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Abstract 
1 

Cryptography algorithms are essential building blocks 
used to provide security on public communication 
networks such as the Internet. Concurrent with the 
increases in wireless connectivity and data rates, security 
protocols have been expanded over the past years to 
include more resource-friendly cryptography algorithms 
such as Elliptic Curve Cryptography (ECC). In this 
paper, we first describe and characterize these newer 
security algorithms suitable for mobile environments. We 
consider symmetric-key, hash, public-key, ECC, and 
digital signature algorithms. Next, we describe new 
architectural techniques to accelerate these algorithms. 
We focus on the table lookup operations used in the 
symmetric-key ciphers and the multi-precision arithmetic 
operations used in the public-key ciphers. Our third 
contribution is to show how: (1) the performance of a 
server can be scaled to support a growing number of 
mobile clients, and (2) the performance of a client can be 
scaled to meet particular wireless data transfer rates. 
 
 

1. Introduction 
 

Cryptography algorithms are the building blocks used 
to enable secure communications on public data channels 
such as the Internet. Due to the compute-intensive nature 
of these algorithms, high-performance cryptography is 
particularly difficult for mobile wireless devices, where 
the computational and memory resources are very 
constrained and the network data rates may be as high as 
100 Mbps (e.g. UWB wireless technology [1]). 

To facilitate cryptography processing in constrained 
environments, resource-efficient algorithms have been 
added to security protocols. Two examples are Elliptic 
Curve Cryptography (ECC) [2]-[4] and the Advanced 
Encryption Standard (AES) [5]. Our first contribution in 
this paper is the selection and workload characterization 
of a cryptography suite that includes these newer 
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algorithms. This suite, which we call mCrypt, is 
representative of the next-generation security processing 
workload as it includes the cryptography algorithms 
frequently used by both servers and mobile clients. 

Our second contribution is the description of 
instruction set architecture (ISA) methods to accelerate 
the symmetric-key and public-key algorithms in the 
mCrypt suite. These methods are scalable so that they are 
applicable in platforms with varying degrees of 
computational resources such as sensors, smartcards, cell 
phones, notebooks, desktops, and servers.  

As our third contribution, we show how: (1) the 
performance of a server can be scaled to support a 
growing number of clients, and (2) the performance of a 
client can be scaled to meet particular data transfer rates. 

The rest of the paper is organized as follows. In 
Section 2, we describe the algorithms in the mCrypt suite. 
In Section 3, we study the symmetric-key algorithms, and 
describe how to accelerate the table lookup operations 
frequently used by these. In Section 4, we study the 
public-key algorithms and the impact of wordsize scaling 
on performance. In Section 5, we show how client and 
server performance can be scaled to meet varying 
performance targets. Section 6 concludes the paper. 
 
2. mCrypt suite of cryptography algorithms 
 

A complete cipher suite includes symmetric-key, hash, 
and public-key algorithms [6]. Each of these classes 
fulfills a different security function. 

Symmetric-key algorithms ensure the confidentiality of 
messages exchanged on a public network. Hash 
algorithms provide data integrity by verifying that the 
messages exchanged on the network arrive at their 
destinations unaltered. Public-key algorithms are used for 
authentication and digital signatures.  

A subgroup of public-key algorithms is the Elliptic-
Curve Cryptography (ECC), which offers higher security 
per key bit compared to the previous generations of 
public-key algorithms, so that shorter keys can be used to 
attain the same level of security. (For example, 160-bit 
ECC has the same security as 1024-bit RSA [7].) Smaller 
keys permit faster computations and also require less 
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Table 1: Symmetric-key ciphers in mCrypt 
 

Name Block Size / 
Key Size (bits)1 Description 

AES [5] 128 / 128 US Federal standard for block 
encryption since 2001. 

DES 
3DES [6] 

64 / 56 
64 / 112 

Former standards for block 
encryption. 

IDEA, Blowfish [6] 64 / 128 Used in OpenSSL, WTLS, GPG 
and SSH. 

RC42 [6] 8 / 128 Used in WEP - part of the WLAN 
standard IEEE 802.11 [8]. 

RC5 [6] 64 / 128 Used in the WTLS security 
protocol specified in WAP [9]. 

RC6, MARS, 
Twofish, Serpent 128 / 128 AES finalists [10]. 

 

Table 2: Hash algorithms in mCrypt 
 

Name Block size / 
Hash size (bits) Description 

SHA-1 512 / 160 
SHA-256 512 / 256 
SHA-384 1024 / 384 
SHA-512 1024 / 512 

Specified in SHS [11]. SHA-1 is also a 
used as a subroutine in DSS [4]. 

MD5 [6] 512 / 128 General use for integrity verification 
(e.g. md5sum utility). 

 
1 For the ciphers that use variable length blocks (e.g. RC4, RC5) and/or 
variable length keys (e.g. AES, RC4, RC5, Blowfish) a typical value for 
the block/key size is shown.  
2 Due to security vulnerabilities in WEP, a higher-layer security protocol is 
used in addition to RC4. 

 
Table 31: Basic operations in symmetric-key block ciphers and hash algorithms 

 

 AES DES, 
3DES RC4 RC5 RC6 IDEA Blowfish MARS Twofish Serpent2 SHA-1 SHA-256 SHA-384 SHA-512 MD5 

Add / Subtract   � � � � � � �  � � � � � 
Logical � � � � � � � � � � � � � � � 

Table Lookup (TLU) � � �    � � �       
Integer Mult.     � �  �        
Binary Mult.         �       

Shift          �  � � �  
Fixed rotate  �  � �   � � � � � � � � 

Variable rotate    � �   �        
Permutation  �       �       

 

  1 Only the operations that have cryptographic significance are listed.  
  2 The reference implementation of Serpent includes table lookups but in practice these are realized as a sequence of logical operations.  

 
 

 

 
Table 4: Structure of lookups tables 

 

Algorithm Block 
size (bits) 

Table 
Structure1 

Lookups Per Block  
of Encryption 

AES 128  (4, 8, 32) 160 
DES 64 (8, 6, 32) 128 

3DES 64 (8, 6, 32) 384 
RC4 8 (1, 8, 8) Reads = 3, Writes = 2. 

Blowfish 64 (4, 8, 32) 64 
MARS 128 (2, 8, 32) 56 
Twofish 128 (4, 8, 8) 48 

  
1 Shows (#  tables, # index bits, # bits in a table entry). 

 
 

Table 5: Breakdown of execution time  
 

 Algorithm / % 

Operations AES DES, 
3DES RC4 Blowfish MARS Twofish 

Add / Subtract   14 28 10 5 
Logical 28 18 28 35 18 7 

Table Lookup (TLU) 72 35 58 37 34 24 
Integer Mult.     25  
Binary Mult.      54 

Shift       
Fixed rotate  15   5 10 

Variable rotate     8  
Permutation  32    0 

Total % 100 100 100 100 100 100 
  

storage, which is important for very resource-limited 
platforms such as sensors. Due to its suitability for 
constrained environments, ECC was added to major 
security protocols such as the TLS/SSL [12], WTLS [9], 
and DSS [4].  

Tables 1 and 2 list the symmetric-key and hash 
algorithms in mCrypt and provide references to the 
algorithm definitions. In general, each algorithm is either 
an important security standard by itself (e.g. AES) or is 
part of a larger standard (e.g. SHA-1 in SHS [11]). 
 

3. Accelerating symmetric-key algorithms 
 

3.1. Workload characteristics 
 

For workload characterization of the mCrypt 
algorithms, we simulate their optimized implementations 
using the PLX [13] and the SimpleScalar toolsets [14]. 
Table 3 summarizes the main operations used by each 
symmetric-key algorithm. Table 4 summarizes the 
structure of the lookup tables used by these ciphers. In 
Table 5, we show a breakdown of execution times of the 
ciphers that use table lookups. From these results, we 
observe the following: 

 

• Six of the 10 ciphers use table lookups; and 5 of these 
spend the largest fraction of their execution time 
during these table lookups. 
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Figure 1: Single-issue PAX processor 
 

Table 6: Speedups with ptlu  
 

Algorithm Speedup w/ ptlu 
AES 2.29× 
DES 1.28× 
3DES 1.25× 
RC4 1.92× 

Blowfish 1.73× 
MARS 1.40× 
Twofish 1.61× 

  

 

(a) ptlu.4.6.2.0  Rd, Rs 

Rs 

Rd 

offset = 2 bytes, step = 0 

  subword = 4 bytes 

T6 (table = 6) 
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 255 

32 bits 

(b) ptlu.1.3.0.1  Rd, Rs 

Rs 

Rd  subword = 1 byte 
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Figure 2: Examples of the ptlu instruction 

 
 

• For all ciphers, tables are small and constant in size. 
Except for RC4, all table accesses are reads. 

• Number of entries per table is 256 for 5 of the ciphers 
(8 index bits), and the data read is either 8 or 32 bits. 

• The round structure of the ciphers permit table 
lookups to be parallelized. For example, all lookups 
in an AES round (16 lookups) can be performed in 
parallel, constrained only by hardware resources. 

 

3.2. ISA support for parallel table lookups 
 

The data in Table 5 motivate the use of a dedicated 
instruction to accelerate the table lookup operations in 
symmetric-key ciphers. To evaluate its performance 
benefits, we have added such an instruction, called ptlu 
(parallel table lookup), to the PAX architecture, which is 
a minimalist high-performance cryptographic processor 
ISA designed at Princeton University [15]. 

The PAX datapath, which is shown in Figure 1, 
includes 8 small on-chip tables, denoted T0-T7. Each 
table has 256 entries and the size of each entry is the same 
as the processor wordsize. Because the wordsize in the 
PAX architecture is variable (this is the wordsize 
scalability feature discussed in Sections 3.3 and 4.2), the 
total size of the tables is 8 kB for 32-bit PAX, 16 kB for 
64-bit PAX, and 32 kB for 128-bit PAX. The total table 
area, which is at most that required by 32 kB of SRAM, is 
therefore no bigger than today’s L1 caches. 

The ptlu instruction can perform up to 4 simultaneous 
table lookups and has the following format: 
 

ptlu.subword.table.offset.step  Rd, Rs 
 

The subword, table, offset, and step fields are given as 
sub-ops in the instruction. The subword field selects the 
size of the data (in bytes) read from the table. The table 
field is 3 bits and is used to select one of the eight tables 

for lookup. The byte-sized indices used to access the 
tables are read from the source register Rs. The 4-bit offset 
field is used to select the first byte-sized index in Rs. The 
4-bit step field gives the distance (in bytes) between the 
subsequent bytes in Rs that are used as indices when 
multiple lookups are performed. Because certain 
combinations of the four sub-op fields will not be 
meaningful, the programmer or the compiler is 
responsible for avoiding these. 

Figure 2 contains 2 examples of the ptlu instruction for 
a processor with 32-bit wordsize. In Figure 2a, ptlu is 
used for a single lookup from T6, using the third byte of 
Rs as index. This type of lookup is common in symmetric-
key algorithms. Figure 2b is an example of the byte 
substitution operation for a 32-bit word. Four parallel 
lookups from T3 are made, where the index for each 
lookup is a different byte of Rs. AES key expansion [5] 
uses this type of byte substitution. 
 
3.3. Performance of ptlu instruction 
 

For the ptlu instruction in PAX processors, we assume 
single-cycle execution latency because each of the lookup 
tables is only 1 to 4 kB in size (very small, and hence can 
be very fast). Because there are no effective address 
computations with the ptlu instruction, the data in the 
tables can be read in the execution stage of the instruction 
and forwarded to another functional unit in the next cycle. 
(In a standard load instruction, the load-use interlock will 
normally prohibit such immediate forwarding of the 
loaded data.) Another benefit of using on-chip tables is 
the invariability of the access time for any single table 
lookup. Unlike the data memory, where a single lookup 
can take either a single cycle (cache hit) or many cycles 
(cache miss), a ptlu access always takes a single cycle.  



Table 6 shows the performance gains (speedups) 
achieved with the ptlu instruction. AES, which has the 
highest dependency on table lookups, also shows the 
highest speedup of 2.29×. DES/3DES shows only 28% 
speedup due to its higher reliance on permutations and the 
structure of its lookup tables that do not permit full 
parallelization with the ptlu instruction. Speedups for the 
remaining algorithms vary between 1.40× and 1.92×. 
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Figure 3: Speedup with ptlu at different 
wordsizes 

 

An important advantage of ptlu is its scalability to 
processors with different wordsizes. Figure 3 shows the 
performance gains for the AES and AES finalist 
algorithms when the wordsize is increased from 32 bits to 
64 bits to 128 bits. We see that as the wordsize increases, 
the additional speedup from the ptlu instruction increases 
significantly because more table lookups can be 
performed simultaneously. For example, there are 16 
lookups in a single AES round, which can be completed 
using only four ptlu instructions when the wordsize is 128 
bits. Without ptlu, these 16 lookups take at least 48 
instructions due to the effective address calculation 
overhead even if all the reads are cache hits. The overall 
speedups for AES with ptlu are 2.29×, 2.85×, and 6.10×, 
at 32-bit, 64-bit, and 128-bit wordsizes respectively. 
 
3.4. Past work on table lookups 
 

Inclusion of a dedicated instruction to accelerate the 
table lookup operations in symmetric-key ciphers have 
previously been proposed in [16] and [17]. For example, 
the sbox instruction in [16] can perform very fast lookups 
of tables situated in the normal memory space by 
accelerating the effective address computations. However, 
this solution has several restrictions; for example: (1) only 
32-bit words can be read from a table, and (2) each table 
must be aligned to 1024-byte boundaries. Furthermore, 
cache misses are still possible since the sbox instruction 
uses the normal memory space. In contrast, the ptlu 
instruction can read variable-sized data from a table entry. 
Furthermore, because dedicated on-chip tables are used, 
data alignment is not a concern and cache misses are 
completely avoided.  

A slightly different sbox instruction is used in the 
CryptoManiac processor [17], which stores its data on 
four on-chip 1 kB caches. However, with either sbox 
instruction, only a single table lookup can be performed 
(per instruction), so multiple-issue techniques such as 
superscalar execution are needed to achieve multiple 
parallel table lookups. In contrast, up to 4 table lookups 
can be done in parallel in a single cycle using a single ptlu 
instruction. For fast symmetric-key ciphers like AES, in 
order to match the performance of a single-issue processor 
with ptlu, a multi-way superscalar (4 or 8-way) processor 
is needed with sbox. However, such wide multi-issue 
architectures may not be suitable for mobile devices with 
limited resources. 
 
4. Public-key and digital signature algorithms 
 

4.1. Workload characteristics 
 

We use the SimpleScalar toolset to profile the public-
key algorithms included in mCrypt, which are listed in 
Table 7. Table 8 shows the breakdown of execution times 
at the macro-operation level. In order to make a fair 
comparison between non-ECC and ECC algorithms, we 
have assumed the availability of a dual-field multiplier 
that can perform both integer and binary-field 
multiplication. Without a dual-field multiplier, binary-
field multiplication is realized in software, resulting in 
poor overall ECC performance on programmable 
processors. It is described in [18] how an ordinary integer 
multiplier can be converted to a dual-field multiplier with 
only minor changes.  

Despite the differences in key size and the 
mathematical framework, ECC and non-ECC algorithms 
exhibit similarities in that the execution time of either type 
of algorithm is dominated by the multiplication operations 
on the underlying field.  
 
4.2. Performance impact of wordsize scaling 

 

Table 9 shows how the performance of a public-key 
algorithm changes as the wordsize of a single-issue 
processor is scaled from 32 bits to 64 bits to 128 bits. 
(Since we use a dual-field multiplier whose inputs are 
wordsized, these numbers are also the size of each 
multiplier input.) For brevity, we choose to focus only on 
eDH because it is representative of the other ECC 
algorithms [19]. Behavior of eDH is also similar to the 
non-ECC algorithms since multi-precision multiplication 
is the dominant operation in either case. 

We observe that doubling the wordsize to 64 bits more 
than quadruples the performance, and quadrupling the 
wordsize to 128 bits gives speedups of 23.32× to 27.67×. 
To put this huge improvement in perspective, the speedup 
obtained with an 8-way superscalar 32-bit processor with 
two multipliers and two memory pipes is only 4.31×.  



Table 7: Public-key algorithms in mCrypt 
 

Name Typical key 
size (bits) 

Based on Hard 
Problem 

Dominant 
Operation Description 

Diffie-Hellman (DH) [6] 
El-Gamal [6] 

Digital Signature Algorithm (DSA) [4] 
Discrete Logarithm 

RSA [6] 
RSA Signature [6] 

1024 

Integer Factoring 

Integer 
multiplication 

DH is used in TLS/SSL and SSH. ElGamal is used 
in DSS. DSS is the US federal standard for digital 

signatures. RSA is used in many security 
standards/protocols: S/MIME, IPSec, TLS/SSL, 
S/WAN, PKCS, IEEE P1363, and WAP WTLS. 

Elliptic-Curve Diffie-Hellman Key 
Exchange (eDH)1 

Elliptic-Curve El-Gamal (eEl-Gamal) 
Elliptic-Curve Digital Signature 

Algorithm (eDSA) [4] 

163 Elliptic-Curve 
Discrete Logarithm  

Binary field 
(polynomial) 
multiplication 

These are the ECC analogs of DH, ElGamal, and 
DSA respectively. RSA does not have an elliptic-

curve counterpart. 

1 In all ECC algorithms, we use the NIST-specified 163-bit random binary curves [4]. While prime fields can also be used, binary fields with 
polynomial basis are preferred because this yields the simplest and fastest software implementations. 

 
 

Table 8: Percentage of execution time consumed 
by different operations 

 

 Algorithm / % 

Operation DH ElGamal RSA RSA 
Sign. DSA eDH eElGamal eDSA 

Integer Mult. 99 98 98 98 94 - - - 
Binary Mult. - - - -  99 98 95 

Other 1 2 2 2 6 1 2 5 
  

 
Table 91: Impact of wordsize 

 

 Word Size / Speedup 
Algorithm 

Key Size 
(bits) 32-bit  64-bit 128-bit 

RSA 1024 1.00× 5.33× 23.32× 
eDH 163 1.00× 5.56× 27.67× 

 

1 RSA is representative of other integer-based public-key algorithms; 
eDH is representative of other ECC algorithms that use binary fields 
and polynomial basis representation for field elements.  

 
4.3. Multi-word result (MR) execution 
 

Previous section shows that wordsize scaling is a very 
effective ISA tool in improving public-key encryption 
performance. Unfortunately, it is not applicable to existing 
servers, which have fixed ISAs and fixed wordsize. 
However, some of the benefits of a larger wordsize can be 
obtained with multi-word result (MR) functional units. 

Figure 4 depicts the differences between a standard (1-
word result, or 1-R) multiplier and a multi-word result 
multiplier. The 1-R multiplier executes two instructions, 
mul.lo and mul.hi, to write either the lower or the higher 
half of the product to the result bus. With minor 
modifications to the datapath, a 2-word result (2-R) 
multiplier is obtained (Figure 4b). Using this, the full 64-
bit product of two 32-bit multiplicands can be generated 
with a single instruction.  

We simulate 2-R multiplier execution by dynamically 
monitoring the instruction issue window and looking for 
consecutive mul.lo/mul.hi pairs using the same source 
registers. For example: 
 

mul.lo  Rd1, Rs1, Rs2; mul.hi  Rd2, Rs1, Rs2 

When such pairs are detected, the two instructions are 
issued as a single multiply instruction, and Rd1 and Rd2 
get the low and high halves of the product respectively. 

Table 10 shows the performance benefits of using a 2-
R multiplier for RSA and eDH. These are representative 
of the other integer and ECC algorithms respectively. The 
speedups are 1.43× and 1.39× for RSA and eDH 
respectively, which are lower than the speedups for full 
wordsize scaling (Table 9). However, MR execution has 
the advantage that no ISA changes are needed, hence it 
can be implemented in servers with a fixed wordsize. 
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Figure 4: (a) 2-way superscalar datapath  
(b) Modified datapath for 2-R multiplier execution 
 

Table 10: Speedups with 2-R result execution 
 

  Speedup 

Algorithm Key Size 
(bits) 

2-way superscalar with 1 
standard (1-R) multiplier 

2-way superscalar with 1 
2-R multiplier 

RSA 1024 1.00× 1.43× 
eDH 163 1.00× 1.39× 

 

 
5. Performance scaling for wireless 
 

Security protocols use a combination of symmetric-
key, hash, and public-key algorithms. For example, the 
WTLS protocol [9] has a handshake phase for 
authentication (public-key) and a record phase for 
encryption and integrity checking (symmetric-key + hash). 

In Figure 5, we show the number of clients that a 1 
GHz server can authenticate in 1 second with WTLS 



handshake. We consider ECC and RSA based handshakes, 
with and without the multi-word result functional units. 
The numbers on the horizontal axis indicate the processor 
configuration specified as superscalar issue width / 
number of memory pipes / number of multipliers. Since 
the number of supportable clients scales linearly with the 
number of servers, the clock rate, and the authentication 
latency, we can use Figure 5 to derive results 
corresponding to any combination of these parameters.  

Figure 6 shows the clock rate required to complete a 
WTLS handshake within a given latency. We consider 
both ECC-based and RSA-based handshakes at three 
different wordsizes (shown in parenthesis) using standard 
multipliers. Figure 6 clearly demonstrates the huge impact 
of wordsize on public-key performance. 
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Figure 5: Number of WTLS handshakes without 
client authentication 
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Figure 6: Clock rate for a given handshake delay 
 
For AES, we report in Table 11 the execution cycles 

required per block of encryption for 4 different processor 
configurations. The first setup is a 32-bit MIPS-like basic 
RISC instruction set (used as baseline); the remaining 3 
setups are 32-bit, 64-bit, and 128-bit processors extended 
with the ptlu instruction. The numbers in parenthesis 
indicate the speedup obtained through the use of wordsize 
scaling and the ptlu instruction.  

In contrast to AES, which benefits significantly from 
the ptlu instruction and larger wordsizes, the performance 
of SHA-1 is similar for all four processor configurations, 

averaging 1200 cycles per 512-bit block (Table 11). This 
is due to the round structure of SHA-1, which consists of 
many serial operations on 32-bit words and hence cannot 
be parallelized as easily as AES in order to efficiently 
utilize larger wordsizes. Based on the data in Table 11, we 
compute in Table 12 the combined AES+SHA-1 
throughput (as used in WTLS record) for a 400 MHz 
processor. This clock rate is widely used today by high-
end PDAs. Here, the combination of wordsize scaling and 
the ptlu instruction provides speedups between 1.73× (32-
bit wordsize) and 2.67× (128-bit wordsize). 

 
Table 11: Execution cycles for AES 

 

 32-bit Basic 
RISC 

32-bit w/ 
ptlu 

64-bit w/ 
ptlu 

128-bit w/ 
ptlu 

AES encryption 
(per 128-bit block) 878 (1.00×) 384 (2.29×) 308 (2.85×) 144 (6.10×) 

SHA-1 hash  
(per 512-bit block) ~ 1200 cycles 

 
Table 12: Combined AES+SHA throughput  

at 400 MHz 
 

 32-bit Basic 
RISC 

32-bit w/ 
ptlu 

64-bit w/ 
ptlu 

128-bit w/ 
ptlu 

AES + SHA-1 
(WTLS-record) 

41.61 Mbps 
(1.00×) 

71.86 Mbps 
(1.73×) 

80.91 Mbps 
(1.95×) 

111.1 Mbps 
(2.67×) 
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Figure 7: Clock rate required for AES+SHA-1 
combined data rates between 8 kbps – 1024 kbps  
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Figure 8: Clock rate required for AES+SHA-1 
combined data rates between 1 Mbps – 128 Mbps 



Based on the number of cycles taken to execute 
AES+SHA-1 in Table 11 for each of 4 processors, we can 
also compute the processor clock rates required to meet 
link speeds from 8 kbps through 128 Mbps, as shown in 
Figure 7 and Figure 8. In these figures, we also indicate 
by vertical lines the link speeds of various wireless 
technologies such as 2G-4G cellular wireless, Bluetooth, 
WiFi (802.11b), and UWB [1][8]. For example, to 
achieve combined AES+SHA-1 processing at the 64 kbps 
2.5G cellular wireless link speed, a 0.225 MHz clock is 
required for a 128-bit processor with the ptlu instruction. 
Similarly, to meet the 54 Mbps link speed of the IEEE 
802.11a/g wireless technology [8], the clock rate needs to 
be 519 MHz for a 32-bit processor without ptlu, and only 
194 MHZ for a 128-bit processor with ptlu.  
 

6. Conclusions 
 

Cryptography algorithms are essential building blocks 
used to provide security on public communication 
networks like the Internet. In this paper, we first selected a 
suite of cryptography algorithms, mCrypt, which is 
representative of the existing major security protocols. 
Since mCrypt includes symmetric-key, hash, and public-
key algorithms, our work differs from previous studies 
[16][17], which only consider symmetric-key ciphers.  

Our study of the workload characteristics of 
symmetric-key ciphers showed that most modern ciphers 
use table lookups in their round structures, during which 
they spend a major fraction of their aggregate execution 
time (72% for AES). To accelerate these table lookups, 
we described the ptlu instruction, which we have included 
in the PAX cryptographic processor ISA. This gave us a 
2.29× speedup (for AES), which further increased to 
6.10× when ptlu was used together with wordsize scaling.  

We then studied the public-key ciphers and verified 
that wordsize is a major determinant of performance (e.g. 
27.67× speedup for 4× wordsize scaling). The impact of 
wordsize scaling is far higher than the speedups obtained 
with multiple-issue execution (e.g. 4.31× speedup with 8-
way superscalar). For servers where wordsize scaling is 
not practical, we showed how multi-word result functional 
units can be used. This provides speedups of about 40% 
without necessitating any ISA changes. 

Finally, we computed the parameters required by a 
server to simultaneously authenticate a growing number of 
clients within a given latency. For clients, we computed 
the parameters required for the encryption+hashing 
performance to meet the links speeds of existing and 
emerging wireless technologies.  

A major contribution of this paper is the demonstration 
of the effectiveness of wordsize scaling as a technique for 
significantly improving performance for both symmetric-
key and public-key cryptographic processing. For such 
workloads, the speedup obtained with wordsize scaling is 

far higher than increasing the number of instructions 
executed per cycle (“IPC scaling”) in superscalar or 
VLIW execution, with lower implementation complexity. 
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