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Abstract 

 

On public communication networks such as the 
Internet, data confidentiality can be provided by 
symmetric-key ciphers. One of the most common 
operations used in symmetric-key ciphers are table 
lookups. These frequently constitute the largest 
fraction of the execution time when the ciphers are 
implemented using a typical RISC-like instruction set. 
To accelerate these table lookups, we describe a new 
hardware module, called PTLU (for Parallel Table 
Lookup), which consists of multiple lookup tables that 
can be accessed in parallel. A novel combinational 
circuit included in the module can optionally perform 
simple logic operations on the data read from the 
tables. On a single-issue 64-bit RISC processor, PTLU 
provides maximum speedups of 7.7× for AES and 5.4× 
for DES. With wordsize scaling, PTLU speedups are 
significantly higher than that available through more 
conventional architectural techniques such as 
superscalar or VLIW execution.  
 
 

1. Introduction 
 

Symmetric-key cryptography can be used to provide 
data confidentiality [18] on public communication 
networks such as the Internet. This involves encrypting 
a plaintext message P using a symmetric-key algorithm 
(cipher) and a secret key K. The encrypted message 
(ciphertext) is then sent to the receiver, where it is 
decrypted using the same cipher and secret key.  

Symmetric-key ciphers usually have an iterated 
round structure, where a short sequence of operations 
(called a round) is repeated on the plaintext block to 
compute the ciphertext [18]. The input of a round 
consists of the output of the previous round and one or 
more subkeys, which are derived from the secret key. 
Common round operations include table lookups, 

modular addition (subtraction), logical operations, 
shifts, rotates, multiplication, and bit permutations 
[18][22]. On a programmable processor that 
implements a RISC-like instruction set, table lookups 
generally consume the greatest fraction of the 
execution time [8]. In this paper, we describe how 
these can be accelerated cost-effectively with a new 
Parallel Table Lookup (PTLU) Module.  

The rest of the paper is organized as follows. In 
Section 2, we study the workload characteristics of six 
representative symmetric-key ciphers. Section 3 
describes the PTLU hardware and Section 4 discusses 
its area cost and cycle time impact. In Section 5, we 
discuss the performance of PTLU. Section 6 reviews 
the related past work and Section 7 is the conclusion. 

 

2. Cipher suite 
 

Table 1 lists the symmetric-key ciphers we selected 
for this study. For each cipher, we show the block size, 
typical key size, and the number of rounds. Block size 
is the amount of data that the cipher can encrypt at a 
time, and key size relates to the strength of the cipher 
against cryptanalytic attacks [18]. 

Data Encryption Standard (DES) [18] and its variant 
3DES were the NIST standards for block encryption 
from 1976 to 2001. 3DES continues to be used 
extensively in many systems. RC4 is a popular stream 
cipher [18], which is originally used in the IEEE 
802.11 wireless standard. Blowfish [18] is used in 
many protocols and applications, for example GPG, 
SSH, SSLeay, and JAVA cryptography extensions 
[19]. Advanced Encryption Standard (AES) [1] is the 
current NIST standard for block encryption. Its key 
size can be 128, 192, or 256 bits. We denote these 
AES-128, AES-192, and AES-256 respectively. 
Twofish [21] and MARS [5] are two of the five finalist 
ciphers in the AES selection program [2]. Together 
with AES, these new ciphers can be said to represent 
the current thinking in symmetric-key cipher design. This work is supported in part by NSF CCR-0326372 and by DoD. 
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Table 1: Cipher suite 
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DES 64 56 16  8 26 × 32 128 
3DES 64 112 48  8 26 × 32 384 
RC4 8 128 1*  1 28 × 8 3 + 2W 

Blowfish 64 128 16  4 28 × 32 64 
AES-128 128 128 10  4 28 × 32 160 
AES-192 128 192 12  4 28 × 32 192 
AES-256 128 256 14  4 28 × 32 224 
Twofish 128 128 16  4 28 × 32 128 
MARS 128 128 32  2 28 × 32 80 

 

* RC4 does not have an iterated round structure; hence we 
show the number of rounds as 1. To generate each byte of 
keystream, RC4 requires 3 table reads and 2 writes. 
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Figure 1: AES round 
 

 

Table 2: Instruction set 
 

 Class Instructions 

ALU 
add, addi, sub, subi, and, andi, or,  

ori, xor, xori, not, loadi 
Shift sra, srai, srl, srli, sll, slli, shrp (shift right pair)

Multiply mul.lo, mul.hi 
Memory load, store (base+displacement addressing) B

as
e 

IS
A

 

Branch beq, bne, bg, bge, call, return, trap 
New ISA ptrd.x, ptrd.s, ptw1, ptwn, byte_perm 
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Figure 2: Baseline 64-bit single-issue processor 

 
Table 3: Breakdown of cipher execution time 

 

  DES 3DES RC4 Blowfish AES-128 AES-192 AES-256 Twofish MARS 
 Block size (bits) 64 64 8 64 128 128 128 128 128 
 Cycles per block  1147 3384 18 408 870 1056 1272 1753 1677 
           

Table Lookups 38 44 54 36 72 72 72 43 34 
Arithmetic - - 14 26 - - - 15 10 

Logical 21 24 26 34 24 24 24 32 18 
Multiplication - - - - - - - - 19 

Fixed shift/rotate 8 9 - - - - - 4 5 
Variable rotate - - - - - - - - 8 
Bit permutation 26 15 - - - - - - - 
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2.1. Table lookups in symmetric-key ciphers 
 

We show the AES round structure in Figure 1 to 
illustrate how table lookups are typically used in 
symmetric-key ciphers. In Table 1, we also summarize 
the number and structure of the lookup tables used by 
each cipher. The notation 2a × b is used to denote a 
table with 2a entries, where each entry is b-bits wide. 

In AES, the input to the i th round is a 128-bit block 
composed of four 32-bit words. The bytes in these 
words are labeled b0 to b15. There are four 28×32 
tables, labeled TA-TD. The rightmost byte of each 
word is used as index into TA; the next byte is used as 
index into TB; and so on, until all tables are accessed 
four times. The table lookup results and four subkeys 
are then exclusive-or’ed (XORed) as shown. 



Of the remaining ciphers in our suite, Blowfish, 
MARS, and Twofish are similar to AES in that they use 
multiple 28×32 tables. DES and 3DES use eight 26 × 32 
tables [18], while RC4 uses a single 28×8 table. In the 
next section, we measure the fraction of the execution 
cycles that each cipher spends in table lookups. 

 
2.2. Execution time analysis 

 

We use the PLX toolset [13][17] to perform 
workload analysis of each cipher. For baseline 
performance data, the ciphers are implemented using 
the RISC-like instruction set shown as the Base ISA in 
Table 2. Our assembly code follows the optimizations 
described in [10] and [18]. We configure the simulator 
to model the 64-bit single-issue processor shown in 
Figure 2. All instructions execute in a single cycle 
except multiplication, which has a 3-cycle latency. We 
also assume a perfect memory with single-cycle 
load/store instructions. Table 3 shows the simulation 
results, which includes: (a) the execution cycles used 
per block of encryption, (b) the round operations in 
each cipher, and (c) the fraction of the execution time 
consumed by these. Our data presented so far enable us 
to make the following observations:  

 

• Table lookups consume the greatest fraction of the 
execution time for all ciphers, varying from 34% 
for MARS to 72% for AES (Table 3). 

• Tables are few (at most eight) and have constant 
size. Except in RC4, all table accesses are reads 
(Table 1). 

• Number of entries per table is small (at most 256) 
and the data read is either 8 or 32 bits (Table 1). 

 

Furthermore, it is generally possible to perform the 
table lookups in parallel. For example, all 16 lookups 
in an AES round (Figure 1) can be fully parallelized, 
constrained only by hardware resources. Next, we 
describe how hardware support can be used to exploit 
these properties to accelerate symmetric-key ciphers.  
 

3. Parallel Table Lookup Module (PTLU) 
 

We propose adding an on-chip scratchpad memory 
to the baseline processor in Figure 2. Among other 
possible uses, it can be used for fast parallel table 
lookups, so we call this memory the Parallel Table 
Lookup (PTLU) module. On a 64-bit processor, this 
memory has up to 8 read ports, and can be 
implemented with up to 8 blocks of standard SRAM 
memory, each with a single read port. The extended 
datapath is shown in Figure 3 (the shifter and the 
multiplier are not shown for brevity). 

The inputs to the PTLU module are two source 
registers; the output is one result register. To write to 
the register file, PTLU can use either the functional 
unit result bus or the cache memory bus. Figure 3 
shows the former option.  

Figure 4 shows the details of the PTLU module. 
There are eight tables with 256 entries each, where 
each entry is 32 bits wide. In co-designed embedded 
systems, the number and/or the width of the tables can 
be scaled down to limit cost and power. During a read, 
each table is accessed by an 8-bit index read from the 
first source register Rs1. The rightmost byte of Rs1 
(B0) accesses T0; the next byte (B1) accesses T1; and 
so on. All eight tables can be read in parallel. 

The eight 32-bit lookup results, one from each table, 
are then routed through a simple network of 
combinational logic, comprised of six XOR-
Multiplexers (XMUX0 to XMUX6) and an XOR unit. 
The XOR unit simply XORs the output of XMUX6 
with Rs2. The signals that control the XMUXs come 
from a decoder, which, in turn, is controlled by a sub-
op from the instruction word. 

The internal structure of the XMUXs is shown in 
Figure 5a. Each XMUX has two 32-bit inputs labeled L 
and R, for left and right. Based on the values of two 
control bits (C1, C0), the XMUX output can be: 0, L, 
R, or L  XOR  R. This is summarized in Table 4. 
XMUX6, which is shown in Figure 5b, is different in 
that its output is either L XOR R, or, L || R, where || 
denotes concatenation. 

 
3.1. Instructions for reading the PTLU module 
 

We describe three ptrd (parallel table read) 
instructions to read the PTLU module. These can be 
added to a base instruction set such as the one shown in 
Table 2. The first instruction has the following format: 

 

ptrd.x1   Rd, Rs1, Rs2 
 

Here, Rd is the destination register; Rs1 is the first 
source register, which supplies the byte-sized table 
indices; and Rs2 is the second source register, which is 
routed to the right input of the XOR unit in Figure 4. 
The ‘x1’  in the mnemonic indicates that this instruction 
XORs all 8 lookup results and Rs2 into a single value. 
This is achieved by setting all XMUX control bits to 1.  

The second ptrd instruction has the following 
format: 

 

ptrd.x2   Rd, Rs1, Rs2 
 

Here, the table lookup results and Rs2 are XORed into 
to two parallel values. This is achieved by setting all 
XMUX control bits to 1 except for XMUX6, which has  
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Figure 3: Processor with PTLU 
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Figure 4: Reading of the PTLU module 
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Figure 5: Operation of the XMUXs 
 
 

Table 4: XMUX output 
 

 (C1, C0) Value 
 (1, 1) (1, 0) (0, 1) (0, 0) 

XMUXs 0 to 5 L ⊕  R 0 L R 
XMUX6 L ⊕  R L || R N/A N/A  

 
its C0 bit set to zero. Hence, the output of XMUX6 
becomes the concatenation of the outputs of XMUX5 
and XMUX4.  

To select and write a table lookup result to Rd 
without an XOR, we define the ptrd.s instruction (s 
signifies select): 

 

ptrd.s.tab   Rd, Rs1, Rs2 
 

Here, tab is a 2-bit sub-op field that selects one of T0-
T3 to write to the rightmost 32 bits of Rd. 
Simultaneously, a second table is selected from T4-T7 
to write to the leftmost 32 bits of Rd. For example, if 
tab = 2, then the output of T2 and T6 are written to the 
rightmost and leftmost 32 bits of Rd respectively, 
hence implementing two parallel table lookups.  

 
3.2. Instructions for writing the PTLU module 
 

To write the tables in the PTLU module, we define 
two ptw (parallel table write) instructions:  
 

ptw1.table   Rs1, Rs2 
 

The ‘1’  in the instruction signifies that a single PTLU 
table is written, which is selected by the 3-bit sub-op 
field table. The rightmost byte of Rs1 is used as the 
table index and the selected table entry is written with 
the rightmost 32 bits of Rs2.  

Ptw1 can only write one table at a time, but this 
does not degrade encryption performance since ciphers 
do not require parallel table writes. However, fast 
parallel writes may be desired for rapid initialization of 
tables at setup time. For this, we define the ptwn 
instruction (n signifies that multiple tables are written 
in parallel). Ptwn uses the wide memory bus shown on 
the right in Figure 3 and has the following format: 

 

ptwn   Rs, Rb, disp 
 

Here Rb is a base address register and disp is the 
displacement. The 32-byte memory block from address 
Rb + disp is written to a common row of all eight 
PTLU tables in parallel. The row is selected by the 
rightmost byte of Rs. All PTLU entries can be written 
using 256 ptwn instructions.  
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Figure 6: Byte_perm and shrp instructions 
 
3.3. Instructions for rearranging index bytes 
 

In the ptrd instruction, the source bytes in Rs1 
access the PTLU tables in a fixed order. To allow 
lookups where the source bytes need to access T0-T7 
in random order, we propose adding a byte_perm (byte 
permutation) instruction to the Base ISA:  

 

byte_perm   Rd, Rs, Rc 
 

This can perform any permutation of the bytes in Rs 
based on the control bits in Rc. By complementing 
PTLU with byte_perm, a much wider variety of parallel 
lookups can be realized. An example of byte_perm is 
given in Figure 6a. The rightmost 3 bits in Rc choose 
the source byte to be written to the rightmost byte of 
Rd (B0); the next 3 bits choose the byte to be written to 
B1; and so on. The leftmost 40 bits of Rc are unused. 
This is like the permute instruction in MAX-2 [15] and 
the pperm instruction in [16], but restricted to bytes.  

Byte_perm can be implemented in hardware using 
eight 8-to-1 multiplexers (each 8-bit-wide). In this 
paper, we implement byte_perm by extending the 
shifter, which we call the Shift-Permute Unit (SPU). To 
permute more than eight bytes efficiently, byte_perm 
can be used together with the shift right pair (shrp) 
instruction, which is shown in Figure 6b. We will give 
an example of this in Section 5.  

 

4. Area cost and delay analysis 
 

To evaluate the cost of new hardware, we first 
establish baseline results by designing in VHDL the 
functional units of the processor in Figure 2, which 
implements the Base ISA in Table 2. We then extend 
this processor with the new instructions we proposed. 
For area and delay estimates, we perform gate-level 

synthesis of the functional units using Synopsys tools 
with TSMC 90nm technology library. For the PTLU 
module, we use CACTI 3.2, which is a tool for 
estimating the access time, area, and aspect ratio of 
memory components [6].  

Table 5 summarizes our results. For each functional 
unit, we report absolute area in square-microns, the 
equivalent number of minimum-sized two-input NAND 
gates, and relative area normalized to the ALU. Delay 
is given as absolute delay in nanoseconds, relative 
delay with respect to ALU, and number of clock cycles 
assuming that ALU latency is a single cycle.  

We verify that implementing byte_perm in the 
modified shifter does not impact cycle time or increase 
the shifter latency in terms of clock cycles. The access 
time of the PTLU tables is 67% of the ALU delay. The 
XMUX tree could be synthesized so that the total delay 
through the PTLU module is no greater than the ALU 
delay. Hence ptrd and ptw instructions have single 
cycle latency. Of the total area of the PTLU module, 
90.5% is consumed by the eight lookup tables and 
9.5% is consumed by the XMUXs. 

In today’s high-end embedded processors, for 
example Intel PXA270 [11], the size of the on-chip 
data cache is typically about 32 kB. The PXA270 also 
includes an additional 256 kB SRAM to be used as 
scratchpad memory. Compared to these, the size of the 
PTLU module is small (Table 5); about 35% of the 32 
kB cache and 5% of the 256 kB cache.  
 

5. Performance 
 

5.1. Optimized AES 
 

To illustrate the use of PTLU and byte_perm 
instructions, Figure 7 shows the optimized assembly 
code for AES on a 64-bit processor. Figure 8 shows the 
data flow in the first half of the code. The 128-bit AES 
state (refer to Figure 1) is supplied in two 64-bit 
registers (R11, R10). The PTLU tables are initialized 
to two sets of the four AES tables. The first four 
byte_perm and shrp instructions permute (R11, R10) 
such that R14 contains eight indices into tables whose 
results can be directly XORed. These are the bytes 
(3,14,9,4) and (15,10,5,0) in Figure 1. The load.8 
instruction loads the first two round subkeys into R15. 
The ptrd.x2 instruction performs eight lookups using 
the bytes in R14. These results are XORed in pairs by 
XMUX0–XMUX5. Next, XMUX6 concatenates the 
output of XMUX5 and XMUX4. The result is then 
XORed with the subkeys in R15. Destination register 
R10 then contains (W1i+1,W0i+1). The last four 
instructions similarly compute (W3i+1,W2i+1). The 
entire AES round takes only 10 instructions.  

 



Table 5: Area and delay of baseline and enhanced functional units 
 

 Area Delay 

Functional Unit / Component � 2 
NAND Gate 
Equivalent 

Normalized 
(ALU = 1.00) ns 

Normalized 
(ALU = 1.00) 

Cycles 
       

ALU 19122 7904 1.00 0.55 1.00 1 
       

Shifter 6660 2753 0.35 0.45 0.82 1 
SPU with byte_perm 7432 3512 0.44 0.55 1.00 1 

       

PTLU: 8 Tables 322464 133296 16.86 0.37 0.67 1 
PTLU: XMUX Tree 33972 14043 1.78 0.18 0.33 1 

PTLU: Total 356436 147336 18.64 0.55 1.00 1 
       

32 kB 2-way cache w/ 64-byte blocks  1012722 418619 52.96 0.63 1.15 2 
256 kB 2-way cache w/ 64-byte blocks 6913820 2857895 361.58 0.88 1.60 2 

 
# R11 contains bytes 15-8 of AES state, R10 contains bytes 7-0 of AES state 
 
byte_perm R12, R10, R1  # Config. reg. R1 contains byte indices (7,6,2,1,5,4,3,0) 
    # R12 receives bytes (7,6,2,1,5,4,3,0) of AES state 
byte_perm R13, R11, R1  # R13 receives bytes (15,14,10,9,13,12,11,8) of AES state 
shrp      R14, R12, R13, 32 # R14 receives bytes (5,4,3,0,15,14,10,9) of AES state 
byte_perm R14, R14, R2  # Config. reg. R2 contains byte indices (5,2,0,6,3,1,7,4) 
    # R14 receives bytes (3,14,9,4,15,10,5,0) of AES state 
 

load.8    R15, R9, 0   # Load 2 subkeys; R9 is base address of subkey array 
 
ptrd.x2   R10, R14, R15  # Lookup 8 tables, XOR results and round subkey;  
    # PTLU tables (T3-T0) and (T7-T4) contain AES tables (TD-TA) 
 

# Now repeat for the remaining 8 lookups 
shrp      R14, R13, R12, 32 # R14 receives bytes (13,12,11,8,7,6,2,1) of AES state 
byte_perm R14, R14, R2  # R14 receives bytes (11,6,1,12,7,2,13,8) of AES state 
load.8    R15, R9, 8  # Load next two subkeys 
ptrd.x2   R11, R14, R15  # R11, R10 contain the new AES state 

 

Figure 7: Optimized AES round with ptrd (64-bit processor) 
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Figure 8: Data flow in the optimized AES round  

 
Table 6: PTLU performance  
(64-bit single-issue processor) 

 

Cipher 
Block size  

(bits) 
Cycles with 

Base ISA 
Speedup with 

PTLU 
DES 64 1147 × 5.41 × 
3DES 64 3384 5.32 
RC4 8 18 2.00 

Blowfish 64 408 1.66 
AES-128 128 870 6.91 
AES-192 128 1056 7.23 
AES-256 128 1272 7.66 
Twofish 128 1753 2.81 
MARS 128 1677 1.23 

 
 

Table 7: Superscalar performance vs. PTLU 
 

 
Speedup w/ Superscalar Execution 

(Base ISA) 
Speedup w/ 

PTLU 

Cipher 1/1 2/1 2/2 4/1 4/2 8/1 8/2 
32-
bit 

64-
bit 

128-
bit 

3DES 1.00 1.62 1.85 1.78 2.32 1.88 2.73 3.41 5.32 5.32 
AES-128 1.00 1.58 1.71 1.85 2.23 2.02 2.49 2.79 6.91 27.19  

 



5.2. Results and discussion 
 

Baseline vs. PTLU: Table 6 summarizes the 
performance improvement for all ciphers on the 64-bit 
single-issue processor with PTLU. The speedups are 
relative to the execution cycles per block of encryption 
with the Base ISA in Table 2. While all ciphers benefit 
from the new instructions, some show huge 
performance gains. The speedups for DES, 3DES, and 
AES range from 5.3× to 7.7×. The remaining ciphers 
have speedups varying from 1.2× for MARS to 2.8× 
for Twofish.  
 

Multiple-issue (without PTLU): For 3DES and AES-
128, Table 7 shows the speedups obtained with 
superscalar execution on processors with issue widths 
from 1 to 8. Speedups are relative to a single-issue 32-
bit processor that implements the 32-bit version of the 
Base ISA in Table 2. In the notation a/b, a is the issue 
width and b is the number of memory ports. 
Superscalar execution provides significant speedups for 
both ciphers; up to 1.9× for 2-way and 2.3× for 4-way. 
Further increasing the issue width to 8 provides only 
minor additional performance (up to 2.7×).  
 

Wordsize scaling vs. superscalar: The last 3 columns 
of Table 7 show the speedups when PTLU is added to 
single-issue 32-bit, 64-bit, and 128-bit processors. On 
the 32-bit processor, PTLU is implemented with four 
28×32 tables, so it can be compared to a scratchpad 
memory with four read ports. Similarly, PTLU on the 
128-bit processor uses 16 28×32 tables, and works like 
a memory with 16 read ports. The XMUX tree is scaled 
accordingly.  

While comparing single-issue processors with and 
without PTLU, we assume that the 64-bit and 128-bit 
processors support subword parallelism [14][15], 
which involves partitioning the datapath into units 
smaller than a word, called subwords. Multiple 
subwords packed in a word can be processed in parallel 
using subword parallel instructions. For example, four 
pairs of 32-bit subwords packed in two source registers 
can be added with a single parallel add (padd) 
instruction on the 128-bit processor. We assume that 
parallel versions of all ALU and shift instructions in 
Table 2 are supported for 32-bit subwords.  

On a single-issue 32-bit processor, PTLU provides 
3.4× and 2.8× speedup for 3DES and AES 
respectively. Both figures are better than the speedups 
obtained on an 8-way superscalar processor without 
PTLU. On the 64-bit processor, PTLU speedup 
increases to 6.9× for AES. This should be compared to 
the 1.7× speedup of the 2-way 32-bit processor since 
both have equivalent degrees of operand parallelism. 
Similarly, the 27.2× speedup on the single-issue 128-

bit processor can be compared to the 2.2× speedup of 
the 4-way 32-bit processor. These results clearly 
indicate that using PTLU with wider processors is far 
more effective for improving performance than 
increasing the issue width in superscalar processors. 
Compared to a multi-issue processor, a wider single-
issue processor offers savings in register ports, data 
buses, bypass paths, and instruction issue logic [14].  

 

Other processors: In Table 8, we compare the AES-
128 performance of several programmable processors. 
Compared to the popular ARM9 embedded processors 
[3], a 32-bit baseline processor with PTLU (PTLU-32) 
provides 5.6× better performance. A single-issue 
PTLU-64 easily outperforms more complicated multi-
way processors like Pentium III, IA-64, and PA-8200 
[3][20]. A single-issue PTLU-128 provides 2.8× better 
performance than CryptoManiac [23], which is 4-way 
VLIW (Very Long Instruction Word). The 32-cycle 
latency of PTLU-128 is only 22 cycles more than a 
hardwired AES chip [12]. 
 

Table 8: AES-128 performance 
 

Platform Reference Cycles 
ARM9TDMI Bertoni [3][10] 1764 
Pentium III Gladman [3][10] 381 

IA-64 Schneier [20] 190 
HP PA-8200 Schneier [20] 280 

CryptoManiac Wu [23] 90 
AES ASIC Kuo [12] 10 

32-bit PTLU 315 
64-bit PTLU 126 
128-bit PTLU 
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6. Past work 
 

Dedicated instructions to accelerate table lookups in 
symmetric-key ciphers have previously been used in [4] 
and [23]. The sbox instruction in [4] performs fast 
lookups of tables located in main memory by 
accelerating the effective address computations. The 
CryptoManiac processor [23] uses a similar sbox 
instruction to read its four 1 kB on-chip caches. Both 
approaches differ from our PTLU proposal because 
only a single table can be read with each sbox 
instruction rather than multiple tables in parallel. In 
contrast, we allow up to eight tables read in parallel on 
a 64-bit single-issue processor using a single ptrd 
instruction.  

In our earlier work on the PAX crypto-processor [9] 
and more recently in [7], we described how on-chip 
lookup tables can be used to accelerate symmetric-key 
encryption. Our work in this paper is different in three 
important ways, resulting in much higher speedups. 
First, both the number of tables and table width are 



fully scalable in the PTLU module. Furthermore, each 
PTLU table has a single read port, hence can be 
implemented with standard SRAM cells. This differs 
from our proposal in [9], where each lookup table has 
four read ports (hence larger and slower) and is always 
as wide as the processor wordsize.  

Second, the parallel lookup instructions in [7] and 
[9] use multiple sub-op fields to specify the number of 
lookups to be performed, data size, and the index bytes 
to be used. In contrast, the new ptrd instructions 
provide this information implicitly; hence they are 
simpler, without any loss of performance or flexibility.  

Compared to [7] and [9], the most distinctive feature 
of the new PTLU module in this paper is the novel 
XMUX tree, which optionally performs simple logic 
operations on table data. The XMUX tree increases the 
table area by only 11% compared to [7], but provides 
much higher performance, for example an additional 
4.6× speedup for AES-128 on the 128-bit processor.  
 

7. Conclusions 
 

The first contribution of this paper is the workload 
characterization of six representative symmetric-key 
ciphers. We show that all these ciphers spend the 
largest fraction of their execution time in table lookups 
(up to 72% for AES).  

Second, we describe a new PTLU module to 
accelerate these table lookups. This module is smaller 
than today’s L1 caches and its latency is a single cycle. 
We also describe how a byte_perm instruction can 
complement the PTLU module to allow a greater 
variety of parallel table lookups. On the 64-bit single-
issue processor, the new instructions generate huge 
speedups for most of the ciphers, up to 7.7× for AES-
256. An extra benefit of PTLU is the elimination of 
cache read misses in table lookups. Unlike a load 
instruction which can take either a single cycle (cache 
hit) or many cycles (cache miss), a ptrd instruction 
always takes one cycle. This eliminates the variability 
in encryption latency, thwarting some cipher attacks. 

Our third contribution is to show that the 
effectiveness of PTLU increases significantly as the 
wordsize of the processor increases. PTLU speedups 
obtained on wider processors are far higher than those 
obtained by increasing the number of instructions 
executed per cycle in superscalar or VLIW processors. 
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