
1

Performance Impact of Data Compression on
Virtual Private Network Transactions

(Extended Version)

John P. McGregor and Ruby B. Lee
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

{mcgregor, rblee}@ee.princeton.edu

Abstract
Virtual private networks (VPNs) allow two or more parties to communicate securely over a public network.

Using cryptographic algorithms and protocols, VPNs provide security services such as confidentiality, host
authentication and data integrity. The computation required to provide adequate security, however, can significantly
degrade performance. In this paper, we characterize the extent to which data compression can alleviate this
performance degradation. More specifically, we study the performance obtained when combining the IP Payload
Compression Protocol (IPComp) with the IP Security Protocol (IPsec).

We evaluate performance using 3 system models; each of these models consists of some or all of the
computation and transmission operations required to support VPN transactions. Using speedup equations that
describe the performance impact of compression in the system models, we derive inequalities that specify the
conditions required for data compression to improve performance. We also gather and analyze empirical
performance results by simulating packet transmission over several network types and by timing the execution of
IPComp and IPsec procedures on a 367 MHz HP PA-8500 processor. The results indicate that the performance
depends on the compressibility of the payload data, on the throughput of the cryptographic and compression
algorithms, and on the network speed. We find that compression usually improves performance when using 10
Mbps or slower networks, but compression only improves performance in systems with 100 Mbps or 1 Gbps
networks when encryption is being used.

1.0 Introduction
As Internet usage grows exponentially and computing devices become increasingly interconnected, network

security issues become increasingly important. Many Internet applications such web browsers and distributed
databases require private communication over public networks. Using a virtual private network (VPN), multiple
hosts can communicate securely over a public network. The details of VPN protocols vary, but most consist of two
major steps: a handshake and bulk data encryption/authentication. The VPN is established during the handshake
step. This step involves protocol and algorithm negotiation, authentication of hosts, and secret key exchanges
between the hosts. The hosts can then communicate privately by encrypting and authenticating all of the data that
travels over the public network.

The IP Security Protocol (IPsec) can be used to implement virtual private networks in a vendor-independent,
application-invisible manner. IPsec provides a variety of security services at the IP layer for both IPv4 and IPv6
[12]. VPN bulk data encryption and authentication is supported in IPsec using the Encapsulating Security Payload
and Authentication Header protocols. The Encapsulating Security Payload (ESP) provides for confidentiality of the
IP packet payload, and both ESP and the Authentication Header (AH) ensure the authenticity as well as the integrity
of the IP packet payload [10], [11]. The encryption and authentication provided by ESP and AH, however, require
significant computational time and therefore can degrade performance when compared to unsecured transmissions.

In past work, researchers have improved the performance of secure network transactions using a variety of
techniques. By adding new instructions to conventional instruction set architectures, multiple-instruction operations
in implementations of cryptographic algorithms can be replaced with a single RISC or CISC instruction [17]. For
example, fast bitwise permutation instructions can significantly improve the performance of DES, and support for
arithmetic in Galois fields can accelerate the throughput of elliptic curve cryptosystems [17], [24]. In addition, the
computation associated with many cryptographic protocols is highly parallelizable. When performing encryption, a
multiprocessor system can achieve nearly linear speedup by assigning individual packets or connections to single

2

processing elements [16]. Cryptographic algorithms can also be explicitly designed to contain abundant instruction
level parallelism; this leads to fast execution on wide superscalar processors and on multiprocessor systems.

In this paper, we investigate the performance benefit of compressing IP packet payloads when using the IP
Security Protocol to implement a virtual private network. The IP Payload Compression Protocol (IPComp) employs
data compression algorithms to reduce the size of packet payloads at the IP layer [23]. This size reduction decreases
the time required to transmit IP packets by decreasing the amount of information that is physically transferred over
the network. In addition, IPComp decreases the execution times of the encryption and authentication algorithms by
reducing the amount of information to be encrypted and authenticated. However, the data compression algorithms
used by IPComp consume a significant number of clock cycles. As a result, compressing the IP packet payload may
increase the total time needed to complete a particular transaction and therefore degrade performance. We restrict
our investigation to the performance impact of compression on bulk data encryption/authentication. Data
compression would not improve the performance of the handshake step due to the nature of the algorithms and
protocols involved.

We use three network-processor models to measure performance. These models represent systems such as
individual servers as well as server-network-client infrastructures. The performance measure in each of these
models consists of some combination of the time required to encrypt, decrypt, hash compute, hash verify, compress,
decompress, and transmit data over a network. Using speedup equations that define performance in each of the
network-processor models, we derive inequalities that describe the conditions required for compression to improve
performance. If the throughputs of the encryption and authentication algorithms as well as the bandwidth of the
network can be treated as constants, these inequalities only depend on the throughput of the compression and
decompression algorithms and on the compression ratio.

Through experimentation, we analyze the performance of several combinations of network connection speeds,
data benchmarks, packet payload sizes, and algorithms used by ESP, AH and IPComp. We obtain empirical
performance results by executing the algorithms and simulating the network types on a 367 MHz HP PA-8500
processor. As expected, the results indicate that the performance depends on the compressibility of the payload
data, on the throughput of the encryption, authentication and compression algorithms, and on the network speed. In
general, the performance benefit of IPComp decreases as network bandwidth increases. We find that compression
usually improves performance when using 10 Mbps or slower networks, but compression only improves
performance in systems with 100 Mbps or 1 Gbps networks when encryption is being used.

The remainder of the paper is organized as follows. In Section 2, we discuss the network-processor models that
we use to measure performance. Section 3 discusses the details of IPsec, and Section 4 explores the performance
cost of using IPsec. In Section 5, we describe IPComp and investigate the compressibility and throughput achieved
by different compression algorithms. We present speedup equations for calculating performance in the different
models and derive inequalities that predict when compression will improve performance in Section 6. In Section 7,
we present empirical performance results of combining IPComp and IPsec when using a 367 MHz HP PA-8500
processor. We summarize and discuss directions for future work in Section 8.

2.0 Performance Models
When combining IPComp with IPsec, the performance measure depends on the characteristics of the system.

For example, the time needed for an individual to retrieve banking account information over the Internet consists of
three major components. These components include the computational time required by the bank’s servers to
prepare the IP packets, the time needed to physically transmit the IP packets, and the computational time required by
the individual’s computer to interpret the packets. Some users, however, would not be concerned with all three of
these computation and transmission components. In several situations, the user or business is only concerned with
the time needed to prepare IP packets or the time needed to interpret IP packets.

 The prepare packet operation consists of the procedures such as encryption and hash computation required to
prepare the packet for secure transmission. The interpret packet operation consists of the procedures such as
decryption and hash verification required to extract the contents of the packet upon receipt. As we will explain in
Section 3, hash computation and verification are used to perform data authentication. We use the terms hash
compute and hash verify interchangeably with authenticate in this paper. We describe encryption and decryption in
Section 3, and we describe compression and decompression in Section 5.

Consider a network-processor system that consists of a sender, a network, and a receiver, as shown in Figure 1.
Such systems can consist of multiple processors on both the receiver and sender ends, and the packets may pass
through several gateways and network types before reaching their final destinations. One approach to modeling
such a system would be to treat the computation and transmission segments as a pipeline. In a pipelined model, the

3

performance would depend on the most time-consuming segment. In this paper, however, we model the
performance in terms of total latency. More specifically, we are concerned with the total amount of time required by
all computation and network resources to prepare, transmit, and interpret packets. We investigate the extent to
which IPComp increases or decreases the total amount of time required to complete these tasks.

We evaluate performance using three network-processor models: the Local Send Model, the Local Receive
Model, and the Complete Model. The Local Send Model consists of the computation needed to prepare the packet
for transmission. The performance measure in this model is based upon the time needed to serially compress,
encrypt, and compute the keyed hash value for the IP packet. The Local Receive Model includes the computation
needed to interpret the IP packet after transmission. The performance measure in this model is based upon the time
required to serially verify the keyed hash value for, decrypt, and decompress the IP packet.

Lastly, the Complete Model includes the computation needed to prepare the IP packet, the physical transmission
of the packet over the network, and the computation needed to interpret the IP packet. The performance measure in
this model is based upon the time needed to serially compress, encrypt, hash compute, transmit, hash verify, decrypt,
and decompress. We model our network as a link of constant bandwidth. The bandwidth B equals N/T, where T is
the average time required for N bytes to travel from the sender to the receiver. Figure 2 illustrates the structure of
the Complete Performance Model.

3.0 IP Security Protocol
The IP Security Protocol (IPsec) provides a variety of security services at the IP layer in both IPv4 and IPv6

[12]. IPsec confidentiality and authentication services are implemented using the Encapsulating Security Payload
and the Authentication Header. The Encapsulating Security Payload (ESP) provides for confidentiality of the IP
packet payload using symmetric key encryption algorithms [11]. Both the Authentication Header (AH) and ESP
insure the authenticity as well as the integrity of the IP packet payload using symmetric key encryption algorithms
or secret-keyed one-way hash functions [10], [11]. In addition, AH provides protection against IP address spoofing.
IPsec allows ESP and AH to be applied to IP packets either alone or in combination with each other [12].

Requests for Comments (RFCs) describing the following protocols include instructions for integration in both
IPv4 and IPv6. Only minor differences exist between the IPsec integration procedures for the two IP versions, and
these differences do not significantly affect any of the results we present in this paper. We will discuss and evaluate
the relevant algorithms, protocols, and procedures only as they are implemented for IPv6, but the conclusions we
present in this paper apply to both IPv4 and IPv6 IPsec implementations.

1. Compress
2. Encrypt

3. Compute Hash

5. Verify Hash
6. Decrypt

7. Decompress

Figure 2: Complete Model

4. Transmit Packet
 over Public Network

 InternetSender Receiver

Processor 1

Processor 3

Processor 2

Processor 4

Processor 5

Sender Network Receiver

Figure 1: Network-Processor System

4

3.1 IP Encapsulating Security Payload
As stated in RFC 2406, “ESP is used to provide confidentiality, data origin authentication, connectionless

integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality.” ESP
employs symmetric-key encryption algorithms such as RC5 and 3DES to provide confidentiality. ESP uses keyed
hash algorithms such as SHA-1 and MD5 to provide for authentication, data integrity, and anti-replay services.

ESP transforms IPv6 packets as illustrated in Figure 3. The original IPv6 packet depicted in Figure 3 consists
of 4 components. The IP header is the essential first component of every IPv6 packet. Following the IP header, the
packet contains a variable number of Extension headers. These headers include (but are not limited to) the Routing
header, the Fragmentation header, and the ESP header. The Upper Layer header immediately follows the Extension
headers and is used by the protocol immediately above IPv6 (e.g., TCP, UDP, and ICMP). Last, the ULP (Upper
Layer Protocol) Payload consists of the data to be sent and received by the ULP. The ESP header is inserted directly
preceding the Destination Options header, if it exists. If a Destination Options header does not exist, the ESP header
is inserted immediately preceding the ULP header and payload.

The ESP header consists of two 32-bit fields. The first field consists of the Security Parameters Index (SPI),
which, in conjunction with the IP destination and the security protocol, specifies the Security Association for the
packet. The Security Association (SA) indicates which algorithms and modes of operation are being used to
perform the encryption and authentication. We discuss the encryption and authentication algorithms that we use in
this study in Section 3.3. It is important to note that the SA can specify the encryption algorithm to be NULL and/or
specify the authentication algorithm to be NULL [8]. If the encryption algorithm is NULL, the ciphertext is
equivalent to the plaintext, i.e., the encryption function is the identity function. If the authentication algorithm is
defined to be NULL, no authentication is performed, and the length of the ESP Authentication Data field is 0. The
second field in the ESP header consists of the Sequence Number, which is a monotonically increasing counter value
that prevents replay attacks (if authentication is employed).

The encrypted data block directly follows the ESP header [11]. This block consists of at most three
components: the initialization vector (IV), the ESP payload data, and the ESP trailer. If the encryption algorithm
defined by the SA requires an initialization vector, the IV is placed at the front of the encrypted data block.
Although the IV is transmitted in plaintext, it is considered to be part of the ciphertext block. The ESP payload data
directly follows the IV. It consists of the ciphertext result of encrypting the IPComp and Destination Options
headers (if they exist in the original IP packet), the ULP header, and the ULP payload. These headers and the ULP
payload are encrypted using the negotiated algorithm. Lastly, the ESP trailer, which consists of 3 fields, is
encrypted using the same algorithm and placed directly following the payload data. The first of these 3 fields is a
variable length padding of zeroes. The payload data can be padded by as many as 255 bytes in order to satisfy the

 Extension Headers

 Upper Layer Header

IP Header

ULP Payload

 AH

IP Header

Extension Headers
I

 Authentication
 Header (AH)

 Figure 4: AH in IPv6

 Extension Headers
 II

 Upper Layer Header

ULP Payload

authenticated

 Original Packet Modified Packet

 Figure 3: ESP in IPv6

 Extension Headers
 (minus Destination
 Options Header)

Modified Packet

 Extension Headers

 Upper Layer Header

IP Header

ULP Payload

 ESP

 IP Header

 ESP Header

ESP Payload
Data

ESP Trailer
authenticated

 Original Packet

 encrypted

 ESP Authentication
 Data

5

block alignment requirements of the encryption or authentication algorithm employed by ESP. The last two fields,
the Pad Length and the previously mentioned Next Header field, are each one byte in length.

The ESP Authentication Data field follows the ESP Trailer. This field contains a variable-length Integrity
Check Value (ICV) that is computed over the ESP header, the ESP payload data and the ESP trailer. The ICV is
calculated using either a secret-keyed hash algorithm or a symmetric key encryption algorithm. The Security
Association specifies the algorithm to be used. Byte alignment problems are resolved using the variable-length
padding field contained in the ESP Trailer. More details about ESP can be found in [11].

3.2 IP Authentication Header
The IP Authentication Header (AH) provides authentication, protection against replay attacks, and

connectionless integrity for IPv6 packets. AH transforms IPv6 packets as illustrated in Figure 4. The original
packet is constructed exactly as described in Section 3.1. As shown in Figure 4, the AH should be inserted
immediately following Extension Headers I and immediately preceding Extension Headers II [4]. Extension
Headers I includes the Hop-by-Hop Options header, the Routing header, and the Fragment header. Extension
Headers II includes the ESP header and the Destination Options header. In IPv6, the Authentication Header is also
classified as an Extension header [4]. Note that IP packets are not required to contain any Extension headers.

The AH consists of 6 fields. The first three fields contain typical header information such as the total header
size. The 32-bit fourth field is the Security Parameters Index (SPI), and the 32-bit fifth field is the Sequence
Number. The Sequence Number consists of a monotonically increasing counter value that is used to prevent replay
attacks. Lastly, the Authentication Data field contains the Integrity Check Value (ICV) for the packet.

The ICV is the output of the chosen authentication algorithm computed over the entire IP packet [10]. All fields
that may be unpredictably modified during packet transit – unpredictably mutable fields – are set to 0 for the ICV
computation. The Authentication Data field is set to 0 during the computation of the ICV as well. If the final value
of a mutable field is predictable, the field is set to its final value for the ICV computation. Furthermore, the ICV
must be a multiple of 64 bits in size, so padding is appended to the end of the ICV if necessary. Additional details
about mutable fields and other features of AH can be found in [10].

3.3 Algorithms
In this study, we perform IPsec procedures using 4 different cryptographic algorithms: RC5, Triple DES, MD5,

and SHA-1. RC5 and Triple DES (3DES) are symmetric-key encryption algorithms that provide for data
confidentiality. MD5 and SHA-1 provide for data origin authentication, data integrity, and anti-replay service.

3.3.1 Encryption Algorithms
Several symmetric key algorithms are defined for use in ESP [19]. In this study, we use two ciphers in CBC

mode: RC5-CBC and 3DES-EDE-CBC. CBC, which stands for Cipher Block Chaining, is a mode of operation that
provides more security than the ECB (Electronic Code Book) mode of operation, which is easier to implement.
CBC mode involves XORing a randomly generated 64-bit initialization vector (IV) with the first plaintext block
before encryption. Subsequently, the jth plaintext block is XORed with the (j-1)th ciphertext block before
encryption. Additional details about CBC may be found in [22].

DES, which is an acronym for Data Encryption Standard, is a symmetric-key block cipher that uses a 64-bit key
to encrypt 64-bit blocks [22]. Eight of the 64 key bits are parity bits, so the effective key length is 56 bits.
Furthermore, DES is a Feistel cipher, so the rounds of the encryption algorithm are equivalent to the rounds of the
decryption algorithm. DES has been a worldwide standard for over 20 years [22]. Triple DES (henceforth referred
to as 3DES) provides more security than DES by encrypting a single block three times (with DES) using three
different 56-bit keys [22]. We implement 3DES in EDE (encrypt-decrypt-encrypt) mode, as prescribed in [19]. To
encrypt a block of data, we encrypt with the first key, then decrypt with the second key, and then encrypt with the
third key. To decrypt a block of data, we decrypt with the third key, encrypt with the second key, and then decrypt
with the first key. We apply CBC mode using the outer chaining technique as described in [22]. 3DES is
cryptographically twice as strong as DES, but 3DES takes roughly three times as much computational time as DES
to encrypt and decrypt blocks.

RC5 is a symmetric key block cipher that is patented by RSA Data Security, Incorporated [21]. RC5 can
operate over different block sizes and key lengths; in this study we use a block size of 64 bits and a key length of
128 bits. We implement RC5 in CBC mode as described in [2]. RC5 is considered to be one of the fastest secure
symmetric-key block ciphers, whereas 3DES is one of the slowest. RC5 is also slightly more secure than 3DES: the
effective key length of the RC5 key is 128 bits, whereas the effective key length of the 3DES key is 112 bits.

6

3.3.2 Authentication Algorithms
Two algorithms that are defined for use with AH and with ESP are HMAC-MD5 and HMAC-SHA-1 [10], [11].

In this study, we shall evaluate the performance of both of these algorithms. HMAC is a mechanism that provides
message authentication using an iterative cryptographic hash function and a secret symmetric key [13]. We compute
the HMAC over the data P as follows:

))),((),((PipadKHopadKH ⊕⊕
H is a cryptographic hash function that hashes data by iterating some basic function on data blocks of size B. In
addition, the comma represents the concatenation function, and K is the HMAC secret key. The terms opad and
ipad are fixed byte sequences of length B. Details concerning key length and use can be found in [13].

MD5 is a cryptographic hash function that accepts plaintext blocks of size 64 bytes and outputs a 16-byte
authentication value [14]. SHA-1, a government standard, is a cryptographic hash function that accepts 64 byte
plaintext blocks and outputs a 20-byte authentication value [15]. SHA-1 is considered to be a cryptographically
superior hash function, but MD5 is faster [13].

3.4 Implementing ESP and AH
When combining ESP and AH, the AH header directly precedes the ESP header in the modified IP packet.

Since AH authenticates more data in an IP packet than the authentication services in ESP, we always use AH to
perform authentication. We only use ESP to perform encryption.

Hash computation and hash verification are equivalent operations: the sender and the receiver execute the same
hash algorithm over identical keys and identical packets. Therefore, the two operations require the same amount of
computation time when executed on the same platform. In addition, when simulating the NULL algorithm of a
particular protocol, we treat the packet as if the protocol were not being employed at all. This policy decreases
network transmission time by not adding a useless protocol header to the IP packet.

4.0 Performance Impact of IPsec
In this section, we explore the performance costs of employing IPsec procedures. We obtain data concerning the

throughput of IPsec procedures by implementing and executing the cryptographic algorithms on a HP Visualize
C360 workstation. This workstation consists of a HP 64-bit 367 MHz PA-8500 processor with 1.5 MB of on-chip
L1 cache. In addition, the workstation has 128 MB of RAM. We implemented all four of the authentication and
encryption algorithms in C. We use the HPUX C compiler (cc) to build the modules, and we employ full compiler
and linker optimizations (i.e., +O4). We obtain the timing results for all of the authentication and encryption
procedures using the UNIX clock() function. In order to avoid imprecision resulting from the relatively high
granularity of the clock() output, we execute the IPsec procedures thousands of times. We obtain the final timing
result by dividing the total time needed to complete the thousands of iterations by the total number of iterations
executed.

4.1 Network Types and Payload Sizes
We simulate several network types and payload sizes. The network connections include 56 kbps (phone line

modem), 1.54 Mbps (T1, wireless), 10 Mbps (Ethernet), 100 Mbps (Ethernet), and 1 Gbps (Ethernet). In a lab
environment, these network types can achieve 90% of their maximum link speeds [9]. In this study, we relax this
condition somewhat; we assume all the network connections sustain 80% of their maximum throughput. Although
80% throughput may not be realistic for many real-world systems, one can approximate the effective bandwidth of
most networks with one of the 5 network models used in this study.

We evaluate the performance of the IPsec procedures using 3 ULP payload sizes: 1 kilobyte, 4 kilobytes, and 63
kilobytes. In a variety of network environments, 1 kilobyte and 4 kilobytes are commonly used TCP payload sizes
[9]. TCP, which stands for Transmission Control Protocol, is a connection-based protocol that employs a 20-byte
payload header [20]. Additional details concerning TCP can be found in [20]. We assume that all ULP payloads are
TCP payloads. The maximum size of an IPv6 packet minus the IP header is 64 KB, so the 63 KB payload size
represents the largest possible payload size but leaves room for ESP, AH, IPComp, and TCP headers. We set the
network MTU to be 1280 bytes, the minimum MTU allowed in IPv6, and we fragment packets accordingly [4]. We
assume that all the original IP packets solely consist of a 40-byte IPv6 header, an 8-byte fragmentation header (if
necessary), a 20-byte TCP header, and a variable length TCP payload. The use of additional headers or a transport
protocol other than TCP will not significantly affect the performance results.

7

4.2 Performance Results and Analysis
The execution time of the encryption and authentication algorithms is simply a function of the input size (rather

than a function of both the input size and the statistical characteristics of the input data). Since hash computation
and hash verification are equivalent operations, hash computation and hash verification will consume the same
amount of time. Furthermore, DES is a Feistel cipher, so the encryption speed of 3DES is equivalent to the
decryption speed of 3DES. Although RC5 is not a Feistel cipher, the speed of the encryption procedure is roughly
the same as the speed of the decryption procedure. We summarize the throughput of the encryption and
authentication algorithms for the three packet sizes in Table 1. The algorithms are executed in the modes of
operation described in Section 3. From Table 1, we see that the throughput of the authentication algorithms is much
higher than that of the encryption algorithms. Furthermore, MD5 runs slightly faster than SHA-1 and RC5 runs
three times as fast as 3DES.

We now calculate the performance degradation caused by different combinations of these algorithms in the
Complete Performance Model. As described in Section 2, the Complete Performance Model consists of the
computation required to serially compress, encrypt, compute the hash for, verify the hash for, decrypt, and
decompress the IP packet. We quantitatively determine the level of performance degradation by calculating the
speedup S as follows.

DHVSECNETHCE

NET

TTTTT

T
S

++++
=

In this equation, TNET, TSECNET, TE, THC, THV, and TD represent the original packet transmission time, the
encrypted/authenticated packet transmission time, the encryption time, the hash computation time, the hash
verification time, and the decryption time, respectively. TNET may not equal TSECNET because of the headers that are
added to the encrypted/authenticated packet. Values of S close or equal to 1.00 indicate minor performance
degradation, whereas values closer to 0.0 indicate enormous performance degradation. We calculate the speedup
results using a TCP payload size of 4 KB, and we assume that all the network types sustain 80% of their maximum
bandwidth. We execute the algorithms and simulate network transmissions on the PA-RISC workstation described
at the beginning of Section 4. The speedup results for the 5 network bandwidths and eight combinations of
encryption and authentication algorithms are listed in Table 2.

From Table 2, we see that encryption and authentication never degrade performance more than 10% when using
56 kbps or 1.54 Mbps network connections. As bandwidth increases, however, the performance impact of
authentication and encryption becomes more pronounced. Both encryption and authentication decimate
performance when using a 1 Gbps link. The results also show that the encryption algorithms have a greater effect on

Table 2: Speedups (Slowdowns) Resulting from Authentication and Encryption

Algorithm CombinationNetwork
Type MD5 SHA-1 RC5 RC5

MD5
RC5

SHA-1
3DES 3DES

MD5
3DES
SHA-1

56 kbps 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
1.54 Mbps 0.99 0.98 0.97 0.96 0.96 0.92 0.90 0.90
10 Mbps 0.94 0.94 0.86 0.82 0.82 0.64 0.62 0.62

100 Mbps 0.65 0.63 0.39 0.32 0.32 0.15 0.14 0.14
1 Gbps 0.16 0.15 0.06 0.04 0.04 0.02 0.02 0.02

Payload SizesAlgorithm
Name 1K 4K 63K Average
MD5 229 299 332 287

SHA-1 214 274 302 263
RC5 96 97 96 96

3DES 28 28 28 28

Table 1: Performance of Encryption and Authentication Algorithms (Mbps)

8

the performance than the authentication algorithms, for the encryption routines require much more computation.
This performance differential between encryption and authentication becomes more pronounced as bandwidth
increases. We now investigate the degree to which data compression can alleviate this performance problem.

5.0 IP Payload Compression
The IP Payload Compression protocol (IPComp) employs data compression algorithms to reduce the size of IP

packets [23]. This size reduction decreases the time required to transmit IP packets by decreasing the number of bits
that are physically transferred over the network. Furthermore, IPComp decreases the execution time of encryption
and authentication algorithms by reducing the amount of information to be encrypted and authenticated. In this
section, we describe IPComp in detail, and then we analyze the compressibility and throughputs achieved by the
LZS and DEFLATE compression algorithms.

5.1 Protocol Description
IPComp reduces the size of IP packets in IPv4 and

in IPv6 using data compression algorithms [23]. The
protocol specification includes several restrictions and
guidelines concerning these compression algorithms.
To preserve the consistency of the packet payload, the
compression algorithm must be lossless. Furthermore,
the compression of a packet payload must be
completed before any IP security processing is
performed. A cryptographically secure encryption
algorithm outputs ciphertext that has high entropy;
therefore an encrypted payload is incompressible. It
follows that the decompression and reassembly of IP
packets must also occur after authentication or
decryption. In addition, each IP packet must be
compressed and decompressed independently of other
packets, since IP packets may arrive out of order or
may never arrive at all. Lastly, the total size in bytes
of the compressed payload and the IPComp header must be smaller than the size of the original payload. If the
header and the compressed payload are of equal or of greater size than the original payload, the original payload is
sent (without any IPComp header). This non-expansion policy saves clock cycles at the receiver end and guarantees
that network traffic will not increase. Additional details may be found in [23].

IPComp transforms an IPv6 packet as shown in Figure 5. The IPComp header is 4 bytes in size and consists of
three fields. The first byte stores the Next Header field, the second byte stores the Flags field (which is always set to
0), and the last two bytes store the Compression Parameter Index (CPI). The CPI indicates which compression
algorithm is being used and includes any parameters needed to configure the compression algorithm. These
configuration parameters and the chosen compression algorithm are determined during the negotiation of the
IPComp Association (IPCA) between the communicating parties. Furthermore, in IPv6, the IPComp header is
inserted immediately preceding the Destination Options header in the IP packet [23]. If the Destination Options
header does not exist, the IPComp header is inserted immediately preceding the upper-layer header (e.g., the TCP
header) in the IP packet. The compression algorithm used by IPComp compresses all the data that follows the
IPComp header in the IP packet. The Destination Options header, the upper layer header, and the ULP payload are
all compressed.

5.2 Data Compression Algorithms
We evaluate the performance of IPComp using two lossless compression algorithms: DEFLATE and LZS [7],

[18]. DEFLATE compresses data using a combination of the LZ77 algorithm and Huffman coding [18]. In this
study, we use zlib, a freely distributed implementation of DEFLATE, to obtain our performance results. We use
version 1.1.3, and we maintain all the default compression settings. Additional details concerning zlib and
DEFLATE can be found in [5] and in [6], respectively.

LZS is a lossless compression algorithm based on LZ77 that employs a sliding window of maximum size 2
kilobytes [7]. LZS is an ANSI standard and is patented by Hi/fn, Inc. In our C implementation of LZS, we store the
compression dictionary as a quickly accessible and infrequently updated order-3 hash table. We also optimized our

IP Header

 Extension Headers

 Upper Layer Header

ULP Payload

 IPComp

 IP Header

Extension Headers
(minus Destination
Options Header)

 IPComp Header

Compressed
Data

Figure 5: IPComp in IPv6

Original Packet Modified Packet

9

implementation by employing 64-bit
features and by cleverly “shaving” the
algorithm. By not using the full
compression power of LZS, we can obtain
huge gains in throughput but pay only a
small penalty in compression ratio. Our
implementation requires approximately 50
KB of RAM and outperforms DEFLATE in
throughput by an order of magnitude.
Additional details concerning LZS may be
found in [7] and in [1].

Unlike encryption and authentication
algorithms, the performance of the
compression algorithms depends on the size
as well as the statistical properties of the
input data. In other words, the throughput
of the compression algorithms depends on
the compressibility of the input data.
Hence, we analyze the performance of the
compression algorithms using an eclectic
group of data benchmarks.

5.3 Data Benchmarks
In a real-world networking environment, a user may transmit a rich variety of data types and sizes. For

example, a user may send or receive a previously compressed 100 KB text file, a 1.3 MB binary executable, or a 12
KB bitmap entirely composed of white pixels. We chose 8 data benchmarks to obtain the performance results; their
names and descriptions are listed in Table 3.

Six of these benchmarks − obj2, progl, paper2, trans, book1, and pic − are members of the Calgary corpus.
Researchers use the Calgary corpus to evaluate the practical performance of text compression algorithms. More
details about the Calgary corpus can be found in [3]. The remaining two benchmarks, gif and random, represent a
GIF compressed image file and a randomly generated binary data file, respectively. We expect, therefore, that the
gif and random benchmarks will be relatively incompressible. The 6 Calgary corpus benchmarks will exhibit
different levels of compressibility, and therefore the performance will vary when using IPComp in conjunction with
ESP and AH.

5.4 Compressibility Results
We compute the compressibility results for both DEFLATE and LZS using the 8 benchmarks and the 3 payload

sizes defined in Section 4.1. In order to avoid any compression anomalies associated with compressing the first few
bytes (e.g., 1 KB or 4 KB) of the benchmarks, we compress several different portions of the benchmarks when using
the 1 KB and 4 KB ULP payload sizes. For the 1 KB payloads, we compress the first 40 1-KB blocks of the
benchmark, and the compressibility results are based upon the average compressibility of those 40 blocks.
Similarly, for the 4 KB payload sizes, we compress the first 10 4-KB blocks of the benchmark. When using the 63
KB payload size, however, we only compress the first 63 KB block of the benchmark. In addition, to avoid timing
imprecision resulting from the relatively high granularity of the result of the clock() function, we repeat the
compression and decompression of the blocks thousands of times.

The eight benchmarks exhibit many different levels of compressibility. Table 4 summarizes the compression
ratios achieved by the DEFLATE and LZS algorithms. The size of the compressed data block includes the 4-byte
IPComp header. Table 4 shows that the zlib implementation of DEFLATE achieves a higher compression ratio than
LZS for each packet size and benchmark combination. Figure 6 illustrates the compression ratios achieved by the
two algorithms for 4 KB payloads. DEFLATE usually outperforms LZS in compression ratio by a factor of 1.0 to
2.0, but the ratio of the compression ratios can exceed 5.0 for highly compressible data.

5.5 Throughput Results
The performance of the compression algorithms depends on the benchmark compressibility and on the

benchmark data size. Table 5 lists the compression and decompression rates for DEFLATE, and Table 6 lists the
compression and decompression rates for LZS. Figures 14 through 19 in the Appendix compare the compression

Table 3: Benchmark Descriptions

Name Description
obj2 Compiled code for Apple Macintosh: Knowledge

support system
progl Lisp source code for system software

paper2 A technical paper entitled “Computer (in)security”
by Witten

trans Transcript of a session on a terminal
book1 A book entitled Far from the Madding Crowd by

Hardy
pic Picture number 5 from the CCITT Facsimile test

files (text + drawings)
gif Compressed GIF file that contains a campus map

random Randomly generated data

10

and decompression rates of the two algorithms graphically. The zero values for gif and random in the
decompression columns are a consequence of IPComp’s non-expansion policy. If the compression ratio is less than
or equal to 1, the ULP header and payload are transmitted in their original forms: no compressed data is transmitted
and an IPComp header is not included in the packet. As a result, the receiver does not decompress any data. This
policy reduces network transmission time and eliminates unnecessary computation for the receiver.

Tables 5 and 6 show that LZS always greatly outperforms DEFLATE in compression rate. LZS compresses
data nearly as fast as SHA-1 authenticates data, and DEFLATE compresses data as slowly as 3DES encrypts data.
In addition, LZS significantly outperforms DEFLATE in decompression rate for 1 KB and 4 KB payloads.
DEFLATE, however, always achieves a higher decompression rate than LZS for 63 KB payloads.

We now know that DEFLATE always achieves a higher compression ratio than LZS, and we know that LZS
usually compresses and decompresses data faster than DEFLATE. Which algorithm should we use to maximize
performance? The answer to this question depends on the performance model and network speed. We will address
this issue in greater detail later in this paper.

6.0 Calculating the Performance Impact of IPComp on IPsec Transmissions
In this section, we present equations that describe the performance impact of combining ESP and AH with

IPComp. First, we introduce and explain the equations we use to calculate speedups for the different performance
models. Second, we use these speedup equations to describe the conditions required for compression to improve
performance in each model.

6.1 Speedup Calculation
We can express the speedup in each network-processor performance model as a single equation. A speedup

greater than or equal to 1 indicates that IPComp reduces the total amount of time needed to conduct a secure
transaction. Hence, a speedup greater than or equal to 1 means compression improves performance. A speedup less
than 1 indicates that compression increases the total time needed to conduct the transmission, and therefore
compression degrades performance. TE, TD, THC, THV, and TSECNET represent the encryption time, decryption time,
hash computation time, hash verification time, and transmission time, respectively. The variables CE, CD, CHC, CHV,

Figure 6: Comparison of Compression Ratios
for 4 KB Payloads

67.48 12.70

0.00
0.50

1.00

1.50

2.00

2.50

3.00
3.50

4.00

ob
j2

pr
og

l

pa
pe

r2

tr
an

s

bo
ok

1

pi
c

gi
f

ra
nd

om

Benchmark

C
o

m
p

re
ss

io
n

 R
at

io

DEFLATE

LZS

Table 4: Compression Ratios

DEFLATE LZSBenchmark
Name 1K 4K 63K 1K 4K 63K
obj2 1.76 2.08 2.36 1.52 1.67 1.77
progl 2.31 3.16 4.23 1.76 2.16 2.33

paper2 1.74 2.08 2.70 1.28 1.50 1.61
trans 1.93 2.55 5.02 1.52 1.82 2.01
book1 1.68 1.94 2.34 1.22 1.40 1.46

pic 26.10 67.48 21.41 10.04 12.70 8.01
gif 0.99 1.00 1.00 0.89 0.89 0.89

random 0.99 1.00 1.00 0.89 0.89 0.89

Table 5: DEFLATE Performance (Mbps)

Compression DecompressionBenchmark
Name 1K 4K 63K 1K 4K 63K
obj2 14 21 23 66 121 365
progl 18 31 31 77 146 492

paper2 17 25 23 67 123 365
trans 17 29 43 70 143 492
book1 17 23 20 68 112 340

pic 34 72 76 166 299 703
gif 14 28 31 0 0 0

random 14 29 31 0 0 0

Table 6: LZS Performance (Mbps)

Compression DecompressionBenchmark
Name 1K 4K 63K 1K 4K 63K
obj2 217 210 201 254 252 245
progl 234 245 252 253 263 263

paper2 178 179 182 224 214 211
trans 216 222 232 259 255 259
book1 172 169 169 220 207 203

pic 983 1047 735 498 537 476
gif 186 160 150 0 0 0

random 186 161 151 0 0 0

11

and CSECNET represent the time needed to encrypt, decrypt, compute the hash for, verify the hash for, and transmit a
compressed packet, respectively. If encryption were not being used, for example, then TE and CE would both equal
0. Furthermore, the variables TCOMP and TDECOMP represent the time required to perform the payload compression
and decompression, respectively. In the Local Send Model, we calculate the speedup S using the following
equation:

HCECOMP

HCE

CCT

TT
S

++
+

=

We compute the speedup in the Local Receive Performance Model as follows:

DECOMPDHV

DHV

TCC

TT
S

++
+

=

Note that it is possible for the speedup in the Local Receive Model to have no value. If neither encryption nor
authentication is used and the packet payload is uncompressible, a divide by zero situation will occur. Hence, S is
undefined in this case. The Complete Performance Model includes the computation performed by the sender and by
the receiver as well as the physical transmission of the data. We therefore calculate the speedup in the Complete
Performance Model as follows.

DECOMPDHVSECNETHCECOMP

DHVSECNETHCE

TCCCCCT

TTTTT
S

++++++
++++

=

6.2 Predicting the Performance Impact of Compression
Using the speedup equations defined in Section 6.1, we describe the conditions required for compression to

improve the performance in each model. For the Local Send Model, the speedup equation can be rewritten as
follows:

+

+

+
=

++
+

=

X

N

RX

N

R
N

R

N
R

N
R

CCT

TT
S

P

HC

P

E
P

COMP

P
HC

P
E

HCECOMP

HCE

111

11

RE, RHC, RCOMP, and NP equal the encryption rate, the hash computation rate, the compression rate, and the size of the
original (uncompressed) ULP payload, respectively. X is the compression ratio, which equals the size of the
uncompressed payload divided by the size of the compressed payload. In order to make the relationships clear, we
choose to neglect the overhead resulting from packet
headers. For example, the amount of data to be hashed
is not NP as the previous equation indicates. The AH
ICV is calculated over the entire packet, so the amount
of data to be hashed is at least NP plus the size of the IP
and AH headers. The total size of all the packet headers
is usually less than 100 bytes, so if the payload size is
relatively large, e.g., multiple KB, the omission of the
header overheads will not significantly affect the results.

Compression improves performance if the speedup
achieved in a particular model is greater than or equal to
1. Hence, by setting the right side of the previous
equation to be greater than or equal to 1, we obtain a
relationship between the compression ratio and the
algorithm throughputs such that compression will
improve performance. NP cancels out since we are not
considering overhead from packet headers, and we now
have the following equation for the Local Send Model:

COMPHCE RRRX

1111
1 ≥

+

 −

Figure 7: Performance-Improving Relationship
Between Compression Rate and Ratio in

the Local Send Model

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11

Compression Ratio

C
o

m
p

re
ss

io
n

 R
at

e
*

K
1

12

If the encryption and signing rates are constant, we have:

−

≥

1

1

1 X

X

K
RCOMP , where

HCE RR
K

11
1 +=

This inequality shows that compression will improve performance in the Local Send Model if the compression rate
is greater than some constant factor times the compression ratio divided by the compression ratio minus 1. Figure 7
illustrates this relationship between the compression rate and the compression ratio. All the points in the shaded
region yield a speedup less than or equal to 1, and all the points in the white region yield a performance
improvement.

Using similar algebraic manipulation, we obtain the following equation that specifies the conditions required for
compression to improve performance in the Local Receive Model:

DECOMPHVD RRRX

1111
1 ≥

+

 −

RD, RHV, and RDECOMP equal the decryption rate, the hash verification rate, and the decompression rate, respectively.
If the decryption and authentication rates are constant, we have:

−

≥

1

1

2 X

X

K
RDECOMP , where

HVD RR
K

11
2 +=

This inequality specifies a relationship between decompression rate and compression ratio in the Local Receive
Model such that the resulting speedup will be greater than or equal to 1. The graph of this relationship has exactly
the same shape as the graph for the relationship between the compression rate and the compression ratio in the Local
Send Model.

For the Complete Model, we rewrite the speedup equation as follows.

P
DECOMP

P

D

P

HV

P

SECNET

P

HC

P

E
P

COMP

P
D

P
HV

P
SECNET

P
HC

P
E

N
RX

N

RX

N

RX

N

RX

N

RX

N

R
N

R

N
R

N
R

N
R

N
R

N
R

S
1111111

11111

+

+

+

+

+

+

++++
=

RSECNET is the transmission rate of the network (i.e., effective network bandwidth). NP cancels out, and when we
impose the condition that speedup must be greater than or equal to 1, we have:

DECOMPCOMPSECNETHVHCDE RRRRRRRX

11111111
1 +≥

++++

 −

If the encryption, decryption, hash computation, hash verification, and transmission rates are constant, we obtain the
following expression.

DECOMPCOMP RRX
K

111
13 +≥

 − , where

SECNETHVHCDE RRRRR
K

11111
3 ++++=

This inequality describes a relationship between compression rate, decompression rate, and compression ratio in the
Complete Model such that the resulting speedup will be greater than or equal to 1.

Using these inequalities, one may determine whether compression will improve the performance of secure
packet transactions without conducting extensive simulations. More accurate predictions can be made if the packet
header overhead terms are included in the equations. When the header overheads are included, the NP terms do not
cancel out and the equations become somewhat more complicated. In addition, secure network transactions in some
systems involve other time-consuming steps such as bus transfer time or disk access time. The speedup equations
presented here could be modified to model a particular system more accurately by adding relevant latency terms.

7.0 Experimental Results and Analysis
In this section, we evaluate the experimental performance results when executing the security and compression

algorithms on a HP Visualize C360 workstation. This workstation consists of a HP 64-bit 367 MHz PA-8500
processor with 1.5 MB of on-chip L1 cache. In addition, the workstation has 128 MB of DRAM, and it achieves a
SPECint95 performance rating of 26.0 and a SPECfp95 performance rating of 28.1. We calculate speedups using all

13

combinations of compression algorithms, encryption algorithms, authentication algorithms, ULP payload sizes, data
benchmarks, network bandwidths, and performance models. We execute and time the encryption and authentication
algorithms as described in Section 4, and we execute, time, and measure the compressibility achieved by the
compression algorithms as described in Section 5. We simulate the different network types assuming they all
maintain 80% of their maximum bandwidths.

We present the speedups achieved in the 3 different models using all the combinations of simulation parameters
in Tables 7 through 20 (in the Appendix). Tables 7 and 8 include the speedups for the Local Send Model, Tables 9
and 10 include the speedups for the Local Receive Model, and Tables 11 through 20 contain the speedups for the
Complete Model over the 5 network bandwidths. The NULL columns in these tables list the speedups induced by
compression when neither encryption nor authentication is used. Speedup values less than 1.00 (i.e., “slowdowns”)
are listed in red, and speedup values greater than or equal to 1.00 are listed in black. Note that rounding is used,
and therefore some of the black values are actually slightly less than 1.00.

Because of the enormous size of the tables, we only present the most valuable performance results graphically.
We illustrate results for 4 of the 8 benchmarks and for 2 of the 3 packet sizes. Using the compressibility results
discussed in Section 5, we divide the data benchmarks into 4 groups according to level of compressibility. We
select 1 benchmark from each of these 4 groups: pic, gif, book1, and trans. The benchmarks pic and gif represent
highly compressible payloads and incompressible payloads, respectively, and book1 and trans fall in between. In
addition, we only present results for the 1 KB and 63 KB payload sizes. Most of the results for the 4 KB payload
size closely resemble the results for the 1 KB payload size.

The choice of compression algorithm depends on the performance model and on the network speed. In the
Local Send Model, we find that LZS always yields a larger speedup than DEFLATE. This fact is a consequence of
the superior compression throughput of LZS. In the Local Receive Model, however, LZS only yields higher
performance than DEFLATE for 1 KB payloads and for 4 KB payloads if slow encryption (3DES) is not used.
DEFLATE yields a larger speedup than LZS for 63 KB payloads due to its superior decompression rate. In addition,
DEFLATE achieves a higher speedup than LZS for 4 KB payloads (if slow encryption is employed) due to the large
compression ratios achieved by DEFLATE. In the Complete Model, we discover that compression ratio is more
important than compression throughput when using slow network links, whereas the compression and
decompression rates are more important than the compression ratio for fast network links. We find that DEFLATE
usually yields a higher speedup than LZS for 56 kbps and 1.544 Mbps connections, and LZS usually yields a higher
speedup than DEFLATE for 10 Mbps, 100 Mbps, and 1 Gbps links. It is important to note that these conclusions
concerning compression algorithms and network types are highly implementation dependent. For example, if our
LZS implementation were significantly slower, it would be advisable to use DEFLATE rather than LZS for 10 Mbps
links. In general, fast compression algorithms should be used with fast network connections, and algorithms that
achieve high compression ratios should be used with slow network connections.

Upon inspecting the speedup results, we discover that certain different algorithm combinations produce similar
results. For example, consider the case where AH is used but ESP is not employed. In almost every case, the
speedups for MD5 and SHA-1 (when using compression) are both greater than 1 or are both less than 1. In other
words, the decision to compress when employing AH but not ESP is independent of the authentication algorithm
being used. We expected this result, for the throughputs of these two algorithms differ by only 7.5% when using 63
KB payloads. In addition, for almost every case, we find that the RC5, the RC5/MD5, and the RC5/SHA-1
algorithm combinations all have speedups greater than 1 or all have speedups less than 1. In the few cases where
one of the RC5 combinations yields a speedup less than 1 whereas another RC5 combination yields a speedup
greater than 1, the smallest speedup is always extremely close to 1 (i.e., > 0.95). Lastly, for every case, we find that
the speedups for the 3DES, the 3DES/MD5, and the 3DES/SHA-1 algorithm combinations are either all greater than
or equal to 1 or are all less than 1.

This leaves us with 4 algorithm combination classes: combinations that include 3DES (slow encryption),
combinations that include RC5 (fast encryption), combinations that include authentication only, and the case where
neither authentication nor encryption are employed (henceforth referred to as NULL). The results of the NULL case
can be used to determine whether compression improves the performance of ordinary, unsecured communications.
We present performance results for the most computationally intensive algorithm combination in each class in order
to demonstrate the maximum benefit of payload compression. These algorithm combinations include NULL, SHA-
1, RC5/SHA-1, and 3DES/SHA-1, since SHA-1 requires more computation than MD5. In addition, the speedup
results we present for these algorithm combinations are based upon the compression algorithm that yields the
highest performance for the given performance model, network type, and packet size. Our recommendations for
choosing a compression algorithm are listed above.

14

Figure 8: Speedups in the Local Receive Model

6.27 11.778

0

1

2

3

4

5

6

SHA-1 RC5/SHA-1 3DES/SHA-1

Algorithm Combinations

S
p

ee
d

u
p

gif (1 KB)

gif (63 KB)

book1 (1 KB)

book1 (63 KB)

trans (1 KB)

trans (63 KB)

pic (1 KB)

pic (63 KB)

Figure 9: Speedups in the Local Send Model

6.227

0

1

2

3

4

5

6

SHA-1 RC5/SHA-1 3DES/SHA-1

Algorithm Combinations

S
p

ee
d

u
p

gif (1 KB)

gif (63 KB)

book1 (1 KB)

book1 (63 KB)

trans (1 KB)

trans (63 KB)

pic (1 KB)

pic (63 KB)

Figure 10: Speedups in the Complete Model
When Using Compression Only

0.1

1

10

100

0.0547 1.54 10 100 1024

Maximum Network Bandwidth (Mbps)

S
p

ee
d

u
p

gif (1 KB)

gif (63 KB)

book1 (1 KB)

book1 (63 KB)

trans (1 KB)

trans (63 KB)

pic (1 KB)

pic (63 KB)

Figure 11: Speedups in the Complete Model
When Using SHA-1

0.1

1

10

100

0.0547 1.54 10 100 1024

Maximum Network Bandwidth (Mbps)

S
p

ee
d

u
p

gif (1 KB)

gif (63 KB)

book1 (1 KB)

book1 (63 KB)

trans (1 KB)

trans (63 KB)

pic (1 KB)

pic (63 KB)

Figure 12: Speedups in the Complete Model
When Using RC5/SHA-1

0.1

1

10

100

0.0547 1.54 10 100 1024

Maximum Network Bandwidth (Mbps)

S
p

ee
d

u
p

gif (1 KB)

gif (63 KB)

book1 (1 KB)

book1 (63 KB)

trans (1 KB)

trans (63 KB)

pic (1 KB)

pic (63 KB)

Figure 13: Speedups in the Complete Model
When Using 3DES/SHA-1

0.1

1

10

100

0.0547 1.54 10 100 1024

Maximum Network Bandwidth (Mbps)

S
p

ee
d

u
p

gif (1 KB)

gif (63 KB)

book1 (1 KB)

book1 (63 KB)

trans (1 KB)

trans (63 KB)

pic (1 KB)

pic (63 KB)

15

In Figure 8, we present speedup results for the Local Receive Model. Since this model does not include a
network connection, the NULL algorithm combination will always yield a speedup of 0 (or undefined in some
cases). Therefore, we do not include the NULL combination in the graph. From Figure 8, we see that compression
improves the performance of SHA-1 in the Local Receive Model only if the payload data is highly compressible. In
addition, we find that compression improves the performance of RC5/SHA-1 and 3DES/SHA-1 for most
benchmarks and packet sizes. In summary, the results suggest that compression should only be used to improve
performance in the Local Receive Model if encryption is being used. It is important to note, however, that
compression may degrade performance when using computationally light encryption algorithms if the payload is
relatively uncompressible.

Figure 9 illustrates the speedup results for the Local Send Model. Since this model also lacks a network
connection, the NULL algorithm combination always produces a speedup of 0. Therefore, we do not include the
NULL combination in the graph. Figure 9 indicates that compression should be used to improve performance in the
Local Send Model if slow encryption (e.g., 3DES) is being used. Compression can also improve the performance of
fast encryption and the performance of authentication if the packet payloads are extremely compressible.

Figures 10 through 13 illustrate the speedups obtained for the 4 algorithm combinations in the Complete Model.
Figure 10 depicts the speedups achieved when using compression without encryption or authentication. In this case,
we see that compression usually improves performance for network bandwidths less than or equal to 10 Mbps.
IPComp applied alone, however, almost always degrades performance in the Complete Model when using 100 Mbps
and 1 Gbps networks. Figure 11 illustrates the speedups obtained when using SHA-1 in the Complete Model. As
we conclude for the NULL algorithm combination, compression should be employed to improve performance when
using authentication (without encryption) if the network bandwidth is less than or equal to 10 Mbps. Compression
can also be used to improve performance when using standalone authentication for 100 Mbps and 1 Gbps networks
if the packet payloads are expected to be highly compressible (i.e., compressible by a factor of 10). Figures 12 and
13 show the speedup results when using RC5/SHA-1 and 3DES/SHA-1 in the Complete Model, respectively. In
both graphs, we see that compression improves performance when using network connections less than or equal to
10 Mbps. For 3DES/SHA-1, we see that compression improves performance when using 100 Mbps or 1 Gbps
network connections. In addition, for RC5/SHA-1, we see that compression improves performance over 100 Mbps
and 1 Gbps links if the data is reasonably compressible (i.e., compressible by a factor of 1.5).

If the security and compression algorithms are all executed on workstations similar to the one described at the
beginning of this section, we conclude that compression will improve performance in the Complete Model for
network bandwidths less than or equal to 10 Mbps. In addition, compression improves performance in the Complete
Model when using network bandwidths as high as 1 Gbps if the payload data is reasonably compressible and
encryption is being used. We define reasonably compressible data to mean a compression algorithm can reduce the
size of packet payload by at least a factor of 1.5. If processing power increases relative to network speed, the
speedups caused by compression will also increase. If processing power decreases relative to network speed,
compression will be more likely to cause performance degradation. Similarly, if compression speed and ratio
increase relative to encryption/authentication speed, performance speedups due to compression will increase. If
compression speed and ratio decrease relative to encryption/authentication speed, compression will be less
beneficial for system performance.

8.0 Summary
In this paper, we investigate the performance impact of combining data compression with encryption and

authentication to provide for fast, secure transactions in virtual private networks. We define three network-
processor models that we use to measure performance. In each of these models, we implement VPN security
features using the IP Security Protocol (IPsec). We show that IPsec can seriously degrade system performance,
especially when using high-bandwidth networks. Data compression can potentially alleviate this performance
problem by reducing the amount of data that is physically transferred over the network and by reducing the amount
of information that is processed by the encryption and authentication algorithms. Compression algorithms consume
clock cycles, however, and therefore compression can potentially degrade performance. We implement data
compression in our system models using the IP Payload Compression Protocol (IPComp).

We describe the performance impact of compression in each of the models with speedup equations. Using these
speedup equations, we derive inequalities that can be used to determine when compression will yield a performance
improvement in a particular model. The inequalities require knowledge of the security algorithm throughputs, the
bandwidth of the network, and the expected throughput and compressibility achieved by the compression algorithm.
We also present experimental performance results by executing the security and compression algorithms on 367

16

MHz PA-8500 processor. For a sender-network-receiver model, we find that compression always improves
performance when using network bandwidths of 10 Mbps or less. Compression also improves performance when
employing encryption and using network bandwidths of up to 1 Gbps if the payload data is reasonably compressible.
Future work includes exploring the impact of compression on secure information processing using more complex
models that include communications pipelines, multiple clients and servers, and multiprocessor systems.

Acknowledgements
The authors thank Zhijie Shi for implementing the authentication and encryption algorithms we used in this

study. This work was supported by the Hewlett Packard Corporation.

References
[1] American National Standards Institute, Inc., “Data Compression Method − Adaptive Coding with Sliding
Window for Information Interchange”, ANSI X3.241-1994, August 1994.
[2] Baldwin, R., and R. Rivest, “The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms”, RFC 2040,
October 1996.
[3] Bell, T.C., et al., Text Compression, Prentice Hall, Englewood Cliffs, NJ, 1990.
[4] Deering, S., and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification”, RFC 2460, December 1998.
[5] Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3”, RFC 1951, May 1996.
[6] Deutsch, P., “ZLIB Compressed Data Format Specification version 3.3”, RFC 1950, May 1996.
[7] Friend, R., and R. Monsour, “IP Payload Compression Using LZS”, RFC 2395, December 1998.
[8] Glenn, R., and S. Kent, “The NULL Encryption Algorithm and Its Use With IPsec”, RFC 2410, November
1998.
[9] Hsu, Wan-Yen, personal communication, September 1999.
[10]Kent, S., and R. Atkinson, “IP Authentication Header”, RFC 2402, November 1998.
[11]Kent, S., and R. Atkinson, “IP Encapsulating Security Payload”, RFC 2406, November 1998.
[12]Kent, S., and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC 2401, November 1998.
[13]Krawczyk, H., et al., “HMAC: Keyed-Hashing for Message Authentication”, RFC 2104, February 1997.
[14]Madson, C., and R. Glenn, “The Use of HMAC-MD5-96 within ESP and AH”, RFC 2403, November 1998.
[15]Madson, C., and R. Glenn, “The Use of HMAC-SHA-1-96 within ESP and AH”, RFC 2404, November 1998.
[16] Nahum, E., et al., “Parallelized Network Security Protocols”, Proceedings of the Internet Society Symposium on
Network and Distributed System Security (SNDSS `96), February 1996.
[17] Nahum, E., et al., “Towards High Performance Cryptographic Software”, Proceedings of the Third IEEE
Workshop on the Architecture and Implementation of High Performance Communications Subsystems (HPCS ’95),
August 1995.
[18]Pereira, R., “IP Payload Compression Using DEFLATE”, RFC 2394, December 1998.
[19]Pereira, R., and R. Adams, “The ESP CBC-Mode Cipher Algorithms”, RFC 2451, November 1998.
[20]Postel, J., “Transmission Control Protocol”, RFC 793, September 1981.
[21] Rivest, R., “RC5 Encryption Algorithm”, Dr. Dobb’s Journal, vol. 20, no. 1, January 1995.
[22]Schneier, B., Applied Cryptography Second Edition, John Wiley & Sons, New York, NY, 1996.
[23]Shacham, A., et al., “IP Payload Compression Protocol”, RFC 2393, December 1998.
[24] Shi, Z., and R. Lee, “Bit Permutation Instructions for Accelerating Software Cryptography”, to be published in
Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and Processors,
July 2000.

17

Appendix

Figure 14: Compression Rate for 1 KB Packets

983

0

50

100

150

200

250

300

350

400

ob
j2

pr
og

l

pa
pe

r2

tr
an

s

bo
ok

1

pi
c

gi
f

ra
nd

om

Benchm ark

C
o

m
p

re
ss

io
n

 R
at

e
(M

b
p

s)

DEFLATE

LZS

Figure 15: Decompression Rate for 1 KB Packets

498

0

100

200

300

400

ob
j2

pr
og

l

pa
pe

r2

tr
an

s

bo
ok

1

pi
c

gi
f

ra
nd

om

Benchmark

D
ec

o
m

p
re

ss
io

n
 R

at
e

(M
b

p
s)

DEFLATE

LZS

Figure 16: Compression Rate for 4 KB Packets

1047

0

50

100

150

200

250

300

350

400

ob
j2

pr
og

l

pa
pe

r2

tr
an

s

bo
ok

1

pi
c

gi
f

ra
nd

om

Benchmark

C
o

m
p

re
ss

io
n

 R
at

e
(M

b
p

s)

DEFLATE

LZS

Figure 17: Decompression Rate for 4 KB Packets

537

0

100

200

300

400

ob
j2

pr
og

l

pa
pe

r2

tr
an

s

bo
ok

1

pi
c

gi
f

ra
nd

om

Benchm ark

D
ec

o
m

p
re

ss
io

n
 R

at
e

(M
b

p
s)

DEFLATE

LZS

Figure 19: Decompression Rate for 63 KB Packets

703

0

100

200

300

400

500

600

ob
j2

pr
og

l

pa
pe

r2

tr
an

s

bo
ok

1

pi
c

gi
f

ra
nd

om

Benchmark

D
ec

o
m

p
re

ss
io

n
 R

at
e

(M
b

p
s)

DEFLATE

LZS

Figure 18: Compression Rate for 63 KB Packets

735

0

50

100

150

200

250

300

350

400

ob
j2

pr
og

l

pa
pe

r2

tr
an

s

bo
ok

1

pi
c

gi
f

ra
nd

om

Benchmark

C
o

m
p

re
ss

io
n

 R
at

e
(M

b
p

s)

DEFLATE

LZS

18

Table 7: Speedups for the Local Send Model Using DEFLATE

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.00 0.13 0.39 0.06 0.07 0.19 0.19 0.43 0.43
progl 1 KB 0.00 0.18 0.52 0.08 0.09 0.24 0.25 0.56 0.57

paper2 1 KB 0.00 0.16 0.46 0.08 0.08 0.22 0.22 0.49 0.50
trans 1 KB 0.00 0.17 0.48 0.08 0.08 0.23 0.23 0.52 0.52

book1 1 KB 0.00 0.16 0.45 0.07 0.08 0.22 0.22 0.48 0.49
pic 1 KB 0.00 0.34 1.16 0.15 0.16 0.47 0.48 1.23 1.24
gif 1 KB 0.00 0.12 0.33 0.06 0.06 0.17 0.17 0.36 0.36

random 1 KB 0.00 0.12 0.33 0.06 0.06 0.17 0.17 0.36 0.36
obj2 4 KB 0.00 0.20 0.56 0.07 0.08 0.25 0.26 0.59 0.60
progl 4 KB 0.00 0.29 0.83 0.10 0.11 0.37 0.38 0.88 0.88

paper2 4 KB 0.00 0.23 0.63 0.08 0.09 0.29 0.30 0.66 0.67
trans 4 KB 0.00 0.27 0.75 0.09 0.10 0.34 0.35 0.79 0.79

book1 4 KB 0.00 0.22 0.59 0.08 0.08 0.28 0.28 0.63 0.63
pic 4 KB 0.00 0.74 2.53 0.24 0.26 0.95 0.97 2.69 2.69
gif 4 KB 0.00 0.23 0.51 0.09 0.10 0.28 0.29 0.53 0.53

random 4 KB 0.00 0.23 0.51 0.09 0.10 0.28 0.29 0.54 0.54
obj2 63 KB 0.00 0.22 0.61 0.07 0.07 0.27 0.28 0.65 0.65
progl 63 KB 0.00 0.30 0.90 0.09 0.10 0.38 0.39 0.96 0.96

paper2 63 KB 0.00 0.22 0.64 0.07 0.07 0.28 0.28 0.68 0.68
trans 63 KB 0.00 0.41 1.18 0.13 0.14 0.52 0.53 1.25 1.26

book1 63 KB 0.00 0.19 0.55 0.06 0.07 0.24 0.25 0.58 0.59
pic 63 KB 0.00 0.76 2.45 0.23 0.25 0.97 0.99 2.63 2.65
gif 63 KB 0.00 0.25 0.53 0.09 0.09 0.30 0.30 0.55 0.55

random 63 KB 0.00 0.25 0.53 0.09 0.09 0.30 0.30 0.55 0.55

Table 8: Speedups for the Local Send Model Using LZS

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.00 0.91 1.28 0.57 0.57 0.99 0.99 1.27 1.28
progl 1 KB 0.00 1.03 1.45 0.61 0.64 1.11 1.12 1.44 1.44

paper2 1 KB 0.00 0.76 1.06 0.49 0.50 0.84 0.85 1.07 1.07
trans 1 KB 0.00 0.89 1.26 0.57 0.58 0.98 0.99 1.26 1.26

book1 1 KB 0.00 0.73 1.02 0.47 0.49 0.82 0.81 1.03 1.02
pic 1 KB 0.00 4.85 7.42 1.57 1.68 3.53 3.56 5.86 5.81
gif 1 KB 0.00 0.65 0.87 0.46 0.48 0.74 0.74 0.89 0.89

random 1 KB 0.00 0.65 0.87 0.46 0.48 0.74 0.74 0.88 0.89
obj2 4 KB 0.00 0.93 1.37 0.49 0.52 1.03 1.04 1.38 1.38
progl 4 KB 0.00 1.17 1.73 0.57 0.62 1.28 1.30 1.74 1.74

paper2 4 KB 0.00 0.82 1.22 0.42 0.46 0.92 0.92 1.23 1.23
trans 4 KB 0.00 1.01 1.48 0.52 0.55 1.12 1.12 1.49 1.49

book1 4 KB 0.00 0.77 1.14 0.40 0.43 0.86 0.87 1.15 1.16
pic 4 KB 0.00 5.42 9.50 2.07 2.29 5.40 5.41 8.81 8.87
gif 4 KB 0.00 0.62 0.85 0.35 0.37 0.69 0.69 0.86 0.87

random 4 KB 0.00 0.62 0.85 0.35 0.37 0.69 0.70 0.86 0.87
obj2 63 KB 0.00 0.95 1.42 0.45 0.48 1.06 1.07 1.44 1.44
progl 63 KB 0.00 1.23 1.87 0.57 0.61 1.37 1.38 1.89 1.90

paper2 63 KB 0.00 0.87 1.30 0.41 0.44 0.97 0.98 1.31 1.32
trans 63 KB 0.00 1.10 1.62 0.52 0.56 1.22 1.24 1.64 1.65

book1 63 KB 0.00 0.80 1.18 0.38 0.41 0.88 0.90 1.20 1.20
pic 63 KB 0.00 3.86 6.13 1.74 1.84 4.32 4.38 6.21 6.23
gif 63 KB 0.00 0.61 0.84 0.32 0.33 0.67 0.67 0.85 0.85

random 63 KB 0.00 0.61 0.85 0.31 0.33 0.67 0.68 0.86 0.86

19

Table 9: Speedups for the Local Receive Model Using DEFLATE

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.00 0.48 1.01 0.25 0.27 0.61 0.62 1.04 1.04
progl 1 KB 0.00 0.58 1.26 0.29 0.31 0.72 0.73 1.29 1.29

paper2 1 KB 0.00 0.49 1.01 0.26 0.27 0.61 0.61 1.04 1.03
trans 1 KB 0.00 0.52 1.09 0.27 0.29 0.65 0.65 1.12 1.12

book1 1 KB 0.00 0.48 1.00 0.26 0.27 0.60 0.61 1.03 1.03
pic 1 KB 0.00 1.54 4.75 0.60 0.65 1.74 1.77 4.29 4.30
gif 1 KB no value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 1 KB no value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
obj2 4 KB 0.00 0.76 1.41 0.33 0.36 0.89 0.90 1.44 1.44
progl 4 KB 0.00 1.00 1.97 0.41 0.46 1.18 1.19 2.01 2.00

paper2 4 KB 0.00 0.78 1.43 0.34 0.37 0.91 0.92 1.45 1.46
trans 4 KB 0.00 0.93 1.69 0.40 0.43 1.08 1.10 1.73 1.73

book1 4 KB 0.00 0.71 1.32 0.31 0.34 0.83 0.84 1.35 1.35
pic 4 KB 0.00 2.86 9.04 0.89 0.97 3.34 3.41 8.83 8.92
gif 4 KB no value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 4 KB no value 1.02 1.00 1.00 1.01 1.01 1.01 1.00 1.00
obj2 63 KB 0.00 1.44 2.01 0.74 0.80 1.58 1.59 2.03 2.03
progl 63 KB 0.00 2.30 3.42 1.10 1.17 2.56 2.60 3.46 3.47

paper2 63 KB 0.00 1.56 2.25 0.77 0.84 1.72 1.74 2.27 2.27
trans 63 KB 0.00 2.45 3.92 1.13 1.24 2.78 2.80 3.98 3.99

book1 63 KB 0.00 1.39 1.96 0.71 0.75 1.54 1.54 1.99 1.99
pic 63 KB 0.00 5.21 11.48 1.89 2.04 6.23 6.27 11.81 11.78
gif 63 KB no value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 63 KB no value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 10: Speedups for the Local Receive Model Using LZS

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.00 0.96 1.31 0.63 0.63 1.04 1.04 1.30 1.30
progl 1 KB 0.00 1.03 1.47 0.64 0.67 1.12 1.13 1.46 1.46

paper2 1 KB 0.00 0.81 1.10 0.56 0.56 0.89 0.90 1.11 1.10
trans 1 KB 0.00 0.96 1.29 0.63 0.64 1.03 1.04 1.29 1.29

book1 1 KB 0.00 0.77 1.05 0.54 0.56 0.86 0.85 1.06 1.06
pic 1 KB 0.00 3.33 6.17 1.18 1.26 2.89 2.89 5.14 5.13
gif 1 KB no value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 1 KB no value 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00
obj2 4 KB 0.00 1.00 1.41 0.55 0.59 1.10 1.10 1.42 1.42
progl 4 KB 0.00 1.19 1.76 0.60 0.65 1.31 1.32 1.77 1.77

paper2 4 KB 0.00 0.88 1.26 0.48 0.51 0.98 0.98 1.28 1.28
trans 4 KB 0.00 1.06 1.52 0.57 0.61 1.16 1.17 1.53 1.52

book1 4 KB 0.00 0.84 1.19 0.46 0.49 0.92 0.93 1.20 1.20
pic 4 KB 0.00 3.77 7.61 1.33 1.46 4.03 4.04 7.27 7.34
gif 4 KB no value 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

random 4 KB no value 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
obj2 63 KB 0.00 1.03 1.47 0.51 0.56 1.14 1.15 1.49 1.49
progl 63 KB 0.00 1.25 1.86 0.60 0.63 1.39 1.41 1.89 1.89

paper2 63 KB 0.00 0.91 1.33 0.46 0.49 1.01 1.02 1.35 1.35
trans 63 KB 0.00 1.13 1.65 0.55 0.61 1.25 1.27 1.68 1.68

book1 63 KB 0.00 0.86 1.22 0.43 0.46 0.95 0.96 1.23 1.23
pic 63 KB 0.00 3.03 5.50 1.20 1.31 3.51 3.56 5.61 5.63
gif 63 KB no value 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 63 KB no value 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

20

Table 11: Speedups for the Complete Model (56 kbps Network) Using DEFLATE

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 1.70 1.67 1.67 1.67 1.66 1.64 1.64 1.64 1.64
progl 1 KB 2.19 2.14 2.14 2.12 2.11 2.08 2.07 2.08 2.07

paper2 1 KB 1.68 1.65 1.65 1.65 1.65 1.63 1.62 1.63 1.62
trans 1 KB 1.85 1.83 1.83 1.81 1.80 1.79 1.78 1.79 1.78

book1 1 KB 1.63 1.61 1.61 1.61 1.60 1.59 1.58 1.59 1.58
pic 1 KB 13.28 10.28 10.29 10.13 9.51 8.36 7.95 8.37 7.96
gif 1 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 1 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
obj2 4 KB 2.06 2.05 2.05 2.05 2.04 2.03 2.03 2.03 2.03
progl 4 KB 3.06 3.02 3.02 3.02 3.01 2.98 2.97 2.98 2.97

paper2 4 KB 2.06 2.06 2.06 2.05 2.05 2.04 2.04 2.04 2.04
trans 4 KB 2.51 2.48 2.48 2.48 2.48 2.46 2.45 2.46 2.45

book1 4 KB 1.94 1.92 1.92 1.92 1.92 1.91 1.91 1.91 1.91
pic 4 KB 41.38 34.63 34.66 32.79 30.98 28.45 27.09 28.49 27.13
gif 4 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 4 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
obj2 63 KB 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35
progl 63 KB 4.20 4.20 4.20 4.20 4.19 4.19 4.19 4.19 4.19

paper2 63 KB 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68
trans 63 KB 4.98 4.98 4.98 4.98 4.97 4.97 4.97 4.97 4.97

book1 63 KB 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
pic 63 KB 20.97 20.84 20.85 20.79 20.74 20.67 20.62 20.67 20.63
gif 63 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 63 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 12: Speedups for the Complete Model (56 kbps Network) Using LZS

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 1.49 1.48 1.48 1.48 1.47 1.46 1.46 1.46 1.46
progl 1 KB 1.71 1.68 1.68 1.68 1.67 1.65 1.65 1.65 1.65

paper2 1 KB 1.27 1.25 1.25 1.26 1.26 1.25 1.24 1.25 1.24
trans 1 KB 1.49 1.47 1.47 1.47 1.46 1.45 1.45 1.45 1.45

book1 1 KB 1.21 1.20 1.20 1.20 1.20 1.19 1.19 1.19 1.19
pic 1 KB 7.52 6.50 6.51 6.46 6.21 5.72 5.54 5.73 5.54
gif 1 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 1 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
obj2 4 KB 1.65 1.64 1.64 1.64 1.64 1.63 1.63 1.63 1.63
progl 4 KB 2.15 2.14 2.14 2.13 2.13 2.12 2.12 2.12 2.12

paper2 4 KB 1.49 1.49 1.49 1.49 1.49 1.48 1.48 1.48 1.48
trans 4 KB 1.82 1.81 1.81 1.81 1.81 1.80 1.80 1.80 1.80

book1 4 KB 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39
pic 4 KB 11.82 11.20 11.21 11.04 10.84 10.51 10.33 10.52 10.34
gif 4 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 4 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
obj2 63 KB 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76
progl 63 KB 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33

paper2 63 KB 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61
trans 63 KB 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

book1 63 KB 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46
pic 63 KB 7.99 7.97 7.97 7.96 7.96 7.95 7.94 7.95 7.94
gif 63 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

random 63 KB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

21

Table 13: Speedups for the Complete Model (1.54 Mbps) Using DEFLATE

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 1.45 1.44 1.46 1.43 1.43 1.43 1.42 1.44 1.44
progl 1 KB 1.87 1.85 1.87 1.83 1.82 1.81 1.80 1.83 1.82

paper2 1 KB 1.47 1.46 1.47 1.46 1.45 1.44 1.44 1.46 1.45
trans 1 KB 1.61 1.60 1.61 1.58 1.57 1.57 1.57 1.59 1.58

book1 1 KB 1.43 1.43 1.44 1.42 1.41 1.41 1.41 1.42 1.42
pic 1 KB 8.59 7.38 7.67 7.08 6.80 6.29 6.07 6.55 6.32
gif 1 KB 0.92 0.92 0.93 0.92 0.92 0.93 0.93 0.93 0.93

random 1 KB 0.92 0.92 0.93 0.92 0.92 0.93 0.93 0.93 0.93
obj2 4 KB 1.82 1.82 1.83 1.81 1.81 1.81 1.81 1.82 1.82
progl 4 KB 2.69 2.67 2.70 2.66 2.66 2.64 2.64 2.67 2.66

paper2 4 KB 1.85 1.85 1.86 1.84 1.84 1.84 1.84 1.85 1.85
trans 4 KB 2.24 2.23 2.24 2.22 2.22 2.21 2.21 2.23 2.22

book1 4 KB 1.74 1.73 1.74 1.73 1.73 1.73 1.72 1.74 1.73
pic 4 KB 22.86 21.01 21.84 19.75 19.09 18.42 17.87 19.20 18.62
gif 4 KB 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

random 4 KB 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
obj2 63 KB 2.09 2.09 2.11 2.09 2.09 2.09 2.09 2.11 2.11
progl 63 KB 3.61 3.62 3.65 3.61 3.61 3.62 3.62 3.65 3.65

paper2 63 KB 2.35 2.35 2.37 2.35 2.35 2.35 2.35 2.37 2.37
trans 63 KB 4.35 4.36 4.39 4.35 4.35 4.36 4.35 4.39 4.39

book1 63 KB 2.03 2.04 2.05 2.03 2.03 2.04 2.04 2.05 2.05
pic 63 KB 15.51 15.56 15.81 15.44 15.41 15.48 15.46 15.73 15.71
gif 63 KB 0.96 0.96 0.97 0.96 0.96 0.97 0.97 0.97 0.97

random 63 KB 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.97

Table 14: Speedups for the Complete Model (1.54 Mbps) Using LZS

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 1.47 1.46 1.47 1.45 1.45 1.44 1.44 1.45 1.44
progl 1 KB 1.68 1.66 1.66 1.65 1.64 1.63 1.62 1.63 1.63

paper2 1 KB 1.25 1.24 1.24 1.24 1.24 1.23 1.23 1.23 1.23
trans 1 KB 1.47 1.45 1.45 1.45 1.44 1.43 1.43 1.43 1.43

book1 1 KB 1.19 1.18 1.19 1.18 1.18 1.18 1.18 1.18 1.18
pic 1 KB 7.33 6.41 6.52 6.21 5.99 5.58 5.41 5.71 5.54
gif 1 KB 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

random 1 KB 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
obj2 4 KB 1.62 1.61 1.62 1.61 1.61 1.61 1.60 1.61 1.61
progl 4 KB 2.11 2.10 2.10 2.09 2.08 2.08 2.08 2.09 2.08

paper2 4 KB 1.47 1.46 1.47 1.46 1.46 1.46 1.46 1.46 1.46
trans 4 KB 1.79 1.78 1.79 1.78 1.78 1.77 1.77 1.78 1.77

book1 4 KB 1.37 1.37 1.37 1.37 1.36 1.36 1.36 1.37 1.37
pic 4 KB 11.39 10.83 10.94 10.57 10.40 10.13 9.96 10.25 10.10
gif 4 KB 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

random 4 KB 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
obj2 63 KB 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73
progl 63 KB 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28

paper2 63 KB 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58
trans 63 KB 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97

book1 63 KB 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44
pic 63 KB 7.74 7.73 7.75 7.72 7.71 7.71 7.70 7.73 7.72
gif 63 KB 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

random 63 KB 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

22

Table 15: Speedups for the Complete Model (10 Mbps Network) Using DEFLATE

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.79 0.86 0.99 0.82 0.82 0.88 0.88 1.00 1.00
progl 1 KB 1.03 1.11 1.28 1.05 1.05 1.13 1.13 1.28 1.28

paper2 1 KB 0.86 0.93 1.05 0.89 0.89 0.94 0.94 1.06 1.06
trans 1 KB 0.92 0.99 1.13 0.94 0.94 1.01 1.00 1.14 1.13

book1 1 KB 0.85 0.91 1.03 0.87 0.87 0.93 0.93 1.04 1.04
pic 1 KB 2.86 3.09 3.97 2.73 2.71 2.92 2.90 3.70 3.66
gif 1 KB 0.64 0.67 0.74 0.66 0.66 0.69 0.69 0.75 0.75

random 1 KB 0.64 0.67 0.74 0.66 0.66 0.69 0.69 0.75 0.75
obj2 4 KB 1.10 1.17 1.32 1.12 1.12 1.19 1.19 1.33 1.33
progl 4 KB 1.60 1.71 1.94 1.62 1.63 1.72 1.72 1.94 1.94

paper2 4 KB 1.17 1.24 1.39 1.19 1.19 1.26 1.26 1.39 1.40
trans 4 KB 1.40 1.49 1.66 1.42 1.42 1.50 1.50 1.67 1.67

book1 4 KB 1.10 1.17 1.30 1.12 1.12 1.18 1.18 1.31 1.31
pic 4 KB 6.46 7.16 9.26 6.28 6.23 6.92 6.88 8.88 8.81
gif 4 KB 0.79 0.81 0.85 0.80 0.80 0.82 0.82 0.86 0.86

random 4 KB 0.79 0.82 0.86 0.80 0.80 0.82 0.82 0.86 0.86
obj2 63 KB 1.28 1.36 1.53 1.30 1.31 1.38 1.39 1.54 1.55
progl 63 KB 2.01 2.16 2.48 2.06 2.06 2.20 2.21 2.50 2.51

paper2 63 KB 1.37 1.47 1.67 1.40 1.41 1.50 1.50 1.69 1.69
trans 63 KB 2.53 2.71 3.07 2.58 2.59 2.76 2.76 3.10 3.11

book1 63 KB 1.19 1.28 1.45 1.22 1.22 1.30 1.30 1.46 1.46
pic 63 KB 6.26 6.93 8.39 6.44 6.45 7.08 7.10 8.50 8.51
gif 63 KB 0.80 0.83 0.86 0.81 0.81 0.83 0.83 0.87 0.87

random 63 KB 0.80 0.82 0.86 0.81 0.81 0.83 0.83 0.87 0.87

Table 16: Speedups for the Complete Model (10 Mbps Network) Using LZS

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 1.36 1.37 1.41 1.35 1.34 1.36 1.35 1.39 1.39
progl 1 KB 1.54 1.55 1.60 1.51 1.51 1.52 1.52 1.57 1.57

paper2 1 KB 1.15 1.16 1.19 1.15 1.15 1.16 1.15 1.18 1.18
trans 1 KB 1.36 1.36 1.39 1.34 1.33 1.34 1.34 1.38 1.38

book1 1 KB 1.10 1.11 1.14 1.10 1.10 1.11 1.10 1.13 1.13
pic 1 KB 6.40 5.99 6.59 5.18 5.05 5.00 4.89 5.63 5.51
gif 1 KB 0.96 0.97 0.97 0.96 0.96 0.97 0.97 0.98 0.98

random 1 KB 0.96 0.97 0.97 0.96 0.96 0.97 0.97 0.98 0.98
obj2 4 KB 1.48 1.50 1.54 1.48 1.48 1.50 1.49 1.54 1.54
progl 4 KB 1.90 1.93 1.98 1.89 1.89 1.92 1.91 1.97 1.97

paper2 4 KB 1.34 1.35 1.39 1.34 1.34 1.35 1.35 1.39 1.39
trans 4 KB 1.63 1.65 1.69 1.63 1.62 1.64 1.64 1.68 1.68

book1 4 KB 1.25 1.27 1.30 1.25 1.25 1.27 1.27 1.30 1.30
pic 4 KB 9.43 9.32 10.05 8.60 8.53 8.64 8.52 9.40 9.34
gif 4 KB 0.95 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.97

random 4 KB 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.97
obj2 63 KB 1.57 1.60 1.64 1.58 1.58 1.60 1.60 1.64 1.64
progl 63 KB 2.05 2.08 2.14 2.06 2.05 2.09 2.09 2.14 2.14

paper2 63 KB 1.43 1.45 1.49 1.44 1.44 1.46 1.46 1.49 1.49
trans 63 KB 1.78 1.81 1.86 1.79 1.79 1.81 1.82 1.86 1.86

book1 63 KB 1.30 1.32 1.36 1.31 1.31 1.33 1.33 1.36 1.36
pic 63 KB 6.59 6.75 7.03 6.62 6.61 6.76 6.76 7.03 7.03
gif 63 KB 0.95 0.96 0.97 0.95 0.95 0.96 0.96 0.97 0.97

random 63 KB 0.95 0.96 0.97 0.95 0.95 0.96 0.96 0.97 0.97

23

Table 17: Speedups for the Complete Model (100 Mbps Network) Using DEFLATE

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.14 0.31 0.63 0.22 0.23 0.38 0.39 0.66 0.67
progl 1 KB 0.18 0.41 0.82 0.29 0.29 0.49 0.50 0.86 0.86

paper2 1 KB 0.16 0.36 0.69 0.26 0.26 0.43 0.43 0.73 0.73
trans 1 KB 0.16 0.38 0.73 0.26 0.27 0.45 0.45 0.77 0.77

book1 1 KB 0.16 0.36 0.68 0.25 0.26 0.43 0.43 0.72 0.72
pic 1 KB 0.35 0.89 2.14 0.56 0.58 1.03 1.04 2.15 2.16
gif 1 KB 0.15 0.31 0.54 0.24 0.24 0.37 0.37 0.57 0.57

random 1 KB 0.15 0.31 0.54 0.24 0.24 0.37 0.37 0.57 0.57
obj2 4 KB 0.21 0.47 0.88 0.30 0.31 0.53 0.54 0.92 0.92
progl 4 KB 0.30 0.67 1.29 0.43 0.45 0.76 0.77 1.34 1.34

paper2 4 KB 0.24 0.52 0.95 0.34 0.35 0.59 0.60 0.99 0.99
trans 4 KB 0.28 0.61 1.14 0.40 0.41 0.70 0.71 1.18 1.18

book1 4 KB 0.22 0.49 0.90 0.32 0.33 0.55 0.56 0.93 0.93
pic 4 KB 0.75 1.88 4.57 1.08 1.11 2.13 2.16 4.68 4.70
gif 4 KB 0.27 0.49 0.71 0.36 0.37 0.54 0.54 0.72 0.73

random 4 KB 0.28 0.49 0.71 0.37 0.37 0.54 0.54 0.73 0.73
obj2 63 KB 0.25 0.55 1.03 0.35 0.36 0.62 0.63 1.07 1.08
progl 63 KB 0.35 0.80 1.58 0.50 0.51 0.91 0.92 1.65 1.66

paper2 63 KB 0.25 0.57 1.10 0.36 0.37 0.65 0.66 1.14 1.15
trans 63 KB 0.46 1.04 2.01 0.65 0.67 1.18 1.19 2.09 2.10

book1 63 KB 0.22 0.50 0.95 0.31 0.32 0.56 0.57 0.99 0.99
pic 63 KB 0.85 2.07 4.60 1.22 1.26 2.39 2.42 4.83 4.86
gif 63 KB 0.29 0.51 0.73 0.37 0.38 0.55 0.56 0.74 0.74

random 63 KB 0.29 0.51 0.73 0.37 0.38 0.55 0.56 0.74 0.74

Table 18: Speedups for the Complete Model (100 Mbps Network) Using LZS

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.75 1.09 1.32 0.92 0.91 1.12 1.12 1.31 1.31
progl 1 KB 0.82 1.21 1.49 0.99 1.00 1.24 1.25 1.48 1.48

paper2 1 KB 0.64 0.92 1.11 0.79 0.79 0.96 0.96 1.11 1.11
trans 1 KB 0.75 1.08 1.30 0.92 0.91 1.11 1.12 1.30 1.30

book1 1 KB 0.62 0.88 1.06 0.76 0.77 0.93 0.92 1.06 1.06
pic 1 KB 2.73 4.68 6.70 2.52 2.57 3.69 3.68 5.51 5.46
gif 1 KB 0.71 0.86 0.94 0.81 0.81 0.89 0.89 0.95 0.95

random 1 KB 0.71 0.86 0.94 0.81 0.81 0.89 0.89 0.95 0.95
obj2 4 KB 0.79 1.15 1.42 0.94 0.96 1.20 1.20 1.43 1.43
progl 4 KB 0.94 1.43 1.80 1.12 1.15 1.49 1.49 1.80 1.80

paper2 4 KB 0.69 1.02 1.27 0.83 0.85 1.07 1.08 1.28 1.28
trans 4 KB 0.84 1.24 1.54 1.01 1.02 1.30 1.30 1.55 1.54

book1 4 KB 0.65 0.96 1.19 0.79 0.80 1.01 1.01 1.20 1.20
pic 4 KB 3.33 5.84 8.79 3.70 3.82 5.66 5.64 8.26 8.30
gif 4 KB 0.68 0.84 0.93 0.76 0.77 0.87 0.87 0.94 0.94

random 4 KB 0.68 0.84 0.93 0.76 0.77 0.87 0.87 0.94 0.94
obj2 63 KB 0.79 1.19 1.49 0.96 0.97 1.26 1.26 1.50 1.50
progl 63 KB 0.97 1.51 1.92 1.19 1.21 1.60 1.60 1.94 1.94

paper2 63 KB 0.71 1.08 1.35 0.86 0.88 1.14 1.14 1.37 1.37
trans 63 KB 0.89 1.35 1.68 1.08 1.09 1.42 1.42 1.70 1.70

book1 63 KB 0.66 0.99 1.23 0.80 0.81 1.04 1.05 1.25 1.25
pic 63 KB 2.55 4.38 6.05 3.24 3.29 4.66 4.70 6.12 6.14
gif 63 KB 0.66 0.83 0.93 0.74 0.75 0.86 0.86 0.93 0.93

random 63 KB 0.66 0.83 0.93 0.74 0.75 0.86 0.86 0.93 0.93

24

Table 19: Speedups for the Complete Model (1Gbps Network) Using DEFLATE

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.01 0.22 0.57 0.11 0.12 0.29 0.30 0.61 0.61
progl 1 KB 0.02 0.28 0.75 0.14 0.15 0.38 0.38 0.79 0.80

paper2 1 KB 0.02 0.25 0.64 0.13 0.14 0.33 0.34 0.68 0.68
trans 1 KB 0.02 0.26 0.67 0.13 0.14 0.35 0.35 0.71 0.71

book1 1 KB 0.02 0.25 0.63 0.13 0.14 0.33 0.34 0.66 0.67
pic 1 KB 0.04 0.59 1.89 0.27 0.29 0.76 0.78 1.94 1.95
gif 1 KB 0.02 0.23 0.50 0.13 0.13 0.30 0.30 0.53 0.53

random 1 KB 0.02 0.23 0.50 0.13 0.13 0.30 0.30 0.53 0.53
obj2 4 KB 0.02 0.33 0.81 0.13 0.15 0.41 0.41 0.85 0.85
progl 4 KB 0.03 0.47 1.18 0.19 0.21 0.58 0.59 1.23 1.24

paper2 4 KB 0.03 0.37 0.88 0.15 0.16 0.45 0.46 0.92 0.92
trans 4 KB 0.03 0.43 1.05 0.18 0.19 0.54 0.55 1.09 1.10

book1 4 KB 0.02 0.35 0.82 0.14 0.16 0.43 0.44 0.86 0.87
pic 4 KB 0.07 1.23 4.01 0.44 0.48 1.54 1.57 4.17 4.19
gif 4 KB 0.04 0.38 0.68 0.19 0.20 0.45 0.45 0.70 0.70

random 4 KB 0.04 0.39 0.68 0.19 0.20 0.45 0.46 0.70 0.70
obj2 63 KB 0.03 0.39 0.95 0.15 0.16 0.48 0.48 0.99 1.00
progl 63 KB 0.04 0.56 1.44 0.21 0.22 0.68 0.70 1.51 1.52

paper2 63 KB 0.03 0.40 1.00 0.15 0.16 0.49 0.50 1.05 1.06
trans 63 KB 0.05 0.73 1.84 0.27 0.29 0.89 0.91 1.93 1.94

book1 63 KB 0.02 0.35 0.87 0.13 0.14 0.43 0.43 0.91 0.92
pic 63 KB 0.09 1.39 4.09 0.49 0.53 1.74 1.77 4.34 4.37
gif 63 KB 0.04 0.40 0.70 0.19 0.20 0.46 0.47 0.71 0.72

random 63 KB 0.04 0.40 0.70 0.19 0.20 0.46 0.47 0.71 0.72

Table 20: Speedups for the Complete Model (1Gbps Network) Using LZS

Encryption/Authentication Algorithm(s) UsedName Payload
Size NULL RC5 3DES MD5 SHA-1 RC5-

MD5
RC5-

SHA-1
3DES-
MD5

3DES-
SHA-1

obj2 1 KB 0.14 0.95 1.30 0.64 0.64 1.03 1.03 1.29 1.29
progl 1 KB 0.14 1.05 1.46 0.67 0.70 1.13 1.14 1.45 1.45

paper2 1 KB 0.11 0.80 1.08 0.56 0.57 0.88 0.88 1.09 1.09
trans 1 KB 0.14 0.94 1.28 0.64 0.65 1.02 1.02 1.28 1.28

book1 1 KB 0.11 0.77 1.04 0.54 0.56 0.85 0.84 1.05 1.04
pic 1 KB 0.40 4.06 6.73 1.49 1.58 3.24 3.25 5.48 5.45
gif 1 KB 0.19 0.80 0.93 0.66 0.68 0.85 0.85 0.94 0.94

random 1 KB 0.19 0.80 0.93 0.66 0.68 0.85 0.86 0.94 0.94
obj2 4 KB 0.13 0.99 1.39 0.58 0.61 1.08 1.08 1.40 1.40
progl 4 KB 0.15 1.21 1.75 0.66 0.70 1.32 1.33 1.76 1.76

paper2 4 KB 0.12 0.87 1.25 0.51 0.53 0.96 0.97 1.26 1.26
trans 4 KB 0.14 1.06 1.50 0.61 0.64 1.16 1.16 1.51 1.51

book1 4 KB 0.11 0.82 1.17 0.48 0.51 0.90 0.91 1.18 1.18
pic 4 KB 0.44 4.63 8.49 1.87 2.03 4.74 4.75 8.00 8.06
gif 4 KB 0.17 0.78 0.92 0.56 0.58 0.82 0.82 0.93 0.93

random 4 KB 0.17 0.78 0.92 0.57 0.59 0.82 0.83 0.93 0.93
obj2 63 KB 0.13 1.02 1.45 0.55 0.58 1.12 1.13 1.47 1.47
progl 63 KB 0.15 1.27 1.87 0.67 0.70 1.41 1.42 1.90 1.90

paper2 63 KB 0.12 0.91 1.32 0.49 0.52 1.01 1.02 1.34 1.34
trans 63 KB 0.14 1.14 1.64 0.61 0.66 1.26 1.27 1.66 1.66

book1 63 KB 0.11 0.85 1.20 0.46 0.49 0.93 0.94 1.22 1.22
pic 63 KB 0.35 3.52 5.83 1.66 1.76 3.97 4.02 5.92 5.94
gif 63 KB 0.16 0.77 0.92 0.52 0.54 0.81 0.81 0.92 0.92

random 63 KB 0.16 0.76 0.92 0.52 0.54 0.81 0.81 0.92 0.92

