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I. INTRODUCTION 
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ordering within each subgroup is main-
than BFLY or IBFLY.  It requires up to 

lg(n) instructions to compute an arbitrary permutation.  Fur-
thermore, the current GRP implementation utilizes a series of 
linear shift network that has a much greater latency than that 
of BFLY or IBFLY, taking two to three cycles to compute 
(see section V for a detailed discussion of original GRP cir-
cuit) [8, 9].   

However, there is an impediment to using BFLY and IB-
FLY instructions – the need to supply nlg(n)/2 control bits in 
addition to the n bits to be permuted for each of these instruc-
tions.  Thus, for n=64 in a 64-bit microprocessor, four 64-bit 
source registers are required for BFLY or IBFLY, while the 
typical processor architecture supports only two source oper-
ands per instruction.  On the other hand, GRP has additional 
desirable features aside from its use in performing arbitrary 
permutations – GRP can be used to perform hardware radix 
sorting [10] and has strong inherent differential cryptographic 
properties [11]. 

Consequently, we examine whether the GRP operation 
can be implemented on the significantly faster butterfly or 
inverse butterfly networks.  While GRP would still require 
lg(n) instructions to compute an arbitrary permutation, a faster 
implementation would make GRP much more attractive.   

We show that GRP cannot be performed on a butterfly or 
inverse butterfly network but that two inverse butterfly net-
works may be used to group the R bits and L bits in parallel.  
The outputs of the two networks are merged to complete the 
GRP operation.  We show the circuit that dynamically decodes 
the n GRP control bits to the nlg(n)/2 IBFLY control bits.  
This circuit has significant latency and offsets the speed of the 
faster inverse butterfly network.  However, the new design is a 
viable alternative to the original GRP circuit.  In addition, a 
fixed GRP operation can bypass the decoder and directly use 
the fast IBFLY network; the “decoding” can be done statically 
by the compiler. 

The paper is organized as follows: Section II examines 
the possibility of performing GRP on a butterfly or inverse 

Fig. 1: GRP operation on 8 bits.  bfh are L bits; acdeg are R bits.  Instruc-
tion is GRP Rs,Rc,Rd, where Rs is the source register, Rc the control 
register and Rd the destination register. 
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butterfly network.  Section III discusses the n:nlg(n)/2 decoder 
and specifies the decoder circuit.  Section IV analyzes the 
critical path of the circuit using the method of logical effort.  
Section V compares the new GRP implementation to the 
original one.  Section VI concludes the paper. 

 
II. ANALYSIS OF GRP ON BFLY AND IBFLY NETWORKS 

 
 We define two new operations: GRPR selects the R bits  
moving them to the right of the result register and zeros the L 
bits.  GRPL selects the L bits moving them to the left of the 
result register and zeros the R bits.  Then, the GRP operation 
can be considered as the combination of GRPR and GRPL.  
We believe that GRPR may itself be a useful instruction that 
functions as a generalized EXTRACT, suited to gathering and 
right justifying an offset or table index that may have bits scat-
tered across a word. 
 GRPR and GRPL are similar to the packing operation 
described in the context of packet routing networks [12]. The 
packing operation can be performed on an inverse butterfly 
network, but not on a butterfly network.  Furthermore, the 
GRP operation involving the simultaneous packing into two 
groups is not possible with one pass through either an inverse 
butterfly network or butterfly network.  We propose replicat-
ing the inverse butterfly network, performing GRPR and 
GRPL in parallel and combining the results (Fig. 2), similar to 
the approach with linear shift networks taken for the original 
GRP circuit [8, 9].   

We can show that GRP cannot be performed on a butter-
fly or inverse butterfly circuit.  Also, GRPR or GRPL cannot 
be performed on butterfly due to path conflicts (contention for 
a multiplexer node or wire in Fig. 3).  Butterfly and inverse 
butterfly networks are composed of a number of stages, where 
at each stage two bits in a pair of bits are either swapped or 
passed through to the next stage. In this paper, a control bit of 
“0” indicates swapping and “1” indicates passing through for 
each pair of bits.  Each successive stage is composed of two 
disjoint subnetworks, each subnetwork a butterfly or inverse 
butterfly network that is half the size.  As these subnetworks 
are disjoint, there exists a unique path from any input to any 
output.  If two inputs are to be simultaneously routable, the 
unique paths to their respective outputs must be through dif-
ferent subnetworks; otherwise, a path conflict will exist.   

To show GRP cannot be achieved on the butterfly net-
work, consider the case shown in Fig. 3.  Bits d and h are the 
only bits in the R group and are destined for positions 1 and 0, 
respectively. These bits are paired in the first stage and the 
paths to their outputs are both through the lower subnetwork. 
Thus they are not routable conflict-free.  For the inverse but-
terfly network, consider the case shown in Fig. 4.  Bit c is des-
tined for the even subnetwork (bit position 6 in result).  Bit d 
is also destined for the even subnetwork (bit position 2 in re-
sult).  As they must both be routed to the even subnetwork 
after stage 1, there is a path conflict.   

To show GRPR also cannot be achieved on a butterfly 
circuit, we can just use the same counterexample as for GRP 
(Fig. 3). 

 

 

 

Fig. 2: Overview of GRP operation using parallel IBFLY circuits. 

 

 

Fig. 3: Example of conflicting greedy paths on 8-bit butterfly network when 
attempting to route GRP operation with Rc = 00010001. 

 
 GRPR on inverse butterfly.  Both GRPR and GRPL can 
be achieved using the inverse butterfly circuit.  Fig. 5 shows an 
8-bit example.  We provide the basis of an inductive proof by 
first describing how GRPR is done at stage k+1, assuming 
both the right half circuit and the left half circuit through stage 
k have performed GRPR on their respective data bits.  The 
result from the left half circuit of stage k is then rotated right 
by the number of zeroed L bits in the right half.  At level k+1, 

Fig. 4: Example of conflicting greedy paths on 8-bit inverse butterfly network 
when attempting to route GRP operation with Rc = 01010110. 



the bits in the left half that wrap are swapped into the most 
significant bits of the right half, via the inverse butterfly op-
eration at this stage. This completes the GRPR operation for 
stage k+1.   

 

 
III. DECODING THE GRP CONTROL BITS 

 
A. Decoder Description 

We first introduce some terminology.  The inverse butter-
fly network is composed of subcircuits, where a subcircuit is a 
set of overlapping switches (for example, bit positions 0–3 in 
stage 2 of Fig. 4); the switch either passes through or swaps 
the bits based on whether the control bit of the switch is “1” or 
“0”, respectively. Stage i has n/2i subcircuits each 2i bits wide.  
The right half of the inputs to the switches of a subcircuit is 
called the right part of the subcircuit (bit positions 0–1 in 
stage 2 of Fig. 4) and the left half is called the left part (bit 
positions 2–3 in stage 2 of Fig. 4).  Each of the right and left 
parts of stage i is 2i–1 bits wide.  

The method of computing the nlg(n)/2 control bits for the 
inverse butterfly network from the n GRP control bits follows 
the procedure described above.  In order for any subcircuit to 
perform GRPR, the R bits in the right part are passed-through 
and the zeroed L bits are swapped out (to swap in the R bits 
from the left half) as shown in the example in Fig. 5.  The con-
trol bits indicate this by taking the value 1 for the k least sig-
nificant switches and the value 0 for the remaining switches, 
where k is the number of R bits in the right part.  This bit pat-
tern is precisely the GRPR of the original control bits of the 
GRP instruction corresponding to right part of the subcircuit.  
This uses the GRP control bits as both the data and the control 
bits.  For example, observe in Fig. 5 that the GRP control bits 
for the right part are “1101” and GRPR(“1101”, “1101”) = 
“0111”, the inverse butterfly control bits for stage 3.  This 
pattern is also equivalent to a unary encoding of the popula-
tion count of the ones (POPCNT) in the right part GRP control 
bits. 

The unary encoding of the POPCNT can be achieved us-
ing a “left rotate and complement on wrap (LROTC)” opera-
tion (Fig. 6).  This operation is a standard left rotation except 
that bits are complemented whenever they wrap.  A LROTC 

operation of the zero string “0…0” by the POPCNT will pro-
duce a one in the least significant bit for each rotation by one 
position, thus expressing a unary encoding of the value. 

 

 

 
This method determines the control bits for a subcircuit in 

isolation. However, when considering a subcircuit in context 
of the entire inverse butterfly network, each subcircuit, except 
for the rightmost subcircuit in each stage, feeds a left part sub-
circuit in some subsequent stages.  Left part subcircuits per-
form GRPR rotated right by the number of L bits in their cor-
responding right part subcircuits.  This is the population count 
of the zeroes (ZEROCNT) in the right part GRP control bits.  
This “right rotate by ZEROCNT” operation can be replaced by 
a “left rotate by POPCNT” since ZEROCNT+POPCNT equals 
the total number of bits in the right part, which is equal to the 
number of bits rotated in the left part (see Fig. 5). 

Fig. 6: Left rotate and complement on wrap of “0000” by POPCNT(“1101”) 
= 3 produces the result “0111.” 

Fig. 5: Example GRPR operation on an 8-bit inverse butterfly network. The 
output from stage 2 is the GRPR operation within the left and right parts: 
00ac, 0efh. The left part is rotated right by the number of zeros in the right 
part: 00ac→c00a. Bit c is then swapped (control bit = “0”) into the right 
half to produce the output 000acefh. 

To achieve the desired rotation of the data bits, the control 
bits for GRPR specified above must be modified. In general, 
to perform a rotation of a permutation π by m positions on an 
inverse butterfly network, the right part circuit and left part 
circuit through stage k rotate their respective parts of π by m 
positions.  In order to complete the rotation at stage k+1, the 
control bits at that stage are also rotated by m positions in or-
der to keep a control bit associated with its paired data bits; 
however, the control bits are complemented upon wrap, re-
versing the routing of the data bits (Fig. 7).  Thus a rotate and 
complement (ROTC) operation of the control bits is needed 
for a rotation of the data bits.  Note that in order to rotate π by 
m positions at a given stage, the same rotation must have been 
performed at the previous stage.  Thus the rotation is propa-
gated up and performed at each stage of the inverse butterfly 
network. 
 

 

 

 

 

Fig. 7: Performing rotation at level k+1 assuming rotation through level k.
Fig. 7a shows the case that two bits are not swapped in the original permuta-
tion. Fig. 7b shows that, if these bits are rotated m positions and wrap, com-
pleting the rotation requires swapping the bits. Fig. 7c and 7d show the case
where the two bits are swapped in the original permutation.



Consequently, the left rotation of the left part data bits is 
accomplished via LROTC of the inverse butterfly control bits 
of all previous stages of the left part by the POPCNT of the 
right half GRP control bits.  Thus the inverse butterfly control 
bits for a subcircuit are generated by an LROTC of “0…0” by 
the POPCNT of the right part GRP control bits followed by an 
LROTC of that pattern by the POPCNT of all the right parts 
from the subsequent stages.  The composition of these 
LROTC operations can be reduced to a single LROTC of 
“0…0” by the total POPCNT extending from the most signifi-
cant bit of the right part circuit down to position 0.  To gener-
ate the inverse butterfly control bits for all stages, we need to 
calculate all such POPCNT values.  We calculate these 
POPCNT values in parallel, using a parallel prefix popcount 
circuit. 

Thus, we present the algorithm to decode the n GRP con-
trol bits into the nlg(n)/2 inverse butterfly control bits.  This 
algorithm is implemented in hardware for GRP instructions 
with dynamically determined control bits, and is utilized by 
the compiler for GRP instructions using static control bits.  

 
Algorithm 1: To generate the nlg(n)/2 inverse butterfly 
control bits from the n GRP control bits. 
 
Let x║y indicate the concatenation of bit patterns x and y. 

control[x] refers to bit x of the original GRP control bits.  sel is 
a lg(n) × n/2 bit matrix that represents the inverse butterfly 
control bits.  LROTC(a, rot) is a “left rotate and complement 
on wrap” operation, where a is the input and rot is the rotation 
amount.  PPC[a] is the prefix POPCNT of position a, i.e., 
POPCNT of the GRP control bits from bit 0 to bit a (we use 
POPCNT to refer to the population count of a field and 
PPC[a] to refer to the prefix population count with respect to 
position a).  0k indicates a bit-string of k zeros. 
 
1.  Calculate the prefix popcounts: 
 PPC[0] = control[0]  
 For i = 1, 2, …, n–2 
  PPC[i] = PPC[i–1] + control[i] 
2. Calculate the inverse butterfly control bits for each sub-
circuit by performing LROTC(“0…0”, PPC[m]), where m is 
the most significant bit of the right part of the subcircuit: 
 sel = {} 
 For i = 1, 2, …, lg(n)              //for each stage   

 

 The decoder consists of 2 stages: a parallel-prefix popula-
tion counter followed by LROTC circuits for each stage.  The 
POPCNT values are generated by a parallel prefix network 
with carry-save addition being the operation at each node (Fig. 
9).  The architecture resembles a radix-3 Han-Carlson net-
work. The radix-3 stems from the carry-save addition. The 
resemblance to a Han-Carlson network stems from the replica-
tion of the basic network fragment depicted in Fig. 9 for only 
odd i.  The even counts are all 1-bit wide and are deferred un-
til the final stage as they are simply an XOR with the least 
significant bit of a neighboring count. 

  k = 2i-1                   //number of bits in right part circuit 
  For j = 0, 1, …, n/2i–1 //for each subcircuit 
  temp = LROTC(0k, PPC[j*2i + k – 1]) 
 i mp║ i]  sel[ ] = te sel[     

Step 2 is more intuitively understood by referring to the 
inverse butterfly circuit structure in Fig. 4.  This circuit has 
lg(n) = 3 stages. For stage 1, k = 1, and j runs through the val-
ues 0, 1, 2, 3.  That is, there are 4 subcircuits in stage 1, and 
the right part of each subcircuit is 1 bit wide.  We take the 
PPC of the most significant bit in the right part of each of 
these 4 subcircuits; this is the PPC of bits 0, 2, 4, 6. For stage 
2, k = 2, and j runs through 0, 1.  That is, there are 2 subcir-
cuits in stage 2, and the right part of each subcircuit is 2 bits 

wide.  We take the PPC of bits 1 and 5.  For stage 3, k = 4, and 
j runs through just 0.  That is, there is just 1 subcircuit in stage 
3, and the right part is 4 bits.  We take the PPC of bit 3.  
Hence, we only need the 1-bit PPC values of bits 0, 2, 4 and 6, 
the 2-bit PPC values of bits 1 and 5, and the full 3-bit PPC 
value of only bit 3. 

Note, the full POPCNT value (of lg(n) bits) is not needed 
except for the last stage.  In earlier stages, only the least sig-
nificant bits are needed.  Specifically, the number of bits of the 
POPCNT values required to generate the control bits for the 
inverse butterfly network is equal to the stage number.  The 
n/2 right part circuits in the first stage require only the least 
significant bit of the POPCNT values.  Also, since 1-bit wide 
POPCNT values are the same as the outputs of the 1-bit 
LROTC operations (LROTC(“0”, 0) = “0” and LROTC(“0”, 
1) = “1”), these 1-bit LROTC operations can be eliminated, 
thus simplifying the implementation (Fig. 8). 

Thus, the n:nlg(n)/2 hardware decoder that realizes Algo-
rithm 1 consists of two stages: 1) a circuit that, in parallel, 
counts the number of GRP control bits that are “1”s from posi-
tion 0 to every position (except n–1).  This circuit is a parallel 
prefix POPCNT unit; 2) For each inverse butterfly stage i, i>1, 
a 2i–1-bit LROTC (left rotate and complement) circuit for the 
n/2i i-bit POPCNT values to generate the n/2 control bits for 
that stage.  Fig. 8 presents the block diagram of the GRPR 
circuit for n = 64 with details of the decoder. The decoder pro-
duces lg(64)*32 = 192 control bits. 
 
B. GRP Circuit 
 The GRP circuit is composed of parallel circuits that per-
form GRPR and GRPL with the results ORed together to pro-
duce GRP (Fig. 2).  The circuit that produces GRPR is shown 
in Fig. 8.  The circuit for GRPL is similar, except that the de-
coder is the mirror image of that for GRPR and that the con-
trol bits are inverted.  The decoder operates in parallel to the 
routing.  The control bits of the earlier stages are calculated 
first and the routing through the first stages of the inverse but-
terfly network is in parallel with the calculation of the control 
bits for the later stages.   

 The first stage (PPC1) of the circuit divides its 8 input bits 
into sets of 3, 2 and 3, and sums these sets producing three 2-
bit sums.  The second stage (PPC2) adds these three sums to 
produce a redundant sum of 8 bits represented as a 2-bit sum 
and a 3-bit carry (with the least significant bit of the carry be-
ing 0).   



 

 

 

 
 The third stage (PPC3) adds to three redundant sums of 8 
bits to produce the sums of 24 bits.  This stage is a compound 
stage as there are actually six input operands – three sums and 
three carries.  Dual carry-save adders add the three sums and 
three carries from the previous stage thereby reducing the six 
input operands to four; a concatenation of the sum of the sums 
and the carry of the carries reduces the four operands to three; 
and a second carry-save stage reduces the sum to two 4-bit 
operands (with the two least significant bits of the carry being 
zero).  
 The fourth stage (PPC4) of the circuit adds the appropri-
ate partial sums to produce a single redundant carry/save sum 
of the POPCNT.  This stage input has two or three sums and 
one, two or three carries depending on i.  Thus this stage con-
sists of a 6:2, 5:2, 4:2 or 3:2 adder as appropriate.  The final 
stage is a carry-propagate adder (CPA) that produces the final 

POPCNT result.  The POPCNT values are only calculated to 
the required bit lengths as described above.  Note that comput-
ing POPCNT values may require fewer than 4 PPC stages for 
small i or truncated values.  Also note that as the low bits of 
the carries entering the final PPC stage are zeros, the low bits 
of a POPCNT value may be fully calculated before the CPA 
stage. 
 The output from the population counters controls the 
LROTC circuits.  Each LROTC circuit can be realized as a 
barrel rotator modified to complement the bits that wrap 
around (Fig. 10a).  However, while a standard 2k-bit rotator 
has k stages and control bits, this shifter has k+1 stages and 
control bits.  The final stage selects between its input and the 
complement, as the bits wrap 2k positions, back to the same 
spot.  Propagating the zeros at the input can greatly simplify 
the circuit (Fig. 10b).  The outputs from the rotate circuits are 
routed directly to the appropriate inverse butterfly switches 
they control. 
 

 

Fig. 8: 64-bit GRPR circuit with decoder detail. 

Fig. 9: The basic network fragment of the parallel prefix popcount circuit, 
with the network being truncated for small i. PCi..j refers to the POPCNT of 
positions i to j. 

IV. IMPLEMENTATION ANALYSIS 

Fig. 10a: Barrel rotator implementation of 4-bit LROTC circuit.  
Fig. 10b: Simplified circuit obtained from propagating zeros at input. 

 
 We now perform the logical effort analysis of the critical 
path of the 64-bit GRP circuit.  Logical effort is a technology-
independent method to estimate the delay of a CMOS circuit 
[13].  The result of a logical effort analysis gives the estimated 
delay in units of fan-out of four (FO4), the delay of an inverter 
that drives four identical inverters.  For a full discussion of the 
method of logical effort see Appendix A.  The circuit is as-
sumed to drive a copy of itself (H = 1).  Table I shows the 
equivalent capacitance for a wire spanning the width of the 
standard cells from the TSMC 90nm library we use in the cir-
cuit [8, 14]. 
 



TABLE I: EQUIVALENT CAPACITANCE OF WIRE SPAN 
Cell  Equivalent load Cell  Equivalent load 
MUXI 0.33 FA 1.04 
2-XOR 0.38 HA 0.58 
3-XOR 0.63 
4-XOR 0.96 

Cell height/ 
9 routing tracks 

0.33 

 
 The carry-save adders in the POPCNT units consist of 
parallel full adders (FA).  Each FA is composed of an asym-
metric 3-input XOR gate and an asymmetric 3-input inverting 
majority gate.  The XOR gate has logical effort gax* = 12, gbx* 
= 6 and gcx* = 6 for the three input bundles, where a bundle is 
composed of the complement and uncomplemented input sig-
nal, and the majority gate has logical effort of gam’ = 2, gbm’ = 4 
and gcm’ = 4 for the three complemented inputs.  Both gates 
have a parasitic delay pm = px = 6 [13].  In order to limit the 
effort of any single input, the XOR input with the highest ef-
fort, ax*, is tied to the majority input with the lowest effort, 
am’, yielding an effort ga* = 14 for the bundle and ga’ = 8 for 
the complemented input, and gb* = gc* = 10 and gb’ = gc’ = 7.  
Each FA is driven by a 2:1 fork stage that generates the com-
plement and uncomplemented inputs.  We assume each fork 
inverter is 4x drive strength. 
 The inverse butterfly network is composed of n 2:1 in-
verting multiplexers (MUXI) at each level.  The logical effort 
of any MUXI input is 2 and of any select signal is 4, and the 
parasitic delay of the MUXI is 4 [13].  Other gates have logi-
cal effort and parasitic delays as in [13]. 
 The various paths through the circuit tradeoff time spent 
decoding the bits and time propagating through the inverse 
butterfly network.  The 1-bit POPCNT values, which require 
the least effort to compute, control the first stage of the inverse 
butterfly network.  Wider POPCNT values control later stages 
and thus paths through those counts experience smaller delay 
through the inverse butterfly network.  We calculated the path 
delays for the most significant position of each POPCNT 
length: i = 62 for the 1-bit count, i = 61 for the 2-bit count, i = 
59 for the 3-bit count, i = 55 for the 4-bit count, i = 47 for the 
5-bit count and i = 31 for the 6-bit count.  The critical path is 
through the most significant bit of the 4-bit count PPC[55], the 
final stage of the 8-bit LROTC circuit and the last three stages 
of the inverse butterfly network (IBFLY4 thru IBFLY6).  Spe-
cifically, the path through the POPCNT circuit consists of 6 
FAs to reduce the input to two operands followed by a 2-bit 
CPA with no carry out.  The results are summarized in Table 
II. 
 The total effort can be calculated as: 
 F = GBH = Πg* Πb = 7.1 × 109 × 5.0 × 107= 3.5 × 1017

 The optimal number of stages is: 
 N = log3.6F = 31 
 As there are 23 stages, eight inverters need to be added 
along the path to drive the large loads.  The delay of the path 
can be calculated as: 
 D = N × F1/N + P = 31 × F1/31 + (70 + 8) = 192.2 
 When divided by five, the delay is about 38.4 FO4. The 
latency can be decomposed as 27.8 FO4 through the decoder 
(24.7 FO4 through the parallel prefix POPCNT unit), 7.4 FO4 
through the second half of the inverse butterfly network and 

3.2 FO4 due to branching to the GRPR and GRPL circuit and 
combining the results. The GRP on IBFLY latency of 38.4 
FO4 is much greater than the 13.0 FO4 latency of the original 
inverse butterfly network due to the high latency through the 
decoder.  This latency can be attributed to the high delay of 
full adders.  Each full adder level contributes 2.5–3.0 FO4 
delay.  Additionally, the branching required by the parallel 
prefix architecture together with the large equivalent capaci-
tance for a wire spanning a full adder causes a large branching 
effort at each stage of the unit.    

 
TABLE II: LOGICAL EFFORT OF GRP ON IBFLY 

Stage Gate Load b g p # stages
PPC1 FAa  1 FA + track (2*4+6.61)/4 8 7 2c

PPC2 FAb 3 FA + track (6*4+34.35)/4 7 7 2c

FAa FA 2 8 7 2cPPC3 
FAa 2 FA + track (4*4 + 28.79)/4 8 7 2c

FAb FA 2 7 7 2cPPC4 
FAb  HA (4+4/3)/(4/3) 7 7 2c

HA Carry Sum (XOR) 1 4/3 2 1 CPA 
SUM 7 XOR+ 

INV+track 
(7*4+1+2.73)/4 4 5 2c

LROTC8 2-XOR 2 MUXI.sel + 
track 

(2*4+3.54)/2 4 5 2c

IBFLY4 MUXI.sel 2 MUXI.in + 
Track 

(2*2 + 7.08)/2 2 5 2c

IBFLY5 MUXI.in 2 MUXI.in + 
Track 

(2*2 +14.17)/2 2 4 1 

IBFLY6 MUXI.in NOR+Track (5/3+13.0)/ 
(5/3) 

2 4 1 

 NOR INV 1 5/3 2 1 
 INV 6 FA + 2 HA 

+ buffer + 
Track 

(12*4+2*16/3+
2+86.5)/4 

1 1 1 

Total   7.1x109 5.0x107 70 23 
aThe critical path through these adders is through a’.
bThe critical path through these adders is through b’ or c’. 
cIncludes complement generation stage. 

 
V. COMPARISON TO ORIGINAL GRP CIRCUIT 

 
A. Original GRP Circuit 
 The original GRP circuit [8, 9] is similar in structure to 
Fig. 2, with the routing network a linear shift network and the 
decoder also a similar linear shift network.  The basic opera-
tion computes GRPR of n bits using the GRPR of the right 
half n/2 bits and the left half n/2 bits.  The linear shift network 
produces n/2+1 outputs.  These outputs are the shifts of the 
left half GRPR pattern onto the right half pattern by k posi-
tions, with k equal to the possible number of zeroed L bits in 
the right half and thus ranging from 0 to n/2.  Another circuit 
produces a one-hot encoding of the actual number of zeroed L 
bits.  The one-hot encoding acts as the select signals to a bank 
of transmission gates, passing to the next stage only the output 
that corresponds to the correct shift amount.  The circuit that 
produces the one hot encoding is an adder of the one hot en-
codings of the number of L bits in the two substages that feed 
the right half stage.  A one-hot encoding adder is also a linear 
shift network with one encoding the select and the other the 
data input shifted onto the all zeros pattern. 
 The original analysis of the circuit in [8, 9] did not con-
sider that the linear shift network actually forms an n/2+1:1 



multiplexer, and thus did not account for the high capacitance 
present on the output nodes of the transmission gates.  A sim-
ple fix is to split this wide mux into a multi-stage mux, each 
stage composed of smaller muxes.  The incoming select sig-
nals remain valid for the first level of muxes and the later 
stage select signals are computed using simple logical gates – 
the select signal of a second stage leg is the NOR of the select 
signals from all the first stage legs whose output is input to 
that leg.  This method generates a one low encoding of the 
select signals for the second stage.  The later stage signals are 
calculated similarly, alternating NAND and NOR to ensure 
that the select signals are always one hot or one low.  The re-
vised latency of this original GRP circuit is 38.1 FO4.   
 
B. Comparison of Linear Shift GRP vs.  GRP on IBFLY 
 The GRP on IBFLY latency of 38.4 FO4 is comparable to 
38.1 FO4 latency of the original GRP with liner shift circuits.  
This difference is approximately 1% and given the coarseness 
of the wire load model, it is difficult to attribute any signifi-
cance to the difference. Given a typical microprocessor cycle 
time of 14-24 FO4 [15], either circuit has a 2 or 3 cycle la-
tency. 
 We synthesized both circuits using a TSMC 90nm stan-
dard cell library [14].  Table III compares the latency from 
logical effort estimates, the latency from synthesis and the 
area from synthesis.  The latency from synthesis verifies the 
logical effort result, with both circuits having comparable la-
tency. However, the area results clearly favor the GRP on IB-
FLY implementation. 

 
TABLE III: RESULTS OF LOGICAL EFFORT AND SYNTHESIS  

Circuit Latency, 
Logical Effort 

Latency,  
Synthesis 

Area 
(NAND gates) 

Original GRP 38.1 FO4 39.1 FO4 68.6K 
GRP on IBFLY 38.4 FO4 37.3 FO4 19.7K 

 
VI. CONCLUSION 

 
 In this paper, we examine the possibility of performing 
the GRP operation on a butterfly or inverse butterfly network.  
We show that GRP cannot be routed on either network but that 
GRPR and GRPL can be routed on the inverse butterfly net-
work.  We design a decoder circuit that can produce the re-
quired nlg(n)/2 butterfly control bits from the n GRP control 
bits.  However, the latency through this decoder is quite large 
and thus the benefit of the fast routing inverse butterfly net-
work is negated.  The overall latency, however, is comparable 
to that of the original GRP circuit and this circuit has the bene-
fit of using a more general purpose routing circuit. Further-
more, if we wish to perform a static GRP operation, the com-
piler can decode the bits in advance and produce control bits 
for the fast inverse butterfly network directly, bypassing the 
hardware decoder (this requires adding a bypass multiplexer in 
Fig. 8).   
 Alternatively, we could remove the GRPL circuit and add 
a butterfly network thereby enabling arbitrary permutations to 
be computed using BFLY and IBFLY and at the same time 
support the GRPR functionality.  Such a scheme would have a 

substantial savings in area over the proposed circuit, which is 
already significantly smaller than the original implementation, 
and the delay of multiplexing control signals to the inverse 
butterfly network would be offset by the removal of the 
branching to and combining of GRPR and GRPL.  For these 
reasons, we believe that the GRP on an inverse butterfly cir-
cuit is the preferred implementation of the GRP instruction. 
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APPENDIX A 

 
 Logical effort is a technology-independent method to es-
timate the delay of a CMOS circuit [13].  The method also 
aids in determining the optimum number of logical stages used 



and in sizing transistors in logic gates.  It uses the following 
concepts: 
 Logical effort g : The ratio of input capacitance of a logic 
gate to that of an equal drive strength inverter. 
 Electrical effort h: The ratio of output capacitance of a 
gate to its input capacitance. 
 Branching effort b: The ratio of total capacitive load on 
one logic gate’s output to the gate capacitance of the next gate 
on the path examined. 
 Parasitic delay p: The total diffusion capacitance on the 
output node of a gate relative to that of a minimum-sized in-
verter. 
The delay of a single gate can be calculated as: 
 d = gh + p. (A1) 
To find the delay along a path, we first calculate the total path 
effort: 
 F = GBH  (A2) 
where G = Πg, B = Πb, and H = Πh.  Πg means the product of 
the logical effort of all the gates along the path.  Similarly, Πb 
is for the total branch effort and Πh for the total electrical ef-
fort.  The total electrical effort H = Πh reduces to the ratio of 
the output capacitance loading the last gate to the gate capaci-

tance of the first gate on the path.  Normally, we assume a 
circuit drives a copy of itself, so H = 1. 
 Once the path effort has been calculated, the ideal number 
of stages required to achieve the logical function can be esti-
mated as: 
 N = log3.6F   (A3) 
where 3.6 is the stage effort achieving the best performance 
[13].  N is then rounded to the nearest integer that is reason-
able for the path, and the effort delay for each stage can be 
calculated as: 
 α = F1/N. (A4) 
α can be used to decide the transistor size in each stage along 
the path.  The basic idea is to estimate the number of stages 
using the ideal stage effort α=3.6, and then calculate the real α 
from the estimated number of stages.  Finally, the total delay 
of the path can be calculated as: 
 D = Nα + P,  (A5) 
where P = ∑p.  The results in (A5) are in τ, the basic time unit 
used in logical effort, which is independent of process tech-
nology.  Dividing D in (A5) by five gives the estimated delay 
in terms of fan-out of four (FO4), the delay of an inverter that 
drives four identical inverters. 

 


