 
instructions provides speedups up to 22.4× for ECC point multiplication. Second, we show that 
if a bit-level reverse instruction is included in the instruction set, the size of the multiplier can 
be reduced by half without significant performance degradation. Third, we compare the benefits 
of superscalar execution with wordsize scaling. The latter has been used in recent processor 
architectures such as PLX and PAX as a new way to extract parallelism. We show that 2× 
wordsize scaling provides 70% better performance than 2-way superscalar execution. Finally, 
we suggest a low-cost method, which we call multi-word result execution, to realize some of the 
benefits of wordsize scaling in existing processors with fixed wordsizes. 
 
1. Introduction 
 

Binary extension fields GF(2n), which are commonly used in public-key cryptography, 
present new datatypes not directly supported by traditional processor architectures with integer 
functional units. Binary field elements are usually represented in software as polynomials with 
coefficients from {0, 1}. Key arithmetic operations on these, such as polynomial multiplication, 
are not supported by integer-oriented architectures commonly used in embedded systems 
design, like MIPS32 [1] or ARM [2]. Polynomial arithmetic is implemented in software, 
causing the total execution time of cryptography algorithms to be dominated by a few 
elementary operations.  

A few recent research papers propose instruction set extensions to support binary field 
arithmetic in embedded processors. The first contribution of this paper is to evaluate the 
performance benefits of these instruction set extensions in word-oriented programmable 
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processors. We use 163-bit Elliptic Curve Cryptography (ECC) point multiplication to measure 
overall performance [3]. We consider multiple-issue execution with varying degrees of 
superscalar issue width and number of functional units. We also propose including a bit-level 
reverse instruction in the instruction set, which allows the size of the binary-field multiplier to 
be reduced by half without significant performance degradation. Next, we compare the 
performance benefits of multiple-issue execution with that of wordsize scaling, and show that 
the latter provides 70% higher performance. Finally, we suggest a low-cost method, which we 
call multi-word result execution, to realize some of the benefits of wordsize scaling in existing 
processors with fixed wordsizes. 
 

Past Work 
 

Some past work on instruction set extensions for public-key cryptography relate to prime fields 
GF(p): [4] and [5] present optimized algorithms and microarchitecture methods on the ARM7 
architecture to accelerate multi-precision integer exponentiation. [5] also proposes an extended 
shift left instruction to accelerate the critical loops in RSA. Two custom multiply-add 
instructions are proposed in [6] for a MIPS32 core to accelerate multi-precision multiplication 
using the Montgomery algorithm.  

A significant amount of literature exists on the design of binary-field and dual-field 
multipliers for embedded cryptographic hardware [7]-[11]. Since most of these designs are 
either targeted for high-precision applications (greater than 160-bit operands) or depend on the 
structure of the primitive polynomial of the field (explained in Section 2), they are not suitable 
for programmable processors where wordsizes are smaller and the primitive polynomial may 
change from one application to another. 

Regarding ISA design, the inclusion of a dedicated functional unit to accelerate binary field 
arithmetic was initially proposed in [12]. Later, binary-field multiplication instructions were 
added in [13] to a 16-bit RISC processor core. Finally, the PAX cryptographic processor [14] 
employed binary-field multiply instructions and bit-level shuffle instructions for primarily ECC 
acceleration. However, both [13] and [14] have only considered single-issue execution, while 
we consider multiple-issue ILP (instruction level parallelism) in this paper. We do not consider 
the more specialized multiplier designs [7]-[11] mentioned above, but only focus on smaller 32-
bit and 64-bit dual-field or binary-field-only multipliers. A dual-field multiplier can be 
implemented with minor hardware additions to a standard integer multiplier as described in 
[13], and a binary-field multiplier can be very simply realized as an AND-array followed by an 
XOR-tree. 

 

The rest of this paper is organized as follows. In Section 2, we review the arithmetic 
operations and algorithms used in binary finite fields. In Section 3, we evaluate the ISA 
extensions proposed for fast field arithmetic. In Section 4, we compare the performance benefits 
of multiple-issue execution with wordsize scaling. In Section 5, we propose multi-word result 
execution as a low-cost method to implement wordsize scaling. Section 6 is the conclusion. 
 
2. Overview of arithmetic operations and algorithms in GF(2n) 
 

2.1. Arithmetic in GF(2n) 
 

The binary field denoted GF(2n) contains 2n unique field elements. On word-oriented 
programmable processors, polynomial basis representation of the field elements offers the 
simplest arithmetic and fastest execution [15]. In polynomial basis, field elements are 
represented as polynomials with coefficients from {0, 1}. For example, an element a of the 163-
bit binary field specified in [16] is a polynomial of maximum degree 162:  

a = a162x
162 + a161x

161 + … + a1x + a0 = � =

162

0i
i

i xa , ai ∈ {0, 1} 



This field is generated by the 163-bit irreducible pentanomial p = x163 + x7 + x6 + x3 + 1. In 
software, each field element can be represented as a sequence of 163 bits corresponding to the 
polynomial coefficients. With a wordsize of 32 bits, each )2(GF 163∈a  spans 6 words, a = 
(a[5], a[4], …, a[0]). Addition of two field elements a, b can then be done by XOR’ing the 
corresponding pairs of words that contain these coefficients; for example: 

 

for i from 5 down to 0 do c[i] := a[i] ⊕  b[i] 
 

The square of a field element can be simply computed by interleaving the polynomial 
coefficients with 0’s. In our baseline software implementation, we use table lookups to speed 
this process. For multiplication, we use the fastest method among those surveyed by 
Hankerson et al. in [15], which is the left-to-right comb method. The results of both the 
squaring and multiplication operations are polynomials of degree maximum 324, which are 
reduced to standard size (degree < 163) by a modular reduction operation, which is equivalent 
to dividing the result by p and taking the remainder. Of the three methods surveyed in [15] for 
field inversion, we use the fastest one, which is based on the Extended Euclidean Algorithm. 

We illustrate the relative complexity of these operations in Table 1. Our results and those 
reported in [15] are obtained (using C) on 450 MHz and 400 MHz Pentium-II (P-II) 
workstations respectively. The third set of data is obtained using C++ on a 300 MHz 
UltraSPARC [17]. For all three platforms, the simplest operation is addition, followed by 
reduction, squaring, multiplication, and inversion.  

 
Table 1: Execution times for GF(2n) field operations and ECC point multiplication 

 

Our results on 450 MHz 
P-II (C) 

Hankerson et. al on 400 
MHz P-II (C) 

Lopez et. al on 300 MHz 
UltraSPARC (C++)* Operation 

Time (us) Cycles Time (us) Cycles Time (us) Cycles 
Addition 0.01 5 0.10 40 0.6 180 
Reduction 0.15 68 0.18 72 N/A N/A 
Squaring excluding reduction 0.09 41 N/A N/A N/A N/A 
Squaring including reduction 0.25 113 0.40 160 2.3 690 
Multiplication excluding reduction 2.75 1238 N/A N/A N/A N/A 
Multiplication including reduction 2.92 1314 3.00 1200 10.5 3150 
Inversion 39.58 15833 30.99 12396 96.2 28860 
Point multiplication 3218 1.448 × 106 3240 1.296 × 106 13500 4.050 × 106 
* Timing results from this study are reported in single-decimal precision. It is also unclear whether the reported times 

for squaring and multiplication include reduction or not. We assumed that they do.  
 

Table 2: Execution time consumed by point multiplication in ECC algorithms 
 

Platform Operation Percent of execution time consumed 
by point multiplication 

155-bit eDH key exchange 99.1 % 
155-bit eElGamal encryption 98.0 % 175 MHz DEC 

Alpha 3000 
155-bit eElGamal decryption 97.5 % 

163-bit eDSA signature generation 94.2 % 450 MHz P-II 
163-bit eDSA signature verification 97.1 % 

 
Table 3: Field operations in point multiplication 

 

Per Point Multiplication* Operation 
Number of calls Time (us) 

% of Total  
Execution Time 

Squaring including reduction  807.96 210 6.33 
Multiplication including reduction  975.95 2895 87.25 
Inversion 1 50 1.51 
Other N/A 163 4.91 
Total = Point multiplication 1 3318 100.00 
* Projective coordinates are used in point multiplication.  



Diffie-Hellman Key Exchange (DH)*  Elliptic-Curve Diffie-Hellman Key Exchange (eDH) Step 
Alice  Bob  Alice  Bob 

1 Choose random  
a ∈  [2, N – 1]  Choose random  

b ∈  [2, N – 1]  Choose random  
a ∈  [2, N – 1]  Choose random  

b ∈  [2, N – 1] 

2 Compute  
Ta = ga mod p  Compute  

Tb = gb mod p  Compute  
Ta = G × a  Compute  

Tb = G × b 

3 Send Ta, receive Tb 
Ta →  
←  Tb 

Send Tb, receive Ta  Send Ta, receive Tb 
Ta →  
←  Tb 

Send Tb, receive Ta 

4 
Compute shared key 

K = (Tb)
a mod p  

= gab mod p 
 

Compute shared key 
K = (Ta)

b mod p 
= gab mod p 

 Compute shared key 
K = Tb × a = G × ab  Compute shared key 

K = Ta × b = G × ab 

        * In DH, p is a large prime; g is a generator of the multiplicative group Z*
p; and N is the order of g. Both p and g are 

known to Alice and Bob prior to the key exchange. In eDH, G is a point on the elliptic curve; N is the order of G. 
The elliptic curve equation and G are known to Alice and Bob prior to the key exchange. 

 

Figure 1: Integer and ECC variants of Diffie-Hellman key exchange 
 
2.2. ECC operations 
 

Compared to previous generations of public-key algorithms such as Diffie-Hellman, 
ElGamal, and RSA, Elliptic Curve Cryptography (ECC) offers higher security per key bit, so 
that smaller keys are sufficient to achieve a desired level of cryptographic resilience [3]. For 
example, the security of an elliptic-curve algorithm with 160-bit keys is comparable to 1024-bit 
RSA. Smaller keys also enable faster encryption and require less storage, which is an important 
factor for very constrained environments such as sensors.  

ECC derives its cryptographic strength from the Elliptic Curve Discrete Logarithm Problem 
(ECDLP), which is analogous to the Discrete Logarithm Problem used with the integer 
multiplicative groups Z*

p [3]. In ECDLP, a base point that lies on the elliptic curve is multiplied 
by a scalar k. This operation, called point multiplication, is realized with a series of field 
arithmetic operations explained previously. The result of point multiplication is another point on 
the elliptic curve, Pfinal = Pbase × k. While it is easy to compute Pfinal, it is computationally 
infeasible to recover k when only Pfinal and Pbase are given. By using this one-way property, 
elliptic-curve variants of integer-based algorithms can be constructed. Figure 1 shows this for 
Diffie-Hellman key exchange, where the modular exponentiation operation in the integer 
version (DH) is replaced by point multiplication in the ECC version (eDH) [18]. ECC variants 
of ElGamal and DSA can be similarly constructed [16]. 

Table 2 shows what percentage of the execution time of four ECC algorithms is consumed by 
point multiplication. The figures for eDH and elliptic-curve ElGamal (eElGamal) are from [18] 
and were obtained on a 175 MHz Alpha workstation. Our results for elliptic-curve Digital 
Signature Algorithm (eDSA) are for a 450 MHz P-II workstation. Because point multiplication 
dominates the execution time in every case (> 94%), we can use it as a proxy to measure overall 
ECC performance [13][15][17]. We use the Montgomery algorithm (with projective 
coordinates) described in [17] to implement point multiplication, which is the fastest method 
that does not require significant pre-computations and/or storage. We first use gprof to profile 
the point multiplication operation and examine how it decomposes into the field arithmetic 
operations (Table 3). On average, squaring takes 6.33% of the total execution time and 
multiplication 87.25%. The time shown as other is the execution overhead, which primarily 
includes the main control loop (which iterates over the point multiplication function). The time 
per point multiplication in Table 3 (3318 us) differs from Table 1 (3218 us) because execution 
with profiling slightly degrades performance.  
 
2.3. Baseline simulation results 
 

We use the SimpleScalar toolset [19] to evaluate the benefits of instruction set extensions 
proposed for binary field arithmetic. To establish baseline results, we first simulate the field 



operations and ECC point multiplication on a single-issue processor. Throughout this 
discussion, we use the notation n1/n2/n3 to refer to a processor that has n1 integer ALUs (also 
equivalent to the issue width), n2 load-store pipes, and n3 multipliers. The single-issue processor 
is therefore labeled 1/1/1.  

 
 
 

 
Table 4: Execution cycles on a 
single-issue (1/1/1) processor 

 

Operation Cycles 
Squaring 309 
Multiplication 8722 
Point multiplication 10367502 
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Figure 2: Speedup at higher issue widths 
 

The baseline results for the single-issue processor and the subsequent speedups obtained for 
multiple-issue processors are summarized in Table 4 and Figure 2, where we normalize the 
single-issue performance for each operation to a speedup of 1.0×. The performance gains from 
multiple-issue execution are very similar for all three algorithms. In each case, two-way 
execution provides speedups between 1.90× and 1.97×, while a second memory-pipe has no 
additional performance benefit. For squaring and multiplication, four-way execution increases 
the speedups to 3.71× and 3.41× respectively, while the second load-store pipe at this issue 
width provides small extra benefit (increasing the speedups to 3.85× and 3.84× respectively).  
 
3. ISA support for fast binary field arithmetic 
 

3.1. PAX instruction set architecture 
 

PAX is a minimalist instruction set architecture (ISA) for high performance cryptographic 
processing in constrained environments [14]. This includes embedded systems, PDAs, smart 
phones and secure sensors. The performance of a PAX-based system can be scaled up with 
microarchitectural techniques such as superscalar execution and wordsize scalability (Section 
4). In the rest of Section 3, we study the performance provided by some specific PAX 
instructions, shuffle (Section 3.2) and bfmul (Section 3.3), and how much this performance may 
be further improved with microarchitectural features such as superscalar execution with 
different numbers of memory pipes and hardware multipliers. 
 
3.2. Field squaring using shuffle instructions 
 

The first ISA extension we consider is the bit-level shuffle instruction included in PAX [14] 
for fast field squaring. This instruction reads individual bits alternating between two source 
registers, and writes these to a destination register. The first variant of the instruction, shuffle.lo, 
reads the lower halves of the source registers, while shuffle.hi reads the higher halves. Shuffle-
like instructions for multi-bit subwords have been previously included in multimedia instruction 
sets IA-64 [20] and PLX [21]. The TI TMS320C64x DSP (C64x) also includes a bit-level 
shuffle instruction, but this can only shuffle the two halves of the same 32-bit source register 
and has a two-cycle execution latency [22]. 



Shuffle instructions are useful for field squaring because bits (coefficients) of a polynomial 
can be interleaved with 0’s much faster than is possible with table lookups. The first row of 
Table 5 shows that with shuffle instructions, the execution time of the squaring operation has 
been cut down from 309 cycles to 81 cycles, which is a speedup of 3.81×. In Figure 3, we show 
the additional performance improvement obtained with superscalar execution. Here two-way 
execution provides a significant speedup of 1.78×, and four-way execution further increases this 
to 2.60× when one memory pipe is available, and to 2.99× when two memory pipes are used. 
 

Table 5: Execution cycles and speedup on a single-issue (1/1/1) processor 
 

Operation  
(excluding reduction) 

Cycles Per 
Operation 

Speedup over 
software* 

Squaring with shuffle 81 3.81× 
Multiplication with bfmul (writes RH and RL) 349 24.99× 
Multiplication with bfmul.lo + bfmul.hi 351 24.85× 
Multiplication with bfmul.lo + rev 488 17.87× 

* Compared to the table-lookup method for squaring and left-to-right comb method for multiplication. 
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Figure 3: Speedup of squaring at 
higher issue widths using shuffle 
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Figure 4: Execution cycles per field 
multiplication including reduction 

 
3.3. Field multiplication using bfmul instructions and variants 
 

A multiply instruction writes its result to the register file in at least three different ways:  
 

Case 1: The higher and lower words of the product are written to two special registers, RH and 
RL, respectively. The contents of RH and RL can then be moved to general registers using 
additional instructions. MIPS32 [1] and PISA [19] define multiplication this way. We assume 
that a binary-field multiply instruction, which we will call bfmul, will work similarly.  
 

Case 2: There are two separate instructions, bfmul.lo and bfmul.hi, that write the lower or 
higher word of the product, respectively, to any general register. PAX [14], PLX [21], the 16-bit 
RISC core studied in [13], and the ARM7TDMI define multiplication in this way. 
 

Case 3: We consider using a bit-level reverse (rev) instruction that reverses the order of bits in 
a register, so that the least-significant bit of the source becomes the most-significant bit of the 
result, and all other bits are also swapped symmetrically. PAX processors [14] and TI C64x 
DSPs [22] include bit-level reverse instructions with 1 and 2-cycle latencies respectively; IA-64 
[20] and PLX [21] only have byte-level reverse instructions. With a bit-level reverse 
instruction, a processor can use a smaller multiplier that only executes a bfmul.lo instruction, 
and can still generate the higher word of the product. We show this below for a 32-bit 
multiplier, and it can be shown similarly for larger multipliers. Let )2(GF, 32∈ba , then: 
 



01
30

30
31

31 ... axaxaxaa ++++=   and  01
30

30
31

31 ... bxbxbxbb ++++=  
 

We can split the product a × b = ab into higher and lower halves, such that the higher half, abH, 
contains all terms with degrees greater than 31, and the lower half, abL, contains all terms with 
degrees less than 31. 
 

32
311131

61
31303031

62
3131H )...(...)( xbabaxbabaxbaab ++++++=  

001001
31

310031L )(...)...( baxbabaxbabaab ++++++=  
 

Now, define a function called reverse that performs the same operation as the 32-bit reverse 
instruction. Then: 
 

31
30

1
31

0rev ...)(reverse axaxaaa +++==         and        31
30

1
31

0rev ...)(reverse bxbxbbb +++==  
 

The lower half of the product arev × brev = arevbrev is: 
 

313131303031
31

310031Lrevrev )(...)...()( baxbabaxbababa ++++++=  
 

We now multiply both sides by x, and apply the reverse function to the lower half of the result: 
 

[ ] xbaxbabaxbababax 3131
2

31303031
31

311131LLrevrev )(...)...()( ++++++=  

[ ]{ } 32
H311131

29
31303031

30
3131revLLrevrev /)...()()( xabbabaxbabaxbabax =+++++=  

 

The left side of the last equation can be written in software as follows, the result of which is 
equivalent to bfmul.hi t, a, b: 
 

 rev        t1,  a  # t1 and t2 are temporary variables 
 rev        t2,  b  # two rev instructions can be parallelized 
 bfmul.lo   t1, t1, t2 
 slli       t1, t1,    1 # logical shift left by 1 bit  
 rev        t,  t1 
 

Therefore, at the expense of four additional instructions (two of which can be executed in 
parallel) and two temporary registers, the high word of the product is obtained by using a 
multiplier half as large. 
 

We now compare the performances for these three cases while assuming single-cycle 
latencies for the rev and bfmul instructions. In the PAX processors, the rev instruction is 
executed in the shift unit by adding a 2-to-1 multiplexer to each output line of the barrel shifter 
core. This is illustrated in Figure 5 for a 4-bit shifter. When the select signal is 0, the 
multiplexers connect the output of the barrel shifter (the lower inputs of the multiplexers) to the 
result bus, implementing a normal shift/rotate. To implement a rev instruction, no shift is 
performed on the input and the select signal is set to 1. The multiplexers then connect each 
result line to the symmetric output line of barrel shifter (the higher inputs of the multiplexers). 
The wiring complexity in the last stage can be reduced by first rotating the input by half the 
number of bits in a word when implementing a rev. The extra circuitry required for rev does not 
impact the cycle time and has small area cost. Our synthesis results using the TSMC’s 90 nm 
process technology indicate that the increase in area1 compared to a plain barrel shifter is 6.0% 
for 32-bit shifters, 5.7% for 64-bit shifters, and 5.4% for 128-bit shifters.  

The single-cycle latency assumed for the bfmul instructions is also justified because field 
multiplication has a time complexity approximated by � � XOR2AND log tnt + , where tAND and tXOR 
are the delays for AND and XOR gates respectively. Our synthesis results for 32-bit, 64-bit, 
and 128-bit input words show that the multiplication delay is similar to that of a carry-save 
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adder/subtractor, which we assume to be a single-cycle functional unit. Even for the multi-cycle 
multipliers (this would be the case if a dual-field multiplier was used), the full latency can 
usually be hidden by instruction scheduling, achieving an effective pipelined latency of 1 cycle. 

The data in the last 3 rows of Table 5 shows the execution cycles required for a single field 
multiplication on the single-issue processor (1/1/1), excluding reduction. The execution times 
for the first two cases are very similar (349 versus 351 cycles), whereas the third case using the 
smaller multiplier with reverse instructions requires 488 cycles. Even though the bfmul 
instruction can compute and write a full 64-bit product in a single-cycle, its performance is not 
visibly better than the second case, which requires two separate instructions to generate the 
same result. This is due to the additional instructions required with the bfmul instruction to 
move the multiplier results from the special registers to the general registers.  

Data in Figure 4 compares the execution cycles for field multiplication (including reduction) 
for multiple-issue processors. While the bfmul instruction gives the best results for single-issue 
execution, the second and third schemes become comparably fast for two-way and four-way 
execution. This is because: (a) the first scheme cannot utilize the second multiplier unit 
effectively as both multipliers need to use the same physical target registers (RH and RL), and 
(b) the latency of the binary-field multiply instruction is a single cycle. Perhaps a surprising 
result is that while the execution cycles for the third case are the highest for single-issue 
execution, its performance matches the other two cases at wider issue widths. This is achieved 
with a smaller multiplier and a low-cost reverse instruction.  
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Figure 5: Implementation of a 4-bit reverse instruction 
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Figure 6: Speedups for ECC point multiplication from new ISA and 
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Table 6: Speedup due to wordsize scaling in PAX 
 

 Single-issue (1/1/1) Two-way (2/2/2) 
PAX-32 PAX-64 PAX-128 PAX-32 Operation 

Cycles Speedup Cycles Speedup Cycles Speedup Cycles Speedup 
Addition 6 1.00 3 2.00 2 3.00 3 2.00 
Reduction 149 1.00 106 1.41 41 3.63 86 1.73 
Squaring with shuffle.lo + shuffle.hi  28 1.00 8 3.50 3 9.33 15 1.87 
Multiplication with bfmul.lo + bfmul.hi  142 1.00 36 3.94 13 10.92 74 1.91 
Inversion 11873 1.00 7916 1.50 6156 1.93 10324 1.15 
Point multiplication  534468 1.00 185579 2.88 122024 4.38 316253 1.69 
 
3.4. Results for ECC point multiplication 
 

Figure 6 summarizes the overall speedups for ECC point multiplication obtained with new 
ISA and superscalar execution. Software implementation for the single-issue processor has been 
normalized to a speedup of 1.0×. While multiplication with bfmul.lo+rev (using the smaller 
multiplier) gives the lowest overall performance for single-issue execution, the performance 
improves at higher issue widths and matches the other two multiplication schemes. Overall, 
using a binary-field multiplier (without shuffle) plus superscalar execution gives speedups 
between 6.5× to 10.1×. At this point, field squaring begins to dominate the execution time since 
multiplication is accelerated by one order of magnitude. If the shuffle instruction is introduced 
now, the cumulative speedups exceed 22.4× for the four-way superscalar processors (4/2/2).  
 
4. Wordsize scaling versus superscalar execution 
 

So far, we have assumed a fixed wordsize of 32 bits, and tried to exploit parallelism via 
multiple-issue superscalar execution. For the PAX architecture [14], wordsize scalability offers 
another very effective way to exploit parallelism. First introduced in the PLX multimedia ISA 
[21], wordsize scalability refers to the feature that the same instruction set can be synthesized to 
processors with different wordsizes. Both PLX and PAX can be implemented as 32-bit, 64-bit, 
or 128-bit processors. For PAX, these are denoted PAX-32, PAX-64, and PAX-128 
respectively. 

To evaluate the performance due to wordsize scalability, we use PAX assembly and the PLX 
and PAX toolset [23][24] to code the field operations and the ECC point multiplication for 
PAX-32, PAX-64, and PAX-128. Our results, which are based on single-issue execution, are 
shown in Table 6. We also show the results for two-way superscalar PAX-32, which can be 
compared to single-issue PAX-64 since both have equivalent levels of operand parallelism. The 
results for single-issue PAX-32 are normalized to a speedup of 1.00×. We see that wordsize 
scaling is far more effective in exploiting parallelism than multiple-issue execution. This is 
because the running times for the dominant squaring and multiplication operations are O(m2), 
where m is the number of words needed to store a single field element (163 bits). This number 
is reduced by wordsize scaling from PAX-32 (m = 6) to PAX-64 (m = 3), but not by superscalar 
execution. The speedups for PAX-64 over PAX-32 are 3.50× for squaring, 3.94× for 
multiplication (both excluding reduction), and 2.88× for point multiplication. The 
corresponding speedups for PAX-128 rise to 9.33×, 10.92×, and 4.38× respectively. In contrast, 
2-way superscalar execution provides speedups of only 1.87× for squaring, 1.91× for 
multiplication, and 1.69× for point multiplication.  

 
5. Multi-word result (MR) execution 
 

While wordsize scalability is an effective tool for custom cryptographic processors, it cannot 
be retroactively applied to existing programmable processors, which have fixed ISAs with a 
fixed wordsize and a fixed number of registers. We now describe multi-word result execution, 



which allows some of the benefits of wordsize scalability to be realized on existing multiple-
issue programmable processors.  

We define a multi-word result (MR) functional unit as one that generates a result that spans 
multiple words, and can write these words to multiple target registers in each cycle of 
execution. In contrast to multiply instructions that can write to only two special registers as in 
MIPS [1] and PISA [19], MR functional units can write their results to any general register(s). 
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Figure 7: (a) Standard datapath for 2-way superscalar processor  
(b) Modified datapath for 2-R multiplier execution 

 
Table 7: Speedups from multi-word result execution 

 

 (a) (b) (c) (d) 

Operation Single-issue PAX-32 
2-way superscalar 
PAX-32 with one 

1-R multiplier 

2-way superscalar 
PAX-32 with one 

2-R multiplier 

Wordsize doubling to 
single-issue PAX-64 

Field multiplication 
using bfmul.lo + bfmul.hi 1.00 (142 cycles) 1.15 1.61 3.94 

Point multiplication 1.00 (534468 cycles) 1.32 1.90 2.88 
 

Figure 7 shows the differences between a standard (1-word result, or 1-R) multiplier and a 
multi-word result (2-R) multiplier, both for a 2-way superscalar processor. The 1-R multiplier 
executes two instructions, bfmul.lo and bfmul.hi, to write either the lower or the higher word of 
the product to the result bus. With the modifications made to the datapath as shown Figure 7(b), 
a 2-word result (2-R) multiplier is obtained. The full 64-bit product of two 32-bit multiplicands 
can now be generated with a single instruction. A 2-way superscalar processor with two 1-R 
multipliers can achieve the same performance as a single 2-R multiplier, but with twice the area 
for two multipliers. Hence, multi-word result functional units are more cost-effective. 

We can simulate 2-R multiplier execution by dynamically monitoring the instruction 
issue window and looking for consecutive bfmul.lo/bfmul.hi pairs using the same source 
registers. For example: 
 

bfmul.lo    Rd1, Rs1, Rs2 
bfmul.hi    Rd2, Rs1, Rs2 

 

When such instruction pairs are detected, each pair is issued as a single multiply 
instruction, where Rd1 and Rd2 get the low and high words of the product respectively.  

In Table 7 we compare the performance of 2-R multi-word result execution with 2-way 
superscalar execution and 2× wordsize scaling. All of these three cases have twice the 
operand parallelism of single-issue PAX-32. We use the results for single-issue PAX-32 
as baseline and normalize it to a speedup of 1.00×. For PAX-32, 2-way superscalar 
execution with one standard (1-R) multiplier gives speedups of 1.15× for field 
multiplication and 1.32× for point multiplication. When multi-word result execution is 



employed with one 2-R multiplier, these speedups increase to 1.61× and 1.90× 
respectively. While MR execution does not give as much speedup as 2× wordsize scaling, 
it does improve over the standard 2-way superscalar execution. Moreover, MR execution 
has the advantage that no ISA changes and only minor microarchitecture changes are 
required. Therefore, it can be implemented in existing general-purpose processors with a 
fixed wordsize. In contrast, wordsize scaling requires that a larger 64-bit multiplier is 
used in PAX-64 (column d) versus a 32-bit multiplier in PAX-32 (columns a-c).  
 
6. Conclusions 
 

Binary extension fields GF(2n), whose elements are generally represented as binary 
polynomials in programmable processors, present a new datatype not well-supported by 
traditional integer-oriented processor architectures. When the key arithmetic operations of this 
datatype are implemented in software, we find that a very high fraction of the execution time of 
public-key algorithms like ECC is dominated by a few elementary operations.  

In this paper, we first presented a performance evaluation of recent instruction set extensions 
aimed at accelerating binary field arithmetic. We used multi-way superscalar execution to 
represent any multiple-issue machine where more than one instruction is issued and executed in 
a single-cycle. This includes, for example, very long instruction word (VLIW) processors. We 
found that compared to an optimized software implementation, multiple-issue execution 
provides 3.55× speedup (4/2/1 processor); inclusion of a dedicated binary-field multiplier 
provides about 6.5× speedup (1/1/1 processor), and the combined speedup from new ISA 
(multiplication only) and superscalar execution reaches 10.1× (4/2/2 processor using 
bfmul.lo+bfmul.hi). While a dedicated binary-field multiplier allows an impressive 10.1× 
speedup over software, by including a low-cost bit-level shuffle instruction, this speedup can be 
further increased to 22.4× (Figure 6). This is achieved by speeding up the field squaring 
operation whose fraction of the execution time increases significantly as multiplication is 
accelerated by 10×.  

Next, we compared the performance benefits of superscalar execution with wordsize scaling. 
At equivalent levels of operand parallelism (2× wordsize scaling versus 2-way superscalar 
execution), wordsize scaling provides 70% better performance than superscalar execution. 
However, wordsize scaling is difficult to apply to existing programmable processors, which 
have fixed ISAs with fixed wordsize. So, we showed how to realize some of the benefits of full 
wordsize scaling by multi-word result (MR) execution, which is a low-cost method that requires 
minimal changes to the datapath.  

Our results and findings are applicable to a broad variety of programmable processors. For 
example, a minimalist cryptographic processor may utilize the ISA extensions we considered 
and may also use wordsize scaling for additional performance without incurring the complexity 
costs of multiple-issue processors. An application-specific instruction-set processor (ASIP) 
designed for higher performance may utilize a combination of new instructions, superscalar 
execution, and wordsize scaling to achieve a desired performance and cost target. A general-
purpose processor may add the discussed ISA extensions to its base instruction set to achieve 
higher cryptographic performance. General-purpose processors may also use multi-word result 
(MR) execution to achieve some of the benefits of wordsize scaling with only small 
microarchitectural changes. 

 

For future work, we will extend our results to binary fields of larger dimensions. We will also 
create hardware models for the functional units that implement the new instructions proposed. 
These will be used to generate estimates of latency, area, and power requirements, which will be 
used for further architectural tradeoff studies. We will also study the applicability of the 
proposed ISA features on other applications that use binary extension fields or polynomial 
arithmetic.  
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