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ABSTRACT 
We discuss the integer and floating-point multimedia 
instructions in the IA-64 instruction-set architecture (ISA). 
These multimedia instructions implement subword parallelism, 
also called packed parallelism or microSIMD parallelism. They 
are both a subset and a superset of the multimedia instructions 
from the predecessor architectures: MMX, SSE and SSE-2 from 
the IA-32 architecture, and MAX and MAX-2 from the PA-
RISC architecture. We discuss the novel subword permutation 
instructions that are new in the IA-64, and their effectiveness, in 
combination with the subword arithmetic instructions, for 
speeding up multimedia programs. These packed arithmetic and 
permutation instructions can also be used in media processors 
and DSPs for very fast and cost-effective multimedia processing. 

1. INTRODUCTION 

The IA-64 instruction-set architecture (ISA) includes a rich set of 
multimedia instructions to accelerate the processing of different 
forms of multimedia data [1]. These instructions implement the 
ISA concept of subword parallelism [2,3], also called packed 
parallelism [4] or microSIMD parallelism [5]. In microSIMD 
parallelism, data is partitioned into smaller units called 
subwords. In IA-64, a subword can be 8, 16 or 32-bits long, thus, 
multiple subwords can be accommodated in a single register, 
which is 64-bits long. 

Packed subwords permit faster multimedia processing because of 
two main reasons. Multimedia data is typically low-precision 
data, such as 8-bit pixels in a video application, or 16-bit samples 
in an audio application [2,3,4]. Representation, storage and 
processing of these data is more efficient when microSIMD 
parallelism is used, since multiple low-precision data elements 
can be loaded into a single register, and processed in a single 
cycle. Secondly, multimedia applications have a great deal of 
data parallelism, and microSIMD parallelism exploits this by 
allowing parallel processing of subwords, using the standard 
word-oriented registers, datapaths, and pipeline control in 
microprocessors. A packed add instruction on 8-bit subwords 
performs eight subword add operations on the two 64-bit source 
registers in a single cycle, with only slight modifications needed 
to the 64-bit ALU (Figure 1). 

MicroSIMD parallelism can be extended to include floating-
point (FP) data [1,6,11]. A 64-bit FP register can be partitioned 
to include two single-precision FP numbers. Packed FP 
instructions can operate on this data similar to packed integer 

operations. This is useful for multimedia applications that use FP 
data intensively, such as graphics geometry processing and high-
fidelity audio [7].  
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Figure 1. Packed add instruction on 8-bit subwords. 

Section 2 describes the integer and FP multimedia instructions in 
Intel IA-64 architecture. Section 3 illustrates the performance 
potential of these multimedia instructions with some typical 
examples. Section 4 concludes the paper. 

2. IA-64 MULTIMEDIA INSTRUCTIONS 

IA-64 multimedia is both a subset and superset of the MAX-1 [2] 
and MAX-2 [3] multimedia instructions in the PA-RISC 
processors from Hewlett-Packard [8] and the MMX [4], SSE-1 
and SSE-2 from Intel [6,9,11]. In chronological development, 
IA-64 multimedia instructions were defined after MAX-1, MAX-
2 and MMX, around the same time as SSE-1 and before SSE-2. 
Comprehensive survey of first generation multimedia ISAs is 
given in [10], and of second generation ones, including Altivec 
and 3DNow! in [11].  

2.1 Packed Integer  Ar ithmetic Instructions 

Table 2 includes a summary of IA-64 packed integer arithmetic 
instructions, describing the mathematical operations performed. 
Packed add and packed subt r act  instructions operate 
with either saturation arithmetic or modular arithmetic. Packed 
aver age and packed negat ed aver age are especially 
useful in multimedia applications involving images and video, 
such as MPEG [12]. SAD, which stands for “Sum of Absolute 
Differences” , is a multi-cycle operation (usually pipelined) for 
accelerating motion estimation in MPEG video compression. 
Packed compar e instructions write a bit string of 1’s to the 
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target register for true comparison results, and a bit string of 0’s 
for false results. Packed maxi mum and packed mi ni mum 
instructions write the greater and smaller of the source subwords 
to the target register respectively. 

Packed mul t i pl y  instructions have different variants 
because subword-wise multiplication produces intermediate 
products twice the size of the target register. Thus, only half of 
the bits of the intermediate products can be written to the target 
register. Packed mul t i pl y  hi gh instruction chooses the 
high order bits of the intermediate products, whereas packed 
mul t i pl y  l ow chooses the low order bits of the intermediate 
products. Packed mul t i pl y  shi f t  permits a right shift of 
the intermediate products before writing the low order bits to the 
target register. Packed mul t i pl y  odd and packed 
mul t i pl y  even only multiply the odd or even indexed 
subwords of the source registers. This allows the full product to 
be written to the target register. 

Other packed integer instructions are packed shi f t  and 
packed shi f t  and add instructions. The shift amounts can 
be specified either as a constant in an immediate field (n) or as a 
variable in a register (b).  

2.2 Packed FP Ar ithmetic Instructions 

Table 3 summarizes IA-64 packed FP instructions. In t he 
packed FP mul t i pl y  of two single-precision (SP) 
operands, each product has the same number of bits as the 
operands since it is also a single-precision FP number. This is 
simpler than integer multiply, where the product is twice as long 
in number of bits. 

The basic FP microSIMD instruction in IA-64 is the packed 
FP mul t i pl y  add operation, often cited as the most 
frequently used operation in digital signal processing and 
geometry processing. IA-64 has 3 variants of this. In packed 
FP mul t i pl y  add and packed FP mul t i pl y  
subt r act , each pair of subwords in the first two source 
registers are multiplied together, then the corresponding 
subwords in the third source register are added (or subtracted) 
from these products. A third variant, packed FP mul t i pl y  
negat e add, negates the products before adding the 
corresponding subwords from the third source register. These 
operations are used to achieve basic packed FP add or 
packed FP subt r act  (by using FR1 as one of the first two 
source registers), and packed FP mul t i pl y  (by using FR0 
as the third source register). When used as source registers in IA-
64 instructions, FR1 gives a constant value of 1 and FR0 gives a 
constant value of 0. 

2.3 Subword Permutation Instructions 

Subword permutation instructions exist for both integers and FP 
numbers (Table 4). Pack  instructions, which also perform 
saturation functions, are used to create smaller data types from 
larger ones (Figure 2a). Unpack  instructions are inverse of 
pack  instructions (Figure 2b). Mi x  instructions come in two 
variants and write alternating subwords from the two source 
registers to the target register (Figures 2c and 2d). Either mi x or 
unpack  instructions are very useful for performing matrix 

transpose of subwords packed into multiple registers. The 
per mut e instruction performs any arbitrary permutation of four 
16-bit integer subwords, with or without repetition of any 
subword. It is called mux2 in IA-64, where 2 refers to 2-byte 
subwords. The five variants of the mux1 instruction (Figure 3) 
are carefully selected permutation primitives, new to IA-64. The 
mi x  and pack  operations are also extended to packed FP 
instructions. Here a new FP mi x l ef t  r i ght  version is 
introduced, which concatenates the left subword of the first 
source register with the right subword of the second source 
register. Since IA-64 packs only two SP subwords in its extended 
FP precision registers (82 bits), permuting the two subwords in a 
register reduces to swapping them, as in the FP swap 
instruction. 
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Figure 2. (a) Pack  (b) Unpack hi gh.  Unpack l ow is 
symmetric. (c) Mi x l ef t  (d) Mi x r i ght   
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(c) shuf (d) alt

(e) brcst  

Figure 3. Mux byt e instruction with its five variants. 
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3. EXAMPLES AND PERFORMANCE 

3.1 Pixel Padding 

Pixel padding is used to improve the accuracy of motion 
estimation and compensation routines in the MPEG-4 video 
compression. The data objects used in calculations are 8x8 
macro-blocks, composed of 8-bit pixels. In our optimizations, 
IA-64 subword permutation instructions are used to create 
packed data, which are then efficiently manipulated by packed 
arithmetic instructions. Other common operations in pixel 
padding are matrix transposition and parallel averaging. 
Transposition is efficiently handled by the mi x instruction [10] 
and parallel averaging is performed by the packed aver age 
instruction.  

3.2 Shape Adaptive DCT 

Shape Adaptive Discrete Cosine Transform (SA-DCT) is another 
commonly used sub-routine in the MPEG-4 algorithm. In SA-
DCT, Discrete Cosine Transform is applied to arbitrary shaped 
areas on the video object plane, as opposed to the rectangular 
shaped frames as in MPEG-2. SA-DCT involves organizing 
pixels using vertical shifts to make them suitable for a vertical 
DCT pass. After the vertical DCT, pixels are re-organized using 
horizontal shifts, and a final horizontal DCT is applied. IA-64 
subword permutation instructions are used to prepare the 
arbitrary shaped areas for subsequent DCT passes. In addition, 
the DCT computation itself is also optimized. These 
computations normally involve multiplication of pixels by 
fractional integer constants such as 4140625.1 , which is an 

approximation to 2 . Fractional integer multiplies are 
optimized using packed shi f t  r i ght  add instructions 
[10]. 

3.3 Split Radix FFT 

Fast Fourier Transform (FFT) is a DSP function that is widely 
used in DSP chips as well as in general-purpose processors for 
applications such as audio decoding in MPEG video. We focus 
on the Split Radix FFT (SR-FFT) which is an efficient FFT 
implementation requiring relatively fewer FP multiplications. 
Our optimizations are used on 16-element SR-FFT that operates 
on single-precision FP numbers. Such precision is necessary to 
produce the high-fidelity audio output. First, SP data is packed 
into IA-64 FP registers to allow using packed FP instructions. 
Additions on the complex plane are performed using packed 
FP add. Multiplication by the imaginary constant j is realized 
using the FP swap instruction. Complex multiplication is 
performed by using two packed FP mul t i pl y  add 
instructions, and one FP swap instruction.  

Simulation results are presented in Table 1 for four different 
cases. In the unoptimized case, the Reference C code for the 
algorithm is compiled with gcc without using any compiler 
optimizations. In the basic optimizations case, SGI compiler is 
used with simple compiler optimizations such as loop unrolling 
and instruction rescheduling. In the manually optimized setting, 
assembly code is hand coded to employ multimedia instructions 
for subroutines such as matrix transposition or packed averaging.  

To simulate code for these three cases, we use Hewlett-Packard’s 
IA-64 simulator, SKI. Since SKI is an instruction-level 
simulator, these results reflect the use of an infinitely wide 
machine with unlimited resources. We report performance data 
for a more restricted machine in our fourth simulation case, 
shown as manually optimized 4G2M . Results for this case are 
for a hypothetical IA-64 implementation with four general 
functional units (4G) and two memory ports (2M). Instructions 
are issued in superscalar fashion, rather than in bundles of three 
as in IA-64 processors like Itanium. Integer and FP multiply 
instructions are assumed to have a latency of three cycles.  

TABLE 1. Pathlength (PL), execution cycles (CYC), 
instructions per cycle (IPC) and speedup (S). 

Pixel Padding PL CYC IPC S 

Unoptimized (gcc) 49716 31431 1.58 1 

Basic optimizations (SGI) 11697 2896 4.04 10.9 

Manually optimized 360 82 4.39 383.3 

Manually optimized 4G2M 360 107 3.36 293.7 

4-Point SA-DCT PL CYC IPC S 

Unoptimized (gcc) 320 116 2.76 1 

Basic optimizations (SGI) 173 97 1.78 1.2 

Manually optimized 21 9 2.33 12.8 

Manually optimized 4G2M 21 13 1.62 8.9 

Split Radix FFT PL CYC IPC S 

Unoptimized (gcc) 1256 435 1.95 1 

Basic optimizations (SGI) 175 134 1.31 3.2 

Manually optimized 106 16 6.63 27.2 

Manually optimized 4G2M 106 45 2.36 9.6 

 

4. CONCLUSION 
We have described the multimedia instructions in the Intel IA-64 
architecture under three broad classes: packed integer arithmetic 
instructions, packed FP arithmetic instructions, and subword 
permutation instructions. Multimedia information processing has 
been shown to benefit from all these three instruction classes. For 
instance, applications that involve processing image files like 
bitmaps or JPEG, primarily operate on low-precision integer 
data. For such applications, integer microSIMD extensions prove 
most useful. On the other hand, applications involving audio or 
graphics operate on single-precision FP data, which require FP 
microSIMD instructions. Subword permutation instructions are 
useful whenever data needs to be packed, unpacked or 
reorganized, such as in matrix transposition. In order to illustrate 
the benefits of microSIMD parallelism, we considered three 
common multimedia algorithms, and optimized them to use IA-
64 multimedia instructions. Our simulations demonstrate the 
impressive speedups that can be obtained through using 
microSIMD extensions in multimedia applications. 
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TABLE 2. Packed integer arithmetic instructions in IA-64. 

Integer  Instruction Descr iption1 
P. add 

iii bad +=  
P. add w/  sat .  

iii bad +=  
P. subt r act  

iii bad −=  
P. subt r act  w/  sat .  

iii bad −=  
P. aver age ),( iii baavgd =  
P. negat ed aver age ),( iii baavgd −=  
P. compar e ),( iii bacompared =  
P. maxi mum ),max( iii bad =  
P. mi ni mum ),min( iii bad =  
SAD �

−= ii bad  
P. mul t i pl y l ow 

lowiii bad )*(=  
P. mul t i pl y hi gh 

highiii bad )*(=  

P. mul t i pl y shi f t  
lowiii nbad ])*[( >>=  

P. mul t i pl y even 
iiii badd 22122 *],[ =+  

P. mul t i pl y odd 
1212122 *],[ +++ = iiii badd  

P. shi f t  l ef t  add 
iii bnad +<<= )(  

P. shi f t  r i ght  add 
iii bnad +>>= )(  

P. shi f t  l ef t  nad ii <<=  
P. shi f t  l ef t  var .  bad ii <<=  
P. shi f t  r i ght  nad ii >>=  
P. shi f t  r i ght  var .  bad ii >>=  

 

TABLE 3. Packed FP arithmetic instructions in IA-64. 

FP Instruction Descr iption1 
P. mul t i pl y add 

iiii cbad += *  
P. mul t i pl y subt r act  

iiii cbad −= *  
P. mul t i pl y negat e add 

iiii cbad +−= *  
P. negat e 

ii ad −=  
P. absol ut e val ue 

ii ad =  
P. negat ed absol ut e 
val ue ii ad −=  
P. compar e ),( iii bacompared =  
P. maxi mum ),max( iii bad =  
P. mi ni mum ),min( iii bad =  
P. maxi mum of  absol ut e 
val ues ),max( iii bad =  

                                                           
1 In Tables 2 and 3, ia , ib and ic denote subwords in the source 

registers, while id  denotes subwords in the target register.  

P. mi ni mum of  absol ut e 
val ues ),min( iii bad =  
P. r eci pr ocal  squar e 
r oot  appr oxi mat e ii ad 1=  
P. r eci pr ocal  
appr oxi mat e ii ad 1=  

 

TABLE 4. Subword permutation instructions in IA-64.  

Instruction 
Mux2 or  Per mut e n subwor ds 
Mux1. r ev 
Mux1. mi x 
Mux1. shuf f l e 
Mux1. al t  
Mux1. br oadcast  
Mi x { l ef t ,  r i ght }  
Unpack { hi gh,  l ow}  
Pack 
FP mi x { l ef t ,  r i ght ,  l ef t _r i ght }  
FP swap 
FP pack 
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