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Abstract

MicroSIMD architectures incorporating subword parallelism are very efficient for
application-specific media processors as well as for fast multimedia information processing in
general-purpose processors.  This paper addresses the unsolved problem of the need to
permute the subwords packed in registers for maximum parallelism performance, especially
for two-dimensional (2-D) multimedia algorithms.  We propose a new systematic approach for
identifying the fundamental data rearrangement needs in current and future 2-D pixel
processing programs based on the hierarchical decomposition of frames and objects into
atomic 2-D structures.  We define new subword permutation instructions, Check, Excheck,
Exchange, and Permset, that achieve these data rearrangements across multiple registers.  We
also define an alphabet of subword permutation primitives, including these new instructions
and the Mix instruction defined for PA-RISC MAX-2 and IA-64, which supports the data
rearrangement needs of 2-D frames and objects.  We show the sufficiency and efficiency of this
alphabet for achieving all possible permutations of hierarchical 2-D blocks.

1. Introduction

Multimedia information processing can be considered an increasing part of the general-
purpose workload or a special-purpose application area.  In this paper, we consider new
instructions for accelerating multimedia processing in any programmable processor, whether
general-purpose or application-specific.  The focus is on simple, single-cycle instructions,
which can be used to construct any type of permutations needed in two-dimensional (2-D)
multimedia processing.

Multimedia extensions have been added to general-purpose processors to accelerate the
processing of different media types [1-7,15,16].  The types of application-specific processors
we target in this paper are designed to execute various multimedia programs, rather than just
one.  They include digital signal processors [8], video signal processors [9, 10], and
mediaprocessors [11, 12].

Subword parallelism [1,4] is now widely deployed by multimedia instructions in
microprocessor architectures [1-7, 15,16] and in media processors [12] to accelerate the
processing of lower-precision data, like 16-bit audio samples or 8-bit pixel components.  We
also call this microSIMD architecture [13], since it applies SIMD (Single Instruction Multiple
Data) parallel processor techniques [14] within a single processor.  A subword-parallel (or
microSIMD) instruction performs the same operation in parallel on multiple pairs of subwords
packed into two registers, which are typically 32 to 128 bits wide in today’s microprocessors
and mediaprocessors (see figure 1).  For example, a 64-bit word-oriented datapath can be
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partitioned into eight 8-bit subwords, or four 16-bit subwords, or two 32-bit subwords.
Substantial performance improvements have been realized using subword parallel instructions,
at very low cost compared to other forms of parallelism, like superscalar, VLIW or parallel
processor organizations, for the same degree of operation parallelism [13]. 

Subword
Arith.Unit

Register
File

Shift/Permute
Unit

Multiple Subword Arithmetic and Shift/Permute
functional units can be implemented

Figure 1: microSIMD subword parallelism leveraging word datapaths

With packed subwords in registers, we now need to be able to re-arrange subwords within a
register, and between registers.  This is necessary to achieve the maximum parallelism for
subsequent processing.  Unfortunately, subword permutation operations are not understood as
clearly as subword arithmetic operations.  They require moving several fields (subwords) in
parallel.  Conventional shift and rotate instructions move all the bits in a register by the same
amount.  Extract and deposit instructions, found in instruction-set architectures like PA-RISC
[17], move one field using one or two instructions.  Early subword permutation instructions
like mix and permute [4] in the PA-RISC MAX-2 multimedia instructions are a first attempt
to find efficient and general-purpose subword permutation primitives.  However, the
sufficiency or efficiency of these permutation primitives in achieving any arbitrary permutation
has not been demonstrated.  The problem is further complicated by the fact that image, video
or graphics processing require mapping two-dimensional objects onto subwords in multiple
registers, and then permuting these subwords between registers.  In addition, since
permutations have not been easily achieved by programmable processors, algorithm designers
may not have optimized algorithms using permutations.  Hence, one cannot just comb through
all the common multimedia algorithms to determine what permutations are used and the
performance impact they have: one would often need to re-think algorithms to see if efficient
permutations would help improve the performance.  Furthermore, in designing subword
permutation primitives, we need to project the permutation needs of future, yet-to-be defined
multimedia algorithms, and this seems to be an intractable problem.  In this paper, we propose
a systematic solution to this unsolved problem of finding generic subword permutation
primitives for both current and future algorithms for processing two-dimensional multimedia
data.  We also define a small set of subword permutation primitives, and show that this is both
a sufficient and an efficient set.

In section 2, we describe how 2-dimensional frames can be mapped into the packed
subwords of microSIMD architectures.  We also show that two-dimensional objects can be
decomposed into smaller blocks or polygons, and ultimately into atomic 2x2 matrices and
triangles.  In section 3, we review the subword permutation instructions that have been defined
in the multimedia instructions MAX-2 for PA-RISC processors [4] and for IA-64 EPIC
processors [15], especially the mix instruction.  We show an example of how a permutation on
a 2-D object can be decomposed into hierarchical permutations on 2x2 matrices.  In section 4,
we investigate the subword permutation needs of atomic 2-D structures, and postulate that
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these are generic primitives since all 2-D frames and objects can be decomposed into these
atomic 2-D structures.  In section 5, we propose small subsets of subword permutation
primitives that are sufficient and also efficient for different performance and cost levels.
Section 6 summarizes and concludes the paper.

2. Mapping and decomposition of 2-D blocks

To use microSIMD architectures for maximum performance, we need to map multimedia
data into packed subwords in a way that permits maximum parallel execution, SIMD style.
Pixel-oriented multimedia data in images, graphics, video or animation, are two-dimensional
(2-D) in nature. How should 2-D blocks of data be mapped into the packed subwords of micro-
SIMD architectures?

A 2-D array of pixels in memory is normally stored in row-major format: elements of row
one are stored sequentially in successive memory locations, followed by elements of row two,
and so forth.  When words are loaded into registers from memory, this translates into mapping
the first row into a set of registers, mapping the second row into another set of registers, and so
forth.  This is called area-mapping [13] of a 2-D block – different rows of the 2-D block are
held in different registers.

A 2-D image or frame is easily decomposed into smaller 2-D blocks.  The smallest 2-D
block is a 2x2 block (or matrix).  A 2-D object within a frame can also be decomposed into
smaller blocks, where again the smallest 2-D rectangular block is a 2x2 matrix of pixels.  For
example, an 8x8 matrix used in DCT or IDCT can be decomposed into four 4x4 matrices, each
stored in four 64-bit registers, as shown in Figure 2a, where each element is a 16-bit subword.
Each such 4x4 matrix can be further decomposed into four 2x2 matrices (Figure 2b).  Matrices
with dimensions that are a power of two can be successively decomposed into smaller
matrices, and ultimately into the smallest 2x2 matrix.

 (a) Area mapping of a 4x4 matrix:
R1 =  a00  a01  a02  a03
R2 =  a10  a11  a12  a13
R3 =  a20  a21  a22  a23
R4 =  a30  a31  a32  a33

(b) Decomposition into four 2x2 matrices:
R1 =  a00  a01  b00  b01
R2 =  a10  a11  b10  b11
R3 =  c00  c01  d00  d01
R4 =  c10  c11  d10  d11

Figure 2:  Area mapping and decomposition of 2-D blocks

Non-rectangular objects may more accurately be decomposed into non-rectangular
polygons, the smallest of which is a triangle.  Since all 2-D frames and objects can be
decomposed into atomic 2-D units like the 2x2 matrix and the triangle, we postulate that if we
can determine the permutation needs of these atomic units, they can serve as permutation
primitives for the entire frame or object.  At the lowest level, we permute the four pixels of a
2x2 matrix.  At the next higher level, we again permute a 2x2 matrix, where each element is
now itself a 2x2 matrix.
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3. Mix permutation instruction

For microprocessor multimedia instructions, only PA-RISC MAX-2[4], IA-64[15] and the
PowerPC Altivec[16] have a few instructions designed for general-purpose subword
permutation. Because our focus in this paper is on 2-D multimedia processing, and area-
mapped 2-D objects span at least two registers, we seek permutation primitives that reorder
subwords from two source registers.  We describe mix, defined by the author for MAX-2 and
IA-64, which is currently the only subword permutation instruction with two source registers.

3.1.  Definition of Mix instruction

The mix operation selects either all even elements, or all odd elements, from the two source
registers [4,15].  The pair of mixL and mixR operations is defined as follows:

• mixL: interleave the corresponding “even” elements from the two source registers,
starting from the leftmost elements in each register

• mixR: interleave the corresponding “odd” elements from the two source registers,
ending with the rightmost elements in each register

Table 1 defines these mix instructions, for three different subword sizes: 8 bits, 16 bits and
32 bits.  Each letter in the register contents represents an 8-bit subword, and each register holds
a total of 64 bits.

Table 1: Definition of Mix instruction

Register Contents:
R1 = a b c d e f g h
R2 = A B C D E F G H

Instruction: Definition:

mixL,8 R1,R2,R3 R3 = a A c C e E g G
mixR,8 R1,R2,R3 R3 = b B d D f F h H

mixL,16 R1,R2,R3 R3 = a b A B e f E F
mixR,16 R1,R2,R3 R3 = c d C D g h G H

mixL,32 R1,R2,R3 R3 = a b c d A B C D
mixR,32 R1,R2,R3 R3 = e f g h E F G H

3.2.  Example of decomposable subword permutations.

A common permutation of a 2-D object is matrix transpose, where the matrix is flipped
along its diagonal: rows become columns, and columns become rows.  This is a decomposable
permutation.  For example, an 8x8 matrix of 16-bit elements stored in 16 registers can be
decomposed into four 4x4 matrices (Figure 2a), each of which can be further decomposed into
four 2x2 matrices (Figure 2b).  By transposing each of the 2x2 matrices, then transposing the
larger 2x2 matrix, where each element is itself one of these 2x2 matrices, we obtain the matrix
transpose of a 4x4 matrix (see Figure 3).  The mix instructions can perform these hierarchical
2x2 matrix transpositions.  The mixL and mixR instructions are used in pairs at the level of a
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subword size equal to the matrix element size.  Then, they are used at the size of subwords that
are twice as large.  Repeating this on each of the four 4x4 matrices completes the transpose of
the original 8x8 matrix.

Figure 3: Hierarchical Decomposition of Matrix Transpose Permutation

4. Fundamental data rearrangements in 2-D blocks

We propose that a systematic approach to finding a set of permutation primitives for current
and future 2-D multimedia programs can be based on decomposing images and objects into
atomic units, then finding the permutations desired for these 2-D building blocks.  The
subword permutation instructions for these 2-D building blocks are also defined for larger
subword sizes at successively higher hierarchical levels.  We propose studying the
permutations of a 2x2 matrix, and the permutations of the four triangles contained within this
2x2 building block.  What are the useful data rearrangements in a 2x2 matrix and its four
embedded triangles (section 4.1)?  What are permutation primitives that can perform these data
rearrangements (section 4.2)?  Are these permutation primitives sufficient and efficient
(section 4.3)?  Can they be generalized (section 4.4)?

4.1.  Characterization of 2-D data rearrangements

The first set of data rearrangements likely to be needed in a 2x2 matrix is to be able to swap
elements vertically, horizontally and diagonally.  This is based on observing that nearest
neighbor interactions are perhaps the most common 2-D pixel operations.  The eight nearest-
neighbor movements for a pixel in a 2-D frame are shown in Figure 4a.  Figure 4b expresses
the 9-element matrix of Figure 4a as four 2x2 matrices (outlined in bold).  Here, an element of
a 2x2 matrix can move to its right (or left) neighbor, its downward (or upward) neighbor, or its
diagonal right (or left) neighbor.  Figure 4c shows all possible nearest neighbor movements,
for one or two pairs of elements for a 2x2 matrix.

The four elements of a 2x2 matrix can also be rotated clockwise by 1, 2 or 3 positions
(Figure 5a).  This is equivalent to rotating counter-clockwise by 3, 2 or 1 position.  Also,
rotating by 2 positions is equivalent to swapping both the diagonal and anti-diagonal elements,
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as already covered in Figure 4c.  Hence, we need only consider rotating clockwise or anti-
clockwise by 1 position.
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Figure 5: Rotations of a 2x2 matrix and its embedded triangles

A 2x2 matrix contains four triangles, each of which can be rotated clockwise or anti-
clockwise by 1 position.  This results in 8 different permutations of the 2x2 matrix, as shown
in Figure 5b.  Triangles are useful for representing non-rectangular shapes.
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We postulate that these permutations of 2x2 matrices and triangles should be efficiently
supported, at all subword sizes (powers of 2), for use in decomposable permutations of 2-D
objects. What subword permutation instructions can achieve these common data
rearrangements?

4.2.  Check, Exchange and Excheck operations

To achieve these common data rearrangements, we only need to define three new subword
permutation primitives (see Table 2).  The check instruction allows the downward and upward
swapping of elements, the exchange instruction allows the right and left movement, while the
excheck instruction allows the rotation of a triangle of three elements within a 2x2 matrix.
The mixL and mixR operations, defined earlier, achieve the swapping of diagonal elements.

The check instruction performs a checkerboard pattern: it selects alternately from the
corresponding subwords in the two source registers, for each position in the result register (see
Table 2).  Exchange is an operation on a single source register: it swaps adjacent subwords in
each pair of consecutive subwords. Excheck can be described as a composite operation: it
performs a check on the two source registers, followed by an exchange operation on the result.

Table 2: Definition of Check, Exchange and Excheck

4.3.   Sufficiency and efficiency of permutation primitives

In Table 3, we systematically enumerate the permutations of area-mapped 2x2 matrices, to
verify that the subword permutation instructions defined above can indeed perform all these
permutations efficiently.  R1 and R2 contain four 2x2 matrices.  It is easier to follow just the
leftmost matrix (in bold), which is labeled as in figures 4-6, initially “a b” in R1 and “A B” in
R2.  The permutations are enumerated as follows: each of the 4 elements in a resulting 2x2
matrix can be in the top left corner in R3.  Thereafter, each of the 3 remaining elements can be
in the top right corner in R3.  This gives 12 possibilities for the top row, which is used for the
numeric numbering of the cases.  The two remaining elements of each 2x2 matrix are in the
bottom row in R4, and their two possible orderings give the (a) and (b) numbering in Table 3.

Register Contents:
R1 = a b c d e f g h
R2 = A B C D E F G H

Instruction: Definition:
check,8   R1,R2,R3 R3 = a B c D e F g H
check,16  R1,R2,R3 R3 = a b C D e f G H
check,32  R1,R2,R3 R3 = a b c d E F G H

exchange,8   R1,R3 R3 = b a d c f e h g
exchange,16  R1,R3 R3 = c d a b g h e f
exchange,32  R1,R3 R3 = e f g h a b c d

excheck,8   R1,R2,R3 R3 = B a D c F e H g
excheck,16  R1,R2,R3 R3 = C D a b G H e f
excheck,32  R1,R2,R3 R3 = E F G H a b c d
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Table 3: All Permutations of Four Area-Mapped 2x2 Matrices

Operand
registers:

R1 = a b c d e f g h
R2 = A B C D E F G H

Result Registers: Instructions Used: Type of Data Movement:
1(a)
a at top left

R3 = a b c d e f g h
R4 = A B C D E F G H

;R3=R1
;R4=R2

identity permutation

1(b) R3 = a b c d e f g h
R4 = B A D C F E H G

;R3=R1
;R4=exchange(R2)

swap bottom row elements right-
left

2(a) R3 = a B c D e F g H
R4 = A b C d E f G h

;R3=check(R1,R2)
;R4=check(R2,R1)

swap right column elements up-
down

2(b) R3 = a B c D e F g H
R4 = b A d C f E h G

;R3=check(R1,R2)
;R4=excheck(R2,R1)

rotate bottom-right triangle anti-
clockwise

3(a) R3 = a A c C e E g G
R4 = b B d D f F h H

;R3=mixL(R1,R2)
;R4=mixR(R1,R2)

swap diagonal elements
= transpose

3(b) R3 = a A c C e E g G
R4 = B b D d F f H h

;R3=mixL(R1,R2)
;R4=mixR(R2,R1)

rotate bottom-right triangle
clockwise

4(a)
b at top left

R3 = b a d c f e h g
R4 = A B C D E F G H

;R3=exchange(R1)
;R4=R2

swap top row elements right-left

4(b) R3 = b a d c f e h g
R4 = B A D C F E H G

;R3=exchange(R1)
;R4=exchange(R2)

swap both rows’ elements right-
left

5(a) R3 = b B d D f F h H
R4 = A a C c E e G g

;R3=mixR(R1,R2)
;R4=mixL(R2,R1)

rotate top-right triangle anti-
clockwise

5(b) R3 = b B d D f F h H
R4 = a A c C e E g G

;R3=mixR(R1,R2)
;R4=mixL(R1,R2)

rotate anti-clockwise 1 element

6(a) R3 = b A d C f E h G
R4 = a B c D e F g H

;R3=excheck(R2,R1)
;R4=check(R1,R2)

rotate top-left triangle anti-
clockwise

6(b) R3 = b A d C f E h G
R4 = B a D c F e H g

;R3=excheck(R2,R1)
;R4=excheck(R1,R2)

7(a)
A at top left

R3 = A a C c E e G g
R4 = b B d D f F h H

;R3=mixL(R2,R1)
;R4=mixR(R1,R2)

rotate top-left triangle clockwise

7(b) R3 = A a C c E e G g
R4 = B b D d F f H h

;R3=mixL(R2,R1)
;R4=mixR(R2,R1)

rotate clockwise 1 element

8(a) R3 = A b C d E f G h
R4 = a B c D e F g H

;R3=check(R2,R1)
;R4=check(R1,R2)

swap left column elements up-
down

8(b) R3 = A b C d E f G h
R4 = B a D c F e H g

;R3=check(R2,R1)
;R4=excheck(R1,R2)

rotate bottom-left triangle
clockwise

9(a) R3 = A B C D E F G H
R4 = a b c d e f g h

;R3=R2
;R4=R1

swap left and right column
elements up-down

9(b) R3 = A B C D E F G H
R4 = b a d c f e h g

;R3=R2
;R4=exchange(R1)

10(a)
B at top left

R3 = B a D c F e H g
R4 = A b C d E f G h

;R3=excheck(R1,R2)
;R4=check(R2,R1)

rotate top-right triangle clockwise

10(b) R3 = B a D c F e H g
R4 = b A d C f E h G

;R3=excheck(R1,R2)
;R4=excheck(R2,R1)

11(a) R3 = B b D d F f H h
R4 = a A c C e E g G

;R3=mixR(R2,R1)
;R4=mixL(R1,R2)

rotate bottom-left triangle anti-
clockwise

11(b) R3 = B b D d F f H h
R4 = A a C c E e G g

;R3=mixR(R2,R1)
;R4=mixL(R2,R1)

swap anti-diagonal elements

12(a) R3 = B A D C F E H G
R4 = a b c d e f g h

;R3=exchange(R2)
;R4=R1

12(b) R3 = B A D C F E H G
R4 = b a d c f e h g

;R3=exchange(R2)
;R4=exchange(R1)

swap diagonal and anti-diagonal
elements =rotate clockwise by 2

The subword permutation instructions used to achieve each of the 2x2 block permutations
are shown. Only the 5 subword permutation primitives defined earlier are needed: mixL,
mixR, exchange, check, and excheck.  If the processor has at least two permutation units, then
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each case in Table 3 can be executed in one cycle, since there are no dependencies in
generating R3 and R4.  This establishes the efficiency of these permutation primitives.

Each 2x2 matrix permutation is also labeled with one of the 20 data movements (including
identity) described in Figures 4c, 5a and 5b.  There are four permutations in Table 3 that are
not labeled with a data movement described earlier.  They correspond to more esoteric data
rearrangements of a 2x2 matrix, described best as changing rows into diagonals, and changing
diagonals into columns (Figure 6).  Even though these four permutations were not initially
identified as data rearrangements to be supported, the permutation primitives we defined
efficiently support them.  This supports the thesis that if we can define permutation primitives
that somehow form a basis set, they can be used to implement other permutations that may be
needed in algorithms yet to be invented.
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Figure 6: Four unlabeled permutations of a 2x2 matrix

4.4.  Repeating permutations on smaller subsets of subwords

The exchange instruction can be replaced by a more general permset instruction, which
repeats a permutation on a subset of elements over the rest of the elements in the register.
Permset is also a generalization of the permute instruction in MAX-2 [4].  The subwords in
the source register are numbered, and permute specifies the new ordering desired in terms of
this numbering.  The mux instruction in IA-64 [15] and the vperm instruction in Altivec [16]
are similar.  Table 4 gives examples of this permute instruction on 8-bit and 16-bit subwords.

Table 4: Examples of Permute Instruction on 8-bit and 16-bit Subwords

Operand register: R1 = a b c d e f g h
permute Instruction Result register contents Type of Permutation
permute,8,01234567   R1, Rt Rt = a b c d e f g h identity permutation
permute,8,10325476   R1, Rt Rt = b a d c f e h g exchange
permute,8,66666666   R1, Rt Rt = g g g g g g g g broadcast
permute,8,76543210   R1, Rt Rt = h g f e d c b a reverse
permute,8,05276341   R1, Rt Rt = a f c h g d e b arbitrary permutation
permute,8,55000366   R1, Rt Rt = f  f a a a d g g permutation with repetitions
permute,16,0213         R1, Rt Rt = a b e f c d g h permuting four 16-bit subwords

There is a limit to the efficiency of the permute instruction for permuting many subwords,
since the control bits quickly exceed the number of bits permuted.  Permuting four subwords
requires only 8 control bits, which can be encoded in the permute instruction itself [4, 15].
Beyond four elements and up to sixteen elements, any arbitrary permutation can still be
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performed with one instruction, by providing the control bits for the permutation in a second
source register [16], rather than in the 32-bit instruction.  Permuting 32 elements requires 160
bits, and permuting 64 elements requires 384 bits (n*log n bits).  Hence, permuting more than
16 elements cannot be achieved by a single instruction with two source registers, using this
method of specifying permutations.

To permute more subwords without increasing the number of control bits required, we
define a new permset instruction which permutes a subset of m subwords, where m is less
than the number of subwords in the register.  The same permutation is repeated on consecutive
subsets of m subwords.  If the total number of subwords in the register is not a multiple of m,
we can pad this last set of subwords with zeros.

Table 5: Replacing 8-element Permute with 4-element Permset instructions

Permute example Equivalent Permset instructions Type of permutation
permute,8,01234567   R1, Rt permset, 8,4,0123   R1, Rt identity
permute,8,10325476   R1, Rt permset, 8,4,1032   R1, Rt exchange
permute,8,66666666   R1, Rt permset, 8,4,2222   R1, Rt

permset,16,4,2222  Rt, Rt
broadcast

permute,8,76543210   R1, Rt permset, 8,4,3210   R1, Rt
permset,16,4,2301  Rt, Rt

reverse

A permute instruction can be turned into a permset instruction, by inserting a new
parameter which specifies the number of elements to be permuted in each set. In Table 5, this
can be a second parameter, inserted between the two existing parameters of subword size and
permutation control bits.  Using this new permset instruction, the first four permutations in
Table 4 can also be specified as permutations on sets of 4 elements, as shown in Table 5.  The
identity and exchange operations can be replaced by exactly one such permset instruction.
The broadcast and reverse operations each need two permset instructions, with 4-element
permute sets. The next two permute instructions in Table 4 cannot be accomplished in 1 or 2
instructions, because of the lack of symmetry in the permutation done on consecutive sets of 4
elements.  So, while the permset instruction with 4-element sets is not as general as the full
permute instruction on 8 elements, it can specify all possible permutations of 2x2 matrices,
with lower implementation cost.

5. Alphabet of Subword Permutation Primitives

An alphabet is a small set of basic primitives from which words, phrases, sentences,
paragraphs and stories can be built.  Many of these stories and words were not even conceived
when the alphabet was designed.  We propose an alphabet of fundamental permutation
primitives, which are simple yet powerful enough to express all data rearrangement needs of
current and future 2-D media processing programs.

The mix operations appear to be truly fundamental, selecting fairly between elements across
the width of both source registers, embodying the powerful even-odd paradigm.   Although the
check instruction can be derived from the mix operation, it can also be considered a
fundamental permutation since it embodies the checkerboard pattern.  The exchange operation,
while a useful permutation primitive in itself, can be replaced by the more general permset
instruction, as described above.

An initial alphabet of subword permutation primitives is shown in Figure 7, including mixL,
mixR, permset, check and excheck, defined on 8, 16 and 32 bit subwords.  For very low cost
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implementations, at slightly reduced performance, a minimal alphabet could exclude check
and excheck.  Check may be excluded from a minimal set, because a Shift_Left of the second
operand, followed by a mixL instruction can accomplish it.  Excheck is the composition of
check followed by exchange, so it may also be omitted from a minimal set of fundamental
permutations.  They are included in the initial alphabet for efficiency and uniformity in
performance, so that every permutation of a basic 2x2 matrix, as enumerated in Table 3, can be
done in a single cycle (or a single step).

Minimal Alphabet:
mixL, mixR on 8, 16 and 32 bit subwords

permset on 8, 16 and 32 bit subwords, with 4-element sets

Additional Primitives:
check on 8, 16 and 32-bit subwords

excheck on 8, 16 and 32-bit subwords

Figure 7: Alphabet A of Subword Permutation Primitives

The minimal set of mixL, mixR and permset may be further reduced depending on the size
of the registers in the processor.  For example, if registers are only 64 bits wide, then
permutation instructions for the two 32-bit subwords may not be needed, since they can easily
be specified as permutations on the four 16-bit subwords.  These permutation instructions may
also be extended down to subwords of 4 bits, 2 bits and 1 bit, especially if it is also desired to
support permutations for cryptography efficiently.

6. Summary

MicroSIMD architecture incorporating subword parallelism is very efficient for application-
specific media processors, as well as for fast multimedia information processing in general-
purpose microprocessors.  This is because, in the large majority of cases, microSIMD
architectures can exploit the data-parallelism present in multimedia programs as efficiently as
other more expensive parallel architectures.  The reduced complexity in register ports and
register bypassing in microSIMD architectures results in faster cycle times, less area and less
design complexity for the same degree of parallelism as other parallel architectures like VLIW,
superscalar, or conventional SIMD or MIMD parallel processor architectures [13].

We pose the problem of finding a small set of fundamental subword permutation operations
that can be used efficiently for current and future two-dimensional multimedia programs.  Such
a subword permutation instruction rearranges data between subword tracks in microSIMD
architectures, performing a function like that of interconnection networks which move data
between parallel processors in conventional SIMD or MIMD parallel processor architectures.
While this initially appears to be an intractable problem, this paper describes a novel approach
to solving this problem systematically.

We first describe how 2-dimensional objects are loaded into registers as packed subwords in
area-mapped format, corresponding to how 2-dimensional data is usually stored in memory.
We use the 2x2 matrix as a basic building block to which 2-dimensional frames of pixels and
2-D objects can be hierarchically decomposed.  We then characterize the interesting
permutation operations of this basic 2x2 matrix, as well as the four triangles that it contains.
These are vertical, horizontal, diagonal, and rotational rearrangements of various kinds.

We define new subword permutation primitives: check, exchange, excheck, and permset.
The check instruction allows the downward and upward swapping of elements, the exchange
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instruction allows the right and left movement, while the excheck instruction allows the
rotation of triangles.  The mixL and mixR operations defined earlier [4] achieve the swapping
of diagonal elements.  Permset allows the permutation of a smaller set of subwords to be
repeated on other subwords in the source register, enabling symmetric permutations to be
specified on many more elements, without increasing the number of permutation control bits.
Exchange is one example of the permset instruction.

We then define an initial alphabet (Alphabet A) of subword permutations which contains
mix, permset, check and excheck.  Processors designed for high performance can implement
Alphabet A, while very cost sensitive processors can choose to implement an even smaller set -
a minimal alphabet of only mix and permset instructions.  The omitted instructions, check and
excheck in Alphabet A, can be composed from mix and permset.  That this minimal set is
essentially equivalent to the set consisting of mix and permute in MAX-2 is a partial
validation of the sufficiency of the subword permutation instructions chosen for MAX-2 [4].
We verify that all the 24 permutations of a 2x2 matrix can be obtained using only instructions
from Alphabet A, in a single cycle, in a processor with at least two permutation units.

Just as subword parallelism is useful beyond multimedia processing for accelerating all
forms of data-parallel computations on lower precision data, we expect that subword
permutations will be equally useful.  The problem is that there are so many possible
rearrangements of a rectangular grid of pixels of arbitrary size that it is extremely difficult to
select a set of fundamental permutation primitives, from which all other permutations can be
built.  This paper has proposed a systematic approach to solving this problem, and has
proposed a very small alphabet of fundamental subword permutation primitives for existing
and future two-dimensional processing in microSIMD architectures.
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