
Validating Word-oriented Processors for Bit and Multi-
word Operations  

Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi 

Princeton Architecture Laboratory for Multimedia and Security (PALMS) 
Princeton University 

{rblee, xiaoyang, zshi}@princeton.edu 

Abstract. We examine secure computing paradigms to identify any new 
architectural challenges for future general-purpose processors. Some essential 
security functions can be provided by different classes of cryptography 
algorithms. We identify two categories of operations in these algorithms that 
are not common in previous general-purpose workloads: bit operations within a 
word and multi-word operations. Both challenge the basic word orientation of 
processors. We show how very complex bit-level operations, namely arbitrary 
bit permutations within a word, can be achieved in O(1) cycles, rather than O(n) 
cycles as in existing RISC processors. We describe two solutions: one using 
only microarchitecture changes, and another with Instruction Set Architecture 
(ISA) support. We generalize our solutions to define datarich execution with 
MOMR (Multi-word Operands Multi-word Result) functional units. This can 
address both challenges, leveraging available resources in typical processors 
with minimal additional cost. Thus we validate the basic word-orientation of 
processor architectures, since they can also provide superior performance for 
both bit and multi-word operations needed by cryptographic processing. 

1. Introduction 

The dependence on the public Internet and wireless networks in modern society poses 
a growing need for secure communications, computations and storage. To provide 
basic security functions like data confidentiality, data integrity, and user 
authentication, different classes of cryptographic algorithms can be used with security 
protocols at network, system or application levels. Not only network transactions need 
to be protected, all data and programs may also need these security functions. As 
secure computing paradigms become more pervasive, it is likely that such 
cryptographic computations will become a major component of every processor�s 
workload. Understanding the new requirements of secure information processing is 
critical for the design of all future processors, whether general-purpose, application-
specific or embedded. In this paper, we especially target the needs of high 
performance microprocessors. 

Basic security functions include confidentiality, integrity and authentication. 
Confidentiality of messages transmitted over the public networks, and of data stored 
in disks, can be achieved by encrypting the data, using symmetric-key cryptography 



2      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

algorithms such as DES [1], and AES [2]. Data integrity, where data is not changed in 
transit or in storage, can be accomplished with one-way hash functions such as SHA 
and MD-5 [1]. Authenticating users and devices remotely across the Internet can be 
accomplished with public-key cryptographic algorithms such as Diffie-Hellman and 
RSA [1]. They also allow digital signatures and the exchange of a shared secret key 
across the Internet.  

We observe two categories of new requirements imposed by these three classes of 
cryptographic algorithms: bit-oriented operations and multi-word operations. Both 
challenge the basic word-orientation of modern processors. Symmetric-key 
cryptography introduces a new requirement: bit-level permutations. Previously, the 
bit-oriented operations in general-purpose workloads were SHIFT instructions and 
logical operations like AND, OR, XOR and NOT. These are supported efficiently by 
simple single-cycle instructions. Public-key cryptography introduces the other new 
requirement: multi-word arithmetic. While multiword integer arithmetic has been a 
requirement in previous high-precision integer computations, its need remained 
relatively low since the basic word size in general-purpose processors has increased 
from 16 to 32 to 64 bits. Frequent use of public-key cryptography algorithms may 
significantly increase the need for multi-word arithmetic. For example, multiplication 
of two 1024-bit operands in RSA involves two 16-word operands, if each word is 64 
bits. If a hardwired multiply instruction operates on two words, many such 64-bit 
multiply instructions are needed, as well as add operations to accumulate the result. 
Public-key algorithms based on Elliptic Curve Cryptography (ECC) often perform 
polynomial operations requiring both bit-oriented and multi-word operations.   

A key contribution of this paper is the observation that fast cryptographic 
processing depends on a processor�s ability to support both complex bit-level 
manipulations as well as multiword operations. These requirements have more impact 
on performance than defining a new instruction or special-purpose functional unit for 
accelerating a particular cryptographic primitive. They also challenge the atomic 
word-orientation of processors, since they emphasize bit operations within a word, 
and operations requiring operands much larger than a word.  

A second contribution is showing how arbitrary bit-level permutations can be 
accomplished very efficiently in only 1 or 2 cycles.  

A third contribution is a generalized architectural solution that allows high-
performance processors to support datarich operations with flexible, multi-word 
operands and multi-word result (MOMR) functional units. Our generalized solution 
supports both high performance bit permutations and multi-word operations. Hence, 
the basic word-orientation of processors is still a good design choice, since both bit-
oriented and multi-word oriented operations can also be supported very efficiently. 

In Section 2, we describe past work on permutation instructions, including how our 
recent past work has reduced the time taken to achieve any n-bit permutation down 
from O(n) to O(log(n)) instructions and cycles. In Section 3, we propose two new 
architectural methods for further bringing this down to O(1) cycles. One method is 
purely micro-architectural, and the other involves new ISA. In Section 4, we describe 
the changes in the datapath and control path needed to implement our two methods. In 
Section 5, we generalize these two methods to solve the second challenge of 
achieving multi-word operations efficiently in word-oriented processors. In Section 6, 
we discuss performance, and conclude in Section 7. 



Validating Word-oriented Processors for Bit and Multi-word Operations      3 

2. Past Work 

Past work in accelerating cryptographic processing included many hardware ASIC 
(Application Specific Integrated Circuit) implementations of specific ciphers. For 
programmable solutions, new instructions were proposed to accelerate symmetric-key 
ciphers in general-purpose processors [3], and in cryptographic coprocessors like 
Cryptomaniac [4] for ciphers used in secure networking protocols. In contrast, we do 
not propose any specific new instructions in this paper, but rather new methodologies 
for bringing more data to the functional units. This datarich computation is done with 
very low overhead, utilizing the datapaths and control already provided for 
superscalar execution found in most microprocessors, including out-of-order 
superscalar machines.   

The datarich methodology allows us to accelerate both bit permutations used for 
symmetric-key ciphers, and multi-word operations used in public-key ciphers. It 
allows us to achieve one of our major contributions: performing arbitrary bit 
permutations in 1 or 2 cycles � a significant improvement over our recent past work 
achieving O(log(n)) instructions and cycles [5], which we describe further below. 

Performing bit-level permutation has been a hard problem for word-oriented 
general-purpose processors. Previously, processors only supported a very restricted 
subset of bit permutations known as rotations. Here, every bit in the n-bit word is 
moved by the same shift amount, with wrap-around. While some n-bit permutations 
can be achieved with fewer instructions, allowing arbitrary, data-dependent n-bit 
permutations is very slow. Conventional logical and shift instructions take O(n) 
cycles to achieve any one of n! permutations [5]. Alternatively, table lookup methods 
can be used, but this is limited to a few fixed permutations due to the high memory 
space requirement, and cache misses cause performance degradation.  

More recently, permutation instructions have been introduced into certain 
microprocessors as multimedia ISA extensions to handle the re-arrangement of 
subwords packed in registers. Examples are MIX and PERMUTE in HP�s MAX-2 
[6], VPERM in Motorola�s AltiVec [7], and MIX and MUX in IA-64 [8]. However, 
these instructions can only handle subword sizes down to 8 bits. They do not provide 
a general solution for performing arbitrary bit-level permutations efficiently.  

Very recently, researchers have tackled the general bit permutation problem, and 
defined new permutation instructions that can achieve any n-bit permutation with only 
log(n) instructions. Several approaches were proposed. The CROSS [9] and OMFLIP 
[10] permutation instructions each performs the equivalent function of two stages of a 
�virtual� interconnection network. A sequence of log(n) CROSS or OMFLIP 
instructions can build a 2log(n)-stage virtual network that can achieve any one of the 
n! permutations. Another approach was the GRP instruction [11], which partitions the 
data bits into two groups. At most log(n) GRP instructions are sufficient to achieve 
any one of n! permutations [11]. A third approach involves specifying the order of the 
indices of the source bits in the permuted result. Examples are PPERM[11], and 
SWPERM and SIEVE [12]. The XBOX instruction [3] is similar to PPERM.  

A comparison of CROSS, OMFLIP, GRP, and PPERM is presented in [5]. 
CROSS, OMFLIP and GRP all achieve arbitrary 64-bit permutations in 6 instructions. 
PPERM and SWPERM with SIEVE require more than log(n) instructions, but can be 



4      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

executed in as few as 4 cycles on a 4-way superscalar machine. Unfortunately, 
CROSS, OMFLIP and GRP cannot achieve speedup with superscalar machines, due 
to the strict data dependency between the sequence of log(n) permutation instructions. 
Below, we show how this data dependency can be overcome, so that arbitrary 64-bit 
permutations can be achieved in 1 or 2 cycles, rather than log(n) = 6 cycles. 

This paper extends the concepts we presented in [13] with new work on the 
detailed ISA or microarchitectural changes required, and the detailed implementation 
in an out-of-order processor. 

3. Achieving Arbitrary 64-bit Permutations in 1 or 2 Cycles 

The reason log(n) instructions are needed to achieve any permutation of n bits is 
because nlog(n) configuration bits are needed to specify an arbitrary n-bit permutation 
[5][11]. Since a typical instruction reads up to 2 source operands and produces 1 
result, a permutation instruction uses one source operand for the data and the other for 
n bits of configuration. The intermediate result produced by one permutation 
instruction is used as the data for the next. Hence, a sequence of log(n) instructions 
are needed to supply the nlog(n) configuration bits and the data to be permuted, to 
achieve any n-bit permutation [5]. If all nlog(n) configuration bits and the n data bits 
to be permuted can be specified by a single instruction, then it may be possible to 
execute any arbitrary n-bit permutation in 1 instruction. Hence, the main performance 
limiter is the ISA instruction format and the datapaths that support only two n-bit 
operands per instruction, and a design goal of not having to save states between 
permutation instructions. This is a reasonable goal since it reduces context-switch and 
operating system overhead. 

Suppose that the latency through the permutation functional unit is not a cycle-time 
limiter. Then, the problem reduces to the following: how can n(log(n)+1) bits be sent 
from general registers to a permutation functional unit (PU) in a single instruction? If 
each register is n bits, this means sending (log(n)+1) register values, or operands, to a 
functional unit. We propose two methods to solve this problem. Method 1 identifies 
instruction groups dynamically with microarchitecture techniques; method 2 employs 
ISA techniques to identify instruction groups statically. 

3.1. Datapath, MOMR and Instruction Groups 

We first define some new architectural terms: An (s,t) functional unit in a word-
oriented processor is a functional unit that takes s word-sized operands and produces t 
word-sized results. A standard functional unit is a (2,1) functional unit.  

An (s,t) datapath in a word-oriented processor is a datapath where s source buses 
and t destination buses are connected to functional units. If the datapath contains a 
register file, it has s read ports and at least t write ports for the results coming from the 
functional units in one cycle. In general, a k-way multi-issue processor has a (2k,k) 
datapath, supporting the simultaneous execution of k standard (2,1) functional units 
each cycle. 



Validating Word-oriented Processors for Bit and Multi-word Operations      5 

A datarich or MOMR (Multi-word Operands Multi-word Result) functional unit in 
a word-oriented processor is a functional unit that requires more than the standard two 
word-sized operands and one word-sized result.  

A sequence of consecutive instructions is called an instruction group if the 
instructions can be executed simultaneously by a datarich (or MOMR) functional unit. 

Emerging secure computing paradigms may require extensive execution of 
algorithms where performance can be improved by the use of datarich functional 
units. Sometimes datarich functional units improve the performance, other times they 
improve the cost-performance. Our thesis is that a k-way multi-issue processor with a 
(2k,k) datapath can accommodate different types of datarich functional units, with 
relatively minor changes to the pipeline control logic. In the rest of Section 3 and 
Section 4, we illustrate two methods for datarich MOMR execution, using bit 
permutation as the example. In Section 5, we generalize datarich MOMR execution to 
operations with multi-word operands. 

3.2. Method 1: microarchitecture group detection 

A permutation instruction is defined as follows: 

PERM rs,rc,rd 

where rs contains data source, rc contains configuration bits and rd is the result. 
For example, PERM can be either a CROSS or OMFLIP instruction. Fig. 1(a) shows a 
64-bit permutation specified with a sequence of 6 PERM instructions in 2 groups of 3 
instructions each. Each group provides the data source and 3 configuration words for 
a (4,1) permutation unit, PU. The group is dynamically detected, and then its 3 
instructions are transformed into 2 "internal" instructions. The first one supplies the 
data source and one configuration word, and the second one provides the other 2 
configuration words. When all the operands are ready, the two �internal� instructions 
are issued for execution simultaneously on one (4,1) PU. Hence, the 6 instructions can 
be transformed into 4 internal instructions in 2 groups and executed over 2 cycles. If 
there are two or more (4,1) PUs, we can pipeline the executions of the 2 groups and 
achieve a throughput of one permutation per cycle.  

3.3. Method 2: new ISA for group identification 

In the second method, we enhance the conventional RISC instruction encoding with 2 
new subop bits, gs and gc, for identifying instructions which start a group (gs=1) or 
continue a group (gc=1). The meanings of these 2 bits are shown in . 

The permutation instruction is defined as: 

PERM,subop  rs1,rs2,rd 

where subop contains the gs and gc bits. If gs is set, the instruction is the first in a 
2-instruction group, supplying the data word and one configuration word to the (4,1) 
PU. If gc is set, it is the second instruction in a group, supplying 2 configuration 
words for the (4,1) PU. We specify this 2-instruction group as follows: 



6      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

PERM,gs rs,rc1,rd 
PERM,gc rc2,rc3,rd 

Unlike method 1, method 2 does not need the dynamic group detection and 
instruction transformation. It also helps reduce static code size, since only 4 
permutation instructions (rather than 6) are required in the program. Similar to 
method 1, when all the source operands for the 2 grouped instructions are ready, they 
are issued for execution together on one (4,1) PU. 

 

(a) Original    (b) Intermediate 
 

PERM rs,rc1,rd   PERM,c   rs, rc1,rd 

PERM rd,rc2,rd   PERMcont rc2,rc3,rd 

PERM rd,rc3,rd   

 

PERM rd,rc4,rd   PERM,c   rd, rc4,rd 

PERM rd,rc5,rd   PERMcont rc5,rc6,rd 

PERM rd,rc6,rd 
 

Fig. 1. Instruction transformation for method 1 

Table 1. Meanings of gs and gc bits 

gs=0, gc=0 Normal instruction, not part of a group 

gs=1, gc=0 First instruction in a group  

gs=0, gc=1 Continuation instruction in a group 

gs=1, gc=1 Reserved 
 

4. Microarchitectural Changes  

In this section, we show how either of the two above methods can leverage the 
resources already present in a superscalar processor, with minimal additional cost. We 
first describe a typical superscalar processor in Section 4.1, then detail changes that 
must be made to its datapath and control path in Sections 4.2 and 4.3, respectively. 

 

ALU1 ALU2 

Register 
file 

Memory

ALU1 ALU2 

Register 
file 

(4,1) PU 

Memory

(a) (b)  

Fig. 2. (a) Standard 2-way superscalar processor datapath; (b) with a (4,1) PU added 



Validating Word-oriented Processors for Bit and Multi-word Operations      7 

4.1. Baseline microarchitecture 

Fig. 2(a) shows a standard 2-way superscalar RISC processor with a (4,2) datapath, 
i.e., 4 register read ports, 2 write ports and associated data buses and bypass paths.  

Fig. 3 shows the pipeline frontend of a generic out-of-order superscalar processor 
[14]. A block of instructions is fetched from the instruction cache. These instructions 
are then decoded and their operands renamed (to physical registers to eliminate 
register-name dependencies) before entering the issue window. They will be issued 
for execution when all their source operands and required functional units become 
available (wakeup and select stage). Certain stages of the pipeline may take multiple 
cycles. For an in-order issue processor, there are no rename or select stages. 

 

F
e
tch

/D
e
co

d
e
 

R
e
g
iste

r 

R
e
n
a
m

e
 

W
a
k
e
u
p
/S

e
le

ct 

Fetch/Decode Rename Wakeup/Select Register Read 

Issue window 

 

Fig. 3. Generic out-of-order superscalar processor pipeline frontend 

4.2. Changes to the datapath 

Fig. 2(b) shows a (4,1) permutation unit (PU) added to a standard (4,2) datapath of a 
2-way superscalar processor. Fig. 4 shows an implementation of the PU based on the 
butterfly network. There are 2 separate PUs, one contains a 6-stage butterfly network 
and the other contains an inverse butterfly network. In a 2-way processor, we have 
both of them in the datapath, but only one PU is used at a time, resulting in a 2-cycle 
latency and a throughput of one permutation per 2 cycles. In a 4-way or wider 
processor, we can use both of them in parallel. Then we can pipeline the permutation 
operation and achieve one permutation per cycle throughput (Fig. 5).   

 

64*3 control bits 64-bit data 

64-bit permuted result 

 

 

 

 

 

 

Butterfly 
network 

64 64 64 64 

64 (4,1)-PU1 

64*3 control bits 64-bit data 

64-bit permuted result 

 

 

 

 

 

 

Inverse butterfly 
network 

64 64 64 64 

64 (4,1)-PU2 

 

Fig. 4. One implementation of (4,1) permutation FU 



8      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

Inclusion of a datarich (4,1) MOMR functional unit in a 2-way superscalar 
processor causes minimal datapath overhead of one additional result multiplexer. All 
the expensive register ports, data buses and bypasses required have already been 
provided by the (4,2) datapath of the 2-way superscalar machine. Similarly, for the 
inclusion of two (4,1) MOMR units in a 4-way superscalar processor. Two (4,1) PUs 
leveraging the (8,4) datapath of a 4-way superscalar machine are sufficient to achieve 
the ultimate performance of a different 64-bit permutation every cycle. A key benefit 
of our solution is leveraging the existing resources of today�s microprocessors, 
essentially all of which are at least 2-way superscalar. 

 

ALU3 ALU4 

Register 
file 

(4,1)-PU2 

Memory

ALU1 ALU2 

(4,1)-PU1 

 

Fig. 5. Two (4,1) permutation FUs in 4-way superscalar processor 
 

F
e
tch

/D
e
co

d
e
 

R
e
g
iste

r 

R
e
n
a
m

e
 

M
o
d
ifie

d
 

w
a
k
e
u
p
/S

e
le

ct 

Fetch/Decode Register Rename Wakeup/Select Register Read 

m
u
x
 

Issue window  

Sequence 
detection 

Code  
transformer 

C-bit

 

Fig. 6. Modified superscalar processor pipeline frontend 

4.3. Changes to the control path 

We now show that even the required control path changes are minimal. Method 1, 
which uses the microarchitecture to detect a sequence of dependent instructions that 
can be executed together, requires some modifications to the pipeline control front-
end as shown in Fig. 6. The sequence detection unit detects sequences of 3 
permutation instructions. These sequences are then transformed to groups of 2 
instructions by the code transformer. The muxes pick the correct inputs to the issue 
window between the original instructions and the transformed instructions. A 1-bit 
field reserved for a C-bit is added to each entry in the instruction window to denote 



Validating Word-oriented Processors for Bit and Multi-word Operations      9 

whether the corresponding instruction and the following one are in a group. The 
wakeup/select logic is also modified so that the 2 grouped instructions can be woken 
up and executed together. For method 2, since instruction groups are explicitly 
identified by instruction subop bits, the sequence detection unit, code transformer and 
muxes are not needed. The rest of the control path is the same as for method 1. 
 
Group sequence detection. Dynamic instruction group detection is needed only by 
method 1. The group sequence detection unit (Fig. 7) recognizes 3 consecutive 
permutation instructions in a fetch block that satisfy the following two criteria: they 
have the same opcodes and the data source operand in a permutation instruction is the 
result of the previous permutation instruction. It then sets C-bits for the first 
instruction of the detected group sequence. For simplicity, sequences residing in two 
fetch blocks are not recognized to avoid keeping additional states. 

 

Decoder 

Decoder 

Decoder 

Decoder 

 

isPERM test 

and data 

dependency 

check 

Instr 1 

Instr 2 

Instr 3 

Instr 4 

C1 

Sequence  

detection 

isPERM 

rd 
rs 

isPERM 
rs 
rd 

IR

C2 

C3 

C4 

isPERM 
rs 
rd 

isPERM 
rs 
rd 

 

Fig. 7. Functions of sequence detection unit 

Instruction transformation. The code transformer is also needed only by method 1. 
It transforms the group of 3-instruction sequences into 2-instruction sequences (see 
Fig. 1). The 2 new instructions are generated according to the C-bits produced by the 
sequence detection unit and the renamed operands of the original 3 instructions. The 
code transformer replaces the data operand in the second instruction with the 
configuration operand from the third instruction before discarding the third 
instruction. Then, it updates the C-bits in the newly generated instructions. An 
instruction that has its C-bit set starts a group. Grouped instructions are adjacent in the 
issue window. Fig. 8 shows the functions of the code transformer.  

Instruction sequence 

1 rd rc1 

rd rc2 

rd rc3 

2

3

1 rd rc1 

rd rc2 2

Instruction group 

1 

0 

C 

1 

0 

0 

C 

rs 

rd 

rd 

rs 

rc3 

 

Fig. 8. Code transformer transforms 3-instruction sequence to 2-instruction group 

Instruction wakeup. Fig. 9 shows the modified wakeup logic needed by both 
methods to wake up the 2 grouped instructions together. This is necessary because 
otherwise the 2 instructions might be issued separately, producing the wrong result. 
Previously, an instruction is ready to issue when both of its source operands are ready. 
The modified wakeup logic ensures that grouped instructions become ready only 
when all the source operands in the group are ready.  



10      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

 

Wakeup logic for instr i 

From instr i-1 

From instr i 

From instr i+1 
rdy1i+1 rdy2i+1 

rdy1i-1 rdy2i-1 Ci-1 

Ci 

rdy1i 

rdy2i 

Ireadyi 

 

Fig. 9. Modified instruction wakeup logic 

Instruction select. We can modify the select logic for ALU1 and ALU2 to handle the 
permutation unit as well. This is achieved by adding C-bit propagation to the original 
select logic for ALU1 and ALU2 and 2 small control units, as shown in Fig. 10(a). 
Assume the select logic for ALU1 selects instruction i. The control unit 1 tests the C-
bit of i. If i�s C-bit is set, then grant both instruction i and i+1 and bypass the select 
logic for ALU2. Otherwise grant i and proceed to select logic for ALU2. Suppose 
instruction j is selected for ALU2. The control unit 2 then tests the C-bit of j. We 
grant instruction j only if j�s C-bit is not set. 

  

 
 
 
 

Select logic 
for ALU1 
with C-bit 

propagation 

Issue window 

Control 1

 
 
 
 

Select logic 
for ALU2 
with C-bit 

propagation 

i 

i+1 

j 

Iready 

C 

Control 2

Ci Cj 

bypass 

grant grant 
 
 
 
 
 

Select logic 
for ALU1 

 
 
 
 
 

Select logic 
for ALU2 

 
 
 
 
 

Select logic 
for  
PU 

Arbitration 

Non-perm instructions Perm instructions 

Issue window 

i 

i+1 

j 

Iready 

(a) (b)  

Fig. 10. (a) Select logic with modifications on the original select logic for ALU1 and 
ALU2; (b) Select logic with new set of logic for PU 

Alternatively, we can add a new set of select logic for the PU, which deals only 
with instructions with C-bits set, while the select logic for ALU1 and ALU2 deals 
with normal instructions. The arbitration unit picks the result of either the select logic 
for ALU1 and ALU2 or the new select logic. (see Fig. 10(b)).  

If there are multiple issue queues, such as proposed in [14], we can devise an 
instruction steering method so that the 2 permutation instructions in a group are 
dispatched to the same queue. This is easy to achieve because the 2 grouped 
instructions are adjacent. If the C-bit of the instruction at the head of a queue is set, 
we grant this instruction together with the following one. 

4.4. Complexity and delay of control path modifications 

The modifications to the control path consist of a small amount of combinatorial 
logic, estimated at a few thousand gates for a 4-way superscalar processor. As 
comparison, the issue logic of the Compaq Alpha 21264 processor, a 4-way 



Validating Word-oriented Processors for Bit and Multi-word Operations      11 

superscalar RISC processor, contains about 141000 transistors [15], making the 
complexity of our modifications negligible. 

In terms of delay, the sequence detection unit and the code transformer run in 
parallel with the decode and rename logic. Due to their simple functions, they should 
have no impact on the processor cycle time. Since the wakeup and select logic are 
already in the critical path for back-to-back executions of dependent instructions, our 
modifications may increase the cycle time. However, many methods have been 
proposed to reduce the latency of issue logic by either simplifying the instruction 
issue logic [14][16][17][18], or breaking wakeup/select to multiple stages [19][20] in 
order to achieve fast instruction scheduling. By incorporating these methods, we can 
integrate our modifications without affecting the processor cycle time. 

5. Generalization to Multi-word Operations 

We define multi-word operations as operations that use more than 2 word-sized 
operands and produce more than 1 word-sized result, i.e., they are operations that 
could use datarich MOMR functional units. Arbitrary bit permutation is one example 
of multi-word operations since the configuration bits span multiple words. Other 
multi-word operations include the multiplication of two 16-word operands in a 64-bit 
processor, for a public key algorithm like RSA using 1024-bit keys. If larger hardware 
multipliers can be accommodated within a high performance microprocessor, we can 
speed up the multiword multiplication by producing longer (and fewer) partial 
products with each instruction, resulting in fewer instructions needed to accumulate 
the partial products to get the final result. In particular, if the implementation can 
afford larger multipliers, we want to eliminate the ISA restriction of only performing 
the multiplication of two word-sized operands per instruction.  

5.1. Multiplication of Multi-word Operands 

The use of MOMR methods for speeding up n-bit permutations was described in 
Sections 3 and 4. We now describe how MOMR methods may be used to accelerate 
the multiplication of multi-word operands. Let the original multiply instructions be: 

MUL,L ra,rb,rc 
MUL,H ra,rb,rd 

Two 64-bit registers ra and rb are multiplied together to generate the low and high 
64 bits of the result in rc and rd, in successive instructions. Actually, both halves of 
the product are generated by the same hardware multiplier at the same time, and it is 
only because of the ISA restriction of one word-sized result per instruction that two 
separate instructions have to be used to generate the double-word result. If a (2,2) 
instruction were available, then these two instructions can be executed together on 
one multiplier simultaneously. Method 1 can recognize this case at run-time. Method 
2 can specify this at compile time with the gs and gc bits: 



12      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

MUL,L,gs ra,rb,rc 
MUL,H,gc ra,rb,rd 

A 2-way supercsalar processor with two (2,1) multipliers can achieve the same 
performance as a single (2,2) MOMR multiplier, but with twice the area for two 
multipliers. Hence, MOMR execution is more cost-effective. 

Alternatively, an even higher performance microprocessor may be able to afford a 
128-bit multiplier. Implemented as a (4,2) MOMR multiplier, we can execute 128-bit 
versions of the Multiply Low and High instructions, in method 2 as follows: 

MUL,L,gs ra1,rb1,rc1 
MUL,L,gc ra2,rb2,rc2 
MUL,H,gs ra1,rb1,rd1 
MUL,H,gc ra2,rb2,rd2 

The first two MUL,L instructions would be executed together as a group on a 128-
bit multiplier to generate the low 128 bits of the result. The next two MUL,H 
instructions generate the high 128 bits of the result. To get the equivalent 256-bit 
product using only 64-bit multipliers and conventional (2,1) instructions, we need to 
do 8 multiply�s and 5 add�s. A 128-bit multiplier can also be used for (4,4) MOMR 
execution, where all 4 instructions above belong to the same group and are executed 
together. Larger multipliers can also be used, for even further speedup. 

5.2. Datarich MOMR execution 

Table 2. Architectual methods for MOMR execution 

                            

Steps 

Method 1: 

microarchitecture 

detected groups 

Method 2:  

ISA specified groups 

Group detection: Recognize 

a small set of pre-defined 

groups of instructions that can 

be executed together on a 

MOMR functional unit in the 

same cycle. 

Need to consult a table 

like Table 3 to check 

multiple combinations of 

opcodes and data 

dependencies so as to 

recognize all the 

supported multi-word 

operations. 

Although groups are already 

defined in the ISA, still need 

to consult a table similar to 

that for method 1 to 

determine whether gs and gc 

define legitimate (and 

complete) groups.   

Instruction transformation: 

Transform the instructions in 

a group to fewer instructions 

with some operand register re-

packaging, if necessary.   

For different multi-word 

operations, different 

transformations are 

needed. 

Set C-bits in 

microarchitecture according 

to gs and gc bits in 

instructions. 

Wakeup and select: Wake up 
and select the instructions to 

be executed on one MOMR 

functional unit together 

Similar to permutation-only case.  The logic shown in 
Section  4 deals with simultaneous executions of up to 2 

instructions.  It can be extended if 3 or more instructions 

are to be issued together.  This may result in increased 

latency and more stages for wakeup and select.  
We now define generalized MOMR or datarich execution. In Table 2 and Table 3, 
method 1 achieves a microarchitecture solution for MOMR execution, while method 
2 yields an ISA solution, where the MOMR operations are explicitly specified with 
new gs and gc bits in the instruction encoding. The steps in these 2 methods are listed 



Validating Word-oriented Processors for Bit and Multi-word Operations      13 

in Table 2. Method 1 requires a more complex group detection unit to recognize all the 
supported multi-word operations. For method 2, a similar unit is also necessary, but to 
check the correctness of groups. Examples of the criteria for recognizing or checking 
instruction groups are given in Table 3. The first 3 columns specify the instructions in 
the instruction stream, and the last 2 specify the data dependencies they must satisfy. 

Table 3. Examples of Group Definitions 

 Instr i i+1 i+2 Dependency criteria Remarks 

PERM PERM PERM rdi=rs1i+1 & rdi+1=rs1i+2 & 

rdi!=rs2i+1 & rdi!=rs2i+2 & 

rdi+1!=rs2i+2 

Serial dependency  

No RAW hazard* 
Method 

1 MUL,L 

 

PMIN 

MUL,H 

 

PMAX 

 rs1i=rs1i+1 & rs2i=rs2i+1 & 

rdi!=rdi+1 & 

rdi!=rs1i+1 & rdi!=rs2i+1 

Same sources 

Diff dest for H, L 

No RAW hazard 

PERM,gs PERM,gc  rdi!=rs1i+1 & rdi!=rs2i+1 No RAW hazard 
Method 

2 
MUL,L,gs 

 

PMIN,gs 

MUL,H,gc 

 

PMAX,gc 

 rs1i=rs1i+1 & rs2i=rs2i+1 & 

rdi!=rdi+1 & 

rdi!=rs1i+1 & rdi!=rs2i+1 

Same source 

Diff dest for H, L 

No RAW hazard  

* Since a PERM group is composed of 3 serially dependent instructions, there must be data 
dependencies (RAW hazards) between adjacent PERM instructions. No RAW hazard here 
means no additional data dependencies other than those required for a serial chain. For multi-
word operations (all the rest), no RAW hazard means no RAW data dependencies. 

In order to simplify the architectural solution, we require that instructions to be 
executed together as a group be consecutive in sequential program order. That is, we 
are not trying to look through the whole program to find instructions that may be far 
apart which can be executed together in the same cycle. Rather, we target programs 
which can be re-compiled, or new programs, so that instructions that can be 
�grouped� for simultaneous execution are next to each other.  

The ISA cost of method 2 is that we must define the gs bit for every instruction 
that can serve as the start of a multi-word operation and the gc bit for all instructions 
that can act as continuation instructions in a group. Encoding space may be tight in 
existing ISAs and one or two unused bits per instruction may not be available. 

When there are different instruction groups, the microarchitecture needed to 
support method 2 is not significantly simpler than in method 1. However, method 2 
can specify MOMR execution opportunities that are too difficult for method 1 to 
recognize dynamically. For example, it takes a long sequence of 64-bit multiply and 
add instructions to get the result equivalent to the multiplication of two 128-bit 
operands. With the gs and gc bits, method 2 only needs 4 instructions to specify this 
operation (last 2 rows in Table 3). Therefore, method 2 can support a broader scope of 
multi-word operations. 

6. Performance 

We test two distinct aspects of our new architecture: support for fast bit permutations 
and for multi-word operations. Table 4 illustrates the performance of our architecture.  

For bit permutation, we test DES encryption (DES enc) and round key generation 
(DES key) with the fastest software program on existing processors which uses table 



14      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

lookup to perform bit permutations (columns a and b). We then test DES using an 
enhanced ISA that has an OMFLIP permutation instruction [10] added to it (columns 
c and d). For multi-word operations, we test integer Diffie-Hellman (column e). 

We implement these programs using a generic 64-bit RISC processor. First, we 
obtain the execution time, in cycles, of the programs running on a single-issue 
processor with one set of (2,1) functional units, including a 64-bit ALU, a 64-bit 
shifter, a 64-bit permutation unit (for columns c and d), and a 64-bit integer multiplier 
(for column e). Second, the same programs are executed on a standard 2-way 
superscalar processor with two sets of (2,1) functional units. The speedup is shown in 
the first row of Table 5.  

Then, we simulate the programs on an enhanced 2-way superscalar processor with 
one MOMR functional unit. For DES, the MOMR unit is a (4,1) Butterfly 
permutation unit as detailed in Sections 3 and 4. For DH (columns e), the MOMR unit 
is a (4,2) multiplier as described in Section 5. This is a 128-bit multiplier, which we 
are now able to utilize, but could not previously because of ISA limitations in a 
standard 64-bit superscalar processor. We assume a latency of 3 cycles for a 64-bit 
multiplier, and 5 cycles for the 128-bit multiplier. Either method 1 or 2 can be used in 
the DES programs (columns a-d). Method 2 is used for the DH program which is re-
coded using the new ISA features to specify grouped instructions with the gs and gc 
bits. The cache parameters used in the DES simulations are 16 kilobytes L1 data 
cache and 256 kilobytes L2 unified cache with 10-cycle and 50-cycle miss penalties, 
respectively.  

Table 4. Speedup of execution time 

 

 

a. 

DES 

enc 

b. 

DES 

key 

c. 

DES 

enc 

d. 

DES 

key 

e. 

Integer 

DH  

f. 

Binary 

ecDH  

2-way vs. 1-way 1.49 1.04 1.50 1.19 1.81 1.97 

2-way MOMR vs. 1-way 1.89 17.64 1.70 1.42 3.63 2.96 

2-way MOMR vs. 2-way 1.27 17.04 1.13 1.19 2.00 1.50 

 
The second row of Table 4 shows the speedup of our enhanced 2-way processor 

with a MOMR functional unit over a single-issue machine. In all cases, our new 
architecture achieves greater speedup over single-issue execution than the standard 2-
way superscalar processor (first row). The third row illustrates the additional speedup 
provided by our 2-way MOMR architecture over standard 2-way superscalar 
processors. For DES, the performance gain is very pronounced for key generation 
(17X speedup in column b), where permutation operations are more frequent than for 
encryption. The MOMR speedup is less when compared to the enhanced ISAs 
(columns c and d) than when compared to existing ISAs (columns a and b). This is 
because the introduction of new permutation instructions (CROSS or OMFLIP) in 
columns c and d already yields huge speedup over the table lookup method (in 
columns a and b). The number of instructions for a 64-bit permutation is reduced from 
over 20 to at most 6, and most of the memory accesses are also eliminated, resulting 
in much fewer cache misses. Even then, our MOMR execution achieves an additional 
speedup of 13% to 19% by further reducing the cycles needed for a 64-bit 
permutation from 6 to 2 cycles. 

For the integer DH, there is significant additional speedup of 2X over the standard 
2-way superscalar processors. This is because our MOMR architecture allows the 



Validating Word-oriented Processors for Bit and Multi-word Operations      15 

inclusion of wider functional units such as 128-bit multipliers. This reduces the 
overall number of instructions and cycles needed to complete a 1024 by 1024-bit 
multiplication, which is a primitive operation in the exponentiation function needed 
by public-key cryptography algorithms.  

7. Conclusions 

This paper makes several new contributions. First, we identify two categories of bit 
and multi-word operations as new challenges for word-oriented processor architecture 
for high-performance cryptographic processing. This insight is more useful from a 
broad architectural perspective than just picking out special-purpose operations to 
accelerate. 

Second, we present two architectural solutions for achieving arbitrary 64-bit 
permutations in O(1) cycles. This is a significant result since previously arbitrary n-bit 
bit permutations took O(n) cycles. Even with our recent proposals of permutation 
instructions [5][9][10][11][12], this took at least O(log(n)) cycles. We show how a 
different 64-bit dynamically�specified permutation can be achieved every cycle by a 
4-way superscalar processor with datarich MOMR execution. Our software solution 
for achieving permutations is much more powerful than a hardware solution � the 
latter can only achieve a few statically-defined permutations, while our solution can 
achieve all possible dynamically-defined permutations. Furthermore, the incremental 
cost is minimal, since we leverage common microarchitecture trends like superscalar 
processors. Our result is also significant because it implies that word-oriented 
processors have no problem supplying very high performance (1 or 2 cycles) for even 
extremely challenging bit-oriented processing like arbitrary bit permutations. 
Cryptographers can use bit permutations freely in their new algorithms if 
microprocessor architectures include these bit permutation instructions. 

Third, we define the concepts of datarich MOMR (Multi Operands Multi Result) 
execution and instruction groups. MOMR functional units can achieve extremely high 
performance for bit-level permutations as well as multi-word operations, with a single 
coherent architectural solution. The MOMR feature enables a very flexible extension 
of standard ISAs to support datarich operations of many flavors. We do not have to 
decide whether instruction formats of future processors should support (3,1), (4,1), 
(2,2), (3,2), or (4,2) functional units, all of which are useful for different operations. 
They can all be supported on a 2-way superscalar machine with minimal changes. Our 
proposal to base MOMR implementations on the (2k,k) datapath of a k-way 
superscalar processor gives us the flexibility of supporting all MOMR functional unit 
sizes covered by these existing datapath resources. We have also shown the control 
path modifications needed to support MOMR; these are minimal when compared to 
the complex pipeline control in typical superscalar, out-of-order machines. 

Finally, a fourth contribution is the validation of the word as the atomic unit upon 
which a processor is optimized, since we show how both bit and multi-word 
operations can be achieved with MOMR execution for either superior performance or 
enhanced cost-performance. 



16      Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi   

8. References 

[1] B. Schneier, Applied Cryptography, 2nd Ed., John Wiley & Sons, Inc.,1996. 
[2] NIST (National Institute of Standards and Technology), �Advanced Encryption Standard 

(AES) - FIPS Pub. 197�, November 2001. 
[3] J. Burke, J. McDonald and T. Austin, �Architectural support for fast symmetric-key 

cryptography�, Proceedings of ASPLOS 2000, pp. 178-189. November 2000.  
[4] L. Wu, C. Weaver, and T. Austin, �CryptoManiac: a fast flexible architecture for secure 

communication�, Proceedings of the 28th International Symposium on Computer 
Architecture, pp. 110-119, June 2001. 

[5] R. B. Lee, Z. Shi, and X. Yang, �Efficient permutation instructions for fast software 
cryptography�, IEEE Micro, vol. 21, no. 6, pp. 56-69, December 2001. 

[6] R. B. Lee, �Subword parallelism with MAX-2�, IEEE Micro, Vol. 16, No. 4, pp. 51-59, 
August 1996. 

[7] K. Diefendorff et al, �AltiVec extension to PowerPC accelerates media processing�, IEEE 
Micro, Vol. 20, No. 2, pp. 85-95, March/April 2000.  

[8] �IA-64 application developer�s architecture guide�, Intel Corp., May 1999.  
[9] X. Yang, M. Vachharajani, and R. B. Lee, �Fast subword permutation instructions based on 

butterfly networks�, Proceedings of SPIE 2000, pp. 80-86, January 2000. 
[10] X. Yang and R. B. Lee, �Fast subword permutation instructions using omega and flip 

network stages�, Proceedings of the International Conference on Computer Design, pp. 
15-22, September 2000. 

[11] Z. Shi and R. B. Lee, �Bit permutation instructions for accelerating software 
cryptography�, Proceedings of the IEEE International Conference on Application-Specific 
Systems, Architectures and Processors, pp. 138-148, July 2000. 

[12] J. P. McGregor and R. B. Lee, �Architectural enhancements for fast subword permutations 
with repetitions in cryptographic applications�, Proceedings of the International 
Conference on Computer Design, pp. 453-461, September 2001. 

[13] R. B. Lee, Z. Shi, and X. Yang, �How a processor can permute n bits in O(1) cycles�, 
Proceedings of Hot Chips 14 - A Symposium on High Performance Chips, August 2002. 

[14] S. Palacharla, N. P. Jouppi, and J. E. Smith, �Complexity-effective superscalar processors�, 
Proceedings of the 24th Annual International Symposium on Computer Architecture, pp. 
206-218, 1997. 

[15] J. A. Farell and T. C. Fischer, �Issue logic for a 600-mhz out-of-order execution 
microprocessor�, IEEE Journal of Solid-State Circuits, Vol. 33, Issue 5, pp. 707-712, May 
1998. 

[16] S. Onder and R. Gupta, �Superscalar execution with direct data forwarding�, Proceedings 
of the 1998 ACM/IEEE Conference on Parallel Architectures and Compilation Techniques, 
pp. 130--135, 1998. 

[17] D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami, �Circuits for wide-window 
superscalar processors�, Proceedings of the 27th Annual International Symposium on 
Computer Architecture, pp. 236-247, 2000. 

[18] R. Canal, A. Gonzalez, �A Low-complexity issue logic�, Proceedings of the 14th 
international conference on Supercomputing, pp. 327-335, 2000 

[19] J. Stark, M. D. Brown, and Y. N. Patt, �On pipelining dynamic instruction scheduling 
logic�, Proceedings of the 33th Annual ACM/IEEE International Symposium on 
Microarchitecture, pp. 57-66, 2000. 

[20] M. D. Brown, J. Stark, and Y. N. Patt, �Select-free instruction scheduling logic�, 
Proceedings of the 34th ACM/IEEE International Symposium on Microarchitecture, pp. 
204-213, December 2001. 


