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Abstract 
 

We propose two new instructions, swperm and 
sieve, that can be used to efficiently complete an 
arbitrary bit-level permutation of an n-bit word with or 
without repetitions. Permutations with repetitions are 
rearrangements of an ordered set in which elements may 
replace other elements in the set; such permutations are 
useful in cryptographic algorithms.  On a 4-way 
superscalar processor, an arbitrary 64-bit permutation 
with repetitions of 1-bit subwords can be completed in 11 
instructions and only 4 cycles using the two proposed 
instructions.  For subwords of size 4 bits or greater, an 
arbitrary permutation with repetitions of a 64-bit register 
can be completed in a single cycle using a single 
swperm instruction.  This improves upon previous 
permutation instruction proposals that require log(r) 
sequential instructions to permute r subwords of a 64-bit 
word without repetitions.  Our method requires fewer 
instructions to permute 4-bit or larger subwords packed 
in a 64-bit register and fewer execution cycles for 1-bit 
subwords on wide superscalar processors. 

 
1. Introduction 
 

As the popularity of security applications grows, the 
underlying cryptographic algorithms consume an 
increasingly large percentage of processor workloads.  
These applications often include several operations 
involving 1-bit or multiple-bit register subwords.  Many 
microprocessor instruction set architectures have been 
extended to include subword arithmetic instructions that 
improve performance by executing several operations on 
low-precision data in parallel.  These extensions include 
MAX [5] and MAX-2 [8] for HP PA-RISC, VIS [16] for 
Sun SPARC, AltiVec [3] for PowerPC, MMX [11] for 
Intel IA-32, and IA-64 multimedia instructions [4].  

Before performing subword arithmetic operations, it 
may be necessary to rearrange the subwords within a 
single register or between multiple registers to obtain the 
desired result.  In addition, subword permutations can be 

employed to efficiently perform transformations such as 
matrix transposition in multimedia applications [6].  
Permutations are also used to achieve diffusion, a critical 
characteristic of a secure cipher [15], in symmetric-key 
encryption algorithms such as DES [10], Twofish [13] and 
Serpent [2].  Some permutations in cryptographic 
algorithms are not bijections.  For instance, the Expansion 
Permutation in DES maps some bits in the source datum 
to multiple destinations in the result datum.  We define 
such rearrangements of an ordered set in which elements 
can replace other elements in the set to be permutations 
with repetitions.  If no information is lost in a permutation 
with repetitions, the permutation is invertible and 
therefore can be used in any cryptographic algorithm.  In 
addition, one-way hash functions and encryption 
algorithms based upon Feistel networks can employ 
permutations with repetitions that lose information [12]. 
 
1.1. Past Work 
 

Several methods exist for performing permutations in 
software.  In one method, individual bits of the source 
datum are selected and shifted to their destination 
locations using a series of logical AND, logical OR, and 
shift instructions [18].  For an arbitrary permutation of the 
bits in an n-bit word, this procedure requires as many as 
4n instructions.  If the architecture includes instructions 
such as extract and deposit [7], one can reduce the 
instruction count of this procedure to 2n, yet this method 
is still unacceptably slow.   

Lookup tables can also be employed to perform 
permutations with repetitions in software [18].  First, the 
n-bit source datum is divided into x groups of bits; each 
group is used to index a unique lookup table.  The output 
of a lookup table represents the input group of bits 
permuted per the desired permutation.  The bits of the 
table output that do not represent any of the input bits are 
set to zeroes.  Therefore, the outputs of the x lookup tables 
can be combined using (x-1) bitwise OR or bitwise XOR 
operations to generate the desired permuted n-bit result.    



In general, assuming the extract instruction is 
available, the number of instructions required to complete 
an n-bit permutation using x lookup tables is (3x–1).  Each 
of the x lookup tables consists of 2(n/x) entries, and each 
entry is n bits in size, so the total size of the tables is 
(nx)⋅2(n/x) bits.  This technique is commonly used but is 
unattractive because the permutations must be statically 
encoded in the tables at compile-time.  Furthermore, the 
space required to store the lookup tables is extremely 
large for acceptably small permutation instruction 
sequences.  For example, 2 megabytes of storage are 
required to permute a 64-bit datum in 11 instructions 
using 4 lookup tables.  With 8 lookup tables, 16 kilobytes 
of storage and 23 instructions are needed to permute a 64-
bit value.  

Multiple instruction set architectures have been 
amended to include instructions for permutations of 8-bit 
or larger subwords.  The permute instruction in the 
MAX-2 extension to PA-RISC supports permutations with 
and without repetitions of 16-bit subwords in a 64-bit 
word by statically encoding the permutation function in 
the instruction [8].  In IA-64, the mux instruction supports 
a small set of permutations of 8-bit subwords in a 64-bit 
word and supports all permutations of 16-bit subwords in 
a 64-bit word [4].  Similar to permute in MAX-2, the 
permutation function is statically encoded in the mux 
instruction at compile-time.  The vperm instruction in the 
AltiVec extension to the PowerPC instruction set 
architecture permutes the 8-bit subwords of a 128-bit 
vector register [3].  This instruction requires three 128-bit 
register reads and one 128-bit register write, and the 
permutation function is encoded in one of the vector 
source registers.  None of the permutation instructions in 
popular ISAs efficiently support arbitrary permutations of 
4-bit or smaller subwords.  

Recently, several instructions for dynamically 
specified arbitrary permutations of 1-bit or larger 
subwords have been proposed.  The pperm3r instruction 
can complete an arbitrary permutation of n bits with or 
without repetitions in O(log n) instructions using 
expensive hardware [14].  This instruction essentially 
dynamically configures and invokes an n x n crossbar 
without requiring the processor to maintain any additional 
state information.  Amending an ISA by requiring 
additional state variables is undesirable: such changes 
require explicit OS support and increase the complexity of 
context switches and interrupts.  In addition, the 
pperm3r instruction requires 3 register reads and 1 
register write, and the number of pperm3r instructions 
required to complete an arbitrary permutation does not 
decrease as subword size increases.   

The grp instruction can complete an arbitrary 
permutation without repetitions of n bits in log2n 
instructions [14].  The hardware needed to support the 

grp instruction is expensive, however.  The cross 
instruction employs a Benes network to complete an 
arbitrary permutation without repetitions of b-bit 
subwords in an n-bit word using log2(n/b) instructions 
[19].  The omflip instruction improves upon the cross 
instruction by completing arbitrary permutations without 
repetitions of b-bit subwords in an n-bit word with 
log2(n/b) instructions using more efficient hardware [18].  
Although cross and omflip can complete an arbitrary 
permutation without repetitions of 1-bit subwords quickly, 
these instructions cannot efficiently perform permutations 
with repetitions.    

 
1.2. Outline 
 

In this paper, we describe two instructions that 
accelerate the performance of subword permutations with 
repetitions.  Since the development of DES, 
cryptographers have often avoided permutations of 1-bit 
subwords because general-purpose microprocessors 
cannot complete these operations quickly.  By adding our 
proposed instructions to general-purpose ISAs, 
cryptographers can employ bit permutations with and 
without repetitions to rapidly achieve a desired level of 
diffusion in future ciphers.  As a result, the proposed 
instructions could greatly improve the overall throughput 
of cryptographic algorithms. 

In Section 2, we discuss the mathematics of 
permutations and define two new instructions.  We 
demonstrate how to apply these instructions to achieve 
arbitrary subword permutations with repetitions in Section 
3.  In Section 4, we present the hardware required to 
implement the two new instructions, and we analyze the 
performance of permutations for different-sized subwords 
in Section 5.  We summarize in Section 6. 
 

2. Permutation Instructions 
 

We propose two new instructions to efficiently 
support permutations with repetitions of 1-bit or multiple-
bit subwords: swperm and sieve.  These instructions 
allow permutations with repetitions to be dynamically 
specified during program execution rather than force the 
permutations to be statically encoded at compile-time.  

 
2.1.  Permutations with Repetitions 

 
A permutation is a rearrangement of the elements in 

an ordered set, i.e., a bijective map from a set S to itself 
[1].  We define a surjective map from a set S to another 
set D (where the cardinality of S equals that of D) to be a 
permutation with repetitions.  In other words, a 
permutation with repetitions can map an element in the 
source set S to multiple elements in the destination set D, 



whereas a permutation without repetitions cannot map an 
element in S to more than one element in D.  For example, 
if S = { a,b} , there exist 2 possible permutations of S, 
{ a,b}  and { b,a} , but there exist 4 possible permutations 
with repetitions of S: { a,b} , { b,a} , { a,a} , { b,b} .  We can 
encode a permutation with repetitions by specifying the 
source element in S that is mapped to a particular 
destination element in D for all the elements in D.  If the 
permutation is arbitrary, the following expression 
describes the minimum number of bits needed to encode a 
permutation with repetitions:  
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We are concerned with permutations with repetitions 
of b-bit subwords from an n-bit source register to b-bit 
subwords of an n-bit destination register.  Hence, ||S|| is 
equivalent to the number of bits in the source register, n, 
divided by the subword size, b, and ||D|| is the number of 
bits in the destination register, n, divided by the subword 
size, b.  We can rewrite the expression as follows: 
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In this paper, we assume that all registers are 64 bits wide.  
Table 1 summarizes the minimum number of bits needed 
to specify an arbitrary 64-bit permutation with repetitions 
when using subword sizes ranging from 1 bit to 32 bits. 
 

Table 1. Minimum number of bits needed to 
specify an arbitrary permutation with repetitions 

 
Subword 

size 
Number  of 

subwords per  64-bit 
register  

Number  of bits to encode 
a 64-bit permutation 

with repetitions 
32 bits 2 subwords 2 bits 
16 bits 4 subwords 8 bits 
8 bits 8 subwords 24 bits 
4 bits 16 subwords 64 bits 
2 bits 32 subwords 160 bits 
1 bit 64 subwords 384 bits 

 
RISC instructions typically allow two register reads 

and one register write per instruction.  We wish to design 
instructions that allow permutations to be dynamically 

specified at run-time, so we use one of the 64-bit source 
registers, r s , to store the information to be permuted, and 
we use the other 64-bit source register, r p, to store 
information concerning the permutation function.  For 
subwords of size greater than or equal to 4 bits, we require 
at most 64 bits of information to specify the entire 
permutation.  Hence, we can specify the entire 
permutation in a single instruction.  Since 64 more 
configuration bits can be specified with each additional 
permutation instruction, permutations of 32 2-bit 
subwords require at least 3 RISC instructions, and 
permutations of 64 1-bit subwords require at least 6 RISC 
instructions. 

In the rest of this paper, we use the term 
“permutation”  to mean a permutation with repetitions.   
 
2.2.  The swperm Instruction 

 
The swper m instruction permutes the sixteen 4-bit 

subwords of a 64-bit source register r s  according to 
information stored in a 64-bit source register r p. The 
permuted result is written to the 64-bit destination register 
r d.  The permutation is entirely described with the 
information stored in r p, so the permutation function can 
be specified dynamically.  The instruction format of 
swper m is:   

 
swper m r d, r s, r p  

 

This instruction was designed to permute subwords of size 
4 bits or greater in a single cycle and to expedite 
permutations of 1-bit and 2-bit subwords.  Figure 1 
illustrates an example operation of swper m.  

In Figure 1, si is the ith 4-bit aligned subword of the 
source register r s .  The contents of r p necessary to 
complete the example permutation are listed in 
hexadecimal.  The value of the ith 4-bit subword in r p 
indicates which aligned 4-bit subword in the source 
register should be mapped to the ith 4-bit subword in the 
destination register.  The swper m instruction is similar to 
the MAX-2 per mut e instruction [8], but the 
configuration bits for swper m are specified in a register 
rather than statically in the instruction.   

 
r s  

 
s15 s13 s12 s11 s15 s10 s9 s8 s7 s0 s6 s0 s0 s0 s0 s0 r d 

 F D C B F A 9 8 7 0 6 0 0 0 0 0 r p 

Figure 1. Example operation of the swperm instruction 
 

 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0  



2.3. The sieve Instruction 
 

The si eve instruction is used to “ filter”  bits from 
r s  and then direct the resulting bits into particular 
destinations in r d.  More specifically, 1 (or 2 bits) from 
each 4-bit subword of r s  are directed to 4 (or 2) possible 
locations in the corresponding 4-bit subword of r d.  A 
third register, r p, is used to configure the bit filter.  
Whereas the swper m instruction operates globally over 
the 4-bit subwords of r s , the si eve instruction operates 
locally within the 4-bit subwords of r s .  In combination 
with the swper m instruction, the si eve instruction can 
be used to implement arbitrary permutations of 1-bit or 2-
bit subwords.  The instruction format for si eve is: 

 
si eve, h, f  r d, r s, r p 

 
The 4-bit function code of si eve consists of a 1-bit 
value, h (h), and a 3-bit value, f  (f2f1f0).  

Figures 2 and 3 illustrate two example operations of 
the si eve instruction on the ith 4-bit subword of r s  in 
1-bit and 2-bit mode, respectively.  In both figures, si,j 
represents the jth bit of the ith subword of r s , and di,j 
represents the jth bit of the ith 4-bit subword of r d.  In 1-
bit mode, one of the 4 bits in the ith subword of r s  is 
directed to one of the 4 bits of the ith subword of r d; the 
remaining 3 bits in the ith subword of r d are set to 0.  
Similarly, in 2-bit mode, either the leftmost two bits or the 
rightmost 2 bits of the ith 4-bit subword of r s  are directed 
to either the leftmost two bits or the rightmost two bits of 
the ith 4-bit subword of r d.  The remaining two bits of the 
ith subword of r d are set to 0. 

Bits from r p and the function code bit h specify 
which 1-bit or 2-bit subword is selected from the ith 
subword of r s .  In 1-bit mode, 1 bit from every 4-bit 
subword of r s  is selected and passed to r d.  Hence, there 
exist 4 possible selection operations per r s  subword, so 2 
bits are needed to encode the selection operation for each 
subword.  Since there are 16 4-bit subwords in a 64-bit 
register, a total of 32 bits are needed to encode the 
selection operations for all 16 subwords.  These 32 bits 
are stored in the register r p.  To minimize the number of 
instructions required to load the bit selection information 
into registers, one 64-bit register is used to store the 32 
bits of selection information for two si eve instructions.  
The function code bit h indicates whether to use the 
leftmost or rightmost 2-bit half of each 4-bit r p subword 
to perform the r s  bit selection.   

In 2-bit mode, one of two 2-bit blocks from every 4-
bit subword of r s  is selected and passed to the 
corresponding subword of r d, so there exist two possible 
selection operations per subword.  Hence, only 1 bit of 
information is needed to encode the selection operation 
for each subword, so a total of 16 bits are needed to 

encode the selection operations for a 64-bit register.  
These bits are stored in r p, and h indicates whether to use 
the left or right 2-bit halves of the 16 4-bit subwords in 
r p.  The odd bits of the 2-bit halves store the 
configuration information; the 32 even bits of r p are 
ignored.  To avoid wasting bits of r p, one could employ 
an additional function code bit to select one of four 16-bit 
groups of r p rather than select one of two 16-bit groups.  
This would not improve performance, however.  Using the 
2-bit mode of the si eve instruction, no more than two 
si eve instructions are required to complete a 
permutation of 2-bit subwords.  Storing the bit filter 
configuration information in a single register for four 
rather than two si eve instructions therefore does not 
reduce the number of instructions required to load the 
configuration information into registers or reduce the total 
number of registers needed. 

Figures 4 and 5 illustrate how h and the bits of r p are 
used to select bits from 4-bit subwords of r s  in 1-bit and 
2-bit mode, respectively. pk is the kth bit of r p.  If h is 1, 
the 2-bit value pk+1pk that corresponds to the ith subword 

Figure 4.  Bit selected from the ith 4-bit 
subword of rs by sieve in 1-bit mode 

 

pk+1pk = 00 

pk+1pk = 01 

pk+1pk = 10 

pk+1pk = 11 

pk+1 = 0 pk+1 = 1 

Figure 5. Bits selected from the ith 4-bit 
subword of rs by sieve in 2-bit mode 

Figure 2. Example operation of the 
sieve instruction in 1-bit mode 

 

0 0 

 
r d ... di,3 di,2 di,1 di,0 ... 

 ... si,3 si,2 si,1 si,0 ... r s  

0 

Figure 3. Example operation of the 
sieve instruction in 2-bit mode 

 

0 0 

 
r d ... di,3 di,2 di,1 di,0 ... 

 ... si,3 si,2 si,1 si,0 ... r s  



of r s  is selected from the leftmost 2-bit half of the ith 
subword of r p.  Otherwise, pk+1pk is selected from the 
rightmost 2-bit half of the ith subword of r p.  Hence, the 
value of k is a function of h and the subword index i: k = 
2⋅h + 4⋅i.  The gray blocks indicate which bit or bits of the 
ith subword of r s  are selected, and the white boxes 
indicate which bits of the ith 4-bit r s  subword are 
discarded.   

We now discuss how the bits f2f1f0 of the function 
code are used to choose which bits in r d receive the 
selected bits from r s  and which bits of r d are set to 0.  f2 
indicates whether to use 1-bit or 2-bit mode.  If 1-bit 
mode is employed, 3 bits out of every 4-bit subword of r d 
are set to 0, so a total of 48 bits of r d are set to 0.  If 2-bit 
mode is used, 2 bits out of every 4-bit subword of r d are 
set to 0, so a total of 32 bits of r d receive zeroes.  Bits f1f0 
of the function code indicate which bit of each r d 
subword receives a selected bit from r s  in 1-bit mode.  In 
2-bit mode, f0 is ignored, and f1 indicates which 2-bit half 
of each 4-bit r d subword receives selected bits from r s .   

Figure 6 illustrates which bits of r d receive bits of 
r s  given different values of the function code bits f2f1f0.  
In the figure, the boxes containing 64 blocks represent the 
64-bit register r d.  The gray blocks represent bits that 
receive bits from r s ; the white blocks represent the bits of 
r d that are set to zeroes.  Counting from zero, the most 
significant bit (third bit) of each 4-bit subword is located 
on the left end of the subword, and the most significant 4-

bit subword (fifteenth subword) of the 64-bit register is 
located at the left end of the register. 

To summarize, the si eve instruction allows a single 
bit or an aligned pair of bits to be selected from each of 
the 16 4-bit subwords of the source register r s , but 
si eve only allows these selected bits to be mapped to 
the destination register r d in 1 of 6 possible ways, as 
shown in Figure 6.  Figure 7 illustrates a complete 
example operation of the si eve instruction.  For each of 
the registers, the least significant bit is located on the right 
end of the box representing the register.  The gray blocks 
in the r s  and r d boxes indicate which bits are selected 
and the locations where the selected bits are placed, 
respectively.  The 64 bit values in the r p box specify the 
contents of the configuration register r p required to 
complete the example si eve operation.  The right 2-bit 
halves of each 4-bit subword of r p have values of xx, i.e., 
“don’ t care” , because the value of h is 1.   
 

3.  Applying swper m and si eve 
 
3.1.  Permuting 1-bit and 2-bit Subwords 
 

Using swper m and si eve, we can complete an 
arbitrary permutation of 64 1-bit subwords with 11 
instructions as shown on the left side of Figure 8.  We can 
perform an arbitrary permutation of 32 2-bit subwords 
with 5 instructions as shown on the right side of Figure 8.  

f2f1f0 = 011 

f2f1f0 = 010 

f2f1f0 = 001 

f2f1f0 = 000 

f2f1 = 11 

f2f1 = 10 

Figure 6.  Effect of si eve function code bits on r d 

 

h = 1       f2f1f0 = 011 

Figure 7.  Complete example operation of si eve 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 x x 1 1 x x 0 1 x x 0 1 x x 1 1 x x 0 0 x x 0 1 x x 1 0 x x 0 0 x x 1 1 x x 0 1 x x 1 0 x x 0 1 x x 0 0 x x 0 0 x x 0 0 x x 

r s  

r d 

r p 

 



In both cases, the 64-bit value to be permuted is initially 
stored in r 1; upon completion, r 1 will contain the 
desired permuted result.  For 1-bit subwords, r 5 through 
r 10 store configuration information for the swper m and 
si eve instructions, and r 1 through r 4 are used to store 
intermediate values.  For 2-bit subwords, r 1 and r 2 store 
intermediate values, and r 3 through r 5 store 
configuration information.   

We assume the registers used to store configuration 
information are loaded with the appropriate data prior to 
the execution of these code segments.  This pre-loading 
could require 6 or 3 memory load instructions for 
permutations of 1-bit or 2-bit subwords, respectively.  In 
cryptographic algorithms, the same fixed permutation is 
often employed in every encryption or hash round.  A 
round can usually be performed without spilling any 
registers to memory, so the 6 or 3 permutation 
configuration values could be loaded into general-purpose 
registers once before the execution of the thousands or 
millions of rounds required to encipher or hash kilobytes 
or megabytes of data.  As a result, the cost of the loads 
would be negligible.  Alternatively, these configuration 
registers may be intermediate encryption or hash results; 
therefore zero memory loads would be required.  

To complete a permutation of 1-bit subwords, we first 
perform 4 permutations of 4-bit subwords using swper m.  
Upon completion of these 4 instructions, the subwords in 
registers r 1, r 2, r 3, and r 4 will contain the zeroth, first, 
second, and third bits of the corresponding subwords of 
the desired permuted result, respectively.  For example, 
after execution of the first swper m instruction, 1 of the 4 
bits contained in the ith subword of r 2 will ultimately be 
placed in bit position 1 of the ith subword of the desired 
permuted result.  Likewise, following the execution of the 
second swper m instruction, 1 of the 4 bits stored in the 
ith subword of r 3 will eventually be placed in bit position 
2 of the ith subword of the desired permuted result.   

The four si eve instructions (in 1-bit mode) move 1 
bit from every 4-bit subword of r 1 through r 4 to either 
the zeroth, first, second or third bit positions of the 
subwords in the destination registers.  Upon completion of 
the si eve instructions, the desired permuted result is 
distributed across four 64-bit registers.  The 16 bits in the 
zeroth position of each 4-bit subword in r 1 are the bits 
that belong in the zeroth position of each subword in the 
desired result.  The remaining 48 bits of r 1 are set to 
zeroes by the first si eve instruction.  Similarly, the bits 
located in the first positions of the 4-bit r 2 subwords, the 
second positions of the 4-bit r 3 subwords, and the third 
positions of the 4-bit r 4 subwords belong in the first, 
second, and third positions of the corresponding subwords 
of the desired permuted result, respectively.  The last 3 
si eve instructions set the 144 bits in r 2, r 3 and r 4 that 
do not correspond to bits of the desired result to zeroes.  

The top four 64-block boxes in Figure 6 illustrate this 
distribution of bits in r 4, r 3, r 2, and r 1.  We collect the 
results of the 4 si eve instructions into a single register 
by performing 3 bitwise XOR (or bitwise OR) operations.  
Following the completion of the xor  instructions, r 1 will 
contain the 64-bit permuted result.  

To permute 32 2-bit subwords packed into a 64-bit 
register, we use the same method but fewer instructions. 
The last two rows in Figure 6 show how the 64-bits of the 
desired permuted result are distributed over the two 
registers r 2 and r 1 after the si eve instructions 
complete.  We can combine these two registers into the 
final 64-bit permuted result by performing a single xor  
(or a single or ) instruction.   

We developed an algorithm that generates the 
configuration registers for the swper m and si eve 
instructions given a list that represents a mapping from 
subwords in the source value to subwords in the permuted 
value.  The algorithm runs in O(n) time, where n is the 
number of bits in a register.  
 
3.2.  Permuting 4-bit or  Larger  Subwords 
 

A permutation of 4-bit or larger subwords can be 
performed using a single swper m instruction.  Given a 
register r 1 that stores a 64-bit value to be permuted and a 
64-bit register r 2 that contains the configuration 
information necessary to conduct the permutation, the 
execution the following instruction completes a 
permutation of 4-bit subwords in a single cycle: 

 
swper m r 1, r 1, r 2 

 
The swper m instruction stores the desired permuted 
result in r 1.  One can also complete 64-bit permutations 
of 8-bit, 16-bit, and 32-bit subwords by executing a single 
swper m instruction.  8-bit and larger subwords can be 
divided into 4-bit subwords, and it is trivial to translate a 
permutation encoding for 8-bit or larger subwords into a 
permutation encoding usable by swper m for 4-bit 
subwords. 

swper m       r 2, r 1, r 5 
swper m       r 3, r 1, r 6 
swper m       r 4, r 1, r 7 
swper m       r 1, r 1, r 8 
si eve, 0, 000  r 1, r 1, r 9 
si eve, 1, 001  r 2, r 2, r 9 
si eve, 0, 010  r 3, r 3, r 10 
si eve, 1, 011  r 4, r 4, r 10 
xor           r 1, r 1, r 2 
xor           r 3, r 3, r 4 
xor           r 1, r 1, r 3 
 

Figure 8.  Assembly code for performing 
permutations of 1-bit and 2-bit subwords 

 

swper m       r 2, r 1, r 3 
swper m       r 1, r 1, r 4 
si eve, 0, 100  r 1, r 1, r 5 
si eve, 1, 110  r 2, r 2, r 5 
xor           r 1, r 1, r 2 
 

1-bit subwords            2-bit subwords 



Figure 9. Selection Unit cell 

dj 

pj 

si 4.  Hardware Implementation 
 
We now describe the CMOS hardware 

implementation for the swperm and sieve instructions.  
The Selection Unit enables the execution of the swperm 
instruction.  We can implement the Selection Unit by 
building a 4-bit 16-to-1 multiplexer for every 4-bit 
subword in rd.  Such a design is extremely expensive in 
hardware, however.  Using a reduced crossbar, we can 
greatly decrease the transistor and wire cost.  The reduced 
crossbar only requires 1 decoder for every 16 intersections 
between rs and rd tracks as opposed to 1 decoder for 
each intersection in a full crossbar.  

We present an example cell of the reduced crossbar in 
Figure 9.  Each cell consists of a 4-input AND gate, 4 n-
type transistors, and 0, 1, 2, 3 or 4 inverters.  si is the ith 
4-bit subword of rs, dj is the jth 4-bit subword of rd, and 
pj is the jth 4-bit subword of rp.  Recall that the swperm 
instruction directs the si to dj if and only if pj equals i.  In 
the example cell, the leftmost and bottommost wires are 
the most significant bits of the subwords.  From inspecting 
the negation bubbles on the inputs to the AND gate, we 
know that i = 5 in Figure 9.  Hence, only the fifth 4-bit 
subword s5 is enabled onto dj.  The other fifteen 4-bit 
subwords from rs similarly connected to dj are not 
enabled onto dj. 

We now discuss the hardware cost of this 
implementation.  The example cell is replicated 16 times 
for each of the 16 4-bit subwords of rd, so the total 
number of cells in the reduced crossbar is 16⋅16 = 256.  
On average, there are two negation bubbles on the inputs 
to the AND gate per cell, so the average number of 
transistors per cell is 16.  Since there are 256 cells in the 
crossbar, the total transistor count is 4096.  Furthermore, 
the number of vertical tracks is roughly the number of bits 
in rs, 64, and the number of horizontal tracks is the 
number of bits in rd plus the number of bits in rp, 128.  
The critical path of this circuit is at most the sum of the 
propagation delays of a 4-input AND gate, an inverter, an 
n-type transistor, a horizontal track, and a vertical track.  
Assuming the delays through the wires are not extremely 
high, we contend that the Selection Unit can complete an 
swperm instruction in a single cycle.  In a deeply 
pipelined processor, however, the propagation delays 
through wires could force multiple-cycle execution of 
swperm instructions.   

Figure 10 shows a 4-bit slice of the Filter Unit, which 
supports the sieve instruction.  We can implement each 
4-bit slice of the Filter Unit using four 1-bit 5-to-1 
multiplexers.  Using the implementation illustrated in 
Figure 10, however, we can reduce the transistor count 
without increasing the critical path length.  The slice in the 
figure is replicated 16 times, once for each 4-bit subword 
in rd.  The variable si,j represents the jth bit of the ith 

subword of rs; the variable di,j represents the jth bit of the 
ith subword of rd.  Each 4-bit slice requires two 1-bit 2-
to-1 multiplexers and four 1-bit 4-to-1 multiplexers.  In 
addition, the ith subword slice includes a set of signals to 
control these multiplexers: Ai, Bi, Ci, Di, Ei, and Fi.  These 
signals are defined in Figure 11, where pk is the kth bit of 
rp, and h, f2, f1, and f0 are function code bits. 

We can implement a 2-to-1 multiplexer using 4 
transistors, and we can implement a 4-to-1 multiplexer 
using only 7 transistors each since the two lowest inputs 
are hard-wired to zeroes.   Using buffers to reduce the fan-
out of the function code bits and logic optimization 
techniques to reduce the transistor count, each 4-bit 
subword slice requires 116 transistors.  The total number 
of transistors required for the 16 4-bit subword slices of 
the Filter Unit is 1856.  All the data and control for each 
4-bit subword slice in the Filter Unit is local, so no long 

Figure 10.  4-bit slice of the Filter Unit 
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Ai = Bi = (h ⋅ p4i+3) + (¬h ⋅ p4i+1) 
Ci,1 = f1 ⋅ (f2 + f0)      Di,1 = f1 ⋅ (f2 + ¬f0) 

Ei,1 = ¬f1 ⋅ (f2 + f0)      Fi,1 = ¬f1 ⋅ (f2 + ¬f0) 
Ci,0 = Ei,0 = (¬f2 ⋅ ((h ⋅ p4i+2) + (¬h ⋅ p4i))) + f2 

Di,0 = Fi,0 = (¬f2 ⋅ ((h ⋅ p4i+2) + (¬h ⋅ p4i))) 
 Figure 11.  Control signals in the Filter Unit 



vertical or horizontal tracks are required.  The critical path 
in the Filter Unit is the sum of the propagation delays 
through a 2-to-1 multiplexer, a 4-to-1 multiplexer, and the 
logic required to compute Ai.  Therefore, it is highly likely 
that the Filter Unit can complete the execution of a 
si eve instruction in a single cycle.   

The total number of transistors needed to implement a 
Permutation Unit, which consists of a Selection Unit and a 
Filter Unit, is 5952.  This transistor count is of the same 
order of magnitude as that required to construct a simple 
64-bit CMOS ripple-carry adder [17].  The total numbers 
of long horizontal and vertical tracks are 128 and 64, 
respectively.  We compare the hardware cost of the 
Permutation Unit to past work in Table 2.  Due to the 
imprecision of the track metric, we compare numbers of 
tracks using O(⋅) notation in terms of the number of bits in 
a register, n. When considering both transistor count and 
wire area, we argue that the Permutation Unit is as 
efficient as a VLSI implementation of the omf l i p 
instruction.   The Permutation Unit requires nearly twice 
as many transistors as an omf l i p implementation, but it 
potentially consumes much less wire area due to constants 
hidden by the O(⋅) notation.  The Permutation Unit also 
requires significantly fewer transistors and tracks than a 
crossbar network.   

 
Table 2.  Hardware cost comparison 

 
Implementation Hor izontal 

Tracks 
Ver tical 
Tracks 

Transistor  
Count 

Permutation Unit 
( swper m/ si eve)  O(n) O(n) 5952 

Omega-flip Network 
( omf l i p)  [18] 

O(n) O(n) 3072 

Crossbar Network 
[18] 

O(n) O(n log n) > 73,728 

 

5.  Permutation Per formance 
 
 Table 3 summarizes the number of instructions, 
cycles and registers required to complete arbitrary 
permutations of different-sized subwords packed into a 
64-bit register. For subword sizes of 4 bits or larger, only 
one swper m instruction and two registers are needed to 
complete an arbitrary 64-bit permutation with repetitions.  
Using both si eve and swper m, arbitrary 64-bit 
permutations with repetitions of 2-bit and 1-bit subwords 
require 5 and 11 instructions, respectively.  In past work, 
Yang and Lee demonstrated that the omf l i p instruction 
could be used to complete 64-bit permutations without 
repetitions using 5 and 6 instructions, respectively [18].  
These omf l i p instruction sequences must be executed 
serially, however.  Therefore, even on an ultra-wide 
superscalar processor, a 64-bit permutation of 1-bit 
subwords without repetitions requires 6 cycles using the 
omf l i p instruction.   

In cryptographic algorithms, operations performed on 
intermediate values are highly serialized.  Therefore, the 
superscalar execution of the instructions involved in a 
permutation plays a major role in performance.  The 
instruction sequences presented in this paper that employ 
si eve and swper m are highly parallelizable.  True data 
dependencies do not exist between any of the swper m 
instructions or between any of the si eve instructions 
listed in Figure 8.  Hence, the performance of an arbitrary 
64-bit permutation with repetitions using these 
instructions may be limited by the issue width of the 
processor.  On a 4-way superscalar processor, 
permutations of 1-bit and 2-bit subwords can be 
completed in as few as 4 and 3 cycles, respectively.  Note 
that the performance improvement provided by si eve 
and swper m over existing methods on 2-way and 4-way 
superscalar processors requires 2 or 4 Permutation Units.  

Table 4.  Permutation performance comparison 
 

 Maximum # of instructions # of cycles for  4-way superscalar  
         Instruction(s) used to 

         per form a 64-bit permutation Subword 
Size 

32  
bits 

16 
bits 

8 
bits 

4 
bits 

2 
bits 

1 
bit 

32 
bits 

16 
bits 

8 
bits 

4 
bits 

2 
bits 

1 
bit 

si eve/ swper m 1 1 1 1 5 11 1 1 1 1 3 4 
pper m3r  [14] 8 8 8 8 8 8 4 4 4 4 4 4 

omf l i p [18], cr oss  [19], and gr p [14] 1 2 3 4 5 6 1 2 3 4 5 6 
Existing ISAs 1 1 1 23 23 23 1 1 1 10 10 10 

 

Table 3.  Performance of 64-bit permutations using si eve and swper m 
 

Subword 
size 

Maximum # of 
instructions required 

Minimum # of cycles 
for  single-issue 

Minimum # of cycles 
for  2-way superscalar  

Minimum # of cycles 
for  4-way superscalar  

Maximum # of 
registers required 

32 bits 1 1 1 1 2 
16 bits 1 1 1 1 2 
8 bits 1 1 1 1 2 
4 bits 1 1 1 1 2 
2 bits 5 5 3 3 5 
1 bit 11 11 6 4 10 

 



Methods that employ cross, grp, and omflip only 
require 1 unit to achieve the cycle counts listed in Table 3. 

We compare the performance of sieve and 
swperm to past work in Table 4.  The table lists the 
number of instructions and cycles required by the different 
methods to complete a 64-bit permutation (such as the 
Initial Permutation in DES [10]).  The bit values in the 
heading of the table indicate the size of the subwords to be 
permuted within a 64-bit word.  We determine the cycle 
counts using a simulation of a 4-way superscalar 
processor with 4 integer execution units and a single 
load/store unit.  The Existing ISAs row indicates the 
minimum number of instructions in conventional ISAs 
required to perform a 64-bit permutation using 8 lookup 
tables or existing permutation instructions.   

If the pperm3r instruction is restricted to reading 2 
registers rather than 3, 64-bit permutations require 15 
instructions rather than 8 [9].  Furthermore, if 3 register 
reads per instruction are permitted, sieve can be 
trivially modified to reduce the total number of 
instructions required to perform permutations of 1-bit and 
2-bit subwords by nearly a factor of 2.  Other than 
sieve/swperm, only the pperm3r instruction is 
capable of completing permutations with repetitions; the 
omflip, cross and grp instructions only perform 
permutations without repetitions.  Also, sieve and 
swperm do not scale as efficiently as grp in permuting 
values larger than 64 bits that are stored in multiple 64-bit 
registers.  We observe that sieve and swperm perform 
as well as or better than all previously proposed 
permutation instructions and existing ISAs with the 
exception of the number of instructions required to 
complete a 64-bit permutation using 1-bit subwords.   

 

6.  Conclusion 
 
 In this paper, we proposed two 64-bit instructions for 
accelerating the performance of subword permutations 
with repetitions: swperm and sieve.  Using these two 
instructions, we can complete 64-bit permutations with 
repetitions of 4-bit or larger subwords in 1 instruction.  In 
addition, we can achieve permutations with repetitions of 
1-bit and 2-bit subwords using 11 instructions and 5 
instructions, respectively.  These instructions are highly 
parallelizable, and a 4-way superscalar processor can 
execute these two instruction sequences in 4 cycles and 3 
cycles, respectively.     We also described hardware that 
efficiently implements swperm and sieve and can 
execute both instructions in a single cycle. 

Using these instructions, cryptographers can design 
ciphers and hash algorithms that obtain a desirable level 
of diffusion more rapidly.  As a result, less encryption 
rounds may be required to achieve adequate security, and 
the throughput of encryption algorithms could be 

significantly improved.  Future work includes 
investigating the degree to which permutations with and 
without repetitions contribute to the security of a cipher. 
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