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Abstract

Cost-sensitive consumer multimedia devices based on MPEG and
JPEG type algorithms tend to have multiplications by constants,
rather than by variables.  In this paper, we show how slightly
enhanced adders may be used to perform these constant
multiplications with higher performance than more expensive
hardware multipliers, using low-cost preshift_add instructions. We
were able to find the shortest instruction sequences for all 8-bit
integer constants and nearly shortest sequences for 12-bit
constants and 15-bit constants. We have achieved an average
instruction length of 3.055 for 8-bit integer case, 4.2643 and
4.2782 for the two 12-bit constant cases and 5.07673 for the 15-bit
constant case. Based on our preshifter design, we evaluate the area
and delay of a 16-bit preshift_adder and compare it with a 16×16
multiplier. We show that the simpler preshift_adders achieve a
speedup of more than 2X compared to multipliers with similar area
cost for typical algorithms like DCT and IDCT.

1. Introduction

Consumer multimedia devices such as DVD players and
cameras are very cost-sensitive. The MPEG and JPEG type
algorithms they use tend to have multiplications by constants,
rather than by variables. In this paper, we focus on cost-effective
architectural support for such multiplications.  We propose using
adders enhanced with pre-shifters to perform efficient constant
multiplies. This reduces the cost, as we show in the paper that an
integer multiplier takes about three times the latency and three to
four times the area over our design of a delay/area efficient
preshift_adder to perform the preshift_add instructions. However, it
is not easy to find the shortest instruction sequence for each
constant multiply. We show our methodology for achieving this
using a Directed Acyclic Graph (DAG) approach, to generate the
shortest or nearly shortest sequence of instructions for every
constant multiplier up to 15 bits. These optimal instruction
sequences can be substituted by a programmer or compiler when a
multiply by a constant is needed.  Our performance results show
that we can improve the performance while reducing the cost of
constant multiplications.

We use four fixed-point cases to evaluate the instruction
sequences that our algorithm generates. We use CI.F to denote that
the positive constant multiplier has I bits of integer and F bits of
fraction. The four cases are C8.0, C12.0, C2.10 and C3.12. While
we are more interested in cases like C2.10 and C3.12 for our
multimedia applications, where constants tend to be fractions with
few integer bits, we generate C8.0 and C12.0 sequences, to
compare our results with earlier work in [4] on constant
multiplication by integers.

Sections 2 and 3 describe our DAG-based search
algorithm for finding the shortest instruction sequence for C8.0
case and the nearly shortest instruction sequences for C12.0, C2.10
and C3.12 cases. Section 4 presents our performance results, and
comparisons to earlier work [4].  Section 5 presents our design of a
preshift_adder. Based on the results from section 4 and 5, we
discuss the performance/area gain we achieve on an optimized
DCT/IDCT algorithm in section 6.

2. Algorithm overview

2.1 Candidate instructions

We choose a subset of the HP MAX instruction set [1-3]
to implement subword constant multiplication (Table 1). Our goal
is to find the shortest instruction sequences composed of these
instructions that achieve constant multiplication of N-bit (N≤16)
fixed-point numbers.

PSHLn, PSHRn Parallel shift (n = 1 ...15)
PADD, PSUB Parallel add and subtract
PSHLxADD[op1,op2]
PSHRxADD[op1,op2]

Preshift a signed 16-bit subword op1 by
x (x=1,2,3) bits and add it with op2.

PAVG[op1, op2] Parallel Average of op1 and op2
Table 1 Instruction Mix for Subword Constant multiplication

In earlier work [4], the authors used shift_left_and_add
instructions to replace constant multiplication by integers. They
used a heuristic based on chain rules [5] to generate the instruction
sequences for integers from 1 to 10,000. In our work, however, we
focus on multiplication by fractional constants, using subword
parallel shift_right_and_add instructions in addition to parallel
shift_left_and_add instructions, to find the shortest instruction
sequences for any fixed-point numbers of 8, 12 and 15 bits.

  Subword parallel instructions[2] allow multiple parallel
operations on lower-precision data packed into a word, e.g., four
16-bit subwords in a 64-bit word. They enable even higher
perfomance using 64-bit adders for four parallel 16-bit operations
per cycle, but they are not essential to understanding how the
shift_and_add sequences are generated below.

2.2 Representing instruction sequence with DAG

We use a DAG (Directed Acyclic Graph) to describe all
possible instruction sequences for constant multiplication. The root
of this DAG is register R1 that contains the variable multiplicand
and each node in the DAG corresponds to one of the instructions in
table 1. An edge is added from node i to node j if the instruction on
node j uses the result of node i as its operand and we call node i a
parent of node j. Since all our instruction candidates takes two
operands (for shifts, one operand is a constant) and generates one
result, each node in the DAG has two input edges and one output
edge. We define the sub-DAG of the root to be itself and we
recursively define the sub-DAG of any node N to be the union of
node N and the sub-DAGs of all its parents. Any instruction
sequence can be modeled as a sub-DAG. For example, for the
following instruction sequence,

1. PSHR3ADD R1 R1 R2  ;R2=[1.001]
2
×R1

2. PSHL1ADD R1 R1 R3  ;R3=[11]
2
×R1

3. PSHR3ADD R2 R3 R4  ;R4=[11.001001]
2
×R1

4. PSHR1ADD R1 R3 R5  ;R5=[11.1]
2
×R1

5. PSHR3ADD R4 R5 R6  ;R6=[11.111001001]
2
×R1

its corresponding sub-DAG is shown Figure 1. A sub-DAG shows
the data flow of an instruction sequence. All the instruction
sequences that have the same data flow correspond to the same sub-
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DAG. For example, if we reorder the
above instruction sequence by
exchanging instruction 3 and 4, the
new instruction sequence has the
same data flow as the original one;
thus they correspond to the same sub-
DAG in Figure 1.

We define the size of a
given node to be the number of nodes
in its sub-DAG except the root. Thus
the size of a given node corresponds
to the length of the instruction
sequence resulting in this node.

Similarly, we define the size of a set of nodes to be the number of
nodes in the union of their sub-DAGs except for the root. Since
DAG is acyclic, we use level to show the longest distance between
the root and a certain node. The level of the root is defined to be 0
and the level of a certain node S is recursively defined as 1 + the
largest level of its parents. In our case, R1 is the only root.
 The structure of a DAG shows the amount of parallelism
within the computation. For a sub-DAG of level L, the minimum
cycles needed to compute the final result is L cycles.

2.3 General constraints

For a given constant multiplication MUL R1, C, R2 (R1
contains the variable multiplicand, C is the constant, R2 contains
result), we impose two constraints when generating instruction
sequences.

a. No excess overflow
If the original constant multiplication does not produce

any overflow, neither should the replaced instruction sequence.
Thus for all the intermediate results of the instruction sequence,
their absolute value should be less than the final result. For
example,  replacing R1×31 by R1<<5 – R1 is not allowed since
|R1<<5| > |R1×31|. This is different from the approach used in [4],
in which excess overflow is allowed. In MAX-2, overflow is
handled through saturation, thus the approach in [4] will suffer
from loss of precision when excess overflow occurs.

b. No direct loss of precision
Consider instruction sequences for multiplication by a

constant of k-bit fraction, the loss of precision in the final result is
inevitable because of the rounding in intermediate instructions.
However, some instruction sequences are preferred to others. For
example, for the instruction sequences below for multiplication by
[0.011]2,

PSHR R1 2 R2 PSHR R1 3 R2
PSHR1ADD R2 R2 R3 PSHL1ADD R2 R2 R3

The left sequence is preferred because the 3rd least
significant bit of R1 is kept after the first instruction and used in
getting the final result in the second instruction. The problem with
the right sequence is that it shifts too much to the right: the 3rd least
significant bit is lost and it has to shift left again to get the result.
To solve this problem, we do not allow any fractional intermediate
results to shift left, i.e., we do not allow instructions like
PSHLxADD[Ra, Rb] or PSHL[Ra, n], if Ra is not a multiple of R1.

By checking the instruction sequences generated, we
consider these two constraints sufficient. Figure 1 shows an
example for multiplication of [11.111001001]2. We apply these two
constraints to find the instruction sequences in all our algorithms.

3. Searching for Optimal Instruction Sequences

Our objective is thus to generate all possible nodes of the
same result and choose one among them with the smallest size. We
cannot just throw away the other nodes, however, since they could
be used in the sub-DAG of some other nodes with the smallest size
for their results. Nor can we throw away a node whose
corresponding instruction sequence violates constraint a in Section
2.3, since this node could also be used in the shortest sequence for
some other results. For example, although (R1<<5 – R1) is not a
valid instruction sequence for constant multiplication by [11111]2,
we still have to keep this node since it is used in the shortest
instruction sequence for [111110]2, (R1<<5 − R1)<<1. Because of
this, we have to keep a huge number of intermediate nodes. We
estimate [7] that for level i, both the temporal and spatial
complexity of the straightforward full search algorithm is
greater than , making full search impractical for i > 3.

The above full search algorithm can be refined by
removing the redundant nodes. A node N is redundant if there are
one or more nodes Ni (i = 1, 2, 3... k) such that
a) Level(Ni) ≤ Level(N); i = 1, 2, 3 … k
b) Size({Ni}) ≤ Size(N); i = 1, 2, 3 … k
c) ∪Values(Ni) ⊇ Values(N); i = 1, 2, 3 … k
Here Values(N) is defined as the set of the results of all the nodes
in node N’s sub-DAG.

Based on this criterion, we found the following redundant nodes:
a) Its result equals to any of the nodes’ result in its sub-DAG.
b) If B = PSHL[A, n1], C = PSHL[B, n2], C is redundant, since

C = PSHL[A, (n1 + n2)]
c) If C = PSHL[A, x] (x = 1,2,3), D = C + B, D is redundant,

since D = PSHLxADD[A, B]
d) If C = PSHL[A, x1], D = PSHLx2ADD[C, B] (x1+x2 ≤ 3), D is

redundant, since D = PSHL(x1+x2)ADD[A, B]

Still, the complexity for the full search algorithm is too
high even for 12-bit constants. We had to use the following
heuristics to cut down the search space:
a) Remove nodes with negative results. For an instruction

sequence with negative intermediate results, we can almost
always reconstruct the instruction sequence so that it is
composed of all positive intermediate results.

b) Keep only the intermediate nodes that has the smallest size for
its result at the current level (there could exist nodes of smaller
size for this result at higher levels). In this way, we throw
away huge quantities of intermediate nodes that are very
unlikely to be used in the shortest instruction sequences.

c) For C3.12 case, the complexity is still too high even after we
apply heuristics a) and b). By keeping only one smallest-size
node for every result at each level instead of all the smallest-
size nodes as in b), we found that none of the instruction
sequences in case C3.12 requires more than 7 instructions and
very few constants require 7 instructions. Thus we only had to
find all the nodes of size 6 or less since we already obtained
instruction sequences of length 7 for other nodes. We observe
that:
1. Any node X of size 6 will not be used in the sub-DAG of
any other node Y, since SIZE(Y) ≥ 7.
2. Any node X of size 5 can not be combined with any node
Y that is not in X’s sub-DAG to generate new nodes.
Otherwise we need one instruction to generate the new node
from X and Y, 5 instructions to generate X and at least another

Figure 1 A Sample DAG
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one instruction to generate Y since Y is not in X’s sub-DAG.
Thus the size of the new nodes generated this way is at least 7.

4. Results

By applying the improved full-search algorithm, we were
able to find the shortest instruction sequences for C8.0 case. By
using the heuristics, we found the nearly shortest instruction
sequences for C12.0, C2.10  and C3.12 cases. We list the number
of constants that requires an instruction sequence of length L (L =
1, ...7) in table 2. In Figure 2, we show the percentage of constants
that require an instruction sequence length ≤ L and the percentage
of the corresponding nodes of level ≤ L for case C3.12.

Length = 1 2 3 4 5 6 7 Avg
Case 8.0 10 38 118 88 0 0 0 3.059
Case 12.0 14 66 433 1894 1685 2 0 4.2643
Case 2.10 15 79 440 1795 1748 17 0 4.2767
Case 3.12 19 117 763 4856 17701 9307 3 5.0767
Table 2 Length of optimal instruction sequences

To compare our results with the results listed in Figure 1
of [4], we made a similar table for the 12.0 in Table 3. In this table,
row r lists the first few constants that requires an instruction
sequence of length r. We use the bold letters to show the difference
between our table and the table in [4].

r Least Values of n such that length(n) = r
1 2,3,4,5,8,9,16,32,64,128,256,512,1024,2048
2 6,7,10,11,12,13,15,17,18,19,20,21,24,25
3 14,22,23,26,28,29,30,31,35,38,39,42,43
4 58,78,86,92,106,110,114,115,116,118,119
5 466,474,618,622,678,683,686,687,691,698
6 3802,3806

Table 3 Results for C12.0 and comparison to [4]

From the above table, we can see that apart from 31 and 3806,
our result is as good as that is given in [4]. Note since we do not
allow excess overflow as stated in section 2.3, the instruction
length is expected to be longer in our case. For example, as the
authors in [4] pointed out, it is impossible to use 2 instructions to
implement constant multiplication by 31 if no excess overflow is
allowed. We are not exactly sure if that is also the case for 3806,
since we do not know the instruction sequence that generates 3806
in [4].

5. Preshift_adder

We now look at the hardware cost of a preshift_adder and
compare it to a multiplier.

5.1 Preshifter design

A preshift_adder is different from a normal adder in that
there is a 3-bit preshifter before the adder. Figure 3 shows a
preshifter design. In this figure, I15-I0 is the 16-bit data input and
signals S, LR and SA0-SA1 are inputs to the Shift Decoder to
determine how many bits I15-I0 should be preshifted. When S = ‘1’,
do preshift; S= ‘0’, no preshift. When LR = ‘1’, preshift left; LR =
‘0’, preshift right. SA[1-0] record how many bits to shift.

The Saturation Detection Unit is used to detect if there is
any overflow during preshift_left by x bit (x = 1, 2, 3). When the
input number is positive (I15 = ‘0’), a positive overflow will occur
(OV1 = ‘1’) if any of I14 … I15-k is ‘1’. Similarly, when the input
number is negative (I15 = ‘1’), a negative overflow will occur (OV0

= ‘1’) if any of I14 … I15-k is ‘0’. The preshifted inputs will be
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Figure 3 Preshift_adder Design

Figure 4 Adjustment Unit design

ADI15 ADO15

OV0

OV1 +OV0

OV1

ADIi ADOi

OV1

OV1 +OV0

OV0

Vdd

Vss

Vdd

Vssi≠15

Saturation
Detection

Unit

Adjust

Adjust

Adjust

OV1 OV0

Shift
Decoder

O15

O14

O13

I12

I11

I10

SA SLR

SL3 SL2 SL1 NS SR1 SR2 SR3

… … … …………

I13

I14

I15

013 SASALRSSL ⋅⋅⋅=

012 SASALRSSL ⋅⋅⋅=

011 SASALRSSL ⋅⋅⋅=

013 SASALRSSR ⋅⋅⋅=

012 SASALRSSR ⋅⋅⋅=

011 SASALRSSR ⋅⋅⋅=

SNS =

Shift Decoder

Saturation Detection
)( 120113114151 ISASAISAIILRSOV ⋅⋅+⋅+⋅⋅⋅=

)( 120113114150 ISASAISAIILRSOV ⋅⋅+⋅+⋅⋅⋅=

Adjustment Unit
)( 150115 ADIOVOVADO +⋅=

ii ADIOVOVADO ⋅+= 01 For i ≠ 15

I-653



adjusted to the maximum value (0x7fff) in case of a positive
overflow and to the minimum value (0x8000) in case of a negative
overflow. Figure 3 shows the logic of the Shift Decoder, Saturation
Detection Unit and Adjustment Unit.

As we can see from Figure 3, the efficient
implementation of adjustment unit is vital to minimizing the total
area and delay overhead we add to the shifter. Instead of using the
6-transistor CMOS logic, we exploit the fact that OV1 and OV0 will
never be ‘1’ at the same time and design a 3-transistor unit. The
design is shown in Figure 4. From Figure 3 and 4, our preshifter
design has a size that is roughly 10/7 of a 7-bit shifter and an
addition delay of one simple gate.

5.2 Area and delay estimation and comparison

We use the data from a 300-MHz 16-bit video processor
built in 1993 at NEC with 0.5 µm BiCMOS technology [8-10] for
an estimation [7] of the area and delay of a multiplier verses a
preshift_adder. The estimated data are listed in table 4.

6. Multiplier versus preshift_adder

Table 4 shows that a subword multiplier with
normalization unit takes more than 3 times the area and close to 3
times the delay than the preshift_adder. Furthermore, a subword
multiplier can only be used for multiplication while a
preshift_adder can be used for both preshift_and_addition and
normal addition and subtraction. Thus it is possible to achieve
better performance by replacing the multiplier by two to three
preshift_adders.

Since there is almost always enough parallelism in the
multimedia applications, we can calculate the latency of an
application if we know the instruction mix. For example, AAN
DCT/IDCT kernel [6] use 5 constant multiplication and 29
additions. The constants for IDCT are 1.41421, 2.61313, 1.41421,
1.08239 and 0.76537. The constants for DCT are 0.70711, 0.54120,
0.70711, 1.30658 and 0.38268. We compare the performance of 3
different configurations. For each 16-bit subword, Config 1 has one
multiplier and 1 normal adder, Config 2 has two preshift_adders
and Config 3 has four preshift_adders. We found the instruction
sequence length for each constant and compared the cycle count of
different configurations in Table 5.

Config 3, which has a similar area cost as Config 1,  has
around 2.4X performance speedup over Config 1 for C2.10 case
and 2.1X performance speedup for C3.12 case. Config 2, which has
half the area cost as Config 1, has around 1.2X performance
speedup over Config 1 for C2.10 case and 1.1X speedup for C3.12
case. Much of the performance gain comes from the fact that the
subword multiplier can only be used for multiplication, thus its area
is not efficiently used. Thus for subword arithmetic unit design, we
could substitute 2 to 4 preshift_addersfor each subword multiplier,
except now we have to use the word multiplier to do the subword
variable multiplication. However, since variable multiplication is

hardly used in multimedia applications, the system with only
preshift_adders will win in most cases.

7. Conclusion

We have devised a DAG-based algorithm to find the
shortest instruction sequence with preshift_and_add and other
MAX instructions to perform constant multiplication. We used the
full search algorithm to find the shortest instruction sequence for 8-
bit integers and achieved an average length of 3.059. By applying
some heuristics, we found the close-to-optimum instruction
sequences for constant multiplication by 12-bit integers, 2-bit
integer with 10-bit fractions and 3-bit integer with 12-bit fractions.
The average lengths are 4.2643, 4.2767, 5.07673 instructions
respectively.

We also did a preshifter design and compared the area
and performance of our preshift_adder to a 16×16 bit multiplier.
We showed that the multiplier takes more than 3 times the area and
close to 3 times the latency. By replacing the multiplier by our
preshift_adders, we have demonstrated 2× performance speedup
with similar area for representative kernels like AAN DCT/IDCT.
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Preshift_&_
Adder

Multiplier
(w. Norm)

Area  (mm2) 1.77 5.9
Normed Area 1 3.3
Delay (ns) 3.3 9.6
Normed Delay 1 2.9

Table 4 Area and Delay Comparison

IDCT (instrs) 1.41421 2.61313 1.08239 0.76537 IDCT(cycles) Config 1 Config 2 Config 3

C2.10 3 5 4 4 C2.10 29 24 12
C3.12 5 6 4 5 C3.12 29 27 14
DCT 0.70711 0.54120 1.30658 0.38268 DCT Config 1 Config 2 Config 3

C2.10 4 4 4 3 C2.10 29 24 12
C3.12 4 5 4 5 C3.12 29 26 13

Table 5 DCT/IDCT Performance Comparison of different configurations
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