
On-Chip Lookup Tables for Fast Symmetric-Key Encryption

A. Murat Fiskiran and Ruby B. Lee
Princeton Architecture Laboratory for Multimedia and Security (PALMS)

Department of Electrical Engineering, Princeton University
{fiskiran, rblee}@princeton.edu

Abstract

On public communication networks such as the
Internet, data confidentiality can be provided by
symmetric-key ciphers. One of the most common
operations used in symmetric-key ciphers are table
lookups. These frequently constitute the largest
fraction of the execution time when the ciphers are
implemented using a typical RISC-like instruction set.
To accelerate these table lookups, we describe a new
hardware module, called PTLU (for Parallel Table
Lookup), which consists of multiple lookup tables that
can be accessed in parallel. A novel combinational
circuit included in the module can optionally perform
simple logic operations on the data read from the
tables. On a single-issue 64-bit RISC processor, PTLU
provides maximum speedups of 7.7× for AES and 5.4×
for DES. With wordsize scaling, PTLU speedups are
significantly higher than that available through more
conventional architectural techniques such as
superscalar or VLIW execution.

1. Introduction

Symmetric-key cryptography can be used to provide
data confidentiality [18] on public communication
networks such as the Internet. This involves encrypting
a plaintext message P using a symmetric-key algorithm
(cipher) and a secret key K. The encrypted message
(ciphertext) is then sent to the receiver, where it is
decrypted using the same cipher and secret key.

Symmetric-key ciphers usually have an iterated
round structure, where a short sequence of operations
(called a round) is repeated on the plaintext block to
compute the ciphertext [18]. The input of a round
consists of the output of the previous round and one or
more subkeys, which are derived from the secret key.
Common round operations include table lookups,

modular addition (subtraction), logical operations,
shifts, rotates, multiplication, and bit permutations
[18][22]. On a programmable processor that
implements a RISC-like instruction set, table lookups
generally consume the greatest fraction of the
execution time [8]. In this paper, we describe how
these can be accelerated cost-effectively with a new
Parallel Table Lookup (PTLU) Module.

The rest of the paper is organized as follows. In
Section 2, we study the workload characteristics of six
representative symmetric-key ciphers. Section 3
describes the PTLU hardware and Section 4 discusses
its area cost and cycle time impact. In Section 5, we
discuss the performance of PTLU. Section 6 reviews
the related past work and Section 7 is the conclusion.

2. Cipher suite

Table 1 lists the symmetric-key ciphers we selected
for this study. For each cipher, we show the block size,
typical key size, and the number of rounds. Block size
is the amount of data that the cipher can encrypt at a
time, and key size relates to the strength of the cipher
against cryptanalytic attacks [18].

Data Encryption Standard (DES) [18] and its variant
3DES were the NIST standards for block encryption
from 1976 to 2001. 3DES continues to be used
extensively in many systems. RC4 is a popular stream
cipher [18], which is originally used in the IEEE
802.11 wireless standard. Blowfish [18] is used in
many protocols and applications, for example GPG,
SSH, SSLeay, and JAVA cryptography extensions
[19]. Advanced Encryption Standard (AES) [1] is the
current NIST standard for block encryption. Its key
size can be 128, 192, or 256 bits. We denote these
AES-128, AES-192, and AES-256 respectively.
Twofish [21] and MARS [5] are two of the five finalist
ciphers in the AES selection program [2]. Together
with AES, these new ciphers can be said to represent
the current thinking in symmetric-key cipher design. This work is supported in part by NSF CCR-0326372 and by DoD.

Proc. IEEE 16th Int. Conf. Application-Specific Systems, Architectures, and Processors (ASAP), pp. 356-363, Jul. 2005.

Table 1: Cipher suite

Cipher
B

lo
ck

 S
iz

e
(b

it
s)

K
ey

 S
iz

e
(b

it
s)

N
um

.
R

ou
nd

s

N
um

.
T

ab
le

s

T
ab

le

St
ru

ct
ur

e

N
um

.
L

oo
ku

ps

DES 64 56 16 8 26 × 32 128
3DES 64 112 48 8 26 × 32 384
RC4 8 128 1* 1 28 × 8 3 + 2W

Blowfish 64 128 16 4 28 × 32 64
AES-128 128 128 10 4 28 × 32 160
AES-192 128 192 12 4 28 × 32 192
AES-256 128 256 14 4 28 × 32 224
Twofish 128 128 16 4 28 × 32 128
MARS 128 128 32 2 28 × 32 80

* RC4 does not have an iterated round structure; hence we
show the number of rounds as 1. To generate each byte of
keystream, RC4 requires 3 table reads and 2 writes.

XOR

W0i

W1i

W2i

W3i

128 bits

16 Table
Lookups

b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

TA

TB

TC

TD

TA[b12]

TB[b13]

TC[b14]

TD[b15]

k[4i + 3]

XOR

TA

TB

TC

TD

TA[b8]

TB[b9]

TC[b10]

TD[b11]

k[4i + 2]

XOR

TA

TB

TC

TD

TA[b4]

TB[b5]

TC[b6]

TD[b7]

k[4i + 1]

XOR

TA

TB

TC

TD

TA[b0]

TB[b1]

TC[b2]

TD[b3]

k[4i + 0]

W0i+1

W1i+1

W2i+1

W3i+1

XOR TLU results
and subkeys

Load 4
subkeys

Figure 1: AES round

Table 2: Instruction set

 Class Instructions

ALU
add, addi, sub, subi, and, andi, or,

ori, xor, xori, not, loadi
Shift sra, srai, srl, srli, sll, slli, shrp (shift right pair)

Multiply mul.lo, mul.hi
Memory load, store (base+displacement addressing) B

as
e

IS
A

Branch beq, bne, bg, bge, call, return, trap
New ISA ptrd.x, ptrd.s, ptw1, ptwn, byte_perm

Multiplier

Register
File

ALU

Shifter

64

64

Figure 2: Baseline 64-bit single-issue processor

Table 3: Breakdown of cipher execution time

 DES 3DES RC4 Blowfish AES-128 AES-192 AES-256 Twofish MARS
 Block size (bits) 64 64 8 64 128 128 128 128 128
 Cycles per block 1147 3384 18 408 870 1056 1272 1753 1677

Table Lookups 38 44 54 36 72 72 72 43 34
Arithmetic - - 14 26 - - - 15 10

Logical 21 24 26 34 24 24 24 32 18
Multiplication - - - - - - - - 19

Fixed shift/rotate 8 9 - - - - - 4 5
Variable rotate - - - - - - - - 8
Bit permutation 26 15 - - - - - - -

%
 E

xe
cu

ti
on

C

yc
le

s
Sp

en
t

in
 ..

Other 7 8 6 4 4 4 4 6 6

2.1. Table lookups in symmetric-key ciphers

We show the AES round structure in Figure 1 to
illustrate how table lookups are typically used in
symmetric-key ciphers. In Table 1, we also summarize
the number and structure of the lookup tables used by
each cipher. The notation 2a × b is used to denote a
table with 2a entries, where each entry is b-bits wide.

In AES, the input to the i th round is a 128-bit block
composed of four 32-bit words. The bytes in these
words are labeled b0 to b15. There are four 28×32
tables, labeled TA-TD. The rightmost byte of each
word is used as index into TA; the next byte is used as
index into TB; and so on, until all tables are accessed
four times. The table lookup results and four subkeys
are then exclusive-or’ed (XORed) as shown.

Of the remaining ciphers in our suite, Blowfish,
MARS, and Twofish are similar to AES in that they use
multiple 28×32 tables. DES and 3DES use eight 26 × 32
tables [18], while RC4 uses a single 28×8 table. In the
next section, we measure the fraction of the execution
cycles that each cipher spends in table lookups.

2.2. Execution time analysis

We use the PLX toolset [13][17] to perform
workload analysis of each cipher. For baseline
performance data, the ciphers are implemented using
the RISC-like instruction set shown as the Base ISA in
Table 2. Our assembly code follows the optimizations
described in [10] and [18]. We configure the simulator
to model the 64-bit single-issue processor shown in
Figure 2. All instructions execute in a single cycle
except multiplication, which has a 3-cycle latency. We
also assume a perfect memory with single-cycle
load/store instructions. Table 3 shows the simulation
results, which includes: (a) the execution cycles used
per block of encryption, (b) the round operations in
each cipher, and (c) the fraction of the execution time
consumed by these. Our data presented so far enable us
to make the following observations:

• Table lookups consume the greatest fraction of the
execution time for all ciphers, varying from 34%
for MARS to 72% for AES (Table 3).

• Tables are few (at most eight) and have constant
size. Except in RC4, all table accesses are reads
(Table 1).

• Number of entries per table is small (at most 256)
and the data read is either 8 or 32 bits (Table 1).

Furthermore, it is generally possible to perform the
table lookups in parallel. For example, all 16 lookups
in an AES round (Figure 1) can be fully parallelized,
constrained only by hardware resources. Next, we
describe how hardware support can be used to exploit
these properties to accelerate symmetric-key ciphers.

3. Parallel Table Lookup Module (PTLU)

We propose adding an on-chip scratchpad memory
to the baseline processor in Figure 2. Among other
possible uses, it can be used for fast parallel table
lookups, so we call this memory the Parallel Table
Lookup (PTLU) module. On a 64-bit processor, this
memory has up to 8 read ports, and can be
implemented with up to 8 blocks of standard SRAM
memory, each with a single read port. The extended
datapath is shown in Figure 3 (the shifter and the
multiplier are not shown for brevity).

The inputs to the PTLU module are two source
registers; the output is one result register. To write to
the register file, PTLU can use either the functional
unit result bus or the cache memory bus. Figure 3
shows the former option.

Figure 4 shows the details of the PTLU module.
There are eight tables with 256 entries each, where
each entry is 32 bits wide. In co-designed embedded
systems, the number and/or the width of the tables can
be scaled down to limit cost and power. During a read,
each table is accessed by an 8-bit index read from the
first source register Rs1. The rightmost byte of Rs1
(B0) accesses T0; the next byte (B1) accesses T1; and
so on. All eight tables can be read in parallel.

The eight 32-bit lookup results, one from each table,
are then routed through a simple network of
combinational logic, comprised of six XOR-
Multiplexers (XMUX0 to XMUX6) and an XOR unit.
The XOR unit simply XORs the output of XMUX6
with Rs2. The signals that control the XMUXs come
from a decoder, which, in turn, is controlled by a sub-
op from the instruction word.

The internal structure of the XMUXs is shown in
Figure 5a. Each XMUX has two 32-bit inputs labeled L
and R, for left and right. Based on the values of two
control bits (C1, C0), the XMUX output can be: 0, L,
R, or L XOR R. This is summarized in Table 4.
XMUX6, which is shown in Figure 5b, is different in
that its output is either L XOR R, or, L || R, where ||
denotes concatenation.

3.1. Instructions for reading the PTLU module

We describe three ptrd (parallel table read)
instructions to read the PTLU module. These can be
added to a base instruction set such as the one shown in
Table 2. The first instruction has the following format:

ptrd.x1 Rd, Rs1, Rs2

Here, Rd is the destination register; Rs1 is the first
source register, which supplies the byte-sized table
indices; and Rs2 is the second source register, which is
routed to the right input of the XOR unit in Figure 4.
The ‘x1’ in the mnemonic indicates that this instruction
XORs all 8 lookup results and Rs2 into a single value.
This is achieved by setting all XMUX control bits to 1.

The second ptrd instruction has the following
format:

ptrd.x2 Rd, Rs1, Rs2

Here, the table lookup results and Rs2 are XORed into
to two parallel values. This is achieved by setting all
XMUX control bits to 1 except for XMUX6, which has

ALU

64

64

Register
File T

7

T
6

T
5

T
4

T
3

T
2

T
1

T
0

Combinational Logic

F
ro

m
 o

ff-
ch

ip

m
em

or
y

PTLU Module

64

Figure 3: Processor with PTLU

T7 T6 T5 T4 T3 T2 T1 T0

Rs1

256
entries

XMUX3

XMUX2

XMUX1

XMUX0

XMUX5

XMUX4

Rd:

Rs2

32

64

XOR

XMUX6

PTLU Module

D
ec

o
d

er

S
ub

-o
p

fr
om

in

st
ru

ct
io

n
w

or
d

Byte-sized
indices

T
0[

B
0]

T
1[

B
1]

T
2[

B
2]

T
3[

B
3]

T
4[

B
4]

T
5[

B
5]

T
6[

B
6]

T
7[

B
7]

B0

B1

B2

B3

B4

B5

B6

B7

Figure 4: Reading of the PTLU module

4-to-1 MUX C1
C0

R L

0

(a) XMUX0-XMUX5

32

XOR

2-to-1 MUX C0

64

32

R L

0

(b) XMUX6

XOR

|| ||

Figure 5: Operation of the XMUXs

Table 4: XMUX output

 (C1, C0) Value
 (1, 1) (1, 0) (0, 1) (0, 0)

XMUXs 0 to 5 L ⊕ R 0 L R
XMUX6 L ⊕ R L || R N/A N/A

its C0 bit set to zero. Hence, the output of XMUX6
becomes the concatenation of the outputs of XMUX5
and XMUX4.

To select and write a table lookup result to Rd
without an XOR, we define the ptrd.s instruction (s
signifies select):

ptrd.s.tab Rd, Rs1, Rs2

Here, tab is a 2-bit sub-op field that selects one of T0-
T3 to write to the rightmost 32 bits of Rd.
Simultaneously, a second table is selected from T4-T7
to write to the leftmost 32 bits of Rd. For example, if
tab = 2, then the output of T2 and T6 are written to the
rightmost and leftmost 32 bits of Rd respectively,
hence implementing two parallel table lookups.

3.2. Instructions for writing the PTLU module

To write the tables in the PTLU module, we define
two ptw (parallel table write) instructions:

ptw1.table Rs1, Rs2

The ‘1’ in the instruction signifies that a single PTLU
table is written, which is selected by the 3-bit sub-op
field table. The rightmost byte of Rs1 is used as the
table index and the selected table entry is written with
the rightmost 32 bits of Rs2.

Ptw1 can only write one table at a time, but this
does not degrade encryption performance since ciphers
do not require parallel table writes. However, fast
parallel writes may be desired for rapid initialization of
tables at setup time. For this, we define the ptwn
instruction (n signifies that multiple tables are written
in parallel). Ptwn uses the wide memory bus shown on
the right in Figure 3 and has the following format:

ptwn Rs, Rb, disp

Here Rb is a base address register and disp is the
displacement. The 32-byte memory block from address
Rb + disp is written to a common row of all eight
PTLU tables in parallel. The row is selected by the
rightmost byte of Rs. All PTLU entries can be written
using 256 ptwn instructions.

 72443251

7 6 5 4 3 2 1 0

Rc:

Rs:

Rd:
7 2 4 4 3 2 5 1

(a) byte_perm Rd, Rs, Rc

Source byte
indices

24 bits

 23 bits
Rs1 Rs2

 41 bits

 Rd:

(b) shrp Rd, Rs1, Rs2, 23

Figure 6: Byte_perm and shrp instructions

3.3. Instructions for rearranging index bytes

In the ptrd instruction, the source bytes in Rs1
access the PTLU tables in a fixed order. To allow
lookups where the source bytes need to access T0-T7
in random order, we propose adding a byte_perm (byte
permutation) instruction to the Base ISA:

byte_perm Rd, Rs, Rc

This can perform any permutation of the bytes in Rs
based on the control bits in Rc. By complementing
PTLU with byte_perm, a much wider variety of parallel
lookups can be realized. An example of byte_perm is
given in Figure 6a. The rightmost 3 bits in Rc choose
the source byte to be written to the rightmost byte of
Rd (B0); the next 3 bits choose the byte to be written to
B1; and so on. The leftmost 40 bits of Rc are unused.
This is like the permute instruction in MAX-2 [15] and
the pperm instruction in [16], but restricted to bytes.

Byte_perm can be implemented in hardware using
eight 8-to-1 multiplexers (each 8-bit-wide). In this
paper, we implement byte_perm by extending the
shifter, which we call the Shift-Permute Unit (SPU). To
permute more than eight bytes efficiently, byte_perm
can be used together with the shift right pair (shrp)
instruction, which is shown in Figure 6b. We will give
an example of this in Section 5.

4. Area cost and delay analysis

To evaluate the cost of new hardware, we first
establish baseline results by designing in VHDL the
functional units of the processor in Figure 2, which
implements the Base ISA in Table 2. We then extend
this processor with the new instructions we proposed.
For area and delay estimates, we perform gate-level

synthesis of the functional units using Synopsys tools
with TSMC 90nm technology library. For the PTLU
module, we use CACTI 3.2, which is a tool for
estimating the access time, area, and aspect ratio of
memory components [6].

Table 5 summarizes our results. For each functional
unit, we report absolute area in square-microns, the
equivalent number of minimum-sized two-input NAND
gates, and relative area normalized to the ALU. Delay
is given as absolute delay in nanoseconds, relative
delay with respect to ALU, and number of clock cycles
assuming that ALU latency is a single cycle.

We verify that implementing byte_perm in the
modified shifter does not impact cycle time or increase
the shifter latency in terms of clock cycles. The access
time of the PTLU tables is 67% of the ALU delay. The
XMUX tree could be synthesized so that the total delay
through the PTLU module is no greater than the ALU
delay. Hence ptrd and ptw instructions have single
cycle latency. Of the total area of the PTLU module,
90.5% is consumed by the eight lookup tables and
9.5% is consumed by the XMUXs.

In today’s high-end embedded processors, for
example Intel PXA270 [11], the size of the on-chip
data cache is typically about 32 kB. The PXA270 also
includes an additional 256 kB SRAM to be used as
scratchpad memory. Compared to these, the size of the
PTLU module is small (Table 5); about 35% of the 32
kB cache and 5% of the 256 kB cache.

5. Performance

5.1. Optimized AES

To illustrate the use of PTLU and byte_perm
instructions, Figure 7 shows the optimized assembly
code for AES on a 64-bit processor. Figure 8 shows the
data flow in the first half of the code. The 128-bit AES
state (refer to Figure 1) is supplied in two 64-bit
registers (R11, R10). The PTLU tables are initialized
to two sets of the four AES tables. The first four
byte_perm and shrp instructions permute (R11, R10)
such that R14 contains eight indices into tables whose
results can be directly XORed. These are the bytes
(3,14,9,4) and (15,10,5,0) in Figure 1. The load.8
instruction loads the first two round subkeys into R15.
The ptrd.x2 instruction performs eight lookups using
the bytes in R14. These results are XORed in pairs by
XMUX0–XMUX5. Next, XMUX6 concatenates the
output of XMUX5 and XMUX4. The result is then
XORed with the subkeys in R15. Destination register
R10 then contains (W1i+1,W0i+1). The last four
instructions similarly compute (W3i+1,W2i+1). The
entire AES round takes only 10 instructions.

Table 5: Area and delay of baseline and enhanced functional units

 Area Delay

Functional Unit / Component � 2
NAND Gate
Equivalent

Normalized
(ALU = 1.00) ns

Normalized
(ALU = 1.00)

Cycles

ALU 19122 7904 1.00 0.55 1.00 1

Shifter 6660 2753 0.35 0.45 0.82 1
SPU with byte_perm 7432 3512 0.44 0.55 1.00 1

PTLU: 8 Tables 322464 133296 16.86 0.37 0.67 1
PTLU: XMUX Tree 33972 14043 1.78 0.18 0.33 1

PTLU: Total 356436 147336 18.64 0.55 1.00 1

32 kB 2-way cache w/ 64-byte blocks 1012722 418619 52.96 0.63 1.15 2
256 kB 2-way cache w/ 64-byte blocks 6913820 2857895 361.58 0.88 1.60 2

R11 contains bytes 15-8 of AES state, R10 contains bytes 7-0 of AES state

byte_perm R12, R10, R1 # Config. reg. R1 contains byte indices (7,6,2,1,5,4,3,0)
 # R12 receives bytes (7,6,2,1,5,4,3,0) of AES state
byte_perm R13, R11, R1 # R13 receives bytes (15,14,10,9,13,12,11,8) of AES state
shrp R14, R12, R13, 32 # R14 receives bytes (5,4,3,0,15,14,10,9) of AES state
byte_perm R14, R14, R2 # Config. reg. R2 contains byte indices (5,2,0,6,3,1,7,4)
 # R14 receives bytes (3,14,9,4,15,10,5,0) of AES state

load.8 R15, R9, 0 # Load 2 subkeys; R9 is base address of subkey array

ptrd.x2 R10, R14, R15 # Lookup 8 tables, XOR results and round subkey;
 # PTLU tables (T3-T0) and (T7-T4) contain AES tables (TD-TA)

Now repeat for the remaining 8 lookups
shrp R14, R13, R12, 32 # R14 receives bytes (13,12,11,8,7,6,2,1) of AES state
byte_perm R14, R14, R2 # R14 receives bytes (11,6,1,12,7,2,13,8) of AES state
load.8 R15, R9, 8 # Load next two subkeys
ptrd.x2 R11, R14, R15 # R11, R10 contain the new AES state

Figure 7: Optimized AES round with ptrd (64-bit processor)

R15
(supplied via Rs2 of ptrd.x2)

k[4i + 1] k[4i + 0]

R10:

R11:

B3

B2

B1

B0

B7

B6

B5

B4

B11

B10

B9

B8

B15

B14

B13

B12

TA

B15

B10

B5

B0

B3

B14

B9

B4

TB

TC

TD

TA

TB

TC

TD

R14:

XOR

W1i+1

W0i+1

Initial AES

state

R14 after first
four instructions

ptrd.x2
instruction

R10:
Result of
ptrd.x2

Concatenated result

XMUX3
(XOR)

XMUX2
(XOR)

XMUX1
(XOR)

XMUX0
(XOR)

XMUX6
(||)

32

T
A

[B
0]

T
B

[B
5]

T
C

[B
1

0]

T
D

[B
1

5]

T
A

[B
4]

T
B

[B
9]

T
C

[B
1

4]

T
D

[B
3]

XMUX4
(XOR)

XMUX5
(XOR)

Figure 8: Data flow in the optimized AES round

Table 6: PTLU performance
(64-bit single-issue processor)

Cipher
Block size

(bits)
Cycles with

Base ISA
Speedup with

PTLU
DES 64 1147 × 5.41 ×
3DES 64 3384 5.32
RC4 8 18 2.00

Blowfish 64 408 1.66
AES-128 128 870 6.91
AES-192 128 1056 7.23
AES-256 128 1272 7.66
Twofish 128 1753 2.81
MARS 128 1677 1.23

Table 7: Superscalar performance vs. PTLU

Speedup w/ Superscalar Execution

(Base ISA)
Speedup w/

PTLU

Cipher 1/1 2/1 2/2 4/1 4/2 8/1 8/2
32-
bit

64-
bit

128-
bit

3DES 1.00 1.62 1.85 1.78 2.32 1.88 2.73 3.41 5.32 5.32
AES-128 1.00 1.58 1.71 1.85 2.23 2.02 2.49 2.79 6.91 27.19

5.2. Results and discussion

Baseline vs. PTLU: Table 6 summarizes the
performance improvement for all ciphers on the 64-bit
single-issue processor with PTLU. The speedups are
relative to the execution cycles per block of encryption
with the Base ISA in Table 2. While all ciphers benefit
from the new instructions, some show huge
performance gains. The speedups for DES, 3DES, and
AES range from 5.3× to 7.7×. The remaining ciphers
have speedups varying from 1.2× for MARS to 2.8×
for Twofish.

Multiple-issue (without PTLU): For 3DES and AES-
128, Table 7 shows the speedups obtained with
superscalar execution on processors with issue widths
from 1 to 8. Speedups are relative to a single-issue 32-
bit processor that implements the 32-bit version of the
Base ISA in Table 2. In the notation a/b, a is the issue
width and b is the number of memory ports.
Superscalar execution provides significant speedups for
both ciphers; up to 1.9× for 2-way and 2.3× for 4-way.
Further increasing the issue width to 8 provides only
minor additional performance (up to 2.7×).

Wordsize scaling vs. superscalar: The last 3 columns
of Table 7 show the speedups when PTLU is added to
single-issue 32-bit, 64-bit, and 128-bit processors. On
the 32-bit processor, PTLU is implemented with four
28×32 tables, so it can be compared to a scratchpad
memory with four read ports. Similarly, PTLU on the
128-bit processor uses 16 28×32 tables, and works like
a memory with 16 read ports. The XMUX tree is scaled
accordingly.

While comparing single-issue processors with and
without PTLU, we assume that the 64-bit and 128-bit
processors support subword parallelism [14][15],
which involves partitioning the datapath into units
smaller than a word, called subwords. Multiple
subwords packed in a word can be processed in parallel
using subword parallel instructions. For example, four
pairs of 32-bit subwords packed in two source registers
can be added with a single parallel add (padd)
instruction on the 128-bit processor. We assume that
parallel versions of all ALU and shift instructions in
Table 2 are supported for 32-bit subwords.

On a single-issue 32-bit processor, PTLU provides
3.4× and 2.8× speedup for 3DES and AES
respectively. Both figures are better than the speedups
obtained on an 8-way superscalar processor without
PTLU. On the 64-bit processor, PTLU speedup
increases to 6.9× for AES. This should be compared to
the 1.7× speedup of the 2-way 32-bit processor since
both have equivalent degrees of operand parallelism.
Similarly, the 27.2× speedup on the single-issue 128-

bit processor can be compared to the 2.2× speedup of
the 4-way 32-bit processor. These results clearly
indicate that using PTLU with wider processors is far
more effective for improving performance than
increasing the issue width in superscalar processors.
Compared to a multi-issue processor, a wider single-
issue processor offers savings in register ports, data
buses, bypass paths, and instruction issue logic [14].

Other processors: In Table 8, we compare the AES-
128 performance of several programmable processors.
Compared to the popular ARM9 embedded processors
[3], a 32-bit baseline processor with PTLU (PTLU-32)
provides 5.6× better performance. A single-issue
PTLU-64 easily outperforms more complicated multi-
way processors like Pentium III, IA-64, and PA-8200
[3][20]. A single-issue PTLU-128 provides 2.8× better
performance than CryptoManiac [23], which is 4-way
VLIW (Very Long Instruction Word). The 32-cycle
latency of PTLU-128 is only 22 cycles more than a
hardwired AES chip [12].

Table 8: AES-128 performance

Platform Reference Cycles
ARM9TDMI Bertoni [3][10] 1764
Pentium III Gladman [3][10] 381

IA-64 Schneier [20] 190
HP PA-8200 Schneier [20] 280

CryptoManiac Wu [23] 90
AES ASIC Kuo [12] 10

32-bit PTLU 315
64-bit PTLU 126
128-bit PTLU

This paper
32

6. Past work

Dedicated instructions to accelerate table lookups in
symmetric-key ciphers have previously been used in [4]
and [23]. The sbox instruction in [4] performs fast
lookups of tables located in main memory by
accelerating the effective address computations. The
CryptoManiac processor [23] uses a similar sbox
instruction to read its four 1 kB on-chip caches. Both
approaches differ from our PTLU proposal because
only a single table can be read with each sbox
instruction rather than multiple tables in parallel. In
contrast, we allow up to eight tables read in parallel on
a 64-bit single-issue processor using a single ptrd
instruction.

In our earlier work on the PAX crypto-processor [9]
and more recently in [7], we described how on-chip
lookup tables can be used to accelerate symmetric-key
encryption. Our work in this paper is different in three
important ways, resulting in much higher speedups.
First, both the number of tables and table width are

fully scalable in the PTLU module. Furthermore, each
PTLU table has a single read port, hence can be
implemented with standard SRAM cells. This differs
from our proposal in [9], where each lookup table has
four read ports (hence larger and slower) and is always
as wide as the processor wordsize.

Second, the parallel lookup instructions in [7] and
[9] use multiple sub-op fields to specify the number of
lookups to be performed, data size, and the index bytes
to be used. In contrast, the new ptrd instructions
provide this information implicitly; hence they are
simpler, without any loss of performance or flexibility.

Compared to [7] and [9], the most distinctive feature
of the new PTLU module in this paper is the novel
XMUX tree, which optionally performs simple logic
operations on table data. The XMUX tree increases the
table area by only 11% compared to [7], but provides
much higher performance, for example an additional
4.6× speedup for AES-128 on the 128-bit processor.

7. Conclusions

The first contribution of this paper is the workload
characterization of six representative symmetric-key
ciphers. We show that all these ciphers spend the
largest fraction of their execution time in table lookups
(up to 72% for AES).

Second, we describe a new PTLU module to
accelerate these table lookups. This module is smaller
than today’s L1 caches and its latency is a single cycle.
We also describe how a byte_perm instruction can
complement the PTLU module to allow a greater
variety of parallel table lookups. On the 64-bit single-
issue processor, the new instructions generate huge
speedups for most of the ciphers, up to 7.7× for AES-
256. An extra benefit of PTLU is the elimination of
cache read misses in table lookups. Unlike a load
instruction which can take either a single cycle (cache
hit) or many cycles (cache miss), a ptrd instruction
always takes one cycle. This eliminates the variability
in encryption latency, thwarting some cipher attacks.

Our third contribution is to show that the
effectiveness of PTLU increases significantly as the
wordsize of the processor increases. PTLU speedups
obtained on wider processors are far higher than those
obtained by increasing the number of instructions
executed per cycle in superscalar or VLIW processors.

10. References

[1] Advanced Encryption Standard (AES), FIPS 197, Nov. 2001,
<http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>.

[2] AES Development Effort, NIST, Jan. 1997 - Nov.2001,
<http://csrc.nist.gov/CryptoToolkit/aes/index2.html>.

[3] G. Bertoni et al., “Efficient Software Implementation of AES

on 32-bit Platforms” , Lecture Notes In Computer Science, vol.
2523, Springer-Verlag, pp. 159-171, 2003.

[4] J. Burke, J. McDonald, and T. Austin, “Architectural Support
for Fast Symmetric-Key Cryptography” , Proc. Int. Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 178-189, Nov. 2000.

[5] C. Burwick, et al, “MARS – A Candidate Cipher For AES” ,
<http://www.research.ibm.com/security/mars.pdf> , Sep. 1999.

[6] CACTI, Compaq – Western Research Lab,
<http://research.compaq.com/wrl/people/jouppi/CACTI.html>.

[7] A.M. Fiskiran and R.B. Lee, “Fast Parallel Table Lookups to
Accelerate Symmetric-Key Cryptography” , Proc. ITCC,
Embedded Cryptographic Systems, pp. 526-531, Apr. 2005.

[8] A.M. Fiskiran and R.B. Lee, “Performance Scaling of
Cryptography Algorithms in Servers and Mobile Clients” ,
Proc. Workshop on Building Block Engine Architectures for
Computer Networks (BEACON), Oct. 2004.

[9] A.M. Fiskiran and R.B. Lee, “PAX: A Datapath-Scalable
Minimalist Cryptographic Processor for Mobile
Environments” , Embedded Cryptographic Hardware: Design
and Security, Nova Science, NY, Sep. 2004.

[10] B. Gladman, AES Second Round Implementation Experience,
source code for AES finalists available at
<http://fp.gladman.plus.com/cryptography_technology/aesr2>.

[11] Intel PXA270 Processor for Embedded Computing – Product
Brief, Intel, Doc. ID 302302-001, at <http://www.intel.com>.

[12] H. Kuo and I. Verbauwhede, “Architectural Optimization for a
1.82 Gb/s VLSI Implementation of the AES Rijndael
Algoritm” , Lecture Notes in Computer Science, vol. 2162, pp.
51-64, May. 2001.

[13] R.B. Lee and A.M. Fiskiran, “PLX: An Instruction Set
Architecture and Testbed For Multimedia Information
Processing” , Journal of VLSI Signal Processing. vol. 40, no. 1,
pp. 85-108, May 2005.

[14] R.B. Lee and A.M. Fiskiran, “Multimedia Instructions in
Microprocessors for Native Signal Processing” , Programmable
Digital Signal Processors, Marcel Dekker, pp. 91-145, Dec.
2001.

[15] R.B. Lee, “Subword Parallelism with MAX-2” , IEEE Micro,
vol. 16, no. 4, pp. 51-59, Aug. 1996.

[16] R.B. Lee, Z. Shi, and X. Yang, “Efficient Permutation
Instructions for Fast Software Cryptography” , IEEE Micro,
vol. 21, no. 6, pp. 56-69, Dec. 2001.

[17] PLX Project, Princeton Architecture Laboratory for
Multimedia and Security (PALMS),
<http://palms.ee.princeton.edu/PLX>.

[18] B. Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C, John Wiley and Sons, 1996.

[19] B. Schneier, The Blowfish Encryption Algorithm,
<http://www.schneier.com/blowfish.html>.

[20] B. Schneier and D. Whiting, “A Performance Comparison of
the Five AES Finalists” , Proc. Third AES Conference, pp. 123-
135, Apr. 2000.

[21] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N.
Ferguson, “Twofish: A 128-bit Block Cipher,”
<http://www.schneier.com/twofish.html>, Jun. 1998.

[22] Z. Shi, X. Yang, and R.B. Lee, “Arbitrary Bit Permutations in
One or Two Cycles” , Proc. IEEE Int. Conf. Application-
Specific Systems, Architectures and Processors (ASAP), pp.
237-247, Jun. 2003.

[23] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: A Fast
Flexible Architecture for Secure Communication” , Proc.
Annual Int. Symposium on Computer Architecture (ISCA), pp.
110-119, Jun. 2001.

