
Fast Parallel Table Lookups to Accelerate Symmetric-Key Cryptography

A. Murat Fiskiran and Ruby B. Lee
Department of Electrical Engineering

Princeton University
{fiskiran, rblee}@princeton.edu

Abstract
1

Table lookups are one of the most frequently-used
operations in symmetric-key ciphers. Particularly in
the newer algorithms such as the Advanced Encryption
Standard (AES), we frequently find that the greatest
fraction of the execution time is spent during table
lookups, varying between 34% and 72% for the five
representative ciphers we consider: AES, Blowfish,
Twofish, MARS, and RC4. In order to accelerate and
parallelize these table lookups, we describe a new
parallel table lookup (ptlu) instruction. Our synthesis
results indicate that such an instruction can be added
to a basic RISC processor with no cycle time impact.
We compare the performance of the ptlu instruction
with the speedups available through more conventional
architectural techniques such as multiple-issue
execution. We find that the performance benefits of
using the ptlu instruction can be far higher than
increasing the number of instructions executed per
cycle in superscalar or VLIW processors.

1. Introduction

Symmetric-key cryptography is used to provide data
confidentiality on public communication networks
such as the Internet [14][18]. This is achieved by
encrypting a plaintext message P using a symmetric-
key algorithm (cipher) and a secret key K. The
encrypted data (ciphertext) is then transmitted to the
receiver, where it can be decrypted using the same
cipher and secret key. Examples of widely-used
symmetric-key ciphers are the Data Encryption
Standard (DES), Triple-DES (3DES), and the
Advanced Encryption Standard (AES) [1][18].

Symmetric-key ciphers usually have an iterated
round structure, where a short sequence of operations
(called a round) is repeated multiple times on the
plaintext block to compute the ciphertext. The

This work was supported in part by NSF ITR CCR-0326372.

operations in a round are chosen to rapidly achieve
cryptographic confusion and diffusion, which obscure
the relationship between the plaintext and the
ciphertext [18]. Commonly-used round operations
include table lookups, modular addition and
subtraction, logical operations, shifts and rotates,
multiplication, and bit permutations. Table lookups in
particular are used very frequently by the newer
symmetric-key ciphers such as AES. Of the five
finalist ciphers in the AES Development Effort [2],
four used table lookups in their round structure.

Our previous studies [8][9] showed that the frequent
use of table lookups in ciphers causes the execution
time to be dominated by the overhead instructions
required for effective address computations. For
example, table lookups may account for as much as
72% of the aggregate AES execution time when it is
implemented using a typical RISC-like instruction set
like MIPS32 [15].

Our first contribution in this paper is the execution
time analysis of five symmetric-key ciphers that use
table lookups in their round structure (Section 2). We
then describe how to accelerate and parallelize these
table lookups by using a new ptlu instruction (Section
3). In Section 4, we compare the performance benefits
of our proposal with those of other architectural
techniques such as superscalar execution and wordsize
scaling [11][12]. Section 5 reviews the related past
work, and Section 6 is the conclusion.

2. Cipher suite

The symmetric-key ciphers we consider in this
study are shown in Table 1. AES is the NIST standard
for block encryption and it is included in many widely-
used security protocols such as IPSec, TLS, and SSH
[1]. Due to its importance, we consider AES with 128,
192, and 256-bit keys, denoted AES-128, AES-192,
and AES-256 respectively. For the remaining ciphers,
we only consider the typical key size. Blowfish is a
symmetric-key cipher designed by Schneier [18] and it
is used in many popular applications such as GPG,

To be published in the Proceedings of the International Conference on Information Technology Coding and Computing (ITCC), Embedded
Cryptographic Systems Track, 4-6 April 2005, Las Vegas, Nevada, USA.

Table 2: Base instruction set

Class Instructions
ALU
Shift

Multiply
Memory
Branch

 add, addi, sub, subi, and, andi, or, ori, xor, xori, not, loadi
 sra, srai, srl, srli, sll, slli, rotr
 mul.lo, mul.hi
 load, store (base+displacement addressing)
 beq, bne, bg, bge, call, return, trap

Table 3: Breakdown of execution time

 % Execution Time
 AES Blowfish MARS Twofish RC4

Table lookup 72 36 34 43 54
Arithmetic - 26 10 15 14

Logical 24 34 18 32 26
Multiplication - - 19 - -

Fixed shift/rotate - - 5 4 -
Variable rotate - - 8 - -

Other 4 4 6 6 6
Total 100 100 100 100 100

Table 4: Structure of lookup tables

Cipher Num.
Tables

Num.
Entries

Entry
Size (bits)

Lookups per Block of
Encryption

AES 4 256 32 160 (AES-128), 192 (AES-
192), 224 (AES-256)

Blowfish 4 256 32 64
MARS 2 256 32 80
Twofish 4 256 32 128

RC4 1 256 8 3 reads, 2 writes

SSH, and JAVA. MARS and Twofish were two of the
five finalist ciphers in the AES Development Effort
[4][19]. RC4 is a stream cipher used in the wireless
LAN standard IEEE 802.11 [10][18].

2.1. Table lookups in AES

To illustrate how table lookups are typically used
in symmetric-key ciphers, we show the detailed round
structure of AES in Figure 1. The input to the ith AES
round is a 128-bit block made up of four 32-bit words
(labeled W3i-W0i in Figure 1). There are four 1 kB
tables, labeled TA-TD. Each table has 256 entries,
where each entry contains 4 bytes. During the round,
the rightmost byte of each word is used as an index
into TA; the next byte is used as an index into TB;
and so on, until all tables are accessed four times.
Finally, the four table lookup results (for each input
word) and a round subkey are XORed as shown.

Of the remaining ciphers in our suite, Blowfish,
MARS, and Twofish are similar to AES in that they
use multiple 32-bit-wide tables with 256 entries. In
contrast, RC4 uses a single 256-entry table, where
each entry is byte-wide.

2.2. Execution time analysis

We use the PLX toolset [12][17] to generate
execution profiles for each cipher. For baseline

performance data, we implement the ciphers in
assembly using a RISC-like instruction set, which is
shown in Table 2. We call this the Base ISA. The
simulator is configured to model a 32-bit in-order
single-issue processor with single-cycle instructions
(except for multiplication which has 3-cycle latency).
We also assume a perfect memory model with single-
cycle load/store instructions. Our results are
summarized in Table 3, which shows the main
operations used by each cipher and the fraction of the
execution time consumed by these. Table 4
summarizes the structure of the lookup tables used by
the ciphers. We show the number of tables, number of
entries per table, entry size, and total number of
lookups used per block of encryption. Based on Table
3 and Table 4, we make the following observations:

• All these ciphers spend the largest fraction of their
execution time during table lookups.

• Tables are few (at most four) and have constant
size. Except for RC4, all table accesses are reads.

• Number of entries per table is small (256 for all
ciphers), and the data read is either 8 or 32 bits.

• The round structures generally permit the table
lookups to be parallelized. For example, all 16
lookups in an AES round (Figure 1) can be
performed in parallel, constrained only by
hardware resources.

Table 1: Cipher suite

Cipher Block Size (bits) Key Size (bits)
AES 128 128, 192, 256

Blowfish 64
MARS 128
Twofish 128

RC4 8

128 bits typical

TA

TB

TC

TD

XOR

TA

TB

TC

TD

XOR

TA

TB

TC

TD

XOR

TA

TB

TC

TD

XOR

W0i

W1i

W2i

W3i

W0i+1

W1i+1

W2i+1

W3i+1

k[4i] k[4i+1] k[4i+2] k[4i+3]

128 bits

16 Table
Lookups

:Y0

:Y1

:Y2

:Y3

128-bit temporary
variables

containing TLU
results

Load 4 subkeys
(k[] denotes the array

containing the subkeys)
Rotate Y0-Y3 right by 32, 64,

96 bits respectively;
XOR Y’s with subkeys

Figure 1: AES round

Hardware support can be used to exploit some of these
properties to parallelize and accelerate the table
lookups. In the next section, we describe how a new
parallel table lookup instruction can be used to do this.

3. Hardware support for fast table lookups

3.1. ptlu instruction

We propose extending the base ISA in Table 2 with
a new instruction called ptlu (for parallel table
lookup). Figure 2 shows the modified datapath of a
single-issue RISC processor that implements this
instruction. In addition to the standard functional units
ALU, shifter, and the 3-stage pipelined multiplier,
there are eight small on-chip tables, labeled T0-T7.
Each table has 256 entries, where each entry is at most
as wide as the processor wordsize. To limit cost and
power in co-designed embedded systems, it is possible
to implement fewer than eight tables, or use tables that
are narrower than the processor wordsize. Assuming
all eight tables are implemented, the total size will be 8
kB with 32-bit-wide tables, 16 kB with 64-bit-wide
tables, and 32 kB with 128-bit-wide tables.

The ptlu instruction used to access these tables has
the following format with three sub-op fields:

ptlu.lookup.data.offset Rd, Rs

The 3-bit lookup field specifies the number of table
lookups that will be performed in parallel. Because
each table has a single read port, at most eight lookups
can be performed in parallel on a processor with eight
tables. If fewer than eight tables are implemented, then
the number of maximum parallel lookups will be
constrained by the number of tables.

The 3-bit data field specifies the size of the data
read from the table(s), as 1, 2, 4, 8, or 16 bytes. For
example, when data = 1, the rightmost byte of the
selected table entry is read and when data = 2, the
rightmost two bytes are read. In order to accommodate
the result in the destination register Rd, the number of
parallel lookups multiplied by the data size must be
equal to or less than the processor wordsize. This can
be checked by the compiler statically, or by hardware
at runtime. Since data can specify up to eight different
quantities, the instruction is extensible to read tables
that are wider than 16 bytes. However, such wide
tables were not needed for the ciphers we have studied,
including many others not presented in this paper.

The 4-bit offset field specifies the location of the
first byte in Rs that will be used as an index. When
multiple parallel lookups are performed, the bytes
adjacent and to the left of the first index are used as the
next indices.

Figure 3 contains two examples of the ptlu
instruction. Figure 3a shows a byte substitution
operation on a 32-bit processor that implements 32-bit
tables. Four parallel lookups (lookup field = 4) are
performed to replace each byte of Rs with another byte.
Such lookups are used, for example, in AES key
expansion [1]. The data field (=1) specifies that byte-
sized blocks are read from the tables. The offset field
(=0) specifies that the rightmost byte of Rs (byte 0) is
the first index (into T0), and the next three bytes are
used as indices into tables T1, T2, T3 respectively.
While we only show the four tables accessed by the
ptlu instruction in Figure 3a, the processor may have
up to eight tables. In Figure 3b, we show how ptlu can
be used to perform two parallel 32-bit lookups on a 64-
bit processor that implements 32-bit tables. This type
of lookup is common in AES as shown in Figure 1.

The writing of tables T0-T7 is done with the ptlw
instruction, which has the following format:

ptlw.table.data.offset Rs1, Rs2

This instruction can only write a single table,
selected by the 3-bit table field, rather than multiple
tables in parallel. This limitation does not degrade
encryption performance since the ciphers do not

Multiplier

Register
File

ALU

Shifter

\

T7

\

T6

\

…

\

T0

PTLU module

Figure 2: Single-issue processor with ptlu

Rs:

Rd:
(a) ptlu.4.1.0 Rd, Rs

T0

T1 T2

T3

8 bits

Rs:

Rd:
(b) ptlu.2.4.2 Rd, Rs

T0 T1

32 bits

8 bits

2-byte offset

Figure 3: Examples of ptlu

require parallel table writes. Furthermore, setting up
the tables is only done at initialization time.

Similar to ptlu, the 3-bit data field specifies the size
of the data to be written to the selected table. The data
is read from the rightmost byte(s) of Rs2. If the tables
are wider than the data size, then zeros are written on
the left to complete the table entry. Finally, the 4-bit
offset field selects a byte from Rs1 to be used as index
into the selected table.

3.2. Optimized AES round

An optimized version of the AES round (Figure 1)
using ptlu instructions is shown in Figure 4 for a 128-
bit processor that implements 32-bit tables. Assuming
that the four AES tables (TA-TD) are mapped to the
four physical tables T0-T3 respectively, four ptlu
instructions are sufficient to complete all 16 lookups in
an AES round. The load.16 instruction loads a whole
16-byte word into R15. The total number of
instructions used per round is only 12. Without ptlu,
the same round requires at least 84 instructions, most
of which are overhead instructions used for effective
address computations.

Another advantage of using ptlu is the elimination
of cache read misses. Unlike data memory, where a
load instruction can take either a single cycle (cache
hit) or many cycles (cache miss), a ptlu access always
takes a single cycle. This eliminates the variability in
encryption or decryption latency.

3.3. Area and delay of lookup tables

For cost analysis of the lookup tables, we use
CACTI 3.2, which is a tool for estimating the access
time, area, and aspect ratio of memory components [5].
In a 90 nm process technology, we estimate a single

256-entry 32-bit-wide table to have an area of roughly
0.2 mm × 0.2 mm = 0.04 mm2, which corresponds to
about 17K minimum-sized two-input NAND gates.
The total area of the eight ptlu tables will range from
0.32 mm2 if the entry size is 32 bits, to 1.04 mm2 if the
entry size is 128 bits. Even with eight 128-bit-wide
tables, the total size is at most that required by 32 kB
of SRAM, which is smaller than today’s L1 caches.

The access time of the ptlu tables is not likely to
impact the processor cycle time because each table is at
most 1 to 4 kB in size, which is small and hence can be
very fast. To verify this, we use Synopsys tools to
perform gate-level synthesis of the functional units of
the processor shown in Figure 2, which implements the
instruction set in Table 2. In Table 5, we compare the
ALU latency to the table access time obtained from
CACTI for 32-bit, 64-bit, and 128-bit processors. We
assume the cycle time is determined by the ALU, and
hence we do not show the latency of the shifter and the
pipelined multiplier. The table access time relative to
the ALU decreases as the ALU width increases. Since
the table access time is always less than the single-
cycle ALU latency, the ptlu/ptlw instructions will also
have single-cycle latency.

Table 5: ALU and table lookup latency

 32- bit 64-bit 128-bit
 ALU TLU ALU TLU ALU TLU

Delay (ns) 0.43 0.37 0.49 0.40 0.56 0.41
Delay (normalized

to n-bit ALU) 1.00 0.86 1.00 0.82 1.00 0.73

4. Performance

We evaluate the performance benefits of the new
ptlu instruction compared to more traditional
architectural techniques, such as multiple-issue
execution (e.g. superscalar) and newer technology like
wordsize scaling [11][12]. We then compare these
results to the speedups obtained when ptlu is added to
the base instruction set.

4.1. Superscalar execution

Table 6 summarizes the speedups for the ciphers
when a superscalar processor is used. The second
column in the table shows the cycles required per block
of encryption on a single-issue basic RISC processor
(with the instruction set shown in Table 2). The
remaining columns show the speedups when the issue
width and the number of memory ports are increased.
In the notation n1/n2, n1 denotes the issue width and n2
denotes the number of memory ports.

We see that 2-way and 4-way superscalar execution
with a single memory port provides significant
performance improvements for all ciphers (up to

Single AES round – 128-bit processor
R10 is the 128-bit round input
R5 is pointer to round key array

ptlu.4.4.0 R11, R10 # 4 TLUs on W0
ptlu.4.4.4 R12, R10 # 4 TLUs on W1
ptlu.4.4.8 R13, R10 # 4 TLUs on W2
ptlu.4.4.12 R14, R10 # 4 TLUs on W3

load.16 R15, R5, 16 # load 4 subkeys

rotr R12, R12, 32 # rotate right
rotr R13, R13, 64 # rotate right
rotr R14, R14, 96 # rotate right

xor R11, R11, R12 # xor all
xor R13, R13, R14
xor R11, R11, R13
xor R10, R11, R15 # R10 is new state

Figure 4: Optimized AES round with ptlu
(128-bit processor)

1.87×). Further increasing the issue width to 8 provides
only minor additional performance (up to 2.02×). We
also observe that due to the memory-intensive round
structures of the ciphers, the addition of a secondary
memory port increases performance significantly at
any issue width.

Table 6: Speedups with superscalar execution

 Issue width / Num. Memory Ports
Cipher Cycles 1/1 2/1 2/2 4/1 4/2 8/1 8/2

AES-128 870 1.00× 1.58× 1.71× 1.85× 2.23× 2.02× 2.49×
AES-192 1056 1.00 1.57 1.70 1.83 2.20 1.99 2.49
AES-256 1272 1.00 1.59 1.73 1.87 2.24 2.02 2.51
Blowfish 408 1.00 1.32 1.56 1.67 1.99 1.79 2.14
MARS 747 1.00 1.36 1.63 1.68 2.08 1.84 2.22
Twofish 1538 1.00 1.55 1.77 1.87 2.19 1.97 2.51

RC4 18 1.00 1.41 1.58 1.71 2.05 1.90 2.31

Table 7: Speedups with ptlu and wordsize scaling

 32-bit 64-bit 128-bit
Cipher w/o ptlu w/ ptlu w/o ptlu w/ ptlu w/o ptlu w/ ptlu

AES-128 ×1.00× ×2.28× ×1.00× ×2.85× ×1.00× ×6.09×
AES-192 1.00 2.31 1.00 2.85 1.00 6.11
AES-256 1.00 2.32 1.00 2.87 1.00 6.15
Blowfish 1.00 1.88 1.00 2.04 1.00 2.24
MARS 1.00 1.34 1.00 1.61 1.00 2.18

Twofish 1.00 1.61 1.00 2.12 1.00 2.49
RC4 1.00 1.92 1.00 1.98 1.00 2.12

4.2. Subword parallelism, ptlu, and wordsize

scaling

Subword parallelism, which is frequently used in
multimedia-oriented ISAs [13], involves partitioning a
processor’s datapath into subwords, which are units
smaller than a word. Multiple subwords packed in a
word can then be processed simultaneously using
parallel instructions. For example, a 64-bit processor
can add four pairs of 16-bit subwords packed in two
source registers using a single parallel add (padd)
instruction.

Wordsize scaling, which was first introduced in the
PLX multimedia ISA [11][12], allows an instruction
set to be synthesized into processors with different
wordsizes. By increasing the wordsize, more subwords
can be packed in a word and processed in parallel
without increasing the number of instructions executed.
This provides higher speedups than multiple-issue
techniques such as superscalar execution, and has
lower implementation complexity [6][9][11][12].

To evaluate the performance impact of wordsize
scaling on symmetric-key cryptography, we simulate
our ciphers on 64-bit and 128-bit processors that
support parallel operations on 32-bit subwords. This
involves extending the base ISA in Table 2 with the

following instructions: padd (parallel add), psub, psrli
(parallel shift right logical immediate), pslli, protr
(parallel rotate right). The padd instruction for
example adds two pairs of 32-bit subwords on the 64-
bit processor, and four pairs on the 128-bit processor.

Our results are summarized in Table 7 for
processors with and without the ptlu instruction. On a
32-bit processor, the inclusion of ptlu provides very
significant speedups for all ciphers. Here, AES shows
the highest speedup, averaging 2.30×. This huge
speedup, achieved on a single-issue processor with the
ptlu instruction, is even 15% better than the speedup
obtained on an 8-way superscalar processor (with 1
memory port, Table 6).

Without the ptlu instruction, wordsize scaling up to
64-bit and 128-bit words provides no performance
improvement over the 32-bit words. This is mainly
because table lookups cannot be efficiently parallelized
when memory accesses are performed using standard
load instructions, which can only read a single table
entry at a time. As a result, table lookups are still
implemented serially on the wider processors. While
other sections of the code may sometimes be
parallelized (for example effective address
computations), these gains are offset by the overhead
instructions used to convert between parallel and serial
representations. Hence, the ciphers are essentially
implemented in the same way on the 64-bit and 128-bit
processors as on the 32-bit processor, i.e. without
utilizing subword parallelism, resulting in the flat
speedups shown in the columns in Table 7 labeled
“w/o ptlu”. In contrast, huge speedups are obtained
when the ptlu instruction is used to parallelize the table
lookups. With a 128-bit wordsize, speedups of 2.18×
for MARS and 6.15× for AES-256 are obtained.

5. Past work

Inclusion of a dedicated instruction to accelerate
table lookups in symmetric-key ciphers have
previously been proposed in [3], [7], and [20]. For
example, the sbox instruction in [3] can perform very
fast lookups of tables located in main memory by
accelerating the effective address computations.
However, this solution has several restrictions; for
example: (1) only 32-bit words can be read from a
table, (2) each table must be aligned to 1024-byte
boundaries, and (3) only one table is read by each sbox
instruction. Furthermore, cache misses are still possible
since tables are stored in main memory. In contrast, the
ptlu instruction proposed in this paper can read
variable-size data from a table entry, has no alignment
restrictions, and can perform parallel reads from
multiple tables. Also, cache misses are completely
eliminated since dedicated on-chip tables are used.

The CryptoManiac processor [20] includes four 1
kB caches on the processor chip, which can be
accessed with an sbox instruction. This differs from
our ptlu proposal because only a single cache can be
read with each sbox instruction rather than multiple
caches in parallel. To read all four caches
simultaneously, multiple-issue techniques such as 4-
way VLIW is needed in CryptoManiac. In contrast, we
allow up to eight tables to be read in parallel on a
single-issue processor using a single ptlu instruction.

We defined an earlier version of the ptlu instruction
in our previous work on the PAX cryptographic
processor [7][16]. Compared to this, the new ptlu
instruction presented in this paper is more versatile.
For example, the previous ptlu instruction always
required tables as wide as the processor wordsize,
whereas our new proposal allows implementing
narrower tables. Second, the ptlu instruction in PAX
was used to select one of the eight on-chip tables and
perform up to four simultaneous lookups from it. This
requires using SRAM cells with four read ports, which
increases the table area and also the access time. In
contrast, the new ptlu instruction requires only single-
ported standard SRAM cells. Using CACTI [5], we
estimate that the new implementation requires less than
20% of the table area of PAX in [7], and is 14% faster
in terms of access time.

6. Conclusions

The first contribution of this paper is the workload
characterization of five widely-used symmetric-key
ciphers that rely heavily on table lookups in their round
structures. Our simulations indicate that all of these
ciphers spend the largest fraction of their execution
time during table lookups (up to 72% for AES).

Second, we describe a new ptlu instruction to
accelerate and parallelize these table lookup. The area
cost of this instruction is no greater than today’s L1
caches (and likely to be smaller) and its latency is less
than that of an ALU. Hence, it can be executed in a
single cycle, with no cycle time impact to the base
processor.

Our third contribution is to demonstrate that while
wordsize scaling using standard load instructions is not
very useful for symmetric-key ciphers, its effectiveness
increases significantly if the ptlu instruction is added
to the ISA. For example, the speedup obtained with
ptlu for AES-256 increased from 2.32× on the 32-bit
processor, to 6.15× on the 128-bit processor. Overall,
we showed that the performance benefits of using ptlu
together with wordsize scaling is far higher than
increasing the number of instructions executed per
cycle (IPC scaling) in superscalar or VLIW execution.

References

[1] Advanced Encryption Standard (AES), FIPS 197,
<http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>,
Nov. 2001.

[2] Advanced Encryption Standard (AES) Development Effort,
NIST, <http://csrc.nist.gov/CryptoToolkit/aes/
index2.html>, Jan. 1997-Nov. 2001.

[3] J. Burke, J. McDonald, and T. Austin, “Architectural Support
for Fast Symmetric-Key Cryptography”, Proc. Int. Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 178-189, Nov. 2000.

[4] C. Burwick, et al, “MARS – A Candidate Cipher For AES”,
<http://www.research.ibm.com/security/mars.pdf>, Sept. 1999.

[5] CACTI, Compaq – Western Research Lab,
<http://research.compaq.com/wrl/people/jouppi/CACTI.html>.

[6] A.M. Fiskiran and R.B. Lee, “Evaluating Instruction Set
Extensions for Fast Arithmetic on Binary Finite Fields”, Proc.
Int. Conf. Application-Specific Systems, Architectures, and
Processors (ASAP), pp. 125-136, Sep. 2004.

[7] A.M. Fiskiran and R.B. Lee, “PAX: A Datapath-Scalable
Minimalist Cryptographic Processor for Mobile
Environments”, Embedded Cryptographic Hardware: Design
and Security, Nadia Nedjah and Luiza de Macedo Mourelle,
eds., Nova Science, NY, ISBN 1-59454-145-0, Sep. 2004.

[8] A.M. Fiskiran and R.B. Lee, “Performance Impact of
Addressing Modes on Encryption Algorithms”, Proc. Int. Conf.
Computer Design (ICCD), pp. 542-545, Sep. 2001.

[9] A.M. Fiskiran and R.B. Lee, “Performance Scaling of
Cryptography Algorithms in Servers and Mobile Clients”,
Proc. Workshop on Building Block Engine Architectures for
Computer Networks (BEACON), Oct. 2004.

[10] IEEE 802.11 Wireless LAN Standards, IEEE 802.11 Working
Group, <http://grouper.ieee.org/groups/802/11/>.

[11] R.B. Lee, A.M. Fiskiran, Z. Shi, and X. Yang, “Refining
Instruction Set Architecture for High-Performance Multimedia
Processing in Constrained Environments”, Proc. Int. Conf.
Application-Specific Systems, Architectures and Processors
(ASAP), pp. 253-264, Jul. 2002.

[12] R.B. Lee and A.M. Fiskiran, “PLX: An Instruction Set
Architecture and Testbed For Multimedia Information
Processing”, to appear in the Journal of VLSI Signal
Processing.

[13] R.B. Lee and A.M. Fiskiran, “Multimedia Instructions in
Microprocessors for Native Signal Processing”, Programmable
Digital Signal Processors, Yu Hen Hu, ed., Marcel Dekker, pp.
91-145, Dec. 2001.

[14] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press, Oct. 1996.

[15] MIPS32 Architecture for Programmers Volume 2: The MIPS32
Instruction Set, v2.00, MIPS, available at
<http://www.mips.com>.

[16] PAX Project, Princeton Architecture Laboratory for
Multimedia and Security (PALMS),
<http://palms.ee.princeton.edu/PAX>.

[17] PLX Project, Princeton Architecture Laboratory for
Multimedia and Security (PALMS),
<http://palms.ee.princeton.edu/PLX>.

[18] B. Schneier, Applied Cryptography: Protocols, Algorithms, and
Source Code in C, John Wiley and Sons, 1996.

[19] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N.
Ferguson, “Twofish: A 128-bit Block Cipher,”
<http://www.schneier.com/twofish.html>, Jun. 1998.

[20] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: A Fast
Flexible Architecture for Secure Communication”, Proc.
Annual Int. Symposium on Computer Architecture (ISCA), pp.
110-119, Jun. 2001.

