

Performance Scaling of Cryptography Operations in Servers and Mobile Clients

A. Murat Fiskiran and Ruby B. Lee
Department of Electrical Engineering

Princeton University
{fiskiran, rblee}@princeton.edu

Abstract
1

Cryptography algorithms are essential building blocks
used to provide security on public communication
networks such as the Internet. Concurrent with the
increases in wireless connectivity and data rates, security
protocols have been expanded over the past years to
include more resource-friendly cryptography algorithms
such as Elliptic Curve Cryptography (ECC). In this
paper, we first describe and characterize these newer
security algorithms suitable for mobile environments. We
consider symmetric-key, hash, public-key, ECC, and
digital signature algorithms. Next, we describe new
architectural techniques to accelerate these algorithms.
We focus on the table lookup operations used in the
symmetric-key ciphers and the multi-precision arithmetic
operations used in the public-key ciphers. Our third
contribution is to show how: (1) the performance of a
server can be scaled to support a growing number of
mobile clients, and (2) the performance of a client can be
scaled to meet particular wireless data transfer rates.

1. Introduction

Cryptography algorithms are the building blocks used
to enable secure communications on public data channels
such as the Internet. Due to the compute-intensive nature
of these algorithms, high-performance cryptography is
particularly difficult for mobile wireless devices, where
the computational and memory resources are very
constrained and the network data rates may be as high as
100 Mbps (e.g. UWB wireless technology [1]).

To facilitate cryptography processing in constrained
environments, resource-efficient algorithms have been
added to security protocols. Two examples are Elliptic
Curve Cryptography (ECC) [2]-[4] and the Advanced
Encryption Standard (AES) [5]. Our first contribution in
this paper is the selection and workload characterization
of a cryptography suite that includes these newer

This work was supported in part by Kodak (A.M. Fiskiran is a Kodak
Fellow) and by NSF research grants CCR-0326372 and CCR-0105677.

algorithms. This suite, which we call mCrypt, is
representative of the next-generation security processing
workload as it includes the cryptography algorithms
frequently used by both servers and mobile clients.

Our second contribution is the description of
instruction set architecture (ISA) methods to accelerate
the symmetric-key and public-key algorithms in the
mCrypt suite. These methods are scalable so that they are
applicable in platforms with varying degrees of
computational resources such as sensors, smartcards, cell
phones, notebooks, desktops, and servers.

As our third contribution, we show how: (1) the
performance of a server can be scaled to support a
growing number of clients, and (2) the performance of a
client can be scaled to meet particular data transfer rates.

The rest of the paper is organized as follows. In
Section 2, we describe the algorithms in the mCrypt suite.
In Section 3, we study the symmetric-key algorithms, and
describe how to accelerate the table lookup operations
frequently used by these. In Section 4, we study the
public-key algorithms and the impact of wordsize scaling
on performance. In Section 5, we show how client and
server performance can be scaled to meet varying
performance targets. Section 6 concludes the paper.

2. mCrypt suite of cryptography algorithms

A complete cipher suite includes symmetric-key, hash,
and public-key algorithms [6]. Each of these classes
fulfills a different security function.

Symmetric-key algorithms ensure the confidentiality of
messages exchanged on a public network. Hash
algorithms provide data integrity by verifying that the
messages exchanged on the network arrive at their
destinations unaltered. Public-key algorithms are used for
authentication and digital signatures.

A subgroup of public-key algorithms is the Elliptic-
Curve Cryptography (ECC), which offers higher security
per key bit compared to the previous generations of
public-key algorithms, so that shorter keys can be used to
attain the same level of security. (For example, 160-bit
ECC has the same security as 1024-bit RSA [7].) Smaller
keys permit faster computations and also require less

A. Murat Fiskiran and Ruby B. Lee, “Performance Scaling of Cryptography Operations in Servers and Mobile Clients”, Proceedings of the Workshop
on Building Block Engine Architectures for Computer Networks (BEACON), October 2004.

Table 1: Symmetric-key ciphers in mCrypt

Name Block Size /
Key Size (bits)1 Description

AES [5] 128 / 128 US Federal standard for block
encryption since 2001.

DES
3DES [6]

64 / 56
64 / 112

Former standards for block
encryption.

IDEA, Blowfish [6] 64 / 128 Used in OpenSSL, WTLS, GPG
and SSH.

RC42 [6] 8 / 128 Used in WEP - part of the WLAN
standard IEEE 802.11 [8].

RC5 [6] 64 / 128 Used in the WTLS security
protocol specified in WAP [9].

RC6, MARS,
Twofish, Serpent 128 / 128 AES finalists [10].

Table 2: Hash algorithms in mCrypt

Name Block size /
Hash size (bits) Description

SHA-1 512 / 160
SHA-256 512 / 256
SHA-384 1024 / 384
SHA-512 1024 / 512

Specified in SHS [11]. SHA-1 is also a
used as a subroutine in DSS [4].

MD5 [6] 512 / 128 General use for integrity verification
(e.g. md5sum utility).

1 For the ciphers that use variable length blocks (e.g. RC4, RC5) and/or
variable length keys (e.g. AES, RC4, RC5, Blowfish) a typical value for
the block/key size is shown.
2 Due to security vulnerabilities in WEP, a higher-layer security protocol is
used in addition to RC4.

Table 31: Basic operations in symmetric-key block ciphers and hash algorithms

 AES DES,
3DES RC4 RC5 RC6 IDEA Blowfish MARS Twofish Serpent2 SHA-1 SHA-256 SHA-384 SHA-512 MD5

Add / Subtract � � � � � � � � � � � �
Logical � � � � � � � � � � � � � � �

Table Lookup (TLU) � � � � � �
Integer Mult. � � �
Binary Mult. �

Shift � � � �
Fixed rotate � � � � � � � � � � �

Variable rotate � � �
Permutation � �

 1 Only the operations that have cryptographic significance are listed.
 2 The reference implementation of Serpent includes table lookups but in practice these are realized as a sequence of logical operations.

Table 4: Structure of lookups tables

Algorithm Block
size (bits)

Table
Structure1

Lookups Per Block
of Encryption

AES 128 (4, 8, 32) 160
DES 64 (8, 6, 32) 128

3DES 64 (8, 6, 32) 384
RC4 8 (1, 8, 8) Reads = 3, Writes = 2.

Blowfish 64 (4, 8, 32) 64
MARS 128 (2, 8, 32) 56
Twofish 128 (4, 8, 8) 48

1 Shows (# tables, # index bits, # bits in a table entry).

Table 5: Breakdown of execution time

 Algorithm / %

Operations AES DES,
3DES RC4 Blowfish MARS Twofish

Add / Subtract 14 28 10 5
Logical 28 18 28 35 18 7

Table Lookup (TLU) 72 35 58 37 34 24
Integer Mult. 25
Binary Mult. 54

Shift
Fixed rotate 15 5 10

Variable rotate 8
Permutation 32 0

Total % 100 100 100 100 100 100

storage, which is important for very resource-limited
platforms such as sensors. Due to its suitability for
constrained environments, ECC was added to major
security protocols such as the TLS/SSL [12], WTLS [9],
and DSS [4].

Tables 1 and 2 list the symmetric-key and hash
algorithms in mCrypt and provide references to the
algorithm definitions. In general, each algorithm is either
an important security standard by itself (e.g. AES) or is
part of a larger standard (e.g. SHA-1 in SHS [11]).

3. Accelerating symmetric-key algorithms

3.1. Workload characteristics

For workload characterization of the mCrypt
algorithms, we simulate their optimized implementations
using the PLX [13] and the SimpleScalar toolsets [14].
Table 3 summarizes the main operations used by each
symmetric-key algorithm. Table 4 summarizes the
structure of the lookup tables used by these ciphers. In
Table 5, we show a breakdown of execution times of the
ciphers that use table lookups. From these results, we
observe the following:

• Six of the 10 ciphers use table lookups; and 5 of these
spend the largest fraction of their execution time
during these table lookups.

MUL

Register
File

ALU Shifter … T0 T7

Figure 1: Single-issue PAX processor

Table 6: Speedups with ptlu

Algorithm Speedup w/ ptlu
AES 2.29×
DES 1.28×
3DES 1.25×
RC4 1.92×

Blowfish 1.73×
MARS 1.40×
Twofish 1.61×

(a) ptlu.4.6.2.0 Rd, Rs

Rs

Rd

offset = 2 bytes, step = 0

 subword = 4 bytes

T6 (table = 6)

 0
 1
 2

 255

32 bits

(b) ptlu.1.3.0.1 Rd, Rs

Rs

Rd subword = 1 byte

step = 1 byte, offset = 0

T3 (table = 3)

32 bits

 0
 1
 2

 255

Figure 2: Examples of the ptlu instruction

• For all ciphers, tables are small and constant in size.
Except for RC4, all table accesses are reads.

• Number of entries per table is 256 for 5 of the ciphers
(8 index bits), and the data read is either 8 or 32 bits.

• The round structure of the ciphers permit table
lookups to be parallelized. For example, all lookups
in an AES round (16 lookups) can be performed in
parallel, constrained only by hardware resources.

3.2. ISA support for parallel table lookups

The data in Table 5 motivate the use of a dedicated
instruction to accelerate the table lookup operations in
symmetric-key ciphers. To evaluate its performance
benefits, we have added such an instruction, called ptlu
(parallel table lookup), to the PAX architecture, which is
a minimalist high-performance cryptographic processor
ISA designed at Princeton University [15].

The PAX datapath, which is shown in Figure 1,
includes 8 small on-chip tables, denoted T0-T7. Each
table has 256 entries and the size of each entry is the same
as the processor wordsize. Because the wordsize in the
PAX architecture is variable (this is the wordsize
scalability feature discussed in Sections 3.3 and 4.2), the
total size of the tables is 8 kB for 32-bit PAX, 16 kB for
64-bit PAX, and 32 kB for 128-bit PAX. The total table
area, which is at most that required by 32 kB of SRAM, is
therefore no bigger than today’s L1 caches.

The ptlu instruction can perform up to 4 simultaneous
table lookups and has the following format:

ptlu.subword.table.offset.step Rd, Rs

The subword, table, offset, and step fields are given as
sub-ops in the instruction. The subword field selects the
size of the data (in bytes) read from the table. The table
field is 3 bits and is used to select one of the eight tables

for lookup. The byte-sized indices used to access the
tables are read from the source register Rs. The 4-bit offset
field is used to select the first byte-sized index in Rs. The
4-bit step field gives the distance (in bytes) between the
subsequent bytes in Rs that are used as indices when
multiple lookups are performed. Because certain
combinations of the four sub-op fields will not be
meaningful, the programmer or the compiler is
responsible for avoiding these.

Figure 2 contains 2 examples of the ptlu instruction for
a processor with 32-bit wordsize. In Figure 2a, ptlu is
used for a single lookup from T6, using the third byte of
Rs as index. This type of lookup is common in symmetric-
key algorithms. Figure 2b is an example of the byte
substitution operation for a 32-bit word. Four parallel
lookups from T3 are made, where the index for each
lookup is a different byte of Rs. AES key expansion [5]
uses this type of byte substitution.

3.3. Performance of ptlu instruction

For the ptlu instruction in PAX processors, we assume
single-cycle execution latency because each of the lookup
tables is only 1 to 4 kB in size (very small, and hence can
be very fast). Because there are no effective address
computations with the ptlu instruction, the data in the
tables can be read in the execution stage of the instruction
and forwarded to another functional unit in the next cycle.
(In a standard load instruction, the load-use interlock will
normally prohibit such immediate forwarding of the
loaded data.) Another benefit of using on-chip tables is
the invariability of the access time for any single table
lookup. Unlike the data memory, where a single lookup
can take either a single cycle (cache hit) or many cycles
(cache miss), a ptlu access always takes a single cycle.

Table 6 shows the performance gains (speedups)
achieved with the ptlu instruction. AES, which has the
highest dependency on table lookups, also shows the
highest speedup of 2.29×. DES/3DES shows only 28%
speedup due to its higher reliance on permutations and the
structure of its lookup tables that do not permit full
parallelization with the ptlu instruction. Speedups for the
remaining algorithms vary between 1.40× and 1.92×.

0

1

2

3

4

5

6

7

32-bit 64-bit 128-bit

Word Size

S
pe

ed
up

AES RC4 Blowfish MARS Twofish

Figure 3: Speedup with ptlu at different
wordsizes

An important advantage of ptlu is its scalability to
processors with different wordsizes. Figure 3 shows the
performance gains for the AES and AES finalist
algorithms when the wordsize is increased from 32 bits to
64 bits to 128 bits. We see that as the wordsize increases,
the additional speedup from the ptlu instruction increases
significantly because more table lookups can be
performed simultaneously. For example, there are 16
lookups in a single AES round, which can be completed
using only four ptlu instructions when the wordsize is 128
bits. Without ptlu, these 16 lookups take at least 48
instructions due to the effective address calculation
overhead even if all the reads are cache hits. The overall
speedups for AES with ptlu are 2.29×, 2.85×, and 6.10×,
at 32-bit, 64-bit, and 128-bit wordsizes respectively.

3.4. Past work on table lookups

Inclusion of a dedicated instruction to accelerate the
table lookup operations in symmetric-key ciphers have
previously been proposed in [16] and [17]. For example,
the sbox instruction in [16] can perform very fast lookups
of tables situated in the normal memory space by
accelerating the effective address computations. However,
this solution has several restrictions; for example: (1) only
32-bit words can be read from a table, and (2) each table
must be aligned to 1024-byte boundaries. Furthermore,
cache misses are still possible since the sbox instruction
uses the normal memory space. In contrast, the ptlu
instruction can read variable-sized data from a table entry.
Furthermore, because dedicated on-chip tables are used,
data alignment is not a concern and cache misses are
completely avoided.

A slightly different sbox instruction is used in the
CryptoManiac processor [17], which stores its data on
four on-chip 1 kB caches. However, with either sbox
instruction, only a single table lookup can be performed
(per instruction), so multiple-issue techniques such as
superscalar execution are needed to achieve multiple
parallel table lookups. In contrast, up to 4 table lookups
can be done in parallel in a single cycle using a single ptlu
instruction. For fast symmetric-key ciphers like AES, in
order to match the performance of a single-issue processor
with ptlu, a multi-way superscalar (4 or 8-way) processor
is needed with sbox. However, such wide multi-issue
architectures may not be suitable for mobile devices with
limited resources.

4. Public-key and digital signature algorithms

4.1. Workload characteristics

We use the SimpleScalar toolset to profile the public-
key algorithms included in mCrypt, which are listed in
Table 7. Table 8 shows the breakdown of execution times
at the macro-operation level. In order to make a fair
comparison between non-ECC and ECC algorithms, we
have assumed the availability of a dual-field multiplier
that can perform both integer and binary-field
multiplication. Without a dual-field multiplier, binary-
field multiplication is realized in software, resulting in
poor overall ECC performance on programmable
processors. It is described in [18] how an ordinary integer
multiplier can be converted to a dual-field multiplier with
only minor changes.

Despite the differences in key size and the
mathematical framework, ECC and non-ECC algorithms
exhibit similarities in that the execution time of either type
of algorithm is dominated by the multiplication operations
on the underlying field.

4.2. Performance impact of wordsize scaling

Table 9 shows how the performance of a public-key
algorithm changes as the wordsize of a single-issue
processor is scaled from 32 bits to 64 bits to 128 bits.
(Since we use a dual-field multiplier whose inputs are
wordsized, these numbers are also the size of each
multiplier input.) For brevity, we choose to focus only on
eDH because it is representative of the other ECC
algorithms [19]. Behavior of eDH is also similar to the
non-ECC algorithms since multi-precision multiplication
is the dominant operation in either case.

We observe that doubling the wordsize to 64 bits more
than quadruples the performance, and quadrupling the
wordsize to 128 bits gives speedups of 23.32× to 27.67×.
To put this huge improvement in perspective, the speedup
obtained with an 8-way superscalar 32-bit processor with
two multipliers and two memory pipes is only 4.31×.

Table 7: Public-key algorithms in mCrypt

Name Typical key
size (bits)

Based on Hard
Problem

Dominant
Operation Description

Diffie-Hellman (DH) [6]
El-Gamal [6]

Digital Signature Algorithm (DSA) [4]
Discrete Logarithm

RSA [6]
RSA Signature [6]

1024

Integer Factoring

Integer
multiplication

DH is used in TLS/SSL and SSH. ElGamal is used
in DSS. DSS is the US federal standard for digital

signatures. RSA is used in many security
standards/protocols: S/MIME, IPSec, TLS/SSL,
S/WAN, PKCS, IEEE P1363, and WAP WTLS.

Elliptic-Curve Diffie-Hellman Key
Exchange (eDH)1

Elliptic-Curve El-Gamal (eEl-Gamal)
Elliptic-Curve Digital Signature

Algorithm (eDSA) [4]

163 Elliptic-Curve
Discrete Logarithm

Binary field
(polynomial)
multiplication

These are the ECC analogs of DH, ElGamal, and
DSA respectively. RSA does not have an elliptic-

curve counterpart.

1 In all ECC algorithms, we use the NIST-specified 163-bit random binary curves [4]. While prime fields can also be used, binary fields with
polynomial basis are preferred because this yields the simplest and fastest software implementations.

Table 8: Percentage of execution time consumed
by different operations

 Algorithm / %

Operation DH ElGamal RSA RSA
Sign. DSA eDH eElGamal eDSA

Integer Mult. 99 98 98 98 94 - - -
Binary Mult. - - - - 99 98 95

Other 1 2 2 2 6 1 2 5

Table 91: Impact of wordsize

 Word Size / Speedup
Algorithm

Key Size
(bits) 32-bit 64-bit 128-bit

RSA 1024 1.00× 5.33× 23.32×
eDH 163 1.00× 5.56× 27.67×

1 RSA is representative of other integer-based public-key algorithms;
eDH is representative of other ECC algorithms that use binary fields
and polynomial basis representation for field elements.

4.3. Multi-word result (MR) execution

Previous section shows that wordsize scaling is a very
effective ISA tool in improving public-key encryption
performance. Unfortunately, it is not applicable to existing
servers, which have fixed ISAs and fixed wordsize.
However, some of the benefits of a larger wordsize can be
obtained with multi-word result (MR) functional units.

Figure 4 depicts the differences between a standard (1-
word result, or 1-R) multiplier and a multi-word result
multiplier. The 1-R multiplier executes two instructions,
mul.lo and mul.hi, to write either the lower or the higher
half of the product to the result bus. With minor
modifications to the datapath, a 2-word result (2-R)
multiplier is obtained (Figure 4b). Using this, the full 64-
bit product of two 32-bit multiplicands can be generated
with a single instruction.

We simulate 2-R multiplier execution by dynamically
monitoring the instruction issue window and looking for
consecutive mul.lo/mul.hi pairs using the same source
registers. For example:

mul.lo Rd1, Rs1, Rs2; mul.hi Rd2, Rs1, Rs2

When such pairs are detected, the two instructions are
issued as a single multiply instruction, and Rd1 and Rd2
get the low and high halves of the product respectively.

Table 10 shows the performance benefits of using a 2-
R multiplier for RSA and eDH. These are representative
of the other integer and ECC algorithms respectively. The
speedups are 1.43× and 1.39× for RSA and eDH
respectively, which are lower than the speedups for full
wordsize scaling (Table 9). However, MR execution has
the advantage that no ISA changes are needed, hence it
can be implemented in servers with a fixed wordsize.

ALU ALU

H L

MUL

Register File

H L

ALU ALU
MUL

Register File

 (a) (b)

Figure 4: (a) 2-way superscalar datapath
(b) Modified datapath for 2-R multiplier execution

Table 10: Speedups with 2-R result execution

 Speedup

Algorithm Key Size
(bits)

2-way superscalar with 1
standard (1-R) multiplier

2-way superscalar with 1
2-R multiplier

RSA 1024 1.00× 1.43×
eDH 163 1.00× 1.39×

5. Performance scaling for wireless

Security protocols use a combination of symmetric-
key, hash, and public-key algorithms. For example, the
WTLS protocol [9] has a handshake phase for
authentication (public-key) and a record phase for
encryption and integrity checking (symmetric-key + hash).

In Figure 5, we show the number of clients that a 1
GHz server can authenticate in 1 second with WTLS

handshake. We consider ECC and RSA based handshakes,
with and without the multi-word result functional units.
The numbers on the horizontal axis indicate the processor
configuration specified as superscalar issue width /
number of memory pipes / number of multipliers. Since
the number of supportable clients scales linearly with the
number of servers, the clock rate, and the authentication
latency, we can use Figure 5 to derive results
corresponding to any combination of these parameters.

Figure 6 shows the clock rate required to complete a
WTLS handshake within a given latency. We consider
both ECC-based and RSA-based handshakes at three
different wordsizes (shown in parenthesis) using standard
multipliers. Figure 6 clearly demonstrates the huge impact
of wordsize on public-key performance.

0

500

1000

1500

2000

2500

3000

1/1/1 2/2/2 4/2/2 8/2/2 16/2/2

Issue width / # Memory pipes / # Multipliers

C

lie
nt

s

ECC w/ MR ECC RSA w/ MR RSA

Figure 5: Number of WTLS handshakes without
client authentication

0.1

1

10

100

1000

250 ms 500 ms 750 ms 1 s 1.25 s 1.5 s 1.75 s 2 s

Connection Latency

C
lo

ck
 R

at
e

(M
H

z)

RSA (32) RSA (64) RSA (128) ECC (32)
ECC (64) ECC (128)

Figure 6: Clock rate for a given handshake delay

For AES, we report in Table 11 the execution cycles

required per block of encryption for 4 different processor
configurations. The first setup is a 32-bit MIPS-like basic
RISC instruction set (used as baseline); the remaining 3
setups are 32-bit, 64-bit, and 128-bit processors extended
with the ptlu instruction. The numbers in parenthesis
indicate the speedup obtained through the use of wordsize
scaling and the ptlu instruction.

In contrast to AES, which benefits significantly from
the ptlu instruction and larger wordsizes, the performance
of SHA-1 is similar for all four processor configurations,

averaging 1200 cycles per 512-bit block (Table 11). This
is due to the round structure of SHA-1, which consists of
many serial operations on 32-bit words and hence cannot
be parallelized as easily as AES in order to efficiently
utilize larger wordsizes. Based on the data in Table 11, we
compute in Table 12 the combined AES+SHA-1
throughput (as used in WTLS record) for a 400 MHz
processor. This clock rate is widely used today by high-
end PDAs. Here, the combination of wordsize scaling and
the ptlu instruction provides speedups between 1.73× (32-
bit wordsize) and 2.67× (128-bit wordsize).

Table 11: Execution cycles for AES

 32-bit Basic
RISC

32-bit w/
ptlu

64-bit w/
ptlu

128-bit w/
ptlu

AES encryption
(per 128-bit block) 878 (1.00×) 384 (2.29×) 308 (2.85×) 144 (6.10×)

SHA-1 hash
(per 512-bit block) ~ 1200 cycles

Table 12: Combined AES+SHA throughput

at 400 MHz

 32-bit Basic
RISC

32-bit w/
ptlu

64-bit w/
ptlu

128-bit w/
ptlu

AES + SHA-1
(WTLS-record)

41.61 Mbps
(1.00×)

71.86 Mbps
(1.73×)

80.91 Mbps
(1.95×)

111.1 Mbps
(2.67×)

0

2

4

6

8

10

12

8 16 32 64 128 256 512 1024

Data Rate (kbps)

C
lo

ck
 R

at
e

(M
H

z)

32-bit 32-bit + ptlu 64-bit + ptlu 128-bit + ptlu

2G Wireless 2.5G Wireless

Bluetooth

Figure 7: Clock rate required for AES+SHA-1
combined data rates between 8 kbps – 1024 kbps

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128

Data Rate (Mbps)

C
lo

ck
 R

at
e

(M
H

z)

32-bit 32-bit + ptlu 64-bit + ptlu 128-bit + ptlu

3G Wireless 802.11b

4G Wireless

802.11a/g

UWB

Figure 8: Clock rate required for AES+SHA-1
combined data rates between 1 Mbps – 128 Mbps

Based on the number of cycles taken to execute
AES+SHA-1 in Table 11 for each of 4 processors, we can
also compute the processor clock rates required to meet
link speeds from 8 kbps through 128 Mbps, as shown in
Figure 7 and Figure 8. In these figures, we also indicate
by vertical lines the link speeds of various wireless
technologies such as 2G-4G cellular wireless, Bluetooth,
WiFi (802.11b), and UWB [1][8]. For example, to
achieve combined AES+SHA-1 processing at the 64 kbps
2.5G cellular wireless link speed, a 0.225 MHz clock is
required for a 128-bit processor with the ptlu instruction.
Similarly, to meet the 54 Mbps link speed of the IEEE
802.11a/g wireless technology [8], the clock rate needs to
be 519 MHz for a 32-bit processor without ptlu, and only
194 MHZ for a 128-bit processor with ptlu.

6. Conclusions

Cryptography algorithms are essential building blocks
used to provide security on public communication
networks like the Internet. In this paper, we first selected a
suite of cryptography algorithms, mCrypt, which is
representative of the existing major security protocols.
Since mCrypt includes symmetric-key, hash, and public-
key algorithms, our work differs from previous studies
[16][17], which only consider symmetric-key ciphers.

Our study of the workload characteristics of
symmetric-key ciphers showed that most modern ciphers
use table lookups in their round structures, during which
they spend a major fraction of their aggregate execution
time (72% for AES). To accelerate these table lookups,
we described the ptlu instruction, which we have included
in the PAX cryptographic processor ISA. This gave us a
2.29× speedup (for AES), which further increased to
6.10× when ptlu was used together with wordsize scaling.

We then studied the public-key ciphers and verified
that wordsize is a major determinant of performance (e.g.
27.67× speedup for 4× wordsize scaling). The impact of
wordsize scaling is far higher than the speedups obtained
with multiple-issue execution (e.g. 4.31× speedup with 8-
way superscalar). For servers where wordsize scaling is
not practical, we showed how multi-word result functional
units can be used. This provides speedups of about 40%
without necessitating any ISA changes.

Finally, we computed the parameters required by a
server to simultaneously authenticate a growing number of
clients within a given latency. For clients, we computed
the parameters required for the encryption+hashing
performance to meet the links speeds of existing and
emerging wireless technologies.

A major contribution of this paper is the demonstration
of the effectiveness of wordsize scaling as a technique for
significantly improving performance for both symmetric-
key and public-key cryptographic processing. For such
workloads, the speedup obtained with wordsize scaling is

far higher than increasing the number of instructions
executed per cycle (“IPC scaling”) in superscalar or
VLIW execution, with lower implementation complexity.

References

[1] T.S. Rappaport et al., “Wireless Communications: Past Events and

A Future Perspective,” IEEE Communications Magazine, vol. 40,
no. 5, pp. 148-161, May 2002.

[2] V.S. Miller, “Use of Elliptic Curves in Cryptography”, Lecture
Notes in Computer Science, vol. 218, Springer-Verlag, pp. 417-
426. 1986.

[3] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of
Computation, vol. 48, no. 177, pp. 203-209, 1987.

[4] NIST, Digital Signature Standard (DSS), FIPS Pub. 186-2,
<http://csrc.nist.gov/publications/fips>, Feb.
2000.

[5] NIST, Advanced Encryption Standard (AES), FIPS Pub. 197,
<http://csrc.nist.gov/publications/fips>, Nov.
2001.

[6] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone, Handbook
of Applied Cryptography, CRC Press, Oct. 1996.

[7] A.K. Lenstra and E.R. Verheul, “Selecting Cryptographic Key
Sizes”, Journal of Cryptology, vol. 14, no. 4, pp. 255-293, Dec.
2001.

[8] IEEE 802.11 Working Group, IEEE 802.11 Wireless LAN
Standards, <http://grouper.ieee.org/>.

[9] Wireless Application Protocol 2.0 – Technical White Paper, WAP
Forum, <http://www.wapforum.org>, Jan. 2002.

[10] Submissions to the 1st AES Conference, Aug. 1998.

[11] NIST, Secure Hash Standard (SHS), FIPS Pub. 180-2,
<http://csrc.nist.gov/publications/fips>, Aug.
2002.

[12] W. Stallings, Cryptography and Network Security: Principles and
Practice, Prentice Hall, 1998.

[13] R.B. Lee and A.M. Fiskiran, “PLX: An Instruction Set
Architecture and Testbed For Multimedia Information
Processing”, to appear in the Journal of VLSI Signal Processing.

[14] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version
2.0.”, Computer Architecture News, pp. 13-25, June 1997.

[15] Princeton Architecture Laboratory for Multimedia and Security
(PALMS), PAX Project,
<http://palms.ee.princeton.edu/PAX>.

[16] J. Burke, J. McDonald, and T. Austin, “Architectural Support for
Fast Symmetric-Key Cryptography”, Proc. Int. Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 178-189, Nov. 2000.

[17] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: A Fast Flexible
Architecture for Secure Communication”, Proc. Annual Int.
Symposium on Computer Architecture (ISCA), pp. 110-119, 2001.

[18] J. Großschädl and G.-A. Kamendje, “Instruction Set Extension for
Fast Elliptic Curve Cryptography Over Binary Finite Fields
GF(2m)”, Proc. IEEE Int. Conf. Application-Specific Systems,
Architectures, and Processors (ASAP), pp. 455-468, Jun. 2003.

[19] A.M. Fiskiran and R.B. Lee, “Workload Characterization of
Elliptic Curve Cryptography and other Network Security
Algorithms for Constrained Environments”, Proc. IEEE Int.
Workshop on Workload Characterization (WWC), pp. 127-137,
Nov. 2002.

