
Chapter I

Permutation Operations in
Block Ciphers

R. B. Lee I.1 , I.2, R. L. Rivest I.3, M. J. B. Robshaw I.4, Z. J. Shi I.2, Y. L. Yin I.2

New and emerging applications can change the mix of operations commonly used
within computer architectures. It is sometimes surprising when instruction-set ar-
chitecture (ISA) innovations intended for one purpose are used for other (initially
unintended) purposes. This chapter considers recent proposals for the processor
support of families of bit-level permutations. From a processor architecture point
of view, the ability to support very fast bit-level permutations may be viewed as
a further validation of the basic word-orientation of processors, and their ability
to support next-generation secure multimedia processing. However, bitwise permu-
tations are also fundamental operations in many cryptographic primitives and we
discuss the suitability of these new operations for cryptographic purposes.

I.1 Introduction

To support new user requirements such as digital multimedia processing and secure
information processing, the basic operations supported within new generation pro-
cessors might evolve. For a general-purpose microprocessor, it is desirable that any
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I. PERMUTATION OPERATIONS IN BLOCK CIPHERS

added instructions have multiple uses, rather than being specific to only one algo-
rithm or to one application. Since secure communications and networking have be-
come critical features of many applications, it would seem to be advantageous for the
architectural and cryptographic communities to explore the following questions. Are
there instruction-set architecture (ISA) innovations that may occur in a widespread
way that might also be used beneficially in the design of cryptographic algorithms?
Alternatively, are there desirable instructions, perhaps motivated by the design of
cryptographic algorithms, that might also be useful for other emerging applica-
tions? To begin exploring these questions, this chapter examines recently-proposed
bit permutation operations from the perspective of cipher design and cryptanalysis.
In addition to studying the cryptographic properties of such permutation operations
in isolation, we consider their role in the design of new ciphers.

The contributions of this chapter are as follows. We examine the cryptographic
properties of bit-level permutations in the construction of new ciphers or in strength-
ening existing ciphers. In particular, we study the cryptographic properties of the
group operation GRP [13, 23], as well as OMFLIP [13, 27], which were recently
identified for possible inclusion in future processor architectures. We investigate the
properties of GRP and OMFLIP and consider how their inclusion within a crypto-
graphic design might change the properties of the scheme. As a detailed example,
we consider the implications of incorporating the GRP operation into a block cipher
and discuss some of the issues that arise. Provided care is taken, it may be possible
for the support of new operations to lead to new designs offering higher performance
and reduced energy consumption; something which would be particularly important
for constrained environments like hand-held devices. In Section I.2, we motivate
the study of permutation operations from both an architectural and cryptographic
viewpoint. We provide our design goals in Section I.3 and detailed definitions of bit
permutation operations in Section I.4. In Section I.5, we analyze the cryptographic
properties of GRP and, as an example, in Section I.6 we explore how one might use
GRP in a variant of the block cipher RC5 [20]. Section I.7 concludes the chapter.

I.2 Motivation for New Permutation Operations

Bit-level permutation operations are very important from both an architectural and
cryptographic point of view.

Architecturally, the ability to support very fast bit-level permutations may be
the next step in the evolution of word-oriented processors to support new multi-
media and secure information processing workloads. Bit level computation is used
in Huffman encoding and decoding, for example, and general-purpose processors
are optimized for word-oriented computation. Hence, their instruction set archi-
tecture (ISA) provides limited support for the manipulation of data items smaller
than a word. Currently, only simple bit-level operations like logical operations and
shifts are implemented in microprocessors. For multimedia processing, processor
architectures have already incorporated the concept of subword parallelism [11, 12]
where subwords are typically 8-bit pixels or 16-bit audio samples. A subword-
parallel instruction performs the same operation on multiple pieces of data (sub-
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I.2. MOTIVATION FOR NEW PERMUTATION OPERATIONS

words) packed in one or more registers [11]. Subword-parallel arithmetic operations
can efficiently exploit the data parallelism in processing images, video, graphics
and audio. Subword-parallel instructions—first introduced to accelerate multime-
dia in PA-RISC microprocessors [11, 12]—have now been added to all micropro-
cessors [6, 8, 11, 12, 18, 19]. These ISA additions have swept the microprocessor
industry in a matter of five years, demonstrating that new architectural features will
be added to processors if they provide significant performance or other advantages
at a very low cost. Subword permutation operations are often necessary to rear-
range subwords into proper positions in registers so that subsequent operations can
be applied to all subwords in parallel. As we decrease the size of the subword, we
significantly increase the difficulty of achieving all possible permutations since the
number of items to be permuted increases. Nevertheless, recent work [13, 23, 26, 27]
has examined architectural solutions that can achieve any arbitrary permutation of
both single-bit and multi-bit subwords packed in a register.

Cryptographically, bit-level operations are useful in the design of many algo-
rithms, particularly block ciphers, stream ciphers, and hash functions. The design
of the block cipher DES [16] is an important landmark in this regard. The se-
curity of many of these algorithms relies on what Shannon termed confusion and
diffusion [22] which are typically attained by a judicious combination of simple oper-
ations. Bit-level permutations naturally provide certain effects which are not easily
obtained through word-level operations. However, bit-level permutations tend to
be slow on current programmable processors, since they have to be emulated using
other instructions. While all processors implement add, subtract, logical, memory
load and shift operations, the only bit-level permutations that might be routinely
supported in microprocessors are bitwise rotations which form a very small subset of
all possible bit-level permutations. Some processors support fixed bitwise rotations
where the amount of rotation is specified at compile time; even fewer processors
support data-dependent rotations (DDR) where the rotation amount is only avail-
able at execution time. DES [16] uses bit-level permutations which are very fast
in special-purpose hardware, but inherently slow in software. While the few fixed
permutations in DES can be sped up using table lookup techniques in software, it
is not feasible to do this for all possible data-dependent permutations. In [13, 27]
the use of OMFLIP to speed up the performance of fixed permutations within DES
is explored.

More recent proposals for hash functions and encryption functions—including
the new AES [17]—have demonstrated a move away from bit-level operations and
toward a mix of word-oriented operations such as arithmetic and logical operations,
as well as some form of table lookup accomplished with memory load instructions.
Much of this, however, might be due to the currently poor support for bit-level
permutations; currently no processors implement more general purpose bit-wise
permutation instructions. Nevertheless, the role of bit-wise permutations remains
fundamental and it is interesting to consider whether or not increased support for
bit-level permutation operations might encourage their use in new cipher designs.

Finally, another interesting application of bit-level permutations is in the ob-
fuscation of data [3] within tamper-resistant chips. The use of keyed bit-level per-
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I. PERMUTATION OPERATIONS IN BLOCK CIPHERS

mutations can provide a mechanism to enhance the resistance of such hardware
deployments to so-called “probing attacks”. It would be interesting to consider the
applications of the techniques we discuss in this chapter to this particular problem.

I.3 Design Goals for New Permutation Operations

A permutation operation for our architectural and cryptographic needs should ide-
ally satisfy the following goals:

• Goal 1: Be general-purpose and flexible. The new permutation operation
should be general-purpose, rather than specific to a given algorithm. For
example, the permutation operation might have uses in applications as diverse
as multimedia applications, sorting applications, and cryptography.

• Goal 2: Be easy to implement. The new permutation operation should be easy
to implement in a variety of processors, from high-performance microproces-
sors down to the simplest processors suitable for small information appliances
and even smart cards. Since many of these processors have simple archi-
tectures, the new operation should ideally require no more than two source
registers, and write to one destination register upon completion of execution.
Ideally, the latency through the functional unit should allow the operation to
execute in a single cycle. On the other hand, if the direct hardware support
for the operation is not available, other instructions should be able to emulate
the operation.

• Goal 3: Have good cryptographic properties. The new permutation opera-
tion should have good cryptographic properties, and be resistant to common
cryptanalytic attacks as well as not opening new weaknesses.

To help judge how successful such new operations might be, we will use the data-
dependent rotation (DDR) as a means for comparison. This operation has been used
in the block cipher RC5 [20] and it has been widely studied from a cryptographic
perspective. Like all the permutations considered in this chapter, the action of DDR
is not fixed. Instead, the bits of a control register are used to specify the permutation
to be applied to the bits in the data register. One potential weakness of DDR is
that only the lower log2(w) bits of the w-bit control register are used to effect the
permutation. For convenience, log2(w) will be denoted with lg(w) in this chapter.
The potential weakness of DDR has been used to mount certain theoretical attacks
on RC5 and so it seems that new permutation operations with more control bits
might potentially be cryptographically useful.

I.4 Permutation Operations: GRP and OMFLIP

The general form of a permutation operation will be written as Z = X •Y where the
bits (or subwords) of X are permuted according to the value of bits (or subwords)
of Y . The data-dependent rotation ( DDR) typically denoted as Z = X <<< Y
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Figure I.1. An 8-bit GRP operation

takes two operands X and Y , generating a result Z where all are w-bit words. The
word X is rotated left by the amount specified in the lower lg(w) bits of Y . Sev-
eral new permutation instructions such as PPERM [13], GRP [13, 23], CROSS [13],
OMFLIP [13, 27], and BFLY [26] have been proposed for arbitrary bit-level per-
mutations. However, we will restrict our attention to GRP and OMFLIP in this
chapter.

I.4.1 Definition of GRP

The GRP operation will be written as Z = X � Y where the bits in X are divided
into two groups depending on whether the corresponding bit in Y is 0 or 1. The
two groups of bits are then placed next to each other in Z. The bits with a control
bit of 0 are placed at the left end; the bits with a control bit of 1 at the right end.
Fig. I.1 shows an example of an 8-bit GRP operation. Since the control bits of x0,
x2, x5, x6 are 0, these four bits are placed at the left end in Z. The bits x1, x3, x4,
x7 are placed at the right since their control bit has the value 1.

If the GRP operation is used in a cryptographic algorithm, the inverse operation,
UNGRP for ungroup, may be needed for decryption. Here we give programmatic
definitions of GRP and UNGRP. Let X = xw−1 . . . x0, Y = yw−1 . . . y0, and Z =
X � Y = zw−1 . . . z0 be w-bit words.

GRP �

j = 0;
for (i = 0; i < w; i = i + 1)

if (yi = 1){
zj = xi;
j = j + 1;}

for (i = 0; i < w; i = i + 1)
if (yi = 0){

zj = xi;
j = j + 1;}

UNGRP

j = 0;
for (i = 0; i < w; i = i + 1)

if (yi = 1){
zi = xj;
j = j + 1;}

for (i = 0; i < w; i = i + 1)
if (yi = 0){

zi = xj;
j = j + 1;}
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I.4.2 Definition of OMFLIP

The OMFLIP operation will be written as Z = X �(·,·) Y . It is based on the omega-
flip network, which concatenates omega stages with flip stages. In an omega or
a flip stage, w input bits are divided into w/2 pairs. The two bits in a pair are
mapped to two output positions, the destination order being determined by a single
control bit. Consequently w/2 control bits are needed for w/2 data pairs in an
omega or a flip stage.

At the input of an omega stage, bits i and (i + w/2), 0 ≤ i < w/2, form a pair
and they are mapped to the two bit positions 2i and (2i + 1). At the input of a
flip stage, bits 2i and (2i + 1), 0 ≤ i < w/2, form a pair which is mapped to
positions i and i + w/2. Clearly, a flip stage can be viewed as the inverse of an
omega stage. The OMFLIP operation Z = X �(a0,a1) Y uses two stages in an omega-
flip network to permute the data bits X with Y specifying the control bits for the
two stages. The subscript (a0, a1) represents a two-bit encoding (with omega being
represented by 0 and flip by 1) that specifies which stages are used; they could be
(omega, omega), (flip, flip), (omega, flip), or (flip, omega). Fig. I.2 shows an
16-bit omega-flip network that has two omega stages and two flip stages. It can
be used to perform 16-bit OMFLIP operations, which may select any two stages
and pass through the other two. Actually, each stage in the figure has pass-through
paths, allowing bits to go through the stage without any position changes. The
pass-through paths are not shown in the figure for illustrating better the essential
paths in an omega or a flip stage. The programmatic definition of OMFLIP is given
below. Let X = xw−1 . . . x0, Y = yw−1 . . . y0, and Z = X �(a0,a1) Y = zw−1 . . . z0 be
w-bit words.

OMFLIP �(a0,a1)

j = 0;
for (i = 0; i < 2; i = i + 1)

if (ai = 0){
for (j = 0; j < w

2 ; j = j + 1)
z2j = xj;
z2j+1 = xj+ w

2
;

if (yj+ iw
2

= 1)
swap(z2j, z2j+1);

} else {
for (j = 0; j < w

2 ; j = j + 1)
zj = x2j;
zj+w/2 = x2j+1;
if (yj+ iw

2
= 1)

swap(zj, zj+ w
2
); }
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Figure I.2. A 16-bit omega-flip network

I.4.3 Basic properties of GRP and OMFLIP

GRP can be used to simulate any bit permutation of a w-bit word with at most
lg(w) steps [23]. It can also be used for multi-bit subword permutations and is useful
for multimedia processing. It can achieve any one of m! permutations of m subwords
in at most lg(m) instructions, where m is the number of subwords. Here m = w/k,
where w is the number of bits in a word, and k is the number of bits in a multi-bit
subword. In addition, GRP is very useful for accelerating sorting algorithms, and
can achieve a speedup of 10 or more when sorting a small set of integers [24].

OMFLIP has similar properties to GRP in terms of performing permutations
of bits or multi-bit subwords that are stored in one word (or register). It can per-
form an arbitrary permutation of w bits with at most lg(w) steps and an arbitrary
permutation of m multi-bit subwords with at most lg(m) steps. Any one of the
w! permutations can be achieved by simulating a full omega-flip network, which
consists of lg(w) omega stages followed by lg(w) flip stages. Since an OMFLIP in-
struction performs the operation of two of these stages, a sequence of lg(w) OMFLIP
instructions can achieve any arbitrary w-bit permutations.

Both GRP and OMFLIP are general-purpose permutation primitives useful in
multimedia and security applications; hence, they satisfy Goal 1.

I.4.4 Implementation of GRP and OMFLIP

Both GRP and OMFLIP are easy to add to a typical processor since each requires
reading only two source registers and writing one result register. This fits typical
processor datapaths, instruction formats, and pipeline organizations. Other imple-
mentation issues like execution latency and size of the functional unit required are
discussed below.

A hardware implementation of GRP given in [25] suggests that it takes slightly
longer than a typical ALU (Arithmetic Logical Unit) latency. Since the latter is often
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I. PERMUTATION OPERATIONS IN BLOCK CIPHERS

used to determine the cycle time of a processor, this means that a GRP operation
will execute in one or two cycles, depending on the aggressiveness of the processor
cycle time in the design with respect to the latency of the ALU. When implemented
in a processor, the GRP functional unit may also be used to perform some other
operations such as DDR. In a processor design where a GRP operation takes two
cycles to complete, the GRP functional unit can easily be pipelined, if desired,
so that a new GRP instruction can start every cycle. While the functional unit
implementing a GRP operation is more complicated than an ALU, it is simpler than
that needed for a MULTIPLY operation. On some processors such as Itanium [5, 8],
the multiplications of large integers are intended to be performed with floating-point
units, by first transferring the operands to floating-point registers, performing the
multiplication, and transferring the result back. Hence, the cost of the MULTIPLY
operation becomes even higher when it is mixed with other operations that are
performed with integer units. Furthermore, a GRP operation takes only 1-2 cycles
of execution latency compared to the 3-7 cycles needed by a MULTIPLY operation.

A hardware implementation of an OMFLIP instruction is much simpler than
for GRP, and also simpler than for an ALU. An OMFLIP instruction will have a
latency no longer than a typical ALU, and hence it can execute in a single cycle.
Since the number of stages in an OMFLIP functional unit is fixed no matter how
big w is, the size and latency advantages of the OMFLIP functional unit over the
GRP functional unit increases as the number of bits, w, to be permuted increases.

OMFLIP definitely satisfies Goal 2 in terms of ease of implementation. GRP’s
implementation complexity is higher, but it has a latency much smaller than that
of a MULTIPLY operation, with a smaller functional unit size. Indeed, GRP may
be a simpler alternative than MULTIPLY for cryptography purposes. Hence, Goal
2 is reasonably well satisfied for both GRP and OMFLIP. In the next section, we
show that GRP has better cryptographic properties than OMFLIP.

I.5 Cryptographic Properties of Permutations

We now discuss the cryptographic properties of permutation operations in the con-
text of cipher design and analysis, and the satisfaction of Goal 3. We first give a
brief overview of cryptographic algorithms and the role of bitwise permutations as
a contribution to their security.

It is typical to classify cryptographic algorithms according to the way they use
key information [15]. Public key algorithms use two keys; one is kept secret and the
other—as the name implies—is made public. Such algorithms are not our concern
here. Other algorithms require that the two participants in a cryptographic exchange
share the same secret key. Encryption is provided by block ciphers and stream ciphers
and authentication based on secret key techniques can be provided by message
authentication codes. Finally, a class of algorithms known as hash functions are
entirely keyless.

While public key algorithms are based on difficult problems in number theory
and have a rich mathematical structure, secret-key algorithms and hash functions
tend to be more ad hoc in design. The process to establish the new AES [17] was
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notable for the wealth of new design and analysis techniques that were discussed
at great length. The fields of stream ciphers, message authentication codes, and
hash functions have not had comparable exposure, though many of the same design
principles can often be applied in one way or another.

Indeed, the basic ideas of confusion and diffusion [22] that are so prominent in
block cipher designs also appear elsewhere. Confusion might be viewed as a process
by which small amounts of complex interaction are introduced locally, while diffusion
can be viewed as the process by which this complexity is spread from being solely
a local phenomenon. By alternating primitive functions that provide confusion and
diffusion, the hope is that the final algorithm will exhibit globally complex, and
cryptographically strong, behavior.

The common way to provide the diffusive elements of this process is to use a
bitwise permutation, and the success of a cipher design can depend in a fundamental
way on the properties of the permutation that is used.

I.5.1 GRP and OMFLIP as cryptographic primitives

There are many different ways of using a bitwise permutation in a cipher design.
Frequently the permutation is fixed, as is the case in DES [16], and so it is straight-
forward to account for the behavior of the permutation in analysis. However, some
recent designs have introduced the possibility of using a permutation that is variable
and depends on the value of the data being encrypted. We have already mentioned
one good example of this, the data-dependent rotation DDR. The operations we
consider here, GRP and OMFLIP, might be viewed as being complementary to the
DDR operation. With this in mind, we consider the role of these permutations
in relation to some specific attacks on block ciphers. More particularly, we will
consider their effect on two important kinds of block cipher attacks; differential
cryptanalysis [1] and linear cryptanalysis [14].

Differential and linear cryptanalysis For differential cryptanalysis, the basic
idea is that two plaintexts are chosen with a certain difference between them; the
difference is typically measured by exclusive-or but for some ciphers an alternative
measure can be more useful. These two plaintexts are enciphered to give two cipher-
texts, and it is hoped that the difference between the outputs has a specific value
with a better-than-average probability. Depending on the cipher and the analysis,
the behavior of such differences and their evolution can be useful in deriving certain
bits of the key. For linear cryptanalysis, the basic idea is to find relations among
certain bits of plaintext, ciphertext, and the key that hold with a probability p �= 1/2
(i.e., there is a bias of |p−1/2| > 0). Such a relation is called a linear approximation.
As in differential cryptanalysis, we seek to exploit such non-ideal behavior and it
may be possible to identify linear approximations that reveal information about the
key.

An important feature that determines the possible success of differential and
linear cryptanalysis is the speed with which the complexity of a difference or linear
approximation increases as we try and keep track of such close relations during the
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encryption process. For a good block cipher, the differences between related texts
and the relation between bits of the same text should both become very complicated
very quickly so that by the time the encryption process is concluded any statistical
variations are smoothed out and there is no unusual behavior left for the cryptanalyst
to exploit. The process by which this is achieved is often loosely referred to as the
avalanche of change and the spread of change and the spread of effect and influence
is often influenced by the role of permutations within the cipher design.

Differential and linear properties Here we consider the differential and linear
properties of GRP, OMFLIP, and DDR. There are many differential characteristics
and linear approximations for a given permutation operation, each holding with
different associated probabilities. The most useful ones are typically those that
are both simple and which hold with relatively large probabilities. The properties
on DDR are mostly results that can be found in [4, 9], while the properties for
GRP and OMFLIP are new results. The results in this chapter are necessarily
preliminary results and concentrate on some of the simplest forms of cryptanalysis.
In Section I.5.3 we take account of some more advanced considerations.

For differential cryptanalysis, we need to consider a pair of inputs and their
corresponding output. Specifically, for i = 1, 2, let Zi = Xi • Yi. We define the
differences in the input and output to be ∆X = X1 ⊕ X2, and ∆Y = Y1 ⊕ Y2, and
∆Z = Z1⊕Z2. A differential characteristic of the permutation operation Z = X •Y
is a triplet (∆X ,∆Y ) → ∆Z , together with the probability p that the given triplet
holds when the inputs are chosen at random. We let es denote the w-bit word which
is zero except for a single one in bit position s. In our preliminary investigation, we
will restrict our attention to single-bit differences and approximations.

The following differential characteristics of a permutation operation are often
useful (we use ∆ to denote a general difference which may be zero). The aim is to
keep track of any changes induced during encryption and to keep the evolution of
differences as simple as possible.

(A) (es, 0) → et

(B) (0, et) → ∆
(C) (es, et) → ∆

Since Z is a permutation of the bits in X, we know that type (A) characteristics exist
and their probabilities are easy to compute. The more interesting characteristics are
type (B) and type (C) which depend on the input difference in the control bits Y .
For these, we will compare the diffusion effect by computing the expected Hamming
weight of the output difference ∆Z . The three types of characteristics of different
permutation operations and their associated probabilities or Hamming weights are
shown in Table I.1. There, E(Hwt(∆)) denotes the expected value of Hwt(∆), the
Hamming weight of ∆, when inputs are chosen at random.

In linear cryptanalysis, we aim to exploit a linear relation among certain bits of
the inputs and outputs. Specifically, if Γ and X are two binary vectors of length w,
then their inner product, denoted by Γ · X, is the parity of the bits in X specified
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Table I.1. The propagation of differences across DDR, GRP, and OMFLIP
Type (A) Type (B) Type (C)

(es, 0) → et (0, et) → ∆ (es, et) → ∆
Hwt(∆) = 0 E(Hwt(∆)) = 1

DDR p = 1
w ∀s, t lg(w) ≤ t lg(w) ≤ t

E(Hwt(∆)) = w
2 E(Hwt(∆)) = w

2
0 ≤ t ≤ lg(w) − 1 0 ≤ t ≤ lg(w) − 1

GRP p ≤ (1
2 + 1

2w ) ∀s, t E(Hwt(∆)) = w
4 ∀s, t E(Hwt(∆)) = w

4 ∀s, t

OMFLIP p ≤ 1
4 ∀s, t Hwt(∆) ≤ 2 ∀s, t Hwt(∆) ≤ 3 ∀s, t

Table I.2. The propagation of linear approximations across DDR, GRP, and OM-
FLIP

Type (L) Type (M)
(es, 0, et) (es, eu, et)

DDR |b| ≤ 1/(2w) |b| ≤ 1/(2w)
Max. with s = t = 0 Max. with s = t = 0

GRP |b| ≤ (1/4 + 1/2w+1) |b| ≤ (1/4 − 1/2w+1)
Max. with s = t = 0 Max. with s = t = 0

OMFLIP |b| ≤ 1/8 |b| ≤ 1/8
Max. with s = t = 0 Max. with s = t = 0

by the non-zero entries in Γ. A linear approximation of the permutation Z = X •Y
is therefore a triplet (ΓX ,ΓY ,ΓZ) together with the probability p that the equation
(ΓX · X) ⊕ (ΓY · Y ) = (ΓZ · Z) holds on random inputs. The bias b of the linear
approximation is defined to be |p−1/2|. For example, (ΓX ,ΓY ,ΓZ) = (2w−1, 0, 2w−
1) is a linear approximation that holds with probability p = 1 for any permutation
operation, since the parity of all the bits in Z is always equal to the parity of all
the bits in X; this approximation has a bias b = 1/2. We will consider restricted
forms to the linear approximations, depending on whether any control bits Y are
involved in the approximation. When Y is not involved, the simplest approximation
takes the form of (es, 0, et). This will be denoted type (L) and intuitively, the bias
of such a linear approximation measures how uniformly the permutation moves the
bits around (e.g. whether there is a bit position that tends to be fixed). When Y
is involved, the simplest approximation, denoted with type (M), takes the form of
(es, eu, et). The bias of these approximations measures if the destination position
of a bit in X highly depends on a single bit in Y . Ideally, the destination position
of a bit in X depends on many bits in Y , and these bits are equally important to
determining the position. The maximum bias for these approximations are listed in
Table I.2.

I.5.2 Comparison between DDR, GRP, and OMFLIP

Even though all three permutations might appear to be doing the same thing—i.e.
shifting bits—we see that the cryptographic properties can be very different. In
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Table I.1 we see that GRP has differential properties that are generally similar to
DDR, but suggest a better diffusive effect when there is a difference in any bit of the
control word; i.e. for differentials of types (B) and (C). This might be interesting,
since one potential weakness for DDR is that there is no bit-level diffusive effect
when there is no difference in the lower lg(w) bits of the control word. This might
be exploited by the cryptanalyst as we will see in Section I.6.1. Unfortunately the
differential properties of OMFLIP for these simple characteristics are not too good;
in all cases the diffusive effect is very limited. Turning to linear approximations, we
see that for both GRP and OMFLIP, the maximum bias is quite large compared to
that achieved with DDR when the word size w is sufficient large. Taken together
these results suggest that OMFLIP is unlikely to bring any additional advantages
over those provided by GRP and DDR; that GRP will perhaps not be particularly
resistant to linear cryptanalysis on its own; but that GRP might complement DDR
by providing additional resistance to differential cryptanalysis in the areas where
diffusion using DDR might be controlled by an adversary. We will examine this
combination of DDR and GRP in Section I.6.2.

I.5.3 Additional considerations

We have to caution the reader that the results presented in Section I.5.1 are basic
results. They merely provide some evidence that one permutation might be better
than another. It is quite natural to focus on single bit differences and approximations
since they are typically the ones that are easier to handle in a cryptanalytic attack.
However, when we introduce a new primitive operation we need to consider other
issues as well.

As an example of this, we might consider two-bit differences and their propaga-
tion across the GRP permutation. We consider two triplets (X1, Y1, Z1) and (X2,
Y2, Z2) with the following form, where we use {−b−} to denote a (w− 2)-bit string
of some unknown value, and {−0−} to denote a (w − 2)-bit string of zeros. Let
X1 = {10 − b−}, Y1 = {01 − c−}, X2 = {01 − b−}, and Y2 = {10 − c−}. Then
∆X = {11 − 0−} and ∆Y = {11 − 0−}, yet ∆Z = {00 − 0−}. We have two two-bit
input differences effectively producing the same output! This is quite an unusual
effect, and additional analysis is required to fully appreciate the consequences of
such bit-level interactionsI.5.

Another interesting consideration is the distribution of the permutations gener-
ated by these operations since there are some interesting links here with the shuffling
of a deck of cards [7]. While DDR can only be used to generate a small fraction
of bit-wise permutations, all of the resultant permutations are equally likely. When
we turn to the GRP operation, however, while all permutations can conceivably
be generated, in a single GRP operation there is a slight bias to the generation of
the identity permutation; the probability for the identity permutation is w/2w for
w bits while that for other permutations is 1/2w. The implications of this for the

I.5Preliminary study suggests that it could be difficult to use such difference propagations, but
no general statements can be made in this regard.
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suitability of GRP is unclear, but it suggests that a cautious approach needs to be
taken.

On a more positive note, it is important to note there are also some constructive
properties of permutations such as GRP that we have not explored. For instance,
we have not considered the ability of GRP to change the “neighborhood” of bits
in achieving any one of w permutations. Such properties may provide some ad-
ditional cryptographic and architectural advantages when compared to the DDR
permutation.

I.6 An Illustrative Example for Cipher Design

Analysis in Section I.5.1 demonstrated certain interesting properties of GRP. First,
GRP uses all w bits of the control word, rather than only lg(w) bits as in DDR.
Second, GRP appears to have properties that are complementary to DDR in terms
of differential attacks; a difference in any bit of the control word should produce a
large difference in the output. In this section, we will explore whether we can take
advantage of these properties.

I.6.1 The block cipher RC5

When considering the possible impact of DDR and other permutations in crypto-
graphic algorithms, a natural starting point is the block cipher RC5 [20]. This was
designed to be extremely simple and this means that the effect of introducing DDR
can be reasonably well measured. We give a very brief description of RC5. The
initial secret key is used to generate a set of round keys S[·] that will be used in
encryption. The 2w-bit input to RC5 is divided into two words L0 and R0, each w
bits long. The encryption process consists of 2r iterations of a simple round func-
tion. Each iteration is called a “half-round” and two iterations form a full round in
RC5. The 2w-bit ciphertext output from RC5 is given by L2r||R2r.

RC5 Encryption

L1 = L0 + S[0];
R1 = R0 + S[1];
for (i = 2; i ≤ 2r; i = i + 1) {

Li = Ri−1

Ri = ((Li−1 ⊕ Ri−1) <<< Ri−1) + S[i] }

Since its publication, RC5 has come under considerable scrutiny [2, 9, 10, 21] espe-
cially with regards to its extensive use of DDR. While no practical attack on RC5
has been found, studies provide some interesting theoretical attacks, mostly based
on the fact that the “rotation amounts” used in the DDR will not depend on all
bits of the control word. Therefore, it is interesting to consider whether the GRP
operation might be used to complement the DDR operation that is already used in
RC5. In [9] three types of single-bit characteristics are used to form a three-half-
round characteristic that can be iterated for as many rounds as needed. In [10] these
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Table I.3. Single-bit characteristics for GRP
Char. Prob. Prob.

when w = 32
(es, 0) → et p ≤ 1/2 2−1

(es, es) → es p = 1/2w−1 2−31

(0, es) → 0 p = 3w−1

22w−2 2−12

characteristics were used in a more general way while [2] considered more general
characteristics. However, all this work on RC5 helped to motivate the choice of
differential characteristics that were studied in Section I.5.1.

I.6.2 A role for GRP in an RC5-variant

There are many possible ways to incorporate GRP into the round function of RC5.
As a motivational example, we have chosen a way that incurs a minimal change
to the original round function. This might make it easier to leverage the existing
security analysis of RC5. We propose the following straw-man proposal for a round
function for a RC5 variant that we refer to as RC5-GRP.

RC5-GRP Encryption

L1 = L0 + S[0];
R1 = R0 + S[1];
for (i = 2; i ≤ 2r; i = i + 1) {

Li = Ri−1

T = ((Li−1 ⊕ Ri−1) <<< Ri−1) + S[i]
Ri = T � Ri−1 }

The round function of RC5-GRP is the same as that of RC5 except that the
new operation GRP is performed at the end of the round, updating the value of
Ri (again) using Ri−1. Thus the variable Ri−1 that controls DDR is also used to
control GRP. In [9], three single-bit characteristics—types (A), (B), and (C) from
Table I.1—were used in the differential attack on RC5. When analyzing the security
of RC5-GRP, we still use these three characteristics for DDR. In order to form an
iterative characteristic across three half-rounds as in [9], a specific characteristic for
GRP is needed to follow each of the characteristics for DDR. These characteristics
for GRP are summarized in Table I.3. (One can see that these are special cases of
the characteristics for GRP from Table I.1.)

When w = 32, the total differential probability of the three characteristics for
GRP in Table I.3 is 2−1−31−12 = 2−44. It appears that adding GRP could have a
significant effect on a specific class of one-bit differential characteristics. However, by
considering the more sophisticated two-bit characteristics in Section I.5.3, it seems
we might need to be more cautious and there appears to be a two-bit differential
characteristic over two half-rounds of RC5-GRP that holds with probability around
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2−16. The resistance of RC5 to linear cryptanalysis is likely to be inherited by RC5-
GRP, but with regards to more advanced differential attacks the full extent of any
increased resistance still needs to be quantified.

According to [2] RC5 requires 18 rounds to be secure against advanced differential
cryptanalysis. Based on our analysis on the reduction in differential probabilities
for GRP, it would be interesting to know whether ten rounds (twenty half-rounds)
of RC5-GRP would offer sufficient security. If this were the case, we might provide
the following performance comparison between RC5 and RC5-GRP. RC5 has four
basic operations in each half-round, while RC5-GRP has five. We will assume that
all the operations are well-supported and that each operation (including the GRP
operation implemented in processor hardware) takes one cycle. In this case, the total
execution cycles for RC5 will be (18 × 2 × 4) + 4 = 148 cycles. The cycles required
for RC5-GRP would be (10×2×5)+4 = 104 cycles. Hence, for equivalent security,
RC5-GRP would be faster than RC5. Also, since RC5-GRP requires only 66% of
the computation cycles required for RC5, this will result in a significant reduction in
energy consumption, prolonging the battery life of secure mobile devices. While this
is almost certainly not the final word in the analysis of RC5-GRP, it does illustrate
our larger point that low-level support of bit-level permutations might lead to simple
enhancements of existing algorithms and the design of more efficient ciphers.

I.7 Conclusion

In this chapter, we proposed the study of new computer processor features that
might have interesting cipher design implications. As a first step, we analyzed bit-
level permutation operations and presented new results on the characterization of the
permutation operations GRP and OMFLIP. We began to explore the cryptographic
potential for the low-level support of bit-level permutations, and provided some basic
initial analysis. This suggests that other proposals in the future may lead the way
to increased performance and reduced energy consumption, an aspect of algorithm
design that is increasingly important for battery-powered hand-held devices and
sensors. However there remain significant open problems for future work. Some are
specific to the particular permutation operations we have considered here, others
are of a more general nature. However, we hope that the results and ideas in
this chapter serve as an initial step in establishing a continuing dialog between
the computer architecture and the cryptographic communities. This may lead to
architectural and algorithmic innovations that would be immensely useful, not just
for cryptographic applications, but in supporting the increasingly rapid evolution to
pervasive networks and ubiquitous computing.
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