
Sept. 2005, Vol.20, No.5, pp.{ J. Comput. Sci. & Technol.

Single-Cycle Bit Permutations with MOMR Execution

Ruby B. Lee1, Xiao Yang1, and Zhijie Jerry Shi2

1Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

2Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA

E-mail: rblee@princeton.edu; xiaoyang@princeton.edu; zshi@uconn.edu

Received , 200; revised , 200.

Abstract Secure computing paradigms impose new architectural challenges for general-purpose processors. Crypto-

graphic processing is needed for secure communications, storage, and computations. We identify two categories of operations

in symmetric-key and public-key cryptographic algorithms that are not common in previous general-purpose workloads: ad-

vanced bit operations within a word and multi-word operations. We de�ne MOMR (Multiple Operands Multiple Results)

execution or datarich execution as a uni�ed solution to both challenges. It allows arbitrary n-bit permutations to be achieved

in one or two cycles, rather than O(n) cycles as in existing RISC processors. It also enables signi�cant acceleration of multi-

word multiplications needed by public-key ciphers. We propose two implementations of MOMR: one employs only hardware

changes while the other uses Instruction Set Architecture (ISA) support. We show that MOMR execution leverages available

resources in typical multi-issue processors with minimal additional cost. Multi-issue processors enhanced with MOMR units

provide additional speedup over standard multi-issue processors with the same datapath. MOMR is a general architectural

solution for word-oriented processor architectures to incorporate datarich operations.

Keywords permutation, bit permutations, cryptography, cryptographic acceleration, security, multi-word operation,

datarich execution, MOMR, instruction set architecture, ISA, processor, high performance secure computing

1 Introduction

Secure communications, computations, and storage

utilize cryptographic processing in secure protocols to

provide data con�dentiality, data integrity, and user au-

thentication. As secure computing paradigms increase

in importance, cryptographic processing will become a

major part of every processor's workload. Hence, un-

derstanding the new requirements of fast cryptographic

processing by software is critical in the design of all fu-

ture processors, whether general-purpose, application-

speci�c, or embedded. In this paper, we target espe-

cially the needs of high performance microprocessors.

Con�dentiality can be achieved by encrypting the

data or message, using symmetric-key cryptographic al-

gorithms such as DES[1], and AES [2]. Data integrity,

which assures data or messages are not changed in tran-

sit or in storage, can be accomplished with secure hash

functions such as SHA and MD-5[1]. Authenticating

users and devices remotely across the Internet, enabling

digital signatures and key exchanges can be accom-

plished with public-key cryptographic algorithms such

as DiÆe-Hellman and RSA[1].

We observe two categories of new requirements im-

posed by these classes of cryptographic algorithms: bit-

oriented operations and multi-word operations. Both

challenge the basic word-orientation of modern proces-

sors.

A highly desirable operation in the construction of

symmetric-key block ciphers is bit permutation, which

allows arbitrary rearrangement of the bits in the block

being encrypted. This is currently very slow in micro-

processors where only simple logical operations are sup-

ported for bit-wise operations.

Public-key cryptography introduces the other new

requirement: multi-word arithmetic. While multi-word

integer arithmetic has been a requirement in previous

high-precision integer computations, its need remained

relatively low since the basic word size in microproces-

sors has increased from 16 to 32, then to 64 bits. Fre-

quent use of public-key cryptography algorithms may

signi�cantly increase the need for multi-word arithmetic,

such as the multiplication, in RSA, of two 1024-bit

operands (or 16-word operands, each 64 bits). Public-

key algorithms based on Elliptic Curve Cryptography

(ECC) often perform polynomial operations requiring

both bit-oriented and multi-word operations.

A key contribution of this paper is the observation

that fast cryptographic processing depends on a proces-

sor's ability to support both complex bit-level manipu-

lations as well as multiword operations.

A second contribution is a generalized architec-

tural solution that allows high-performance processors

to support datarich operations with MOMR (Multiple

Operands Multiple Results) execution. MOMR is also

a uni�ed solution that achieves both high performance

bit permutations and multi-word operations needed for

cryptographic acceleration of symmetric-key and public-

key ciphers.

A third contribution is to show how arbitrary n-

bit permutations can be accomplished very eÆciently

in only one or two cycles with MOMR execution.

This previously took O(n) instructions in basic RISC

processors. With recently proposed bit permutation

This work was supported in part by the National Science Foundation, U.S.A., under grants CCR-0326372 and CCR-0105677.



2 J. Comput. Sci. & Technol., Sept. 2005, Vol.20, No.5

instructions[3�7], O(log(n))� instructions was the op-

timal result.

Section 2 de�nes datarich or MOMR execution and

introduces two methods for achieving MOMR execution

in microprocessors; one purely micro-architectural, and

the other involving new ISA. Section 3 describes how the

two MOMR methods can be applied to achieve an arbi-

trary n-bit permutation every cycle. Section 4 describes

MOMR implementation in detail. Section 5 shows the

generality of MOMR and Section 6 discusses MOMR

performance.

2 Datarich MOMR Execution

We introduce the following new de�nitions:

An (s; t) functional unit in a word-oriented proces-

sor is a functional unit that takes s word-sized operands

and produces t word-sized results. A standard func-

tional unit, e.g., an adder, is a (2; 1) functional unit.

An (s; t) datapath in a word-oriented processor is a

datapath where s source buses and t destination buses

are connected to functional units. If the datapath con-

tains a register �le, it has s read ports and at least t

write ports for the results coming from the functional

units and from memory. A k-way multi-issue processor

has a (2k; k) datapath, supporting the simultaneous ex-

ecution of k standard (2; 1) functional units each cycle.

A MOMR (Multiple Operands Multiple Results) or

datarich functional unit in a word-oriented processor is

a functional unit that requires more than two source

operands or generates more than one result, or both.

It is an (m;n) functional unit, where either m > 2 or

n > 1. It requires the support of an (m;n) datapath.

An instruction group is a sequence of instructions

that can be executed simultaneously by a MOMR func-

tional unit.

We describe two methods for detecting instruction

groups: Method 1 detects instruction groups dynami-

cally with hardware, while method 2 employs ISA tech-

niques to identify instruction groups statically.

2.1 MOMR Method 1: Hardware Detection of

�� Instruction Group for MOMR Execution

An instruction group can be detected as:

(a) a sequence of dependent instructions with the

same or related opcode and at least three di�erent

source registers between them, but only one destination

register (MO case).

(b) a sequence of instructions with related opcode

where the operands in each instruction are the same

but the destination registers are di�erent (MR case).

By a related opcode, we mean either that the op-

code is the same but the subop is di�erent, or that the

opcodes are di�erent but they use the same or similar

functional units. These two conditions can be general-

ized to a small set of destination registers in (a) and

only some of the operands being the same in (b).

For example, in Fig.1(a), condition (a) for an instruc-

tion group is detected. (The �rst two registers specify

the operand registers while the last register speci�es the

result register.) This can be implemented as a MOMR

functional unit with four operands (Rs1, Rs2, Rs3, and

Rs4) and one result Rd. In Fig.1(b), condition (b) for

an instruction group is detected. This can potentially

be implemented as a MOMR functional unit with two

operands (Rs1 and Rs2) and two results (Rd1 and Rd2).

In each case, if a MOMR functional unit is implemented

in the processor, the whole instruction group can be is-

sued together to it.

OPA Rs1, RS2, Rd

OPA Rd, Rs3, Rd

OPA Rd, Rs4, Rd

(a)

OPB.L Rs1, Rs2, Rd1

OPB.R Rs1, Rs2, Rd2

(b)

Fig.1. Examples of instruction groups for MOMR. (a) Multiple

operands. (b) Multiple results.

2.2 MOMR Method 2: New ISA for

�� Instruction Group Identi�cation

This method uses two new subop bits, gs and gc,

for identifying instructions which start a group (gs = 1)

or continue a group (gc = 1). These two bits are only

needed in instructions that can be part of an instruction

group for possible MOMR execution. They are de�ned

in Table 1.

Table 1. gs and gc Bits

gs = 0; gc = 0 Normal instruction, not part of a group

gs = 1; gc = 0 First instruction in a group

gs = 0; gc = 1 Continuation instruction in a group

gs = 1; gc = 1 Reserved

The performance of cryptographic processing and

other applications can be signi�cantly improved by the

use of MOMR functional units.

3 Achieving Single-Cycle Bit Permutations

MOMR execution enables us to achieve the \gold

standard" of adding a new primitive operation to a

general-purpose RISC microprocessor (in this case, for

fast arbitrary n-bit permutations). It enables an n-bit

processor to perform a di�erent n-bit permutation each

cycle with minimal changes to the ISA, microarchitec-

ture, and datapath. In this section, we �rst describe

past work on permutation instructions, then show how

a di�erent n-bit permutation can be achieved every cycle

using one of our MOMR methods.

�We will use log(n) to denote log
2
(n) throughout this paper.



Ruby B. Lee et al.: Single-Cycle Bit Permutations with MOMR Execution 3

3.1 Past Work

Performing arbitrary bit-level permutations has been

very slow with word-oriented general-purpose proces-

sors. Previously, processor hardware only supported a

very restricted subset of bit permutations known as ro-

tations. Here, every bit in the n-bit word is moved by

the same shift amount, with wrap-around. There are

only n di�erent rotations of an n-bit word, but n! di�er-

ent permutations. While some n-bit permutations can

be achieved with fewer instructions, allowing arbitrary,

data-dependent, n-bit permutations takes O(n) cycles

using shift and logical instructions[3]. Alternatively, ta-

ble lookup methods can be used, but the memory space

required limits this to a few �xed permutations, and

cache misses degrade the performance.

From the mid 1980s, subword permutation instruc-

tions have been introduced into microprocessors as mul-

timedia ISA extensions to handle the rearrangement of

subwords packed in registers. Examples are MIX and

PERMUTE in HP's MAX-2[8], VPERM in Motorola's

AltiVec[9], and MIX and MUX in IA-64[10]. However,

these instructions only handle subword sizes down to

eight bits. They do not provide a general solution for

performing arbitrary bit-level permutations eÆciently.

More recently, our PALMS[11] research group has

tackled the general bit permutation problem, de�ning

alternative new permutation instructions for achieving

any n-bit permutation with only log(n) instructions.

The CROSS[4] and OMFLIP[5] permutation instructions

each performs the equivalent function of two stages in

a multi-stage interconnection network. A sequence of

log(n) CROSS or OMFLIP instructions can build a \vir-

tual" 2 log(n)-stage network, which can achieve any one

of the n! permutations. The GRP instruction[6] parti-

tions the data bits into left and right groups, preserving

the order of the bits in each group. A third approach

speci�es the order of the indices of the source bits in the

permuted result. Examples are PPERM[3;6], and SW-

PERM with SIEVE[7;6]. The XBOX instruction[12;13] is

similar to PPERM.

A comparison of CROSS, OMFLIP, GRP and

PPERM is presented in [3]. CROSS, OMFLIP, and

GRP all achieve arbitrary n-bit permutations in log(n)

instructions. PPERM and SWPERM with SIEVE re-

quire more than log(n) instructions. However, for 64-

bit permutations, SWPERM with SIEVE can be exe-

cuted in as few as 4 cycles (less than log(64) = 6 cy-

cles) on a 4-way superscalar 64-bit processor. Unfor-

tunately, CROSS, OMFLIP, and GRP cannot achieve

further speedup with superscalar machines, due to the

strict data dependency in the sequence of log(n) permu-

tation instructions used. Below, we show how this data

dependency can be overcome with MOMR execution so

that arbitrary 64-bit permutations can be achieved in

one or two cycles, rather than log(n) cycles. This paper

extends[14;15] with new work on the de�nition of MOMR

architecture, its implementation and performance.

3.2 Using MOMR Method 1 (HW Detection)

We de�ne a permutation instruction as:

PERM rs, rc, rd

where rs contains the data source, rc contains con�gu-

ration bits and rd is the result.

Fig.2a shows a 64-bit permutation speci�ed with a

sequence of six dependent PERM instructions.

PERM rs; rc1; rd

PERM rd; rc2; rd

PERM rd; rc3; rd

)
PERM rd; rc4; rd

PERM rd; rc5; rd

PERM rd; rc6; rd

)
(a)

PERM, gs rs, rc1, rd

PERM, gc rc2, rc3, rd

PERM, gs rd, rc4, rd

PERM, gc rc5, rc6, rd

(b)

Fig.2. Instruction groups for MOMR methods 1 and 2. (a)

Method 1. (b) Method 2.

Condition (a) for an instruction group is satis�ed

for these six instructions with a total of seven source

operands (rs, rc1, rc2, rc3, rc4, rc5, and rc6)

and one result (rd). This would require a functional

unit with seven 64-bit operands which may be too large

and slow. However, a smaller and faster (4; 1) functional

unit can be used instead. The six permutation instruc-

tions can be divided into two instruction groups, each

providing the data word and three con�guration words

to a (4; 1) permutation unit (PU). The two instruction

groups are executed over two cycles, if there is only one

(4; 1) PU active each cycle. If two (4; 1) PUs can exe-

cute each cycle, we can pipeline the executions of the

two groups and achieve a throughput of one permuta-

tion per cycle.

3.3 Using MOMR Method 2 (ISA Support)

Here, we de�ne the permutation instruction as:

PERM, subop rs1, rs2, rd

where subop contains gs or gc bits.

Assuming the same (4; 1) PU as above, we can now

specify an instruction group as only two instructions

(Fig.2(b)). If gs is set, the instruction is the �rst in

an instruction group, supplying the data word and one

con�guration word to the (4; 1) PU. If gc is set, it is the

second instruction in a group, supplying two con�gura-

tion words for the (4; 1) PU. This method can reduce

static code size, since fewer instructions are required.

3.4 Why MOMR Accelerates Bit Permutations

Achieving an arbitrary n-bit permutation requires

n log(n) con�guration bits to specify the desired permu-

tation out of n! possible permutations[3;6]. If standard

(2; 1)-datapaths are used and no intermediate states are

stored in functional units, then log(n) instructions are

needed just to supply the n log(n) con�guration bits, as

in Fig.2(a). A permutation instruction uses one source

operand for the data and the other for n bits of the



4 J. Comput. Sci. & Technol., Sept. 2005, Vol.20, No.5

con�guration. The intermediate result produced by one

permutation instruction is used as the data for the next.

Hence, a sequence of log(n) instructions are needed to

provide n log(n) con�guration bits to achieve an n-bit

permutation[3]. In total, log(n) + 1 operands are speci-

�ed with this sequence of instructions.

Some permutation circuits can use more than one

con�guration word to permute the data bits without in-

creasing the latency of the operation. Fig.3 shows 8-bit

versions of the buttery and inverse buttery network

circuits used to implement the CROSS instruction[4].

The latency through an n-bit buttery circuit is less

than that through an n-bit ALU since both require

log(n) stages, but each stage of a buttery circuit is

simpler, being only the time taken by a 2:1 multiplexer

and wire propagation.

Fig.3. 8-bit buttery and inverse buttery networks. (a) Buttery

network. (b) Inverse buttery network.

However, the CROSS instruction only uses 2 stages

of either the buttery or inverse buttery network. Since

each stage requires n=2 con�guration bits, only 2 stages

can be controlled with the second n-bit operand of the

CROSS permutation instruction. Hence, it is the in-

struction format and datapaths in the ISA and microar-

chitecture that constrain the maximum performance of

arbitrary bit permutations not the latency of the permu-

tation circuitry. MOMR execution removes these con-

straints.

While a MOMR unit could be designed with

(log(n) + 1) operands, the latency of this would be

greater than that of an ALU, which we use to de�ne

the cycle time. Hence, we choose to use two (4; 1)

MOMR permutation units, each with single cycle la-

tency comparable to an ALU, to implement the 64-bit

versions of the buttery and the inverse buttery net-

works. Since most microprocessors do not have the lux-

ury to change the fundamental ISA and datapath de�ni-

tions, our MOMR methods allow them to accommodate

functional units with more operands and results with

minimal changes[15].

4 MOMR Implementation

Our two MOMR methods can leverage the resources

already present in a standard multi-issue microproces-

sor, with minimal additional cost. We �rst describe a

typical superscalar processor, then detail changes that

must be made to its datapath and control path. We use

the bit permutation example to illustrate the MOMR

methods. However the techniques described are appli-

cable to other datarich operations as well.

4.1 Baseline Microarchitecture

Fig.4(a) shows a standard 2-way superscalar RISC

processor with a (4; 2) datapath, i.e., 4 register read

ports, three write ports (one for memory), and associ-

ated data buses and bypass paths. Since MOMR im-

plementation in an in-order processor is quite straight-

forward, we focus on the changes needed in a processor

with out-of-order instruction issue and execution.

Fig.4. (a) Standard 2-way superscalar processor datapath. (b)

with a (4; 1) PU added.

Fig.5. Pipeline front-end of an out-of-order processor.

Fig.5 shows the pipeline front-end of a generic out-of-

order superscalar processor[16]. A block of instructions

is fetched from the instruction cache and decoded. Their

operands are renamed to physical registers, to eliminate

register-name dependencies, before entering the issue

window. They are issued for execution when all their

source operands and required functional units become

available (wakeup and select stages). Certain stages of

the pipeline may take multiple cycles. An in-order pro-

cessor does not need rename or select stages.



Ruby B. Lee et al.: Single-Cycle Bit Permutations with MOMR Execution 5

4.2 Changes to the Datapath

Fig.4b shows a (4; 1) permutation unit (PU) added to

a standard (4; 2) datapath of a 2-way superscalar proces-

sor. Fig.6 shows examples of 64-bit (4; 1) PUs. One PU

implements a 6-stage 64-bit buttery network; a second

PU implements an inverse buttery network. The (4; 2)

datapath in a 2-way processor limits the use of only one

(4; 1) PU per cycle, resulting in a 2-cycle latency for

an arbitrary 64-bit permutation, and a throughput of

one permutation per two cycles. In a 4-way or wider

processor, both PUs can be used in parallel (see Fig.7),

resulting in an arbitrary 64-bit permutation every cycle.

Fig.6. Two (4; 1) permutation units.

Adding a (4; 1) MOMR functional unit to a 2-way

superscalar processor causes minimal datapath overhead

of only one additional result multiplexer (Fig.4(b)). All

the expensive register ports, data buses, and bypasses

have already been provided by the (4; 2) datapath. Sim-

ilarly, adding two (4; 1) MOMR units to a 4-way super-

scalar processor leverages the existing (8; 4) datapath.

Two (4; 1) PUs are suÆcient to achieve the ultimate

performance of a di�erent 64-bit permutation every cy-

cle. A key bene�t of our solution is the leveraging of

existing resources in today's microprocessors, almost all

of which are at least 2-way multi-issue processors.

Fig.7. Two (4; 1) PUs in a 4-way superscalar processor.

4.3 Changes to the Control Path

We now show that the required control path changes

are also minimal. MOMR method 1 requires some mod-

i�cations to the pipeline control front-end as shown

in Fig.8. The sequence detection unit detects an in-

struction group. The code transformer transforms this

to a (smaller) group of internal instructions, if neces-

sary. The multiplexers select either the original or trans-

formed instructions to place in the issue window. A

group �eld, denoted C, is added to each entry in the

instruction window to indicate if it and its successor

are in an instruction group. The wakeup/select logic is

also modi�ed so that the grouped instructions can be

woken up and executed together. For MOMR method

2, since instruction groups are explicitly identi�ed in

the instructions themselves, the sequence detection unit,

code transformer, and multiplexers are not needed. The

rest of the control path is the same as in MOMR method

1. Below, each new change is described in detail.

Fig.8. Modi�ed superscalar processor pipeline frontend.

Group sequence detection. Dynamic instruction

group detection is needed only by method 1. The group

sequence detection unit (Fig.9) recognizes three consec-

utive permutation instructions that satisfy the following

three criteria: 1) they have the same opcode; 2) the data

source operand in a permutation instruction is the result

of the previous permutation instruction; 3) they have

the same destination register. It then sets the C-bits for

all the instructions in the group except the last one. The

comparison logic required by 2) and 3) is already present

in the pipeline data dependency check logic. The gates

required for 1) are a few XOR and NOR gates. For sim-

plicity, sequences residing in two fetch blocks are not

recognized to avoid keeping additional states.

Fig.9. Functions of sequence detection unit.

Instruction transformation. The code trans-

former is also needed only by method 1. It trans-



6 J. Comput. Sci. & Technol., Sept. 2005, Vol.20, No.5

forms a group of 3-instruction sequences into internal

2-instruction sequences, by replacing the data operand

in the second instruction with the con�guration operand

from the third instruction before discarding the third in-

struction (Fig.10). Then, it updates the C-bits in the

newly generated internal instructions. Grouped instruc-

tions are adjacent in the issue window.

Fig.10. Code transformer transforms a 3-instruction sequence to

a 2-instruction group.

Instruction wakeup. The wakeup logic needs to

be modi�ed for both methods to wake up two grouped

instructions at the same time. This is necessary because

otherwise the two grouped instructions might be issued

separately and produce wrong results. Previously, when

an instruction is ready to issue, it set its request sig-

nal to 1. The select logic selects one of the ready in-

structions, and sends it the grant signal. The modi�ed

wakeup logic ensures that grouped instructions request

execution only when both instructions are ready. Only

the �rst instruction in a group has its request signal set

to 1; other instructions in the group always have their

request signal at 0. Suppose R
i
and C

i
are the request

signal and C �eld for instruction i. Instruction i follows

instruction i � 1, and instruction i + 1 follows instruc-

tion i. The new request signal R
i
for instruction i is

generated as:

R
0

i
= R

i
� C

i�1 � (Ci
+R

i+1)

R
i
and R

i+1 on the right hand side of the equation refer

to the old request signals generated when the operands

are ready for instructions i and i+1, respectively (before

MOMR is added). R0

i
on the left represents the new re-

quest signal for MOMR that takes grouped instructions

into consideration. The equation considers three cases

for instruction i. 1) If the preceding instruction i � 1

starts a group, instruction i never sets its request sig-

nal to 1. 2) If instruction i starts a group, it requests

execution only when instruction i + 1 is also ready. 3)

Instruction i is not a grouped instruction and sets its re-

quest signal when its operands are ready, i.e., R0

i
= R

i
.

Instruction select. Suppose the (4; 1) PUs share

buses with ALU1 and ALU2. C-bits from the issue win-

dow need to be propagated to the select logic for ALU1,

ALU2, and a small control unit (see Fig.11(a)).

Assume the select logic for ALU1 selects instruction

i. The control unit 1 tests the C-bit of instruction i. If

instruction i's C-bit is 1, then grant both instruction i

and i + 1 and bypass the select logic for ALU2. Oth-

erwise grant instruction i only for ALU1. The select

logic for ALU2 is modi�ed so that it does not select an

instruction with its C-bit set.

Fig.11. (a) Select logic with modi�cations to the select logic for

ALU1 and ALU2. (b) New select logic for PU.

Alternatively, we can add a new set of select logic for

the PU (see Fig.11(b)), which deals only with grouped

instructions, while the select logic for ALU1 and ALU2

deals with normal instructions. The arbitration logic

picks the result of either the select logic for ALU1 and

ALU2 or the new select logic.

If there are multiple issue queues, such as proposed

in [16], an instruction steering method can ensure that

the instructions in an instruction group are dispatched

to the same queue. This is easy to achieve because the

two grouped instructions are adjacent.

4.4 Complexity and Delay Estimates

The modi�cations to the control path consist of a

small amount of combinatorial logic, estimated at a few

thousand gates for a 4-way superscalar processor. As

comparison, the issue logic of the Compaq Alpha 21,264

processor, a 4-way superscalar RISC processor, contains

about 141,000 transistors[17], making the complexity of

our modi�cations negligible.

In terms of delay, the sequence detection unit and

the code transformer run in parallel with the decode

and rename logic. Due to their simple functions, they

should have no impact on the processor cycle time.



Ruby B. Lee et al.: Single-Cycle Bit Permutations with MOMR Execution 7

Since the wakeup and select logic are already in the

critical path for back-to-back executions of dependent

instructions, there is a small possibility our modi�ca-

tions may increase the cycle time slightly. However,

many methods have been proposed to reduce the la-

tency of issue logic by either simplifying the instruction

issue logic[16;18�20], or breaking wakeup/select to multi-

ple stages[21;22]. Using these methods, we can integrate

our modi�cations without a�ecting the processor cycle

time.

4.5 Discussion

Method 1 requires a more complex group detection

unit to recognize all the supported MOMR operations.

Although method 2 speci�es instruction groups in the

instructions themselves, if multiple MOMR units are

supported by the processor, it also needs a similar unit

to check if gs and gc pairs de�ne legitimate and correct

groups.

In order to simplify MOMR implementations, we re-

quire that instructions in a group be consecutive in the

program. We are not trying to �nd instructions that

may be far apart in the program to be executed to-

gether. Rather, we target programs which can be re-

compiled, or new programs, where instructions that can

be \grouped" for simultaneous execution are next to

each other. Compilers need to be modi�ed to recognize

grouped instructions and not separate them during op-

timization. Alternatively, the MOMR instructions can

be placed into regions that the compiler's optimization

phases do not change.

Method 2 incurs an ISA cost of de�ning the gs and gc

bits for instructions that can be in an instruction group.

Encoding space may be tight in existing ISAs and one

or two unused bits per instruction may not be available.

Compilers also need to be modi�ed to insert the gs and

gc bits.

When there are di�erent instruction groups, the mi-

croarchitecture needed to support method 2 is not sig-

ni�cantly simpler than in method 1. However, method

2 can specify MOMR execution opportunities that are

too diÆcult for method 1 to recognize dynamically. For

example, it takes a long sequence of 64-bit multiply and

add instructions to get the result equivalent to the mul-

tiplication of two 128-bit operands. With the gs and

gc bits, method 2 only needs 4 instructions to specify

this operation. Hence, method 2 can support a broader

scope of multi-word operations.

We showed in detail how MOMR enables a 64-bit

processor to achieve single-cycle 64-bit permutations,

using two (4; 1) permutation units. MOMR techniques

can be generalized to allow n-bit permutations in n-

bit processors, for values of n both smaller and larger

than 64. MOMR permutation units may have to be

larger than (4; 1) for n > 64. The designer can still

achieve single-cycle pipelined throughput by increasing

the number of cycles of latency, the cycle time, or the

area.

For example, an arbitrary 128-bit permutation of

bits in a 128-bit register can be accomplished on a 128-

bit processor, still using only (4; 1) permutation units.

The total circuitry needed for 128-bit permutation con-

sists of a 7-stage 128-bit buttery network followed by

a 7-stage 128-bit inverse buttery network (compare

Fig.6). This can be divided into �ve, �ve, and four

stages, implemented on three (4; 1) MOMR units, If all

three units can be pipelined and simultaneously active,

then a di�erent 128-bit permutation can be achieved

each cycle. A processor that can issue 6 or more in-

structions per cycle will have suÆcient register ports

and data buses to do this quite easily.

Alternatively, two (5; 1) MOMR permutation units

can be used, one implementing a full 128-bit butter-

y circuit and the other a full 128-bit inverse buttery

circuit. This achieves single-cycle pipelined throughput

with only two cycles of latency, but a potentially longer

cycle time. Other MOMR implementations for 128-bit

permutation are also possible.

5 Multi-Word Arithmetic

MOMR is a general technique that can be used to

perform any operations with multiple operands and mul-

tiple results, as de�ned in Section 2. MOMR provides

either improved performance or cost-e�ectiveness. We

now demonstrate the generality of MOMR execution to

other applications, in particular, for multi-word arith-

metic operations.

Public-key cryptography algorithms involve modu-

lar exponentiation, using keys that are typically 1,024 or

2,048 bits long. The exponentiation is broken down into

multiplication operations and the 1,024-bit operands are

broken down into sixteen 64-bit words in a 64-bit pro-

cessor. Typically, two 64 � 64-bit multiply instructions

are needed to produce the lower and higher 64-bit halves

of the product, using a standard (2; 1) datapath:

MUL.L ra, rb, rc

MUL.H ra, rb, rd

Actually, both halves of the product are generated

by the same hardware multiplier. Two instructions are

needed to generate the double-word result only because

the ISA and datapath restrict an instruction to one

word-sized result. If a (2; 2) instruction were available,

then these two instructions can be executed together on

one multiplier simultaneously. MOMR method 1 can

recognize this at run-time. MOMR method 2 can spec-

ify this at compile time with the gs and gc bits:

MUL.L.gs ra, rb, rc

MUL.H.gc ra, rb, rd

A 2-way supercsalar processor with two (2; 1) multi-

pliers can achieve the same performance as a single (2; 2)

MOMR multiplier, but with twice the area for two mul-

tipliers. Hence, MOMR execution is more cost-e�ective.



8 J. Comput. Sci. & Technol., Sept. 2005, Vol.20, No.5

Alternatively, an even higher performance micropro-

cessor may be able to a�ord a 128-bit multiplier. Im-

plemented as a (4; 2) MOMR multiplier, we can execute

128-bit versions of the Multiply Low and High instruc-

tions, using method 2 as follows:

MUL.L.gs ra1, rb1, rc1

MUL.L.gc ra2, rb2, rc2

MUL.H.gc ra1, rb1, rd1

MUL.H.gc ra2, rb2, rd2

All four instructions can be executed together using

128-bit multipliers with MOMR execution. To get the

equivalent 256-bit product using only 64-bit multipliers

and conventional (2; 1) instructions, we need eight mul-

tiply and �ve add instructions. Larger multipliers can

also be used for even further speedup.

While we described only multi-word integer multi-

plication used in public-key ciphers like RSA, the same

technique can also be applied to polynomial multiplica-

tion in Elliptic-Curve Cryptography (ECC)[23].

6 Performance

Table 3 shows the performance of MOMR architec-

ture for di�erent ciphers.

For bit permutation, we test DES encryption (DES

enc) and round key generation (DES key) with the

fastest software program on existing processors which

uses table lookup to perform bit permutations (columns

a and b). We also test DES using an enhanced ISA

that has a CROSS permutation instruction[5] added to

it (columns c and d). For multi-word operations, we

test integer DiÆe-Hellman (column e) and binary DiÆe-

Hellman (used in ECC)[23].

Table 3. Speedup with and without MOMR

a. b. c. d. e. f .

DES DES DEC DES Int. Bin.

enc key enc key DH DH

(RISC) (RISC) (Opt) (Opt)

1-way 1 1 1 1 1 1

2-way 1.49 1.04 1.50 1.19 1.76 1.61

2-way MOMR 1.89 17.64 1.70 1.42 3.02 1.67

4-way 1.73 1.05 1.65 1.31 2.70 2.31

4-way MOMR 2.12 19.81 1.91 1.60 4.87 2.36

We implement these programs using a generic 64-bit

RISC processor and simulate their execution time, in

cycles, on the following machine con�gurations:

� a single-issue processor with one set of (2; 1) func-

tional units, including a 64-bit ALU, a 64-bit shifter, a

64-bit permutation unit (for columns c and d), and a

64-bit integer or binary multiplier (for columns e and

f)

� a 2-way superscalar processor with two sets of (2; 1)

functional units

� an enhanced 2-way superscalar processor with one

MOMR functional unit active per cycle

� a 4-way superscalar processor with two sets of (2; 1)

functional units

� an enhanced 4-way superscalar processor with two

MOMR functional units active per cycle.

For DES, the MOMR units used are (4; 1) buttery

and inverse buttery permutation units. For DH, the

MOMR unit used is a (4; 2) multiplier, i.e., a 128-bit

multiplier, which we are now able to utilize, but could

not previously because of ISA limitations. We assume a

latency of three cycles for a 64-bit integer multiplier, and

�ve cycles for the 128-bit multiplier. MOMR method 1

or 2 can be used for the DES programs. Method 2 is

used for the DH programs, which are recoded using the

gs and gc bits to specify instruction groups.

The cache parameters used in the DES simulations

are 16 kilobytes L1 data cache and 256 kilobytes L2

uni�ed cache with 10-cycle and 50-cycle miss penalties,

respectively.

Table 3 shows that the speedup of our enhanced

2-way MOMR processor over a single-issue machine is

greater than that of the standard 2-way multi-issue pro-

cessor, in every case. This is also true for our 4-way

MOMR compared to a standard 4-way processor. In

fact, our 2-way MOMR is even faster than a standard

4-way superscalar processor, except for binary DH.

For DES, the performance gain is very pronounced

for key generation (17.6X and 19.8X speedup in col-

umn b), where permutation operations are more fre-

quent than for encryption. The MOMR speedup is less

when compared to the enhanced ISAs (columns c and

d) than when compared to existing ISAs (columns a

and b). This is because the enhanced ISAs already have

fast new permutation instructions (e.g., CROSS or OM-

FLIP). The number of instructions for a 64-bit permuta-

tion has already been reduced from over 20 to at most 6,

and most of the memory accesses have also been elimi-

nated, resulting in much fewer cache misses. Even then,

our MOMR execution is still 13% to 22% faster.

For the integer DH, MOMR execution provides sig-

ni�cant super-linear speedup of 3.02 for a 2-way super-

scalar processor enhanced with one (4; 2) MOMR unit,

and 4.87 for 4-way superscalar enhanced with two (4; 2)

MOMR units. This is because MOMR architecture al-

lows the inclusion of wider functional units such as 128-

bit multipliers, reducing the number of instructions and

cycles needed to complete a 1,024 by 1,024-bit multi-

plication. The speedup for binary DH is less since the

operands are smaller 163-bit polynomials in this ECC

public-key cipher.

7 Conclusions

We identify bit and multi-word operations as two

new challenges in high-performance cryptographic pro-

cessing for word-oriented processor architectures. This

insight is more useful from a broad architectural per-

spective than just accelerating a few special-purpose op-

erations.

We propose a uni�ed solution to both these chal-

lenges in terms of a generalized MOMR execution model



Ruby B. Lee et al.: Single-Cycle Bit Permutations with MOMR Execution 9

which enables datarich execution. MOMR methods can

be used to speed up both symmetric-key block ciphers

using arbitrary bit permutation instructions, as well

as public-key ciphers using multi-word multiplication.

Furthermore, we show that MOMR implementation in-

curs minimal incremental cost, since it leverages com-

mon micro-architecture trends like multi-issue proces-

sors, whether superscalar or VLIW.

We also show how any one of n! bit permutations

can be achieved each cycle using MOMR permutation

functional units. This is a very signi�cant result since

previously arbitrary n-bit permutations took O(n) cy-

cles. Even with our recent proposals of bit permutation

instructions[3�7], O(log(n)) cycles is needed. We show

how a di�erent 64-bit dynamicallyspeci�ed permutation

can be achieved every cycle by a 4-way superscalar pro-

cessor with MOMR execution.

Our software solution for achieving permutations is

more powerful than a hardware solution the latter can

only achieve a few �xed permutations, while our solution

can achieve all possible data-dependent permutations.

We hope that this will stimulate the design of new ci-

phers and other algorithms that can take advantage of

such a powerful operation { an arbitrary bit permuta-

tion that can be done in about the same time as an

addition and in less time than a multiplication. Cryp-

tographers can use arbitrary bit permutations freely in

their new algorithms if processors include our bit per-

mutation instructions.

MOMR execution enables a very exible extension of

standard ISAs to support datarich operations of many

avors. We do not have to decide whether instruction

formats of future processors should support (3; 1), (4; 1),

(2; 2), (3; 2), or (4; 2) functional units, all of which are

useful for di�erent operations. They can all be sup-

ported as MOMR functional units in a 2-way superscalar

machine with minimal changes, as we have shown. Bas-

ing MOMR implementations on the (2k; k) datapath of

a k-way multiple-issue processor gives the exibility of

supporting all MOMR functional unit sizes covered by

these existing datapath resources. Sometimes MOMR

functional units improve the performance, and other

times they improve the cost-performance

Finally, we show that the fundamental choice of a

word as the atomic unit upon which a processor is opti-

mized is still sound. Our MOMR proposal allows even

challenging bit and multi-word operations to be achieved

eÆciently on word-oriented processors, with minimal in-

cremental costs.

Acknowledgements We thank A. Murat Fiski-

ran for the binary DH performance numbers.

References

[1] Schneier B. Applied Cryptography. 2nd Ed., John Wiley &

Sons, Inc., 1996.

[2] NIST (National Institute of Standards and Technology). Ad-

vanced Encryption Standard (AES). FIPS Pub. 197, Novem-

ber 2001.

[3] Lee R B, Shi Z, Yang X. EÆcient permutation instructions

for fast software cryptography. IEEE Micro, December 2001,

21(6): 56{69.

[4] Yang X, Vachharajani M, Lee R B. Fast subword permuta-

tion instructions based on buttery networks. In Proceedings

of SPIE 2000, January 2000, pp.80{86.

[5] Yang X, Lee R B. Fast subword permutation instructions us-

ing omega and ip network stages. In Proceedings of the Inter-

national Conference on Computer Design, September 2000,

pp.15{22.

[6] Shi Z, Lee R B. Bit permutation instructions for accelerating

software cryptography. In Proceedings of the IEEE Interna-

tional Conference on Application-Speci�c Systems, Architec-

tures and Processors, July 2000, pp.138{148.

[7] McGregor J P, Lee R B. Architectural enhancements for fast

subword permutations with repetitions in cryptographic ap-

plications. In Proceedings of the International Conference on

Computer Design, September 2001, pp.453{461.

[8] Lee R B. Subword parallelism with MAX-2. IEEE Micro,

August 1996, 16(4): 51{59.

[9] Diefendor� K et al. AltiVec extension to PowerPC accelerates

media processing. IEEE Micro, March 2000, 20(2): 85{95.

[10] IA-64 application developer's architecture guide, Intel Corp.,

May 1999.

[11] Princeton Architecture Lab for Multimedia and Security,

http://palms.ee.princeton.edu/.

[12] Burke J, McDonald J, Austin T. Architectural support for

fast symmetric-key cryptography. In Proceedings of ASPLOS

2000, November 2000, pp.178{189.

[13] Wu L, Weaver C, Austin T. CryptoManiac: A fast exi-

ble architecture for secure communication. In Proceedings of

the 28th International Symposium on Computer Architecture,

June 2001, pp.110{119.

[14] Lee R B, Shi Z, Yang X. How a processor can permute n bits in

O(1) cycles. In Proceedings of Hot Chips 14 { A Symposium

on High Performance Chips, August 2002.

[15] Lee R B, Yang X, Shi Z J. Validating word-oriented processors

for bit and multi-word operations. In Proceedings of the Asia-

Paci�c Computer Systems Architecture Conference, Septem-

ber 2004, pp.473{488.

[16] Palacharla S, Jouppi N P, Smith J E. Complexity-e�ective

superscalar processors. In Proceedings of the 24th Annual

International Symposium on Computer Architecture, 1997,

pp.206{218.

[17] Farell J A, Fischer T C. Issue logic for a 600-mhz out-of-order

execution microprocessor. IEEE Journal of Solid-State Cir-

cuits, May 1998, 33(5): 707{712.

[18] Onder S, Gupta R. Superscalar execution with direct data for-

warding. In Proceedings of the 1998 ACM/IEEE Conference

on Parallel Architectures and Compilation Techniques, 1998,

pp.130{135.

[19] Henry D S, Kuszmaul B C, Loh G H, Sami R. Circuits for

wide-window superscalar processors. In Proceedings of the

27th Annual International Symposium on Computer Archi-

tecture, 2000, pp.236{247.

[20] Canal R, Gonzalez A. A Low-complexity issue logic. In Pro-

ceedings of the 14th international conference on Supercom-

puting, 2000, pp.327{335.

[21] Stark J, Brown M D, Patt Y N. On pipelining dynamic in-

struction scheduling logic. In Proceedings of the 33th Annual

ACM/IEEE International Symposium on Microarchitecture,

2000, pp.57{66.

[22] Brown M D, Stark J, Patt Y N. Select-free instruction schedul-

ing logic. In Proceedings of the 34th ACM/IEEE Inter-

national Symposium on Microarchitecture, December 2001,

pp.204{213.

[23] Fiskiran A M, Lee R B. Evaluating instruction set exten-

sions for fast arithmetic on binary �nite �elds. In Proceed-

ings of the International Conference on Application-Speci�c

Systems, Architectures, and Processors (ASAP), September

2004, pp.125{136.



10 J. Comput. Sci. & Technol., Sept. 2005, Vol.20, No.5

Ruby B Lee is the Forrest G.

Hamrick Professor of Engineering and

Professor of Electrical Engineering at

Princeton University, with an aÆli-

ated appointment in the Computer

Science Department. She is the di-

rector of the Princeton Architecture

Laboratory for Multimedia and Secu-

rity (PALMS). Her current research is

in designing security and new media

support into core computer architecture and designing ar-

chitectures resilient to Internet-scale epidemics. She is a Fel-

low of the ACM and the IEEE, Associate Editor-in-Chief of

IEEE Micro and Editorial Board member of IEEE Security

and Privacy.

Prior to joining the Princeton faculty in 1998, Dr. Lee

served as chief architect at Hewlett-Packard, responsible at

di�erent times for processor architecture, multimedia archi-

tecture and security architecture. She was a key architect

of PA-RISC used in HP workstations and servers, and of

multimedia instructions for microprocessors. She was Con-

sulting Professor of Electrical Engineering at Stanford Uni-

versity. She has a Ph.D. in Electrical Engineering and a

M.S. in Computer Science, both from Stanford University,

and an A.B. with distinction from Cornell University, where

she was a College Scholar. She has been granted over 115

United States and international patents.

Xiao Yang is a Ph.D. candidate

in the Department of Electrical Engi-

neering at Princeton University. His

research area is in computer architec-

ture with special focus on high per-

formance, scalable architecture for 3D

graphics processing. He has a M.S.

in Physics from Northwestern Univer-

sity and a B.S. in Physics from Peking

University, P.R. China.

Z. Jerry Shi is an assistant pro-

fessor in the Department of Computer

Science and Engineering at the Uni-

versity of Connecticut. He received

his Ph.D. in Electrical Engineering

from Princeton University in 2004,

and this work was done while he was

a student at Princeton. He received

his B.S. and M.S. from the Computer

Science and Technology Department

at Tsinghua University, China, in 1992 and 1994, respec-

tively. Dr. Shi is a member of the ACM and the IEEE. His

research areas are in computer architecture, cryptography,

and high performance, secure computer systems.


