
Abstract  
 

Current microprocessor instruction set 
architectures are word oriented, with some subword 
support. Many important applications, however, can 
realize substantial performance benefits from bit-
oriented instructions. We propose the parallel extract 
(pex) and parallel deposit (pdep) instructions to 
accelerate compressing and expanding selections of 
bits. We show that these instructions can be 
implemented by the fast inverse butterfly and butterfly 
network circuits. We evaluate latency and area costs 
of alternative functional units for implementing 
subsets of advanced bit manipulation instructions. We 
show applications exhibiting significant speedup, 
3.41× on average over a basic RISC architecture, and 
2.48× on average over an instruction set architecture 
(ISA) that supports extract and deposit instructions. 
 
 
1. Introduction 

 
Operations on microprocessors are typically word, 

and more recently subword [1], oriented. However, 
many important applications benefit from bit-oriented 
operations. For example, arbitrary n-bit permutations 
take O(n) operations using basic instructions such as 
and, shift and or to move individual bits [2]. A 
few fixed permutations, such as in ciphers like DES, 
have been optimized by table lookup [2], still taking 
tens to hundreds of cycles, due to cache misses. 
Recent research showed that specialized bit-oriented 
instructions can permute bits in O(lg n) [2-4] or even 
O(1) operations [5,6]. For example for n=64, any one 
of 64! bit permutations can be achieved in 1 or 2 
cycles by butterfly (bfly) and inverse butterfly 
(ibfly) permutation instructions [5,6]. Such speedup 
can enable previously difficult bit manipulation 
computations to be done much more efficiently. 

This paper discusses another important class of 
bit-oriented operations involving selecting and 
compressing bits, and distributing bits according to 
different bit patterns. We call these parallel extract 
(pex) and parallel deposit (pdep) operations, 
respectively. pdep and pex can also be viewed as 
bit-level scatter and gather instructions. These 
operations are important in application domains such 
as bioinformatics, image processing, steganography, 
cryptanalysis and coding. 
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We present the architectural definition of these 
two novel bit instructions. We show how pdep can be 
implemented using the single-cycle butterfly network 
datapath. We evaluate alternative new functional units 
that implement useful subsets of these advanced bit 
manipulation instructions, and recommend one that is 
smaller than an ALU with shorter latency. Our 
performance results indicate that a processor enhanced 
with pex and pdep achieves a 5.2× maximum 
speedup, 3.41× on average, over a basic RISC 
architecture. 

Section 2 describes the new pex and pdep 
instructions. Section 3 presents the ISA definitions. 
Section 4 discusses the implementation and different 
options for a new functional unit implementing 
advanced bit-oriented instructions. Section 5 describes 
applications of these instructions and section 6 their 
performance. Section 7 concludes the paper. 

 
2. Parallel extract and parallel deposit  
 

It is often necessary to select non-contiguous bits 
from data. For example, in pattern matching, many 
pairs of features may be compared. Then, a subset of 
these comparison result bits are selected, compressed 
and used as an index to look up a table. This selection 
and compression of bits is what a pex instruction does 
(Figure 1(b)). A pex instruction can also be viewed as 
a parallel version of the extract (extr) instruction [7, 
8]. The extr instruction extracts a single field of bits 
from any position in the source register and right 
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justifies it in the destination register. The pex 
instruction extracts multiple bit fields from the source 
register, compresses and right justifies them in the 
destination register. The selected bits are specified by 
a bit mask. Figure 1 compares extr and pex.  

The inverse operations to extr and pex are dep 
and pdep, respectively. The deposit (dep) 
instruction takes a right justified field of bits from the 
source register and deposits it at any single position in 
the destination register. The parallel deposit 
(pdep)instruction takes a right justified field of bits 
from the source register and deposits the bits in 
different non-contiguous positions indicated by a bit 
mask. Figure 2 compares dep and pdep. 

 
(a) 

 
(b) 

Figure 1. (a) extr r1 = r2, pos, len 
(b) pex.v  r1 = r2, r3

 

 
(a) 

 
(b) 

Figure 2. (a) dep r1 = r2, pos, len 
(b) pdep.v  r1 = r2, r3

 
Feasibility 
 It is not intuitively clear that pex and pdep are 
easy to implement, especially in a single cycle. We 
define a single cycle as the latency through an ALU of 
the same width, i.e., with operands the same size as 
pex and pdep.  
 The pex instruction can be considered half of a 
bit permutation primitive, grp [9], conserving its most 
useful properties. It performs a grp-like permutation 
of the source bits, where the bits that are not selected 

are zeroed out. In our past work on permutation 
circuits [6], we see that the fastest datapath for 
arbitrary permutations is the butterfly or inverse 
butterfly network circuit (Figure 3). Our prior work on 
accelerating the grp permutation instruction shows 
that it can also be implemented by two inverse 
butterfly networks operating in parallel, one 
implementing grpl and one implementing grpr [9]. 
Since the pex operation is like the grpr operation, it 
can be implemented by one inverse butterfly network. 
 Since pdep is the inverse of pex, we claim that it 
can be implemented by the butterfly circuit, which 
reverses the stages of the inverse butterfly circuit. But 
this has to be proved, which we do explicitly in this 
paper in section 4. 
 

 
            Butterfly    Inverse Butterfly              

Figure 3. 8-bit butterfly and inverse butterfly 
networks 

 
3. ISA Definitions 

 
In Figures 1 and 2, we show static versions of 

extr and dep but dynamic or variable versions of 
pex.v and pdep.v. Static versions of pex and 
pdep are also very important because mask patterns 
desired are often known at compile time, and the static 
versions are much simpler to implement (section 4).  

Table I shows the new instructions needed for 
implementing dynamic, static and loop-invariant 
versions of pex and pdep.  

Dynamic pex and pdep. In the pex.v 
instruction, the data bits in GR r2 selected by the “1” 
bits in the mask GR r3 are placed, in the same order, in 
the destination register GR r1. In the pdep.v 
instruction, the right justified bits in GR r2 are placed 
in the same order in GR r1, in the positions selected by 
“1”s in mask GR r3. For both instructions, the mask r3 
is translated dynamically by a decoder into control bits 
for the lg(n) stages of an inverse butterfly or butterfly 
circuit. 

Static pex and pdep. In the static versions of 
pex and pdep, some registers associated with the 
new functional unit are used to hold the control bits 
for the datapath and these registers must first be 
loaded by the mov instruction. The registers can be the 



special function unit registers of PA-RISC [7], or the 
application registers (ar) of IA-64 [8]. For the 
purposes of this paper, we call them application 
registers, ARs. The mov ar instruction in Table 1 is 
used to move the contents of two general-purpose 
registers to the application registers. The sub-opcode, 
x, indicates which application registers are written. 

In the static version of the pex instruction, GR r2 
is and’ed with mask GR r3, then permuted using 
inverse butterfly application registers ar.ib1, ar.ib2 and 
ar.ib3, with the result placed in GR r1. For static pdep, 
GR r2 is permuted using butterfly application registers 
ar.b1, ar.b2 and ar.b3, then and’ed with mask GR r3, 
with the result placed in GR r1.  

Loop-invariant pex and pdep. Suppose the 
particular pattern of bit scatter or gather is determined 
at execution time, but this pattern remains the same 
over many iterations of a loop. We call this a loop-
invariant pex or pdep operation. The setib and 
setb instructions invoke a hardware decoder to 
dynamically translate the bitmask GR r3 to control bits 
which are written to the inverse butterfly or butterfly 
application registers, respectively, for later use in 
static pex and pdep instructions. 

Table 1 also shows the bfly and ibfly 
instructions which can perform arbitrary n-bit 
permutations [5, 6]. In addition, the grp bit 
permutation instruction [3] is also included. 
 
4. IMPLEMENTATION 
 
4.1. Parallel deposit on the butterfly network 
 

The structure of the butterfly (and inverse 

butterfly) networks are shown in Figure 3. The n-bit 
networks consist of lg(n) stages, each stage composed 
of n/2 2-input switches. Each switch is composed of 
two 2:1 multiplexers for a total of n × lg(n) 
multiplexers. These networks are faster and smaller 
than an ALU of the same width which also has lg(n) 
stages, but the stages are more complex. 

Table 1. New advanced bit-oriented instructions 
Instruction Description Cycles 
pex.v  r1 = r2, r3 Parallel extract, variable: Data bits in r2 selected by a dynamically-decoded mask 

r3 are extracted, compressed and right-aligned in the result r1. 
3 

pdep.v  r1 = r2, r3 Parallel deposit, variable: Right-aligned data bits in r2 are deposited, in order, in 
result r1 in bit positions marked with a “1” in the dynamically-decoded mask r3. 

3 

mov ar.x = r2, r3 Move values from GRs to ARs, to set controls (calculated by software) for pex, 
pdep, bfly or ibfly 

1 

pex r1 = r2, r3, ar.ib1, ar.ib2, ar.ib3 Parallel extract, static: Data bits in r2 selected by a pre-decoded mask r3 are 
extracted, compressed and right-aligned in the result r1, using datapath controls in 
associated ARs 

1 

pdep r1 = r2, r3, ar.b1, ar.b2, ar.b3 Parallel deposit, static: Right-aligned data bits in r2 are deposited, in order, in result 
r1 in bit positions marked with a “1” in the statically-decoded mask r3, using 
datapath controls in associated ARs. 

1 

setib ar.ib1, ar.ib2, ar.ib3 = r3 Set inverse butterfly circuit controls in associated ARs, using hardware decoder to 
translate the mask r3 to inverse butterfly controls. 

2 

setb ar.b1, ar.b2, ar.b3 = r3 Set butterfly circuit controls in associated ARs, using hardware decoder to translate 
the mask r3 to butterfly controls. 

2 

bfly r1 = r2, ar.b1, ar.b2, ar.b3 Perform Butterfly permutation of data bits using controls in associated ARs 1 
ibfly r1 = r2, ar.ib1, ar.ib2, ar.ib3 Perform Inverse Butterfly permutation of data bits using controls in associated ARs 1 
grp r1 = r2, r3 Perform Group permutation (variable): Data bits in r2 corresponding to “1”s in r3

are grouped to the right, while those corresponding to “0”s are grouped to the left. 
3 

In the ith stage, the paired input bits to a switch 
are n/2i positions apart for the butterfly network and 
2i–1 positions apart for the inverse butterfly network. A 
switch either passes through or swaps its inputs based 
on the value of a control bit. Thus, the operation 
requires n/2 × lg(n) control bits. 

Below, we show that any pdep operation can be 
performed using a butterfly circuit: 

Fact 1: Any single data bit can be moved to any 
result position by just moving it to the correct half of 
the intermediate result at every stage of the butterfly 
network.  

This can be proved by induction on the number of 
stages. At stage 1, the data bit is moved within n/2 
positions of its final position. At stage 2, it is moved 
within n/4 positions of its final result, and so on. At 
stage lg(n), it is moved within n/2lg(n) = 1 position of 
its final result, which is its final result position. 

Fact 2: If the mask has k “1”s in it, the k 
rightmost data bits are selected and moved, i.e., the 
selected data bits are contiguous. After moving, the 
selected data bits remain contiguous mod m/2 in each 
half, where m is the width of the butterfly circuit. They 
never cross each other in the final result. 

 This fact is based on the structure of the butterfly 
network and by definition of the pdep instruction. 



Fact 3: If a data bit in the right half (R) is 
swapped with its paired bit in the left half (L), then all 
selected data bits to the left of it will also be swapped 
to L (if they are in R) or stay in L (if they are in L).  

Since the selected data bits never cross each other 
in the final result (Fact 2), once a bit swaps to L, the 
selected bits to the left of it must also go to L. Hence, 
if there is one “1” in the mask, the one selected data 
bit, d0, can go to R or L. If there are two “1”s in the 
mask, the two selected data bits, d1d0, can go to RR or 
LR or LL. (Note that RL is not possible.) That is, if the 
data bit on the right stays in R, then the next data bit 
can go to R or L, but if the data bit on the right goes to 
L, the next data bit must also go to L. If there are three 
“1”s, the three selected data bits, d2d1d0, can go to 
RRR, LRR, LLR or LLL. Hence, there are only k+1 
possibilities for k “1”s in the mask. 

Fact 4: The selected data bits that have been 
swapped from R to L, or stayed in L, are all 
contiguous mod m/2 in L and can be rotated so that 
they are the rightmost bits of L, and in their original 
order.  

This follows from Facts 2 and 3. At the end of this 
step, we have two half-sized butterfly networks, L and 
R, with the selected data bits right-aligned and in order 
in each of L and R. (The selected data bits that stayed 
in R are already right aligned in R.) 

The above can now be repeated recursively for 
the half-sized butterfly networks, L and R, until each L 
and R is a single bit. This is achieved after lg(n) stages 
of the butterfly network. 

As an example, consider the pdep operation in 
Figure 2(b), broken down into steps in Figure 4(a). 
There are 5 “1”s in the mask, so the rightmost 5 bits, 
defgh, are the selected data bits that will be moved to 
new positions in the result. There are 3 “1”s in the 
right half (R) so bits f, g and h stay in R. Bit e swaps 
to L, and bit d stays in L, as in Fact 3. Bits de are 
contiguous in L mod 4, and can be rotated right by 3 
bits to be right-aligned in L, as in Fact 4 (see the result 
after stage 1 in Figure 4(a)). The process is repeated 
for the two 4-bit butterfly networks L and R in stage 2. 
This is further repeated for the four 2-bit butterfly 
networks in stage 3, giving the desired pdep 
operation for the 8-bit data input.  

The rotations done between stages in Figure 4(a) 
can be incorporated into the butterfly control bits of 
each stage by appropriate rotation of the control bits as 
shown in Figure 4(b). Rotations at stage 1 must be 
incorporated into the rotations at stage 2, which must 
be incorporated into the rotations at stage 3, etc. 

(a) (b) 
Figure 4. 8-bit pdep operation on the butterfly 
network (a) with separate rotations between 
stages, and (b) with rotations incorporated 

into control bits at each stage 
 
4.2. Bitmask Decoding 
 

The hardest part of the implementation of the 
pdep instruction is the translation of the n-bit mask 
into the control bits for each stage of the butterfly 
network. This can be done in software or by a 
hardware decoder. Figure 5 shows a block diagram of 
the functional blocks inside such a hardware decoder. 
Given the complexity of the problem, it is fairly 
amazing that the decoder can be designed to consist of 
only two types of subcircuits: a parallel prefix 
population counter, which counts the ones from 
position 0 (on the right) to every bit position from 0 to 
n–2, and a set of LROTC (Left ROTate and 
Complement) circuits, which are rotators that 
complement bits upon wraparound.  

 

 
Figure 5. Hardware decoder to translate 64-bit 

pdep mask to 64/2 × lg(64) bfly control bits. 
 

It turns out that the decoder circuit of Figure 5 is 
in fact identical to the decoder for pex (or grpr) in 
[9] with the caveat that the output directed to butterfly 



stage i for pdep is directed to inverse butterfly stage 
lg(n)–i for pex. This is consistent with the fact that 
pex and pdep are inverse operations. Below, we give 
a brief conceptual description of the decoder circuit, to 
illustrate its logic blocks. 

For circuit optimization, we use a control bit value 
of “1” to indicate “pass through” and “0” to indicate 
“swap”, counter to the usual convention for switches. 

To compute the control bits for the first butterfly 
stage, count the number k of “1”s in the right half (R) 
of the pdep bitmask, and produce a string with “1”s 
in the k rightmost bits. The selected data bits that are 
swapped in stage 1 to the left half (L) are positioned 
such that they are rotated left by the number of data 
bits passed through in R; however, they should be the 
rightmost bits in L for recursion in the next stage (see 
Fact 4 above). Rather than rotating the data bits 
explicitly, we can compensate for the rotation by 
modifying the routing through the subsequent stages. 
This can be achieved by rotating the control bits by the 
same number of positions, complementing upon 
wraparound. The counting of the number of “1”s in the 
right half of each subnet at each stage is done by the 
Parallel Prefix Population Count circuit, while the 
rotation is done by the LROTC circuits at each stage. 

 
4.3. Functional Units 
 

Suppose we add a new functional unit to support 
these new bit-oriented instructions. We consider 
implementing alternative subsets of the instructions 
listed in Table 1 to show the tradeoffs in hardware cost 
versus flexibility. 

Figure 6 shows a functional unit that supports all 
the instructions in Table 1, including the grp 
instruction. The latency and size of this unit is 
essentially determined by the grp instruction, which 
requires two inverse butterfly circuits and two 
decoders [9]. Note that the inclusion of the application 
registers for static pex and pdep allows support for 
bfly and ibfly permutation instructions at no extra 
cost. Thus, also supporting the grp permutation is 
somewhat unnecessary, since a bfly followed by an 
ibfly instruction can perform any arbitrary (static) 
permutation in 2 cycles rather than lg(n) cycles.  
Furthermore, the grp instruction can be emulated 
using the pex.v instruction. 

Figure 7 removes support for grp, using bfly 
and ibfly, or pex, for permutations. It supports both 
variable and static pex and pdep; the variable 
versions can share the same hardware decoder. 
Eliminating grp yields considerable area savings, 
since a hardware decoder, an inverse butterfly network 
and many multiplexers are eliminated.  

Figure 8 shows a further simplification by 
dropping support for the variable versions pex.v and 
pdep.v. This eliminates the decoder and the 
multiplexers for the control bits, further reducing the 
area. Since most applications require only static 
versions of pex and pdep, the elimination of the 
costly decoder may be justified.  

 

 
Figure 6. Functional unit supporting grp, 
pex.v, pdep.v, pex, pdep, ibfly and bfly.  
 

 
Figure 7. Functional unit supporting pex.v, 

pdep.v, pex, pdep, ibfly and bfly 
 

 
Figure 8. Functional unit supporting pex, 

pdep, ibfly and bfly 
 

We evaluated these functional units for timing and 
area. The circuits in Figs. 6 and 7 are implemented 
with a 3-stage pipeline. The hardware decoder 
occupies the first 2 pipeline stages due to its slow 
parallel prefix population counter. The butterfly (or 
inverse butterfly) network is in the third stage. There is 
no overlap between the decoder and the routing of the 
data through the butterfly network for the pdep 
instruction since the control bits for the first stage of 
the butterfly network depend on the widest population 
count (Fig. 5), which takes the longest to generate. 



The various functional units were coded in 
Verilog and synthesized using Synopsys Design 
Compiler mapping to a TSMC 90nm standard cell 
library [10]. The designs were compiled to optimize 
timing. The decoder circuit was initially compiled as 
one stage and then Design Compiler automatically 
pipelined the subcircuit. Timing and area figures are as 
reported by Design Compiler. We also synthesized a 
reference ALU using the same technology library.  

Table 2 summarizes the timing and area for the 
circuits. Table 3 shows the number of different circuit 
types, to give a sense for why the functional units 
supporting variable pex, pdep and grp are so much 
larger. It clearly shows that supporting variable 
operations comes at a high price. The added 
complexity is due to the complex decoder 
combinational logic and to the additional pipeline 
registers and multiplexer logic. The variable circuits 
are approximately 15-20% slower, in cycle time 
latency, due to the decoder complexity and pipeline 
overhead, and up to three times larger than the static 
case. The static pex and pdep functional unit (Figure 
8) is even smaller and faster than the reference ALU.  
 

Table 2. Latency and area of proposed 
functional units 

Unit Cycle 
time 

Relative 
cycle time 

Area (NAND 
gate equiv.) 

Relative 
Area 

ALU 0.70 ns 1 10.0K 1 
Figure 6: grp 0.81 ns 1.16 30.5K 3.05 

Figure 7:  
pex.v, pdep.v 

 
0.77 ns 

 
1.10 

 
22.1K 

 
2.21 

Figure 8: 
pex, pdep 

 
0.67 ns 

 
0.96 

 
7.6K 

 
0.76 

 
Table 3. Number of registers and logical 

blocks in functional units  
Unit Pipeline 

Registers 
Butterfly and  
Inverse Butterfly 

Decoders MUXes 

Fig 6 ~14.5 3 2 14 
Fig 7 ~9.25 2 1 13 
Fig 8 0 2 0 1 
 
5. Applications 

 
We now describe how the pex and pdep 

instructions can be used in existing applications, to 
give currently realizable speedup estimates. Use of 
these novel instructions in new applications and 
algorithms is likely to produce even more speedup. 

 
5.1. Bit Compression and Decompression 
 

The Itanium [8] and IA-32 [11] parallel compare 
instructions produce subword masks – the subwords 

for which the relationship is false contain all zeros and 
for which the relationship is true contain all ones. This 
representation is convenient for subsequent subword 
masking or merging. The SPARC VIS [12] parallel 
compare instruction produces a bit mask of the results 
of the comparisons. This representation is convenient 
if some decision must be made based on the outcome 
of the multiple comparisons. Converting from the 
subword representation to the bitmask representation 
for k subwords requires k extract instructions to extract 
a bit from each subword and k-1 deposit instructions to 
concatenate the bits; a single static pex instruction 
accomplishes the same thing (see figure 9).  

The SSE instruction pmovmskb [11] serves a 
similar purpose; it creates an 8- or 16-bit mask from 
the most significant bit from each byte of a MMX or 
SSE register and stores the result in a general purpose 
register. However, pex offers greater flexibility than 
the fixed pmovmskb, allowing the mask, for example, 
to be derived from larger subwords, or from subwords 
of different sizes packed in the same register. In fact, 
any arbitrary selection of bits is allowed as described 
in the general pattern matching scheme in section 2. 

Similarly, binary image compression performed 
by MATLAB’s bwpack function [13] benefits from 
pex. Binary images in MATLAB are typically 
represented and processed as byte arrays – a byte 
represents a pixel and has permissible values 0x00 and 
0x01. However, certain optimized algorithms are 
implemented for a bitmap representation, in which a 
single bit represents a pixel. To produce one 64-bit 
output word requires 64 extr and 63 dep 
instructions; only 8 static pex and 7 static dep 
instructions perform the equivalent function (Figure 
9). For decompression, as with the bwunpack 
function, 64 extr and 56 dep instructions are 
required to decompress one 64-bit input word; 7 extr 
and 8 pdep instructions are equivalent. 

 
(a) 

 
(b) 

Figure 9. (a) 1 bit requires 1 extr and 1 dep  
(b) 1 byte requires 1 pex and 1 dep 

5.2. Least Significant Bit Steganography 



 
Steganography [14] refers to the process of hiding 

a secret message, not by directly obscuring the 
message content as with cryptography, but rather by 
embedding the message in a larger, innocuous cover 
message. A simple type of steganography is least 
significant bit (LSB) steganography in which the least 
significant bits of the color values of pixels in an 
image, or the intensity values of samples in a sound 
file, are replaced by secret message bits. LSB 
steganography encoding can use a pdep instruction to 
expand the secret message bits and place them at the 
least significant bit positions of every subword. 
Decoding uses a pex instruction to extract the least 
significant bits from each subword and reconstruct the 
secret message.  

LSB steganography is an example of an 
application that utilizes the loop-invariant versions of 
the pex and pdep instructions. The sample size and 
the number of bits replaced are not known at compile 
time, but they are constant across a single message. 
Figure 10 depicts an example LSB steganography 
encoding operation in which the 4 least significant bits 
from each 16-bit sample of PCM encoded audio is 
replaced with secret message bits.  

 

 
Figure 10. LSB steganography encoding (4 
bits per 16-bit PCM encoded audio sample) 

 
5.3. Transfer Coding  
 

Transfer coding is the term applied when arbitrary 
binary data is transformed to a text string for safe 
transmission using a protocol that expects only text as 
its payload. Uuencoding [15] is one such encoding 
originally used for transferring binary data over email 
or usenet. In uuencoding, each set of 6 bits is aligned 
on a byte boundary and 32 is added to each value to 
ensure the result is in the range of the ASCII printable 
characters. Without pdep, each field is individually 
extracted and has the value 32 added to it. With pdep, 
8 fields are aligned at once and a parallel add 
instruction adds 32 to each byte simultaneously 
(Figure 11 shows 4 parallel fields). Similarly, for 
decoding, a parallel subtract instruct deducts 32 from 
each byte and then pex compresses eight 6-bit fields. 
  

 
Figure 11. Uuencode of ‘bit’ using pdep 

 
5.4 Bioinformatics 
 

Pattern matching and bit scatter/gather operations 
are also found in important bioinformatics 
applications. For example, the Basic Local Alignment 
Search Tool (BLAST) is used for determining the 
similarity of sequences [16]. The BLASTX variant 
translates a nucleotide sequence to a protein sequence 
and then compares against a protein database. Each 
field of 6 bits in the nucleotide sequence is translated 
into a protein symbol. An efficient algorithm can use 
pdep to distribute eight 6-bit fields on byte 
boundaries, and then use the result as a set of table 
indices for a parallel table lookup (ptlu) instruction 
[17] to translate the bytes. 
 
6. Performance Results 

 
We coded kernels for the above applications and 

simulated them using the SimpleScalar Alpha 
simulator [18] enhanced to recognize our new 
instructions. We compared against the baseline Alpha 
ISA and an Alpha ISA with bit-level extr and dep 
instructions. (Alpha’s extract_byte and 
byte_insert instructions are not general enough 
for our applications).  

Figure 12 show our performance results, 
normalized to the base ISA cycle counts. The 
processor with pex and pdep instructions exhibits 
speedups over the base ISA ranging from 1.85× to 
5.21×, with an average of 3.41×. The speedup over an 
ISA that has extr and dep instructions ranges from 
1.60× to 4.30×, averaging 2.48× speedup.  

The simple bit compression and decompression 
functions exhibited the greatest speedup as these 
operations combine 8 extracts and deposits of 1-bit 
fields into one pex or pdep. The speedup is lower in 
the steganography encoding case because there are 
only 4 fields per word, and also in the uudecode and 
BLASTX translation case because there are fewer 
fields overall. 
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Figure 12. Performance Results 

 
7. Summary and Conclusions 

 
We propose new parallel extract and parallel 

deposit instructions to accelerate bit compression and 
expansion operations. These instructions can improve 
the performance in various applications, achieving a 
3.41× average speedup over a basic ISA that has a 
simple ALU/shifter, and a 2.48× average speedup over 
an ISA with extr and dep instructions. 

We show that pdep can be mapped onto the 
butterfly permutation circuit. We also propose a new 
functional unit that performs the bfly and ibfly 
permutation instructions in addition to pex and pdep. 
We examine alternative functional units that support 
different subsets of the advanced bit manipulation 
instructions in Table 1. Our results indicate that 
support for variable pex.v and pdep.v instructions 
in hardware comes at a steep price in area and latency, 
due mainly to the circuit complexity of the hardware 
decoder for translating a mask into controls for the 
butterfly or inverse butterfly datapaths. Also, our 
applications mostly needed static versions of pex and 
pdep; only the LSB steganography application makes 
use of loop-invariant pex and pdep. 

Hence, we feel that the simplest unit that supports 
ibfly and bfly and static pex and pdep (Figure 
8) is the current best choice for both functionality 
actually needed and cost-effectiveness. In cases where 
the variable pex and pdep instructions are required, a 
software routine can decode the mask and save the 
resulting control bits for later use by static pex and 
pdep instructions. If the operation is loop invariant, 
this subroutine is invoked only once, with minimal 
performance overhead.  

Areas for future work include new or re-structured 
algorithms and applications exploiting these fast 
parallel instructions, and exploration of other 
advanced bit manipulation instructions such as bit 

matrix multiply. These advanced bit-oriented 
instructions are an important ISA extension for word-
oriented processors that can provide tangible benefits 
in many existing and emerging application domains. 
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