
MULTIMEDIA INSTRUCTIONS IN IA-64

Ruby B. Lee, A. Murat Fiskiran and Abdulla Bubshait

Department of Electrical Engineering
Princeton University, Princeton, NJ 08540, USA

rblee@ee.princeton.edu

ABSTRACT
We discuss the integer and floating-point multimedia
instructions in the IA-64 instruction-set architecture (ISA).
These multimedia instructions implement subword parallelism,
also called packed parallelism or microSIMD parallelism. They
are both a subset and a superset of the multimedia instructions
from the predecessor architectures: MMX, SSE and SSE-2 from
the IA-32 architecture, and MAX and MAX-2 from the PA-
RISC architecture. We discuss the novel subword permutation
instructions that are new in the IA-64, and their effectiveness, in
combination with the subword arithmetic instructions, for
speeding up multimedia programs. These packed arithmetic and
permutation instructions can also be used in media processors
and DSPs for very fast and cost-effective multimedia processing.

1. INTRODUCTION

The IA-64 instruction-set architecture (ISA) includes a rich set of
multimedia instructions to accelerate the processing of different
forms of multimedia data [1]. These instructions implement the
ISA concept of subword parallelism [2,3], also called packed
parallelism [4] or microSIMD parallelism [5]. In microSIMD
parallelism, data is partitioned into smaller units called
subwords. In IA-64, a subword can be 8, 16 or 32-bits long, thus,
multiple subwords can be accommodated in a single register,
which is 64-bits long.

Packed subwords permit faster multimedia processing because of
two main reasons. Multimedia data is typically low-precision
data, such as 8-bit pixels in a video application, or 16-bit samples
in an audio application [2,3,4]. Representation, storage and
processing of these data is more efficient when microSIMD
parallelism is used, since multiple low-precision data elements
can be loaded into a single register, and processed in a single
cycle. Secondly, multimedia applications have a great deal of
data parallelism, and microSIMD parallelism exploits this by
allowing parallel processing of subwords, using the standard
word-oriented registers, datapaths, and pipeline control in
microprocessors. A packed add instruction on 8-bit subwords
performs eight subword add operations on the two 64-bit source
registers in a single cycle, with only slight modifications needed
to the 64-bit ALU (Figure 1).

MicroSIMD parallelism can be extended to include floating-
point (FP) data [1,6,11]. A 64-bit FP register can be partitioned
to include two single-precision FP numbers. Packed FP
instructions can operate on this data similar to packed integer

operations. This is useful for multimedia applications that use FP
data intensively, such as graphics geometry processing and high-
fidelity audio [7].

Ra:

Rb:

Rc:

Figure 1. Packed add instruction on 8-bit subwords.

Section 2 describes the integer and FP multimedia instructions in
Intel IA-64 architecture. Section 3 illustrates the performance
potential of these multimedia instructions with some typical
examples. Section 4 concludes the paper.

2. IA-64 MULTIMEDIA INSTRUCTIONS

IA-64 multimedia is both a subset and superset of the MAX-1 [2]
and MAX-2 [3] multimedia instructions in the PA-RISC
processors from Hewlett-Packard [8] and the MMX [4], SSE-1
and SSE-2 from Intel [6,9,11]. In chronological development,
IA-64 multimedia instructions were defined after MAX-1, MAX-
2 and MMX, around the same time as SSE-1 and before SSE-2.
Comprehensive survey of first generation multimedia ISAs is
given in [10], and of second generation ones, including Altivec
and 3DNow! in [11].

2.1 Packed Integer Ar ithmetic Instructions

Table 2 includes a summary of IA-64 packed integer arithmetic
instructions, describing the mathematical operations performed.
Packed add and packed subt r act instructions operate
with either saturation arithmetic or modular arithmetic. Packed
aver age and packed negat ed aver age are especially
useful in multimedia applications involving images and video,
such as MPEG [12]. SAD, which stands for “Sum of Absolute
Differences” , is a multi-cycle operation (usually pipelined) for
accelerating motion estimation in MPEG video compression.
Packed compar e instructions write a bit string of 1’s to the

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

281

target register for true comparison results, and a bit string of 0’s
for false results. Packed maxi mum and packed mi ni mum
instructions write the greater and smaller of the source subwords
to the target register respectively.

Packed mul t i pl y instructions have different variants
because subword-wise multiplication produces intermediate
products twice the size of the target register. Thus, only half of
the bits of the intermediate products can be written to the target
register. Packed mul t i pl y hi gh instruction chooses the
high order bits of the intermediate products, whereas packed
mul t i pl y l ow chooses the low order bits of the intermediate
products. Packed mul t i pl y shi f t permits a right shift of
the intermediate products before writing the low order bits to the
target register. Packed mul t i pl y odd and packed
mul t i pl y even only multiply the odd or even indexed
subwords of the source registers. This allows the full product to
be written to the target register.

Other packed integer instructions are packed shi f t and
packed shi f t and add instructions. The shift amounts can
be specified either as a constant in an immediate field (n) or as a
variable in a register (b).

2.2 Packed FP Ar ithmetic Instructions

Table 3 summarizes IA-64 packed FP instructions. In t he
packed FP mul t i pl y of two single-precision (SP)
operands, each product has the same number of bits as the
operands since it is also a single-precision FP number. This is
simpler than integer multiply, where the product is twice as long
in number of bits.

The basic FP microSIMD instruction in IA-64 is the packed
FP mul t i pl y add operation, often cited as the most
frequently used operation in digital signal processing and
geometry processing. IA-64 has 3 variants of this. In packed
FP mul t i pl y add and packed FP mul t i pl y
subt r act , each pair of subwords in the first two source
registers are multiplied together, then the corresponding
subwords in the third source register are added (or subtracted)
from these products. A third variant, packed FP mul t i pl y
negat e add, negates the products before adding the
corresponding subwords from the third source register. These
operations are used to achieve basic packed FP add or
packed FP subt r act (by using FR1 as one of the first two
source registers), and packed FP mul t i pl y (by using FR0
as the third source register). When used as source registers in IA-
64 instructions, FR1 gives a constant value of 1 and FR0 gives a
constant value of 0.

2.3 Subword Permutation Instructions

Subword permutation instructions exist for both integers and FP
numbers (Table 4). Pack instructions, which also perform
saturation functions, are used to create smaller data types from
larger ones (Figure 2a). Unpack instructions are inverse of
pack instructions (Figure 2b). Mi x instructions come in two
variants and write alternating subwords from the two source
registers to the target register (Figures 2c and 2d). Either mi x or
unpack instructions are very useful for performing matrix

transpose of subwords packed into multiple registers. The
per mut e instruction performs any arbitrary permutation of four
16-bit integer subwords, with or without repetition of any
subword. It is called mux2 in IA-64, where 2 refers to 2-byte
subwords. The five variants of the mux1 instruction (Figure 3)
are carefully selected permutation primitives, new to IA-64. The
mi x and pack operations are also extended to packed FP
instructions. Here a new FP mi x l ef t r i ght version is
introduced, which concatenates the left subword of the first
source register with the right subword of the second source
register. Since IA-64 packs only two SP subwords in its extended
FP precision registers (82 bits), permuting the two subwords in a
register reduces to swapping them, as in the FP swap
instruction.

Ra:

Rb:

Rc:

Ra:

Rb:

Rc:

(a) (b)

(c) (d)

Ra:

Rb:

Rc:

Ra:

Rb:

Rc:

Figure 2. (a) Pack (b) Unpack hi gh. Unpack l ow is
symmetric. (c) Mi x l ef t (d) Mi x r i ght

Ra:

Rb:

Ra:

Rb:

Ra:

Rb:

Ra:

Rb:

Ra:

Rb:

(a) rev (b) mix

(c) shuf (d) alt

(e) brcst

Figure 3. Mux byt e instruction with its five variants.

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

282

3. EXAMPLES AND PERFORMANCE

3.1 Pixel Padding

Pixel padding is used to improve the accuracy of motion
estimation and compensation routines in the MPEG-4 video
compression. The data objects used in calculations are 8x8
macro-blocks, composed of 8-bit pixels. In our optimizations,
IA-64 subword permutation instructions are used to create
packed data, which are then efficiently manipulated by packed
arithmetic instructions. Other common operations in pixel
padding are matrix transposition and parallel averaging.
Transposition is efficiently handled by the mi x instruction [10]
and parallel averaging is performed by the packed aver age
instruction.

3.2 Shape Adaptive DCT

Shape Adaptive Discrete Cosine Transform (SA-DCT) is another
commonly used sub-routine in the MPEG-4 algorithm. In SA-
DCT, Discrete Cosine Transform is applied to arbitrary shaped
areas on the video object plane, as opposed to the rectangular
shaped frames as in MPEG-2. SA-DCT involves organizing
pixels using vertical shifts to make them suitable for a vertical
DCT pass. After the vertical DCT, pixels are re-organized using
horizontal shifts, and a final horizontal DCT is applied. IA-64
subword permutation instructions are used to prepare the
arbitrary shaped areas for subsequent DCT passes. In addition,
the DCT computation itself is also optimized. These
computations normally involve multiplication of pixels by
fractional integer constants such as 4140625.1 , which is an

approximation to 2 . Fractional integer multiplies are
optimized using packed shi f t r i ght add instructions
[10].

3.3 Split Radix FFT

Fast Fourier Transform (FFT) is a DSP function that is widely
used in DSP chips as well as in general-purpose processors for
applications such as audio decoding in MPEG video. We focus
on the Split Radix FFT (SR-FFT) which is an efficient FFT
implementation requiring relatively fewer FP multiplications.
Our optimizations are used on 16-element SR-FFT that operates
on single-precision FP numbers. Such precision is necessary to
produce the high-fidelity audio output. First, SP data is packed
into IA-64 FP registers to allow using packed FP instructions.
Additions on the complex plane are performed using packed
FP add. Multiplication by the imaginary constant j is realized
using the FP swap instruction. Complex multiplication is
performed by using two packed FP mul t i pl y add
instructions, and one FP swap instruction.

Simulation results are presented in Table 1 for four different
cases. In the unoptimized case, the Reference C code for the
algorithm is compiled with gcc without using any compiler
optimizations. In the basic optimizations case, SGI compiler is
used with simple compiler optimizations such as loop unrolling
and instruction rescheduling. In the manually optimized setting,
assembly code is hand coded to employ multimedia instructions
for subroutines such as matrix transposition or packed averaging.

To simulate code for these three cases, we use Hewlett-Packard’s
IA-64 simulator, SKI. Since SKI is an instruction-level
simulator, these results reflect the use of an infinitely wide
machine with unlimited resources. We report performance data
for a more restricted machine in our fourth simulation case,
shown as manually optimized 4G2M . Results for this case are
for a hypothetical IA-64 implementation with four general
functional units (4G) and two memory ports (2M). Instructions
are issued in superscalar fashion, rather than in bundles of three
as in IA-64 processors like Itanium. Integer and FP multiply
instructions are assumed to have a latency of three cycles.

TABLE 1. Pathlength (PL), execution cycles (CYC),
instructions per cycle (IPC) and speedup (S).

Pixel Padding PL CYC IPC S

Unoptimized (gcc) 49716 31431 1.58 1

Basic optimizations (SGI) 11697 2896 4.04 10.9

Manually optimized 360 82 4.39 383.3

Manually optimized 4G2M 360 107 3.36 293.7

4-Point SA-DCT PL CYC IPC S

Unoptimized (gcc) 320 116 2.76 1

Basic optimizations (SGI) 173 97 1.78 1.2

Manually optimized 21 9 2.33 12.8

Manually optimized 4G2M 21 13 1.62 8.9

Split Radix FFT PL CYC IPC S

Unoptimized (gcc) 1256 435 1.95 1

Basic optimizations (SGI) 175 134 1.31 3.2

Manually optimized 106 16 6.63 27.2

Manually optimized 4G2M 106 45 2.36 9.6

4. CONCLUSION
We have described the multimedia instructions in the Intel IA-64
architecture under three broad classes: packed integer arithmetic
instructions, packed FP arithmetic instructions, and subword
permutation instructions. Multimedia information processing has
been shown to benefit from all these three instruction classes. For
instance, applications that involve processing image files like
bitmaps or JPEG, primarily operate on low-precision integer
data. For such applications, integer microSIMD extensions prove
most useful. On the other hand, applications involving audio or
graphics operate on single-precision FP data, which require FP
microSIMD instructions. Subword permutation instructions are
useful whenever data needs to be packed, unpacked or
reorganized, such as in matrix transposition. In order to illustrate
the benefits of microSIMD parallelism, we considered three
common multimedia algorithms, and optimized them to use IA-
64 multimedia instructions. Our simulations demonstrate the
impressive speedups that can be obtained through using
microSIMD extensions in multimedia applications.

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

283

TABLE 2. Packed integer arithmetic instructions in IA-64.

Integer Instruction Descr iption1
P. add

iii bad +=
P. add w/ sat .

iii bad +=
P. subt r act

iii bad −=
P. subt r act w/ sat .

iii bad −=
P. aver age),(iii baavgd =
P. negat ed aver age),(iii baavgd −=
P. compar e),(iii bacompared =
P. maxi mum),max(iii bad =
P. mi ni mum),min(iii bad =
SAD �

−= ii bad
P. mul t i pl y l ow

lowiii bad)*(=
P. mul t i pl y hi gh

highiii bad)*(=

P. mul t i pl y shi f t
lowiii nbad])*[(>>=

P. mul t i pl y even
iiii badd 22122 *],[=+

P. mul t i pl y odd
1212122 *],[+++ = iiii badd

P. shi f t l ef t add
iii bnad +<<=)(

P. shi f t r i ght add
iii bnad +>>=)(

P. shi f t l ef t nad ii <<=
P. shi f t l ef t var . bad ii <<=
P. shi f t r i ght nad ii >>=
P. shi f t r i ght var . bad ii >>=

TABLE 3. Packed FP arithmetic instructions in IA-64.

FP Instruction Descr iption1
P. mul t i pl y add

iiii cbad += *
P. mul t i pl y subt r act

iiii cbad −= *
P. mul t i pl y negat e add

iiii cbad +−= *
P. negat e

ii ad −=
P. absol ut e val ue

ii ad =
P. negat ed absol ut e
val ue ii ad −=
P. compar e),(iii bacompared =
P. maxi mum),max(iii bad =
P. mi ni mum),min(iii bad =
P. maxi mum of absol ut e
val ues),max(iii bad =

1 In Tables 2 and 3, ia , ib and ic denote subwords in the source

registers, while id denotes subwords in the target register.

P. mi ni mum of absol ut e
val ues),min(iii bad =
P. r eci pr ocal squar e
r oot appr oxi mat e ii ad 1=
P. r eci pr ocal
appr oxi mat e ii ad 1=

TABLE 4. Subword permutation instructions in IA-64.

Instruction
Mux2 or Per mut e n subwor ds
Mux1. r ev
Mux1. mi x
Mux1. shuf f l e
Mux1. al t
Mux1. br oadcast
Mi x { l ef t , r i ght }
Unpack { hi gh, l ow}
Pack
FP mi x { l ef t , r i ght , l ef t _r i ght }
FP swap
FP pack

5. REFERENCES
[1] Intel, “ IA-64 Architecture Software Developer’s Manual,

Vol. 3: ISA Reference,” Rev 1.1, July 2000, ID# 245319-
002.

[2] R.B. Lee, “Accelerating Multimedia with enhanced
Microprocessors,” IEEE Micro, Vol. 15, No. 2, April
1995, pp. 22-32.

[3] R.B. Lee, “Subword Parallelism with MAX-2,” IEEE
Micro, Vol. 16, No. 4, August 1996, pp. 51-59.

[4] A. Peleg, U. Weiser, “MMX Technology Extension to the
Intel Architecture,” IEEE Micro, Vol. 16, No. 4, August
1996, pp. 42-50.

[5] R.B. Lee, “Efficiency of MicroSIMD Architectures and
Index-Mapped Data for Media Processors,” Proceedings
of. IS&T/SPIE Symposium on Electric Imaging: Media
Processors 99, January 25-29, 1999, pp. 34-46.

[6] Intel, “ IA-32 Intel Architecture Software Developer’s
Manual” , Volume 2: ISA Reference,” 2000.

[7] R.B. Lee and M. Smith, “Media Processing: A New
Design Target,” IEEE Micro, Vol. 16, No. 4, August
1996, pp. 6-9.

[8] G. Kane, “PA-RISC 2.0 Architecture,” 1996, Prentice
Hall, ISBN 0-13-182734-0.

[9] Intel, “ Intel Architecture Software Developer’s Manual,
Volume 2: ISA Reference,” 1999, Order Code 243191.

[10] R.B. Lee, “Multimedia Extensions for General-Purpose
Processors,” Proc. IEEE SIPS 97, Nov. 1997, pp. 9-23.

[11] R.B. Lee, A.M. Fiskiran, “Multimedia Instructions in
Microprocessors for Native Signal Processing” , invited
book chapter in press.

[12] V. Bhaskaran, K. Konstantinides, R.B. Lee and J.P. Beck,
“Algorithmic and Architectural Enhancements for Real-
Time MPEG-1 Decoding on a General Purpose RISC
Workstation,” IEEE Trans. on Circuits and Systems for
Video Technology, Vol. 5, No. 5, Oct. 1995, pp. 380-386.

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

284

