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Abstract 
1 

Table lookups are one of the most frequently-used 
operations in symmetric-key ciphers. Particularly in 
the newer algorithms such as the Advanced Encryption 
Standard (AES), we frequently find that the greatest 
fraction of the execution time is spent during table 
lookups, varying between 34% and 72% for the five 
representative ciphers we consider: AES, Blowfish, 
Twofish, MARS, and RC4. In order to accelerate and 
parallelize these table lookups, we describe a new 
parallel table lookup (ptlu) instruction. Our synthesis 
results indicate that such an instruction can be added 
to a basic RISC processor with no cycle time impact. 
We compare the performance of the ptlu instruction 
with the speedups available through more conventional 
architectural techniques such as multiple-issue 
execution. We find that the performance benefits of 
using the ptlu instruction can be far higher than 
increasing the number of instructions executed per 
cycle in superscalar or VLIW processors. 
 
 
1. Introduction 
 

Symmetric-key cryptography is used to provide data 
confidentiality on public communication networks 
such as the Internet [14][18]. This is achieved by 
encrypting a plaintext message P using a symmetric-
key algorithm (cipher) and a secret key K. The 
encrypted data (ciphertext) is then transmitted to the 
receiver, where it can be decrypted using the same 
cipher and secret key. Examples of widely-used 
symmetric-key ciphers are the Data Encryption 
Standard (DES), Triple-DES (3DES), and the 
Advanced Encryption Standard (AES) [1][18]. 

Symmetric-key ciphers usually have an iterated 
round structure, where a short sequence of operations 
(called a round) is repeated multiple times on the 
plaintext block to compute the ciphertext. The 
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operations in a round are chosen to rapidly achieve 
cryptographic confusion and diffusion, which obscure 
the relationship between the plaintext and the 
ciphertext [18]. Commonly-used round operations 
include table lookups, modular addition and 
subtraction, logical operations, shifts and rotates, 
multiplication, and bit permutations. Table lookups in 
particular are used very frequently by the newer 
symmetric-key ciphers such as AES. Of the five 
finalist ciphers in the AES Development Effort [2], 
four used table lookups in their round structure.  

Our previous studies [8][9] showed that the frequent 
use of table lookups in ciphers causes the execution 
time to be dominated by the overhead instructions 
required for effective address computations. For 
example, table lookups may account for as much as 
72% of the aggregate AES execution time when it is 
implemented using a typical RISC-like instruction set 
like MIPS32 [15]. 

 

Our first contribution in this paper is the execution 
time analysis of five symmetric-key ciphers that use 
table lookups in their round structure (Section 2). We 
then describe how to accelerate and parallelize these 
table lookups by using a new ptlu instruction (Section 
3). In Section 4, we compare the performance benefits 
of our proposal with those of other architectural 
techniques such as superscalar execution and wordsize 
scaling [11][12]. Section 5 reviews the related past 
work, and Section 6 is the conclusion. 
 
2. Cipher suite 
 

The symmetric-key ciphers we consider in this 
study are shown in Table 1. AES is the NIST standard 
for block encryption and it is included in many widely-
used security protocols such as IPSec, TLS, and SSH 
[1]. Due to its importance, we consider AES with 128, 
192, and 256-bit keys, denoted AES-128, AES-192, 
and AES-256 respectively. For the remaining ciphers, 
we only consider the typical key size. Blowfish is a 
symmetric-key cipher designed by Schneier [18] and it 
is used in many popular applications such as GPG,  
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Table 2: Base instruction set 
 

Class Instructions 
ALU 
Shift 

Multiply 
Memory 
Branch 

  add, addi, sub, subi, and, andi, or, ori, xor, xori, not, loadi 
  sra, srai, srl, srli, sll, slli, rotr 
  mul.lo, mul.hi 
  load, store (base+displacement addressing) 
  beq, bne, bg, bge, call, return, trap 

 
Table 3: Breakdown of execution time 

 

 % Execution Time 
 AES Blowfish MARS Twofish RC4 

Table lookup 72 36 34 43 54 
Arithmetic - 26 10 15 14 

Logical 24 34 18 32 26 
Multiplication - - 19 - - 

Fixed shift/rotate - - 5 4 - 
Variable rotate - - 8 - - 

Other 4 4 6 6 6 
Total 100 100 100 100 100 

 
Table 4: Structure of lookup tables 

 

Cipher Num. 
Tables 

Num. 
Entries 

Entry 
Size (bits) 

Lookups per Block of 
Encryption 

AES 4 256 32 160 (AES-128), 192 (AES-
192), 224 (AES-256) 

Blowfish 4 256 32 64 
MARS 2 256 32 80 
Twofish 4 256 32 128 

RC4 1 256 8 3 reads, 2 writes 

SSH, and JAVA. MARS and Twofish were two of the 
five finalist ciphers in the AES Development Effort 
[4][19]. RC4 is a stream cipher used in the wireless 
LAN standard IEEE 802.11 [10][18]. 
 
2.1. Table lookups in AES 
 

To illustrate how table lookups are typically used 
in symmetric-key ciphers, we show the detailed round 
structure of AES in Figure 1. The input to the ith AES 
round is a 128-bit block made up of four 32-bit words 
(labeled W3i-W0i in Figure 1). There are four 1 kB 
tables, labeled TA-TD. Each table has 256 entries, 
where each entry contains 4 bytes. During the round, 
the rightmost byte of each word is used as an index 
into TA; the next byte is used as an index into TB; 
and so on, until all tables are accessed four times. 
Finally, the four table lookup results (for each input 
word) and a round subkey are XORed as shown. 

Of the remaining ciphers in our suite, Blowfish, 
MARS, and Twofish are similar to AES in that they 
use multiple 32-bit-wide tables with 256 entries. In 
contrast, RC4 uses a single 256-entry table, where 
each entry is byte-wide.  
 
2.2. Execution time analysis 
 

We use the PLX toolset [12][17] to generate 
execution profiles for each cipher. For baseline 

performance data, we implement the ciphers in 
assembly using a RISC-like instruction set, which is 
shown in Table 2. We call this the Base ISA. The 
simulator is configured to model a 32-bit in-order 
single-issue processor with single-cycle instructions 
(except for multiplication which has 3-cycle latency). 
We also assume a perfect memory model with single-
cycle load/store instructions. Our results are 
summarized in Table 3, which shows the main 
operations used by each cipher and the fraction of the 
execution time consumed by these. Table 4 
summarizes the structure of the lookup tables used by 
the ciphers. We show the number of tables, number of 
entries per table, entry size, and total number of 
lookups used per block of encryption. Based on Table 
3 and Table 4, we make the following observations:  

• All these ciphers spend the largest fraction of their 
execution time during table lookups. 

• Tables are few (at most four) and have constant 
size. Except for RC4, all table accesses are reads. 

• Number of entries per table is small (256 for all 
ciphers), and the data read is either 8 or 32 bits. 

• The round structures generally permit the table 
lookups to be parallelized. For example, all 16 
lookups in an AES round (Figure 1) can be 
performed in parallel, constrained only by 
hardware resources. 

Table 1: Cipher suite 
 

Cipher Block Size (bits) Key Size (bits) 
AES 128 128, 192, 256 

Blowfish 64 
MARS 128 
Twofish 128 

RC4 8 

128 bits typical 
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Figure 1: AES round 
 



Hardware support can be used to exploit some of these 
properties to parallelize and accelerate the table 
lookups. In the next section, we describe how a new 
parallel table lookup instruction can be used to do this. 
 
3. Hardware support for fast table lookups 
 

3.1. ptlu instruction 
 

We propose extending the base ISA in Table 2 with 
a new instruction called ptlu (for parallel table 
lookup). Figure 2 shows the modified datapath of a 
single-issue RISC processor that implements this 
instruction. In addition to the standard functional units 
ALU, shifter, and the 3-stage pipelined multiplier, 
there are eight small on-chip tables, labeled T0-T7. 
Each table has 256 entries, where each entry is at most 
as wide as the processor wordsize. To limit cost and 
power in co-designed embedded systems, it is possible 
to implement fewer than eight tables, or use tables that 
are narrower than the processor wordsize. Assuming 
all eight tables are implemented, the total size will be 8 
kB with 32-bit-wide tables, 16 kB with 64-bit-wide 
tables, and 32 kB with 128-bit-wide tables. 

The ptlu instruction used to access these tables has 
the following format with three sub-op fields: 
 

ptlu.lookup.data.offset Rd, Rs 
 

The 3-bit lookup field specifies the number of table 
lookups that will be performed in parallel. Because 
each table has a single read port, at most eight lookups 
can be performed in parallel on a processor with eight 
tables. If fewer than eight tables are implemented, then 
the number of maximum parallel lookups will be 
constrained by the number of tables.  

The 3-bit data field specifies the size of the data 
read from the table(s), as 1, 2, 4, 8, or 16 bytes. For 
example, when data = 1, the rightmost byte of the 
selected table entry is read and when data = 2, the 
rightmost two bytes are read. In order to accommodate 
the result in the destination register Rd, the number of 
parallel lookups multiplied by the data size must be 
equal to or less than the processor wordsize. This can 
be checked by the compiler statically, or by hardware 
at runtime. Since data can specify up to eight different 
quantities, the instruction is extensible to read tables 
that are wider than 16 bytes. However, such wide 
tables were not needed for the ciphers we have studied, 
including many others not presented in this paper.  

The 4-bit offset field specifies the location of the 
first byte in Rs that will be used as an index. When 
multiple parallel lookups are performed, the bytes 
adjacent and to the left of the first index are used as the 
next indices. 

Figure 3 contains two examples of the ptlu 
instruction. Figure 3a shows a byte substitution 
operation on a 32-bit processor that implements 32-bit 
tables. Four parallel lookups (lookup field = 4) are 
performed to replace each byte of Rs with another byte. 
Such lookups are used, for example, in AES key 
expansion [1]. The data field (=1) specifies that byte-
sized blocks are read from the tables. The offset field 
(=0) specifies that the rightmost byte of Rs (byte 0) is 
the first index (into T0), and the next three bytes are 
used as indices into tables T1, T2, T3 respectively. 
While we only show the four tables accessed by the 
ptlu instruction in Figure 3a, the processor may have 
up to eight tables. In Figure 3b, we show how ptlu can 
be used to perform two parallel 32-bit lookups on a 64-
bit processor that implements 32-bit tables. This type 
of lookup is common in AES as shown in Figure 1.  

The writing of tables T0-T7 is done with the ptlw 
instruction, which has the following format: 

 

ptlw.table.data.offset Rs1, Rs2 
 

This instruction can only write a single table, 
selected by the 3-bit table field, rather than multiple 
tables in parallel. This limitation does not degrade 
encryption performance since the ciphers do not 
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Figure 2: Single-issue processor with ptlu 
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Figure 3: Examples of ptlu 
 



require parallel table writes. Furthermore, setting up 
the tables is only done at initialization time.  

Similar to ptlu, the 3-bit data field specifies the size 
of the data to be written to the selected table. The data 
is read from the rightmost byte(s) of Rs2. If the tables 
are wider than the data size, then zeros are written on 
the left to complete the table entry. Finally, the 4-bit 
offset field selects a byte from Rs1 to be used as index 
into the selected table.  
 
3.2. Optimized AES round 
 

An optimized version of the AES round (Figure 1) 
using ptlu instructions is shown in Figure 4 for a 128-
bit processor that implements 32-bit tables. Assuming 
that the four AES tables (TA-TD) are mapped to the 
four physical tables T0-T3 respectively, four ptlu 
instructions are sufficient to complete all 16 lookups in 
an AES round. The load.16 instruction loads a whole 
16-byte word into R15. The total number of 
instructions used per round is only 12. Without ptlu, 
the same round requires at least 84 instructions, most 
of which are overhead instructions used for effective 
address computations.  

Another advantage of using ptlu is the elimination 
of cache read misses. Unlike data memory, where a 
load instruction can take either a single cycle (cache 
hit) or many cycles (cache miss), a ptlu access always 
takes a single cycle. This eliminates the variability in 
encryption or decryption latency. 
 
3.3. Area and delay of lookup tables 
 

For cost analysis of the lookup tables, we use 
CACTI 3.2, which is a tool for estimating the access 
time, area, and aspect ratio of memory components [5]. 
In a 90 nm process technology, we estimate a single 

256-entry 32-bit-wide table to have an area of roughly 
0.2 mm × 0.2 mm = 0.04 mm2, which corresponds to 
about 17K minimum-sized two-input NAND gates. 
The total area of the eight ptlu tables will range from 
0.32 mm2 if the entry size is 32 bits, to 1.04 mm2 if the 
entry size is 128 bits. Even with eight 128-bit-wide 
tables, the total size is at most that required by 32 kB 
of SRAM, which is smaller than today’s L1 caches. 

The access time of the ptlu tables is not likely to 
impact the processor cycle time because each table is at 
most 1 to 4 kB in size, which is small and hence can be 
very fast. To verify this, we use Synopsys tools to 
perform gate-level synthesis of the functional units of 
the processor shown in Figure 2, which implements the 
instruction set in Table 2. In Table 5, we compare the 
ALU latency to the table access time obtained from 
CACTI for 32-bit, 64-bit, and 128-bit processors. We 
assume the cycle time is determined by the ALU, and 
hence we do not show the latency of the shifter and the 
pipelined multiplier. The table access time relative to 
the ALU decreases as the ALU width increases. Since 
the table access time is always less than the single-
cycle ALU latency, the ptlu/ptlw instructions will also 
have single-cycle latency. 
 

Table 5: ALU and table lookup latency 
 

 32- bit 64-bit 128-bit 
 ALU TLU ALU TLU ALU TLU 

Delay (ns) 0.43 0.37 0.49 0.40 0.56 0.41 
Delay (normalized  

to n-bit ALU) 1.00 0.86 1.00 0.82 1.00 0.73 

 
4. Performance 
 

We evaluate the performance benefits of the new 
ptlu instruction compared to more traditional 
architectural techniques, such as multiple-issue 
execution (e.g. superscalar) and newer technology like 
wordsize scaling [11][12]. We then compare these 
results to the speedups obtained when ptlu is added to 
the base instruction set. 
 
4.1. Superscalar execution 
 

Table 6 summarizes the speedups for the ciphers 
when a superscalar processor is used. The second 
column in the table shows the cycles required per block 
of encryption on a single-issue basic RISC processor 
(with the instruction set shown in Table 2). The 
remaining columns show the speedups when the issue 
width and the number of memory ports are increased. 
In the notation n1/n2, n1 denotes the issue width and n2 
denotes the number of memory ports. 

We see that 2-way and 4-way superscalar execution 
with a single memory port provides significant 
performance improvements for all ciphers (up to 

 

# Single AES round – 128-bit processor 
# R10 is the 128-bit round input 
# R5  is pointer to round key array 
 
ptlu.4.4.0   R11,     R10     # 4 TLUs on W0 
ptlu.4.4.4   R12,     R10     # 4 TLUs on W1 
ptlu.4.4.8   R13,     R10     # 4 TLUs on W2 
ptlu.4.4.12  R14,     R10     # 4 TLUs on W3 
 
load.16    R15, R5,  16       # load 4 subkeys 
 
rotr    R12, R12,  32     # rotate right 
rotr    R13, R13,  64     # rotate right 
rotr    R14, R14,  96     # rotate right 
 
xor     R11, R11, R12     # xor all 
xor     R13, R13, R14 
xor     R11, R11, R13 
xor     R10, R11, R15     # R10 is new state 
 

 

Figure 4: Optimized AES round with ptlu  
(128-bit processor) 



1.87×). Further increasing the issue width to 8 provides 
only minor additional performance (up to 2.02×). We 
also observe that due to the memory-intensive round 
structures of the ciphers, the addition of a secondary 
memory port increases performance significantly at 
any issue width.  
 
Table 6: Speedups with superscalar execution 

 

  Issue width / Num. Memory Ports 
Cipher Cycles 1/1 2/1 2/2 4/1 4/2 8/1 8/2 

AES-128 870 1.00× 1.58× 1.71× 1.85× 2.23× 2.02× 2.49× 
AES-192 1056 1.00 1.57 1.70 1.83 2.20 1.99 2.49 
AES-256 1272 1.00 1.59 1.73 1.87 2.24 2.02 2.51 
Blowfish 408 1.00 1.32 1.56 1.67 1.99 1.79 2.14 
MARS 747 1.00 1.36 1.63 1.68 2.08 1.84 2.22 
Twofish 1538 1.00 1.55 1.77 1.87 2.19 1.97 2.51 

RC4 18 1.00 1.41 1.58 1.71 2.05 1.90 2.31 

 
Table 7: Speedups with ptlu and wordsize scaling 

 

 32-bit 64-bit 128-bit 
Cipher w/o ptlu w/ ptlu w/o ptlu w/ ptlu w/o ptlu w/ ptlu 

AES-128 ×1.00× ×2.28× ×1.00× ×2.85× ×1.00× ×6.09× 
AES-192 1.00 2.31 1.00 2.85 1.00 6.11 
AES-256 1.00 2.32 1.00 2.87 1.00 6.15 
Blowfish 1.00 1.88 1.00 2.04 1.00 2.24 
MARS 1.00 1.34 1.00 1.61 1.00 2.18 

Twofish 1.00 1.61 1.00 2.12 1.00 2.49 
RC4 1.00 1.92 1.00 1.98 1.00 2.12 

 
4.2. Subword parallelism, ptlu, and wordsize 

scaling 
 

Subword parallelism, which is frequently used in 
multimedia-oriented ISAs [13], involves partitioning a 
processor’s datapath into subwords, which are units 
smaller than a word. Multiple subwords packed in a 
word can then be processed simultaneously using 
parallel instructions. For example, a 64-bit processor 
can add four pairs of 16-bit subwords packed in two 
source registers using a single parallel add (padd) 
instruction.  

Wordsize scaling, which was first introduced in the 
PLX multimedia ISA [11][12], allows an instruction 
set to be synthesized into processors with different 
wordsizes. By increasing the wordsize, more subwords 
can be packed in a word and processed in parallel 
without increasing the number of instructions executed. 
This provides higher speedups than multiple-issue 
techniques such as superscalar execution, and has 
lower implementation complexity [6][9][11][12].  

To evaluate the performance impact of wordsize 
scaling on symmetric-key cryptography, we simulate 
our ciphers on 64-bit and 128-bit processors that 
support parallel operations on 32-bit subwords. This 
involves extending the base ISA in Table 2 with the 

following instructions: padd (parallel add), psub, psrli 
(parallel shift right logical immediate), pslli, protr 
(parallel rotate right). The padd instruction for 
example adds two pairs of 32-bit subwords on the 64-
bit processor, and four pairs on the 128-bit processor.  

Our results are summarized in Table 7 for 
processors with and without the ptlu instruction. On a 
32-bit processor, the inclusion of ptlu provides very 
significant speedups for all ciphers. Here, AES shows 
the highest speedup, averaging 2.30×. This huge 
speedup, achieved on a single-issue processor with the 
ptlu instruction, is even 15% better than the speedup 
obtained on an 8-way superscalar processor (with 1 
memory port, Table 6).  

Without the ptlu instruction, wordsize scaling up to 
64-bit and 128-bit words provides no performance 
improvement over the 32-bit words. This is mainly 
because table lookups cannot be efficiently parallelized 
when memory accesses are performed using standard 
load instructions, which can only read a single table 
entry at a time. As a result, table lookups are still 
implemented serially on the wider processors. While 
other sections of the code may sometimes be 
parallelized (for example effective address 
computations), these gains are offset by the overhead 
instructions used to convert between parallel and serial 
representations. Hence, the ciphers are essentially 
implemented in the same way on the 64-bit and 128-bit 
processors as on the 32-bit processor, i.e. without 
utilizing subword parallelism, resulting in the flat 
speedups shown in the columns in Table 7 labeled 
“w/o ptlu”. In contrast, huge speedups are obtained 
when the ptlu instruction is used to parallelize the table 
lookups. With a 128-bit wordsize, speedups of 2.18× 
for MARS and 6.15× for AES-256 are obtained. 
 
5. Past work 
 

Inclusion of a dedicated instruction to accelerate 
table lookups in symmetric-key ciphers have 
previously been proposed in [3], [7], and [20]. For 
example, the sbox instruction in [3] can perform very 
fast lookups of tables located in main memory by 
accelerating the effective address computations. 
However, this solution has several restrictions; for 
example: (1) only 32-bit words can be read from a 
table, (2) each table must be aligned to 1024-byte 
boundaries, and (3) only one table is read by each sbox 
instruction. Furthermore, cache misses are still possible 
since tables are stored in main memory. In contrast, the 
ptlu instruction proposed in this paper can read 
variable-size data from a table entry, has no alignment 
restrictions, and can perform parallel reads from 
multiple tables. Also, cache misses are completely 
eliminated since dedicated on-chip tables are used. 



The CryptoManiac processor [20] includes four 1 
kB caches on the processor chip, which can be 
accessed with an sbox instruction. This differs from 
our ptlu proposal because only a single cache can be 
read with each sbox instruction rather than multiple 
caches in parallel. To read all four caches 
simultaneously, multiple-issue techniques such as 4-
way VLIW is needed in CryptoManiac. In contrast, we 
allow up to eight tables to be read in parallel on a 
single-issue processor using a single ptlu instruction. 

We defined an earlier version of the ptlu instruction 
in our previous work on the PAX cryptographic 
processor [7][16]. Compared to this, the new ptlu 
instruction presented in this paper is more versatile. 
For example, the previous ptlu instruction always 
required tables as wide as the processor wordsize, 
whereas our new proposal allows implementing 
narrower tables. Second, the ptlu instruction in PAX 
was used to select one of the eight on-chip tables and 
perform up to four simultaneous lookups from it. This 
requires using SRAM cells with four read ports, which 
increases the table area and also the access time. In 
contrast, the new ptlu instruction requires only single-
ported standard SRAM cells. Using CACTI [5], we 
estimate that the new implementation requires less than 
20% of the table area of PAX in [7], and is 14% faster 
in terms of access time. 
 
6. Conclusions 
 

The first contribution of this paper is the workload 
characterization of five widely-used symmetric-key 
ciphers that rely heavily on table lookups in their round 
structures. Our simulations indicate that all of these 
ciphers spend the largest fraction of their execution 
time during table lookups (up to 72% for AES).  

Second, we describe a new ptlu instruction to 
accelerate and parallelize these table lookup. The area 
cost of this instruction is no greater than today’s L1 
caches (and likely to be smaller) and its latency is less 
than that of an ALU. Hence, it can be executed in a 
single cycle, with no cycle time impact to the base 
processor.  

Our third contribution is to demonstrate that while 
wordsize scaling using standard load instructions is not 
very useful for symmetric-key ciphers, its effectiveness 
increases significantly if the ptlu instruction is added 
to the ISA. For example, the speedup obtained with 
ptlu for AES-256 increased from 2.32× on the 32-bit 
processor, to 6.15× on the 128-bit processor. Overall, 
we showed that the performance benefits of using ptlu 
together with wordsize scaling is far higher than 
increasing the number of instructions executed per 
cycle (IPC scaling) in superscalar or VLIW execution. 
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