
Abstract - Recently, a nu
proposed to efficiently
Among these, GRP is th
applications in addition
ing good inherent cryp
rent implementation of
BFLY, on the other han
ine the possibility of exe
butterfly network.

 Bit permutation op
block ciphers. Howev
rectly support arbitrary
are slow when implem
Recently, a number of
posed in order to effic
on a general purpose
IBFLY [2, 3], CROSS
SWPERM with SIEVE
 The fastest prop
BFLY/IBFLY pair.
through complete but
respectively. BFLY an
First, only a single BF
instruction is required
Thus, any one of the n
performed in two inst
other permutation instr
structions to achieve an
 More importantly
have simple circuit im
tency than CROSS, OM
less than that of an AL
sor’s cycle time is us
each of the BFLY an
plished in one cycle.

GRP, on the other
proposed bit permutati
bits into two subsets d
bits: if a control bit is
bit); if a control bit is 0
(Fig. 1). The relative
tained. GRP is slower

Department of E

Yedidya Hilewitz, Zhijie Jer
Conference on Signals, Syste
Comparing Fast Implementations of
Bit Permutation Instructions

Yedidya Hilewitz1, Zhijie Jerry Shi2 and Ruby B. Lee1

lectrical Engineering, Princeton University, Princeton, NJ 08544 USA, {hilewitz, rblee}@princeton.edu
mber of candidate instructions have been
 compute arbitrary bit permutations.
e most attractive, having utility for other
 to permutation such as sorting and hav-
tographic properties. However, the cur-
 GRP is the slowest of the candidates;
d, is the fastest. In this paper, we exam-
cuting GRP on a butterfly or an inverse

I. INTRODUCTION

erations are very useful in the design of
er, current microprocessors do not di-
 permutations and thus such operations
ented with software instructions [1].

 candidate instructions have been pro-
iently compute arbitrary permutations

microprocessor. These include BFLY,
 [1, 4], OMFLIP [1, 5], PPERM [1],
 [6] and GRP [1, 7].
osed permutation instruction is the
These instructions route the data bits
terfly and inverse butterfly networks,
d IBFLY are the fastest in two senses.
LY instruction followed by an IBFLY
to compute any arbitrary permutation.

! possible permutations of n bits can be
ructions using BFLY and IBFLY; the
uctions require a sequence of lg(n) in-
y arbitrary permutation.
, the BFLY and IBFLY instructions
plementations that exhibit a lower la-
FLIP or GRP [2, 8, 9]. This latency is
U of the same width. Since a proces-

ually determined by the ALU latency,
d IBFLY instructions can be accom-

 hand, has the longest latency of these
on instructions. GRP divides its data
epending on the corresponding control
 1, that data bit is grouped right (an R
, that data bit is grouped left (an L bit)

ordering within each subgroup is main-
than BFLY or IBFLY. It requires up to

lg(n) instructions to compute an arbitrary permutation. Fur-
thermore, the current GRP implementation utilizes a series of
linear shift network that has a much greater latency than that
of BFLY or IBFLY, taking two to three cycles to compute
(see section V for a detailed discussion of original GRP cir-
cuit) [8, 9].

However, there is an impediment to using BFLY and IB-
FLY instructions – the need to supply nlg(n)/2 control bits in
addition to the n bits to be permuted for each of these instruc-
tions. Thus, for n=64 in a 64-bit microprocessor, four 64-bit
source registers are required for BFLY or IBFLY, while the
typical processor architecture supports only two source oper-
ands per instruction. On the other hand, GRP has additional
desirable features aside from its use in performing arbitrary
permutations – GRP can be used to perform hardware radix
sorting [10] and has strong inherent differential cryptographic
properties [11].

Consequently, we examine whether the GRP operation
can be implemented on the significantly faster butterfly or
inverse butterfly networks. While GRP would still require
lg(n) instructions to compute an arbitrary permutation, a faster
implementation would make GRP much more attractive.

We show that GRP cannot be performed on a butterfly or
inverse butterfly network but that two inverse butterfly net-
works may be used to group the R bits and L bits in parallel.
The outputs of the two networks are merged to complete the
GRP operation. We show the circuit that dynamically decodes
the n GRP control bits to the nlg(n)/2 IBFLY control bits.
This circuit has significant latency and offsets the speed of the
faster inverse butterfly network. However, the new design is a
viable alternative to the original GRP circuit. In addition, a
fixed GRP operation can bypass the decoder and directly use
the fast IBFLY network; the “decoding” can be done statically
by the compiler.

The paper is organized as follows: Section II examines
the possibility of performing GRP on a butterfly or inverse

Fig. 1: GRP operation on 8 bits. bfh are L bits; acdeg are R bits. Instruc-
tion is GRP Rs,Rc,Rd, where Rs is the source register, Rc the control
register and Rd the destination register.
1This work is supported in part by NSF ITR 0326372; Yedidya Hilewitz
holds a Hertz Foundation/Princeton Fellowship and an NSF Fellowship.
2Z. J. Shi is now with the Computer Science and Engineering Department,
University of Connecticut, Storrs, CT 06269 USA, zshi@engr.uconn.edu
ry Shi, and Ruby B. Lee, “Comparing Fast Implementations of Bit Permutation Instructions,” Proceedings of the 38th Annual Asilomar
ms, and Computers, November 2004.

butterfly network. Section III discusses the n:nlg(n)/2 decoder
and specifies the decoder circuit. Section IV analyzes the
critical path of the circuit using the method of logical effort.
Section V compares the new GRP implementation to the
original one. Section VI concludes the paper.

II. ANALYSIS OF GRP ON BFLY AND IBFLY NETWORKS

 We define two new operations: GRPR selects the R bits
moving them to the right of the result register and zeros the L
bits. GRPL selects the L bits moving them to the left of the
result register and zeros the R bits. Then, the GRP operation
can be considered as the combination of GRPR and GRPL.
We believe that GRPR may itself be a useful instruction that
functions as a generalized EXTRACT, suited to gathering and
right justifying an offset or table index that may have bits scat-
tered across a word.
 GRPR and GRPL are similar to the packing operation
described in the context of packet routing networks [12]. The
packing operation can be performed on an inverse butterfly
network, but not on a butterfly network. Furthermore, the
GRP operation involving the simultaneous packing into two
groups is not possible with one pass through either an inverse
butterfly network or butterfly network. We propose replicat-
ing the inverse butterfly network, performing GRPR and
GRPL in parallel and combining the results (Fig. 2), similar to
the approach with linear shift networks taken for the original
GRP circuit [8, 9].

We can show that GRP cannot be performed on a butter-
fly or inverse butterfly circuit. Also, GRPR or GRPL cannot
be performed on butterfly due to path conflicts (contention for
a multiplexer node or wire in Fig. 3). Butterfly and inverse
butterfly networks are composed of a number of stages, where
at each stage two bits in a pair of bits are either swapped or
passed through to the next stage. In this paper, a control bit of
“0” indicates swapping and “1” indicates passing through for
each pair of bits. Each successive stage is composed of two
disjoint subnetworks, each subnetwork a butterfly or inverse
butterfly network that is half the size. As these subnetworks
are disjoint, there exists a unique path from any input to any
output. If two inputs are to be simultaneously routable, the
unique paths to their respective outputs must be through dif-
ferent subnetworks; otherwise, a path conflict will exist.

To show GRP cannot be achieved on the butterfly net-
work, consider the case shown in Fig. 3. Bits d and h are the
only bits in the R group and are destined for positions 1 and 0,
respectively. These bits are paired in the first stage and the
paths to their outputs are both through the lower subnetwork.
Thus they are not routable conflict-free. For the inverse but-
terfly network, consider the case shown in Fig. 4. Bit c is des-
tined for the even subnetwork (bit position 6 in result). Bit d
is also destined for the even subnetwork (bit position 2 in re-
sult). As they must both be routed to the even subnetwork
after stage 1, there is a path conflict.

To show GRPR also cannot be achieved on a butterfly
circuit, we can just use the same counterexample as for GRP
(Fig. 3).

Fig. 2: Overview of GRP operation using parallel IBFLY circuits.

Fig. 3: Example of conflicting greedy paths on 8-bit butterfly network when
attempting to route GRP operation with Rc = 00010001.

 GRPR on inverse butterfly. Both GRPR and GRPL can
be achieved using the inverse butterfly circuit. Fig. 5 shows an
8-bit example. We provide the basis of an inductive proof by
first describing how GRPR is done at stage k+1, assuming
both the right half circuit and the left half circuit through stage
k have performed GRPR on their respective data bits. The
result from the left half circuit of stage k is then rotated right
by the number of zeroed L bits in the right half. At level k+1,

Fig. 4: Example of conflicting greedy paths on 8-bit inverse butterfly network
when attempting to route GRP operation with Rc = 01010110.

the bits in the left half that wrap are swapped into the most
significant bits of the right half, via the inverse butterfly op-
eration at this stage. This completes the GRPR operation for
stage k+1.

III. DECODING THE GRP CONTROL BITS

A. Decoder Description

We first introduce some terminology. The inverse butter-
fly network is composed of subcircuits, where a subcircuit is a
set of overlapping switches (for example, bit positions 0–3 in
stage 2 of Fig. 4); the switch either passes through or swaps
the bits based on whether the control bit of the switch is “1” or
“0”, respectively. Stage i has n/2i subcircuits each 2i bits wide.
The right half of the inputs to the switches of a subcircuit is
called the right part of the subcircuit (bit positions 0–1 in
stage 2 of Fig. 4) and the left half is called the left part (bit
positions 2–3 in stage 2 of Fig. 4). Each of the right and left
parts of stage i is 2i–1 bits wide.

The method of computing the nlg(n)/2 control bits for the
inverse butterfly network from the n GRP control bits follows
the procedure described above. In order for any subcircuit to
perform GRPR, the R bits in the right part are passed-through
and the zeroed L bits are swapped out (to swap in the R bits
from the left half) as shown in the example in Fig. 5. The con-
trol bits indicate this by taking the value 1 for the k least sig-
nificant switches and the value 0 for the remaining switches,
where k is the number of R bits in the right part. This bit pat-
tern is precisely the GRPR of the original control bits of the
GRP instruction corresponding to right part of the subcircuit.
This uses the GRP control bits as both the data and the control
bits. For example, observe in Fig. 5 that the GRP control bits
for the right part are “1101” and GRPR(“1101”, “1101”) =
“0111”, the inverse butterfly control bits for stage 3. This
pattern is also equivalent to a unary encoding of the popula-
tion count of the ones (POPCNT) in the right part GRP control
bits.

The unary encoding of the POPCNT can be achieved us-
ing a “left rotate and complement on wrap (LROTC)” opera-
tion (Fig. 6). This operation is a standard left rotation except
that bits are complemented whenever they wrap. A LROTC

operation of the zero string “0…0” by the POPCNT will pro-
duce a one in the least significant bit for each rotation by one
position, thus expressing a unary encoding of the value.

This method determines the control bits for a subcircuit in

isolation. However, when considering a subcircuit in context
of the entire inverse butterfly network, each subcircuit, except
for the rightmost subcircuit in each stage, feeds a left part sub-
circuit in some subsequent stages. Left part subcircuits per-
form GRPR rotated right by the number of L bits in their cor-
responding right part subcircuits. This is the population count
of the zeroes (ZEROCNT) in the right part GRP control bits.
This “right rotate by ZEROCNT” operation can be replaced by
a “left rotate by POPCNT” since ZEROCNT+POPCNT equals
the total number of bits in the right part, which is equal to the
number of bits rotated in the left part (see Fig. 5).

Fig. 6: Left rotate and complement on wrap of “0000” by POPCNT(“1101”)
= 3 produces the result “0111.”

Fig. 5: Example GRPR operation on an 8-bit inverse butterfly network. The
output from stage 2 is the GRPR operation within the left and right parts:
00ac, 0efh. The left part is rotated right by the number of zeros in the right
part: 00ac→c00a. Bit c is then swapped (control bit = “0”) into the right
half to produce the output 000acefh.

To achieve the desired rotation of the data bits, the control
bits for GRPR specified above must be modified. In general,
to perform a rotation of a permutation π by m positions on an
inverse butterfly network, the right part circuit and left part
circuit through stage k rotate their respective parts of π by m
positions. In order to complete the rotation at stage k+1, the
control bits at that stage are also rotated by m positions in or-
der to keep a control bit associated with its paired data bits;
however, the control bits are complemented upon wrap, re-
versing the routing of the data bits (Fig. 7). Thus a rotate and
complement (ROTC) operation of the control bits is needed
for a rotation of the data bits. Note that in order to rotate π by
m positions at a given stage, the same rotation must have been
performed at the previous stage. Thus the rotation is propa-
gated up and performed at each stage of the inverse butterfly
network.

Fig. 7: Performing rotation at level k+1 assuming rotation through level k.
Fig. 7a shows the case that two bits are not swapped in the original permuta-
tion. Fig. 7b shows that, if these bits are rotated m positions and wrap, com-
pleting the rotation requires swapping the bits. Fig. 7c and 7d show the case
where the two bits are swapped in the original permutation.

Consequently, the left rotation of the left part data bits is
accomplished via LROTC of the inverse butterfly control bits
of all previous stages of the left part by the POPCNT of the
right half GRP control bits. Thus the inverse butterfly control
bits for a subcircuit are generated by an LROTC of “0…0” by
the POPCNT of the right part GRP control bits followed by an
LROTC of that pattern by the POPCNT of all the right parts
from the subsequent stages. The composition of these
LROTC operations can be reduced to a single LROTC of
“0…0” by the total POPCNT extending from the most signifi-
cant bit of the right part circuit down to position 0. To gener-
ate the inverse butterfly control bits for all stages, we need to
calculate all such POPCNT values. We calculate these
POPCNT values in parallel, using a parallel prefix popcount
circuit.

Thus, we present the algorithm to decode the n GRP con-
trol bits into the nlg(n)/2 inverse butterfly control bits. This
algorithm is implemented in hardware for GRP instructions
with dynamically determined control bits, and is utilized by
the compiler for GRP instructions using static control bits.

Algorithm 1: To generate the nlg(n)/2 inverse butterfly
control bits from the n GRP control bits.

Let x║y indicate the concatenation of bit patterns x and y.

control[x] refers to bit x of the original GRP control bits. sel is
a lg(n) × n/2 bit matrix that represents the inverse butterfly
control bits. LROTC(a, rot) is a “left rotate and complement
on wrap” operation, where a is the input and rot is the rotation
amount. PPC[a] is the prefix POPCNT of position a, i.e.,
POPCNT of the GRP control bits from bit 0 to bit a (we use
POPCNT to refer to the population count of a field and
PPC[a] to refer to the prefix population count with respect to
position a). 0k indicates a bit-string of k zeros.

1. Calculate the prefix popcounts:
 PPC[0] = control[0]
 For i = 1, 2, …, n–2
 PPC[i] = PPC[i–1] + control[i]
2. Calculate the inverse butterfly control bits for each sub-
circuit by performing LROTC(“0…0”, PPC[m]), where m is
the most significant bit of the right part of the subcircuit:
 sel = {}
 For i = 1, 2, …, lg(n) //for each stage

 The decoder consists of 2 stages: a parallel-prefix popula-
tion counter followed by LROTC circuits for each stage. The
POPCNT values are generated by a parallel prefix network
with carry-save addition being the operation at each node (Fig.
9). The architecture resembles a radix-3 Han-Carlson net-
work. The radix-3 stems from the carry-save addition. The
resemblance to a Han-Carlson network stems from the replica-
tion of the basic network fragment depicted in Fig. 9 for only
odd i. The even counts are all 1-bit wide and are deferred un-
til the final stage as they are simply an XOR with the least
significant bit of a neighboring count.

 k = 2i-1 //number of bits in right part circuit
 For j = 0, 1, …, n/2i–1 //for each subcircuit
 temp = LROTC(0k, PPC[j*2i + k – 1])
 i mp║ i] sel[] = te sel[

Step 2 is more intuitively understood by referring to the
inverse butterfly circuit structure in Fig. 4. This circuit has
lg(n) = 3 stages. For stage 1, k = 1, and j runs through the val-
ues 0, 1, 2, 3. That is, there are 4 subcircuits in stage 1, and
the right part of each subcircuit is 1 bit wide. We take the
PPC of the most significant bit in the right part of each of
these 4 subcircuits; this is the PPC of bits 0, 2, 4, 6. For stage
2, k = 2, and j runs through 0, 1. That is, there are 2 subcir-
cuits in stage 2, and the right part of each subcircuit is 2 bits

wide. We take the PPC of bits 1 and 5. For stage 3, k = 4, and
j runs through just 0. That is, there is just 1 subcircuit in stage
3, and the right part is 4 bits. We take the PPC of bit 3.
Hence, we only need the 1-bit PPC values of bits 0, 2, 4 and 6,
the 2-bit PPC values of bits 1 and 5, and the full 3-bit PPC
value of only bit 3.

Note, the full POPCNT value (of lg(n) bits) is not needed
except for the last stage. In earlier stages, only the least sig-
nificant bits are needed. Specifically, the number of bits of the
POPCNT values required to generate the control bits for the
inverse butterfly network is equal to the stage number. The
n/2 right part circuits in the first stage require only the least
significant bit of the POPCNT values. Also, since 1-bit wide
POPCNT values are the same as the outputs of the 1-bit
LROTC operations (LROTC(“0”, 0) = “0” and LROTC(“0”,
1) = “1”), these 1-bit LROTC operations can be eliminated,
thus simplifying the implementation (Fig. 8).

Thus, the n:nlg(n)/2 hardware decoder that realizes Algo-
rithm 1 consists of two stages: 1) a circuit that, in parallel,
counts the number of GRP control bits that are “1”s from posi-
tion 0 to every position (except n–1). This circuit is a parallel
prefix POPCNT unit; 2) For each inverse butterfly stage i, i>1,
a 2i–1-bit LROTC (left rotate and complement) circuit for the
n/2i i-bit POPCNT values to generate the n/2 control bits for
that stage. Fig. 8 presents the block diagram of the GRPR
circuit for n = 64 with details of the decoder. The decoder pro-
duces lg(64)*32 = 192 control bits.

B. GRP Circuit
 The GRP circuit is composed of parallel circuits that per-
form GRPR and GRPL with the results ORed together to pro-
duce GRP (Fig. 2). The circuit that produces GRPR is shown
in Fig. 8. The circuit for GRPL is similar, except that the de-
coder is the mirror image of that for GRPR and that the con-
trol bits are inverted. The decoder operates in parallel to the
routing. The control bits of the earlier stages are calculated
first and the routing through the first stages of the inverse but-
terfly network is in parallel with the calculation of the control
bits for the later stages.

 The first stage (PPC1) of the circuit divides its 8 input bits
into sets of 3, 2 and 3, and sums these sets producing three 2-
bit sums. The second stage (PPC2) adds these three sums to
produce a redundant sum of 8 bits represented as a 2-bit sum
and a 3-bit carry (with the least significant bit of the carry be-
ing 0).

 The third stage (PPC3) adds to three redundant sums of 8
bits to produce the sums of 24 bits. This stage is a compound
stage as there are actually six input operands – three sums and
three carries. Dual carry-save adders add the three sums and
three carries from the previous stage thereby reducing the six
input operands to four; a concatenation of the sum of the sums
and the carry of the carries reduces the four operands to three;
and a second carry-save stage reduces the sum to two 4-bit
operands (with the two least significant bits of the carry being
zero).
 The fourth stage (PPC4) of the circuit adds the appropri-
ate partial sums to produce a single redundant carry/save sum
of the POPCNT. This stage input has two or three sums and
one, two or three carries depending on i. Thus this stage con-
sists of a 6:2, 5:2, 4:2 or 3:2 adder as appropriate. The final
stage is a carry-propagate adder (CPA) that produces the final

POPCNT result. The POPCNT values are only calculated to
the required bit lengths as described above. Note that comput-
ing POPCNT values may require fewer than 4 PPC stages for
small i or truncated values. Also note that as the low bits of
the carries entering the final PPC stage are zeros, the low bits
of a POPCNT value may be fully calculated before the CPA
stage.
 The output from the population counters controls the
LROTC circuits. Each LROTC circuit can be realized as a
barrel rotator modified to complement the bits that wrap
around (Fig. 10a). However, while a standard 2k-bit rotator
has k stages and control bits, this shifter has k+1 stages and
control bits. The final stage selects between its input and the
complement, as the bits wrap 2k positions, back to the same
spot. Propagating the zeros at the input can greatly simplify
the circuit (Fig. 10b). The outputs from the rotate circuits are
routed directly to the appropriate inverse butterfly switches
they control.

Fig. 8: 64-bit GRPR circuit with decoder detail.

Fig. 9: The basic network fragment of the parallel prefix popcount circuit,
with the network being truncated for small i. PCi..j refers to the POPCNT of
positions i to j.

IV. IMPLEMENTATION ANALYSIS

Fig. 10a: Barrel rotator implementation of 4-bit LROTC circuit.
Fig. 10b: Simplified circuit obtained from propagating zeros at input.

 We now perform the logical effort analysis of the critical
path of the 64-bit GRP circuit. Logical effort is a technology-
independent method to estimate the delay of a CMOS circuit
[13]. The result of a logical effort analysis gives the estimated
delay in units of fan-out of four (FO4), the delay of an inverter
that drives four identical inverters. For a full discussion of the
method of logical effort see Appendix A. The circuit is as-
sumed to drive a copy of itself (H = 1). Table I shows the
equivalent capacitance for a wire spanning the width of the
standard cells from the TSMC 90nm library we use in the cir-
cuit [8, 14].

TABLE I: EQUIVALENT CAPACITANCE OF WIRE SPAN
Cell Equivalent load Cell Equivalent load
MUXI 0.33 FA 1.04
2-XOR 0.38 HA 0.58
3-XOR 0.63
4-XOR 0.96

Cell height/
9 routing tracks

0.33

 The carry-save adders in the POPCNT units consist of
parallel full adders (FA). Each FA is composed of an asym-
metric 3-input XOR gate and an asymmetric 3-input inverting
majority gate. The XOR gate has logical effort gax* = 12, gbx*
= 6 and gcx* = 6 for the three input bundles, where a bundle is
composed of the complement and uncomplemented input sig-
nal, and the majority gate has logical effort of gam’ = 2, gbm’ = 4
and gcm’ = 4 for the three complemented inputs. Both gates
have a parasitic delay pm = px = 6 [13]. In order to limit the
effort of any single input, the XOR input with the highest ef-
fort, ax*, is tied to the majority input with the lowest effort,
am’, yielding an effort ga* = 14 for the bundle and ga’ = 8 for
the complemented input, and gb* = gc* = 10 and gb’ = gc’ = 7.
Each FA is driven by a 2:1 fork stage that generates the com-
plement and uncomplemented inputs. We assume each fork
inverter is 4x drive strength.
 The inverse butterfly network is composed of n 2:1 in-
verting multiplexers (MUXI) at each level. The logical effort
of any MUXI input is 2 and of any select signal is 4, and the
parasitic delay of the MUXI is 4 [13]. Other gates have logi-
cal effort and parasitic delays as in [13].
 The various paths through the circuit tradeoff time spent
decoding the bits and time propagating through the inverse
butterfly network. The 1-bit POPCNT values, which require
the least effort to compute, control the first stage of the inverse
butterfly network. Wider POPCNT values control later stages
and thus paths through those counts experience smaller delay
through the inverse butterfly network. We calculated the path
delays for the most significant position of each POPCNT
length: i = 62 for the 1-bit count, i = 61 for the 2-bit count, i =
59 for the 3-bit count, i = 55 for the 4-bit count, i = 47 for the
5-bit count and i = 31 for the 6-bit count. The critical path is
through the most significant bit of the 4-bit count PPC[55], the
final stage of the 8-bit LROTC circuit and the last three stages
of the inverse butterfly network (IBFLY4 thru IBFLY6). Spe-
cifically, the path through the POPCNT circuit consists of 6
FAs to reduce the input to two operands followed by a 2-bit
CPA with no carry out. The results are summarized in Table
II.
 The total effort can be calculated as:
 F = GBH = Πg* Πb = 7.1 × 109 × 5.0 × 107= 3.5 × 1017

 The optimal number of stages is:
 N = log3.6F = 31
 As there are 23 stages, eight inverters need to be added
along the path to drive the large loads. The delay of the path
can be calculated as:
 D = N × F1/N + P = 31 × F1/31 + (70 + 8) = 192.2
 When divided by five, the delay is about 38.4 FO4. The
latency can be decomposed as 27.8 FO4 through the decoder
(24.7 FO4 through the parallel prefix POPCNT unit), 7.4 FO4
through the second half of the inverse butterfly network and

3.2 FO4 due to branching to the GRPR and GRPL circuit and
combining the results. The GRP on IBFLY latency of 38.4
FO4 is much greater than the 13.0 FO4 latency of the original
inverse butterfly network due to the high latency through the
decoder. This latency can be attributed to the high delay of
full adders. Each full adder level contributes 2.5–3.0 FO4
delay. Additionally, the branching required by the parallel
prefix architecture together with the large equivalent capaci-
tance for a wire spanning a full adder causes a large branching
effort at each stage of the unit.

TABLE II: LOGICAL EFFORT OF GRP ON IBFLY

Stage Gate Load b g p # stages
PPC1 FAa 1 FA + track (2*4+6.61)/4 8 7 2c

PPC2 FAb 3 FA + track (6*4+34.35)/4 7 7 2c

FAa FA 2 8 7 2cPPC3
FAa 2 FA + track (4*4 + 28.79)/4 8 7 2c

FAb FA 2 7 7 2cPPC4
FAb HA (4+4/3)/(4/3) 7 7 2c

HA Carry Sum (XOR) 1 4/3 2 1 CPA
SUM 7 XOR+

INV+track
(7*4+1+2.73)/4 4 5 2c

LROTC8 2-XOR 2 MUXI.sel +
track

(2*4+3.54)/2 4 5 2c

IBFLY4 MUXI.sel 2 MUXI.in +
Track

(2*2 + 7.08)/2 2 5 2c

IBFLY5 MUXI.in 2 MUXI.in +
Track

(2*2 +14.17)/2 2 4 1

IBFLY6 MUXI.in NOR+Track (5/3+13.0)/
(5/3)

2 4 1

 NOR INV 1 5/3 2 1
 INV 6 FA + 2 HA

+ buffer +
Track

(12*4+2*16/3+
2+86.5)/4

1 1 1

Total 7.1x109 5.0x107 70 23
aThe critical path through these adders is through a’.
bThe critical path through these adders is through b’ or c’.
cIncludes complement generation stage.

V. COMPARISON TO ORIGINAL GRP CIRCUIT

A. Original GRP Circuit
 The original GRP circuit [8, 9] is similar in structure to
Fig. 2, with the routing network a linear shift network and the
decoder also a similar linear shift network. The basic opera-
tion computes GRPR of n bits using the GRPR of the right
half n/2 bits and the left half n/2 bits. The linear shift network
produces n/2+1 outputs. These outputs are the shifts of the
left half GRPR pattern onto the right half pattern by k posi-
tions, with k equal to the possible number of zeroed L bits in
the right half and thus ranging from 0 to n/2. Another circuit
produces a one-hot encoding of the actual number of zeroed L
bits. The one-hot encoding acts as the select signals to a bank
of transmission gates, passing to the next stage only the output
that corresponds to the correct shift amount. The circuit that
produces the one hot encoding is an adder of the one hot en-
codings of the number of L bits in the two substages that feed
the right half stage. A one-hot encoding adder is also a linear
shift network with one encoding the select and the other the
data input shifted onto the all zeros pattern.
 The original analysis of the circuit in [8, 9] did not con-
sider that the linear shift network actually forms an n/2+1:1

multiplexer, and thus did not account for the high capacitance
present on the output nodes of the transmission gates. A sim-
ple fix is to split this wide mux into a multi-stage mux, each
stage composed of smaller muxes. The incoming select sig-
nals remain valid for the first level of muxes and the later
stage select signals are computed using simple logical gates –
the select signal of a second stage leg is the NOR of the select
signals from all the first stage legs whose output is input to
that leg. This method generates a one low encoding of the
select signals for the second stage. The later stage signals are
calculated similarly, alternating NAND and NOR to ensure
that the select signals are always one hot or one low. The re-
vised latency of this original GRP circuit is 38.1 FO4.

B. Comparison of Linear Shift GRP vs. GRP on IBFLY
 The GRP on IBFLY latency of 38.4 FO4 is comparable to
38.1 FO4 latency of the original GRP with liner shift circuits.
This difference is approximately 1% and given the coarseness
of the wire load model, it is difficult to attribute any signifi-
cance to the difference. Given a typical microprocessor cycle
time of 14-24 FO4 [15], either circuit has a 2 or 3 cycle la-
tency.
 We synthesized both circuits using a TSMC 90nm stan-
dard cell library [14]. Table III compares the latency from
logical effort estimates, the latency from synthesis and the
area from synthesis. The latency from synthesis verifies the
logical effort result, with both circuits having comparable la-
tency. However, the area results clearly favor the GRP on IB-
FLY implementation.

TABLE III: RESULTS OF LOGICAL EFFORT AND SYNTHESIS

Circuit Latency,
Logical Effort

Latency,
Synthesis

Area
(NAND gates)

Original GRP 38.1 FO4 39.1 FO4 68.6K
GRP on IBFLY 38.4 FO4 37.3 FO4 19.7K

VI. CONCLUSION

 In this paper, we examine the possibility of performing
the GRP operation on a butterfly or inverse butterfly network.
We show that GRP cannot be routed on either network but that
GRPR and GRPL can be routed on the inverse butterfly net-
work. We design a decoder circuit that can produce the re-
quired nlg(n)/2 butterfly control bits from the n GRP control
bits. However, the latency through this decoder is quite large
and thus the benefit of the fast routing inverse butterfly net-
work is negated. The overall latency, however, is comparable
to that of the original GRP circuit and this circuit has the bene-
fit of using a more general purpose routing circuit. Further-
more, if we wish to perform a static GRP operation, the com-
piler can decode the bits in advance and produce control bits
for the fast inverse butterfly network directly, bypassing the
hardware decoder (this requires adding a bypass multiplexer in
Fig. 8).
 Alternatively, we could remove the GRPL circuit and add
a butterfly network thereby enabling arbitrary permutations to
be computed using BFLY and IBFLY and at the same time
support the GRPR functionality. Such a scheme would have a

substantial savings in area over the proposed circuit, which is
already significantly smaller than the original implementation,
and the delay of multiplexing control signals to the inverse
butterfly network would be offset by the removal of the
branching to and combining of GRPR and GRPL. For these
reasons, we believe that the GRP on an inverse butterfly cir-
cuit is the preferred implementation of the GRP instruction.

ACKNOWLEDGEMENT
 The authors wish to thank David Harris of Harvey Mudd
College for his time and valuable suggestions.

REFERENCES
[1] R. B. Lee, Z. Shi, and X. Yang, “Efficient Permutation Instructions for

Fast Software Cryptography,” IEEE Micro, vol. 21, no. 6, pp. 56-69,
December 2001.

[2] Ruby B. Lee, Zhijie Shi and Xiao Yang, “How a Processor can Permute
n bits in O(1) cycles,” Proceedings of Hot Chips 14 – A symposium on
High Performance Chips, August 2002.

[3] Zhijie Shi, Xiao Yang and Ruby B. Lee, “Arbitrary Bit Permutations in
One or Two Cycles,” Proceedings of the IEEE International Conference
on Application-Specific Systems, Architectures and Processors, June
2003.

[4] Xiao Yang, Manish Vachharajani and Ruby B. Lee, “Fast Subword
Permutation Instructions Based on Butterfly Networks,” Proceedings of
Media Processors 1999 IS&T/SPIE Symposium on Electric Imaging:
Science and Technology, pp. 80-86, January 2000.

[5] Xiao Yang and Ruby B. Lee, “Fast Subword Permutation Instructions
Using Omega and Flip Network Stages,” Proceedings of the Interna-
tional Conference on Computer Design , pp. 15-22, September 2000.

[6] John P. McGregor and Ruby B. Lee, “Architectural Techniques for
Accelerating Subword Permutations with Repetitions,” IEEE Transac-
tions on Very Large Scale Integration Systems, vol. 11, no. 3, pp. 325-
335, June 2003.

[7] Zhijie Shi and Ruby B. Lee, “Bit Permutation Instructions for Acceler-
ating Software Cryptography,” Proceedings of the IEEE International
Conference on Application-Specific Systems, Architectures and Proces-
sors, pp. 138-148, July 2000.

[8] Zhijie Jerry Shi and Ruby B. Lee, “Implementation Complexity of Bit
Permutation Instructions,” Proceedings of the Asilomar Conference on
Signals, Systems, and Computers, November 2003.

[9] Zhijie Shi, “Bit Permutation Instructions: Architecture, Implementation,
and Cryptographic Properties,” PhD Thesis, Princeton University, June
2004.

[10] Zhijie Shi and Ruby B. Lee, “Subword Sorting with Versatile Permuta-
tion Instructions,” Proceedings of the International Conference on Com-
puter Design (ICCD 2002), pp. 234-241, September 2002.

[11] R. B. Lee, R. L. Rivest, M.J.B. Robshaw, Z.J. Shi, and Y.L. Yin,
“On Permutation Operations in Cipher Design,” Proceedings of the In-
ternational Conference on Information Technology (ITCC), vol. 2, pp.
569 - 577, April 2004.

[12] F. Thompson Leighton, Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubes, Morgan Kaufmann Publishers,
1992.

[13] Ivan Sutherland, Bob Sproull, David Harris, Logical Effort: Designing
Fast CMOS Circuits, Morgan Kaufmann Publishers, 1999.

[14] Taiwan Semiconductor Manufacturing Corporation, TCBN90G: TSMC
90nm Core Library Databook, October 2003.

[15] Francois Labonte, “Microprocessors through the Ages,” available
online: http://www-vlsi.stanford.edu/group/chips_micropro.html, 23
Nov 2004.

APPENDIX A

 Logical effort is a technology-independent method to es-
timate the delay of a CMOS circuit [13]. The method also
aids in determining the optimum number of logical stages used

and in sizing transistors in logic gates. It uses the following
concepts:
 Logical effort g : The ratio of input capacitance of a logic
gate to that of an equal drive strength inverter.
 Electrical effort h: The ratio of output capacitance of a
gate to its input capacitance.
 Branching effort b: The ratio of total capacitive load on
one logic gate’s output to the gate capacitance of the next gate
on the path examined.
 Parasitic delay p: The total diffusion capacitance on the
output node of a gate relative to that of a minimum-sized in-
verter.
The delay of a single gate can be calculated as:
 d = gh + p. (A1)
To find the delay along a path, we first calculate the total path
effort:
 F = GBH (A2)
where G = Πg, B = Πb, and H = Πh. Πg means the product of
the logical effort of all the gates along the path. Similarly, Πb
is for the total branch effort and Πh for the total electrical ef-
fort. The total electrical effort H = Πh reduces to the ratio of
the output capacitance loading the last gate to the gate capaci-

tance of the first gate on the path. Normally, we assume a
circuit drives a copy of itself, so H = 1.
 Once the path effort has been calculated, the ideal number
of stages required to achieve the logical function can be esti-
mated as:
 N = log3.6F (A3)
where 3.6 is the stage effort achieving the best performance
[13]. N is then rounded to the nearest integer that is reason-
able for the path, and the effort delay for each stage can be
calculated as:
 α = F1/N. (A4)
α can be used to decide the transistor size in each stage along
the path. The basic idea is to estimate the number of stages
using the ideal stage effort α=3.6, and then calculate the real α
from the estimated number of stages. Finally, the total delay
of the path can be calculated as:
 D = Nα + P, (A5)
where P = ∑p. The results in (A5) are in τ, the basic time unit
used in logical effort, which is independent of process tech-
nology. Dividing D in (A5) by five gives the estimated delay
in terms of fan-out of four (FO4), the delay of an inverter that
drives four identical inverters.

