

Architectural Enhancements for Fast Subword Permutations
with Repetitions in Cryptographic Applications

John P. McGregor and Ruby B. Lee

Department of Electrical Engineering
Princeton University

{ mcgregor, rblee} @ee.princeton.edu

Abstract

We propose two new instructions, swperm and
sieve, that can be used to efficiently complete an
arbitrary bit-level permutation of an n-bit word with or
without repetitions. Permutations with repetitions are
rearrangements of an ordered set in which elements may
replace other elements in the set; such permutations are
useful in cryptographic algorithms. On a 4-way
superscalar processor, an arbitrary 64-bit permutation
with repetitions of 1-bit subwords can be completed in 11
instructions and only 4 cycles using the two proposed
instructions. For subwords of size 4 bits or greater, an
arbitrary permutation with repetitions of a 64-bit register
can be completed in a single cycle using a single
swperm instruction. This improves upon previous
permutation instruction proposals that require log(r)
sequential instructions to permute r subwords of a 64-bit
word without repetitions. Our method requires fewer
instructions to permute 4-bit or larger subwords packed
in a 64-bit register and fewer execution cycles for 1-bit
subwords on wide superscalar processors.

1. Introduction

As the popularity of security applications grows, the
underlying cryptographic algorithms consume an
increasingly large percentage of processor workloads.
These applications often include several operations
involving 1-bit or multiple-bit register subwords. Many
microprocessor instruction set architectures have been
extended to include subword arithmetic instructions that
improve performance by executing several operations on
low-precision data in parallel. These extensions include
MAX [5] and MAX-2 [8] for HP PA-RISC, VIS [16] for
Sun SPARC, AltiVec [3] for PowerPC, MMX [11] for
Intel IA-32, and IA-64 multimedia instructions [4].

Before performing subword arithmetic operations, it
may be necessary to rearrange the subwords within a
single register or between multiple registers to obtain the
desired result. In addition, subword permutations can be

employed to efficiently perform transformations such as
matrix transposition in multimedia applications [6].
Permutations are also used to achieve diffusion, a critical
characteristic of a secure cipher [15], in symmetric-key
encryption algorithms such as DES [10], Twofish [13] and
Serpent [2]. Some permutations in cryptographic
algorithms are not bijections. For instance, the Expansion
Permutation in DES maps some bits in the source datum
to multiple destinations in the result datum. We define
such rearrangements of an ordered set in which elements
can replace other elements in the set to be permutations
with repetitions. If no information is lost in a permutation
with repetitions, the permutation is invertible and
therefore can be used in any cryptographic algorithm. In
addition, one-way hash functions and encryption
algorithms based upon Feistel networks can employ
permutations with repetitions that lose information [12].

1.1. Past Work

Several methods exist for performing permutations in
software. In one method, individual bits of the source
datum are selected and shifted to their destination
locations using a series of logical AND, logical OR, and
shift instructions [18]. For an arbitrary permutation of the
bits in an n-bit word, this procedure requires as many as
4n instructions. If the architecture includes instructions
such as extract and deposit [7], one can reduce the
instruction count of this procedure to 2n, yet this method
is still unacceptably slow.

Lookup tables can also be employed to perform
permutations with repetitions in software [18]. First, the
n-bit source datum is divided into x groups of bits; each
group is used to index a unique lookup table. The output
of a lookup table represents the input group of bits
permuted per the desired permutation. The bits of the
table output that do not represent any of the input bits are
set to zeroes. Therefore, the outputs of the x lookup tables
can be combined using (x-1) bitwise OR or bitwise XOR
operations to generate the desired permuted n-bit result.

In general, assuming the extract instruction is
available, the number of instructions required to complete
an n-bit permutation using x lookup tables is (3x–1). Each
of the x lookup tables consists of 2(n/x) entries, and each
entry is n bits in size, so the total size of the tables is
(nx)⋅2(n/x) bits. This technique is commonly used but is
unattractive because the permutations must be statically
encoded in the tables at compile-time. Furthermore, the
space required to store the lookup tables is extremely
large for acceptably small permutation instruction
sequences. For example, 2 megabytes of storage are
required to permute a 64-bit datum in 11 instructions
using 4 lookup tables. With 8 lookup tables, 16 kilobytes
of storage and 23 instructions are needed to permute a 64-
bit value.

Multiple instruction set architectures have been
amended to include instructions for permutations of 8-bit
or larger subwords. The permute instruction in the
MAX-2 extension to PA-RISC supports permutations with
and without repetitions of 16-bit subwords in a 64-bit
word by statically encoding the permutation function in
the instruction [8]. In IA-64, the mux instruction supports
a small set of permutations of 8-bit subwords in a 64-bit
word and supports all permutations of 16-bit subwords in
a 64-bit word [4]. Similar to permute in MAX-2, the
permutation function is statically encoded in the mux
instruction at compile-time. The vperm instruction in the
AltiVec extension to the PowerPC instruction set
architecture permutes the 8-bit subwords of a 128-bit
vector register [3]. This instruction requires three 128-bit
register reads and one 128-bit register write, and the
permutation function is encoded in one of the vector
source registers. None of the permutation instructions in
popular ISAs efficiently support arbitrary permutations of
4-bit or smaller subwords.

Recently, several instructions for dynamically
specified arbitrary permutations of 1-bit or larger
subwords have been proposed. The pperm3r instruction
can complete an arbitrary permutation of n bits with or
without repetitions in O(log n) instructions using
expensive hardware [14]. This instruction essentially
dynamically configures and invokes an n x n crossbar
without requiring the processor to maintain any additional
state information. Amending an ISA by requiring
additional state variables is undesirable: such changes
require explicit OS support and increase the complexity of
context switches and interrupts. In addition, the
pperm3r instruction requires 3 register reads and 1
register write, and the number of pperm3r instructions
required to complete an arbitrary permutation does not
decrease as subword size increases.

The grp instruction can complete an arbitrary
permutation without repetitions of n bits in log2n
instructions [14]. The hardware needed to support the

grp instruction is expensive, however. The cross
instruction employs a Benes network to complete an
arbitrary permutation without repetitions of b-bit
subwords in an n-bit word using log2(n/b) instructions
[19]. The omflip instruction improves upon the cross
instruction by completing arbitrary permutations without
repetitions of b-bit subwords in an n-bit word with
log2(n/b) instructions using more efficient hardware [18].
Although cross and omflip can complete an arbitrary
permutation without repetitions of 1-bit subwords quickly,
these instructions cannot efficiently perform permutations
with repetitions.

1.2. Outline

In this paper, we describe two instructions that
accelerate the performance of subword permutations with
repetitions. Since the development of DES,
cryptographers have often avoided permutations of 1-bit
subwords because general-purpose microprocessors
cannot complete these operations quickly. By adding our
proposed instructions to general-purpose ISAs,
cryptographers can employ bit permutations with and
without repetitions to rapidly achieve a desired level of
diffusion in future ciphers. As a result, the proposed
instructions could greatly improve the overall throughput
of cryptographic algorithms.

In Section 2, we discuss the mathematics of
permutations and define two new instructions. We
demonstrate how to apply these instructions to achieve
arbitrary subword permutations with repetitions in Section
3. In Section 4, we present the hardware required to
implement the two new instructions, and we analyze the
performance of permutations for different-sized subwords
in Section 5. We summarize in Section 6.

2. Permutation Instructions

We propose two new instructions to efficiently
support permutations with repetitions of 1-bit or multiple-
bit subwords: swperm and sieve. These instructions
allow permutations with repetitions to be dynamically
specified during program execution rather than force the
permutations to be statically encoded at compile-time.

2.1. Permutations with Repetitions

A permutation is a rearrangement of the elements in

an ordered set, i.e., a bijective map from a set S to itself
[1]. We define a surjective map from a set S to another
set D (where the cardinality of S equals that of D) to be a
permutation with repetitions. In other words, a
permutation with repetitions can map an element in the
source set S to multiple elements in the destination set D,

whereas a permutation without repetitions cannot map an
element in S to more than one element in D. For example,
if S = { a,b} , there exist 2 possible permutations of S,
{ a,b} and { b,a} , but there exist 4 possible permutations
with repetitions of S: { a,b} , { b,a} , { a,a} , { b,b} . We can
encode a permutation with repetitions by specifying the
source element in S that is mapped to a particular
destination element in D for all the elements in D. If the
permutation is arbitrary, the following expression
describes the minimum number of bits needed to encode a
permutation with repetitions:

∑
=

D

i

S
1

2log

We are concerned with permutations with repetitions
of b-bit subwords from an n-bit source register to b-bit
subwords of an n-bit destination register. Hence, ||S|| is
equivalent to the number of bits in the source register, n,
divided by the subword size, b, and ||D|| is the number of
bits in the destination register, n, divided by the subword
size, b. We can rewrite the expression as follows:

()∑∑
==








==
bn

i

D

i b

n

b

n
bnS

1
22

1
2 logloglog

In this paper, we assume that all registers are 64 bits wide.
Table 1 summarizes the minimum number of bits needed
to specify an arbitrary 64-bit permutation with repetitions
when using subword sizes ranging from 1 bit to 32 bits.

Table 1. Minimum number of bits needed to
specify an arbitrary permutation with repetitions

Subword

size
Number of

subwords per 64-bit
register

Number of bits to encode
a 64-bit permutation

with repetitions
32 bits 2 subwords 2 bits
16 bits 4 subwords 8 bits
8 bits 8 subwords 24 bits
4 bits 16 subwords 64 bits
2 bits 32 subwords 160 bits
1 bit 64 subwords 384 bits

RISC instructions typically allow two register reads

and one register write per instruction. We wish to design
instructions that allow permutations to be dynamically

specified at run-time, so we use one of the 64-bit source
registers, r s , to store the information to be permuted, and
we use the other 64-bit source register, r p, to store
information concerning the permutation function. For
subwords of size greater than or equal to 4 bits, we require
at most 64 bits of information to specify the entire
permutation. Hence, we can specify the entire
permutation in a single instruction. Since 64 more
configuration bits can be specified with each additional
permutation instruction, permutations of 32 2-bit
subwords require at least 3 RISC instructions, and
permutations of 64 1-bit subwords require at least 6 RISC
instructions.

In the rest of this paper, we use the term
“permutation” to mean a permutation with repetitions.

2.2. The swperm Instruction

The swper m instruction permutes the sixteen 4-bit

subwords of a 64-bit source register r s according to
information stored in a 64-bit source register r p. The
permuted result is written to the 64-bit destination register
r d. The permutation is entirely described with the
information stored in r p, so the permutation function can
be specified dynamically. The instruction format of
swper m is:

swper m r d, r s, r p

This instruction was designed to permute subwords of size
4 bits or greater in a single cycle and to expedite
permutations of 1-bit and 2-bit subwords. Figure 1
illustrates an example operation of swper m.

In Figure 1, si is the ith 4-bit aligned subword of the
source register r s . The contents of r p necessary to
complete the example permutation are listed in
hexadecimal. The value of the ith 4-bit subword in r p
indicates which aligned 4-bit subword in the source
register should be mapped to the ith 4-bit subword in the
destination register. The swper m instruction is similar to
the MAX-2 per mut e instruction [8], but the
configuration bits for swper m are specified in a register
rather than statically in the instruction.

r s

s15 s13 s12 s11 s15 s10 s9 s8 s7 s0 s6 s0 s0 s0 s0 s0 r d

 F D C B F A 9 8 7 0 6 0 0 0 0 0 r p

Figure 1. Example operation of the swperm instruction

 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

2.3. The sieve Instruction

The si eve instruction is used to “ filter” bits from
r s and then direct the resulting bits into particular
destinations in r d. More specifically, 1 (or 2 bits) from
each 4-bit subword of r s are directed to 4 (or 2) possible
locations in the corresponding 4-bit subword of r d. A
third register, r p, is used to configure the bit filter.
Whereas the swper m instruction operates globally over
the 4-bit subwords of r s , the si eve instruction operates
locally within the 4-bit subwords of r s . In combination
with the swper m instruction, the si eve instruction can
be used to implement arbitrary permutations of 1-bit or 2-
bit subwords. The instruction format for si eve is:

si eve, h, f r d, r s, r p

The 4-bit function code of si eve consists of a 1-bit
value, h (h), and a 3-bit value, f (f2f1f0).

Figures 2 and 3 illustrate two example operations of
the si eve instruction on the ith 4-bit subword of r s in
1-bit and 2-bit mode, respectively. In both figures, si,j
represents the jth bit of the ith subword of r s , and di,j
represents the jth bit of the ith 4-bit subword of r d. In 1-
bit mode, one of the 4 bits in the ith subword of r s is
directed to one of the 4 bits of the ith subword of r d; the
remaining 3 bits in the ith subword of r d are set to 0.
Similarly, in 2-bit mode, either the leftmost two bits or the
rightmost 2 bits of the ith 4-bit subword of r s are directed
to either the leftmost two bits or the rightmost two bits of
the ith 4-bit subword of r d. The remaining two bits of the
ith subword of r d are set to 0.

Bits from r p and the function code bit h specify
which 1-bit or 2-bit subword is selected from the ith
subword of r s . In 1-bit mode, 1 bit from every 4-bit
subword of r s is selected and passed to r d. Hence, there
exist 4 possible selection operations per r s subword, so 2
bits are needed to encode the selection operation for each
subword. Since there are 16 4-bit subwords in a 64-bit
register, a total of 32 bits are needed to encode the
selection operations for all 16 subwords. These 32 bits
are stored in the register r p. To minimize the number of
instructions required to load the bit selection information
into registers, one 64-bit register is used to store the 32
bits of selection information for two si eve instructions.
The function code bit h indicates whether to use the
leftmost or rightmost 2-bit half of each 4-bit r p subword
to perform the r s bit selection.

In 2-bit mode, one of two 2-bit blocks from every 4-
bit subword of r s is selected and passed to the
corresponding subword of r d, so there exist two possible
selection operations per subword. Hence, only 1 bit of
information is needed to encode the selection operation
for each subword, so a total of 16 bits are needed to

encode the selection operations for a 64-bit register.
These bits are stored in r p, and h indicates whether to use
the left or right 2-bit halves of the 16 4-bit subwords in
r p. The odd bits of the 2-bit halves store the
configuration information; the 32 even bits of r p are
ignored. To avoid wasting bits of r p, one could employ
an additional function code bit to select one of four 16-bit
groups of r p rather than select one of two 16-bit groups.
This would not improve performance, however. Using the
2-bit mode of the si eve instruction, no more than two
si eve instructions are required to complete a
permutation of 2-bit subwords. Storing the bit filter
configuration information in a single register for four
rather than two si eve instructions therefore does not
reduce the number of instructions required to load the
configuration information into registers or reduce the total
number of registers needed.

Figures 4 and 5 illustrate how h and the bits of r p are
used to select bits from 4-bit subwords of r s in 1-bit and
2-bit mode, respectively. pk is the kth bit of r p. If h is 1,
the 2-bit value pk+1pk that corresponds to the ith subword

Figure 4. Bit selected from the ith 4-bit
subword of rs by sieve in 1-bit mode

pk+1pk = 00

pk+1pk = 01

pk+1pk = 10

pk+1pk = 11

pk+1 = 0 pk+1 = 1

Figure 5. Bits selected from the ith 4-bit
subword of rs by sieve in 2-bit mode

Figure 2. Example operation of the
sieve instruction in 1-bit mode

0 0

r d ... di,3 di,2 di,1 di,0 ...

 ... si,3 si,2 si,1 si,0 ... r s

0

Figure 3. Example operation of the
sieve instruction in 2-bit mode

0 0

r d ... di,3 di,2 di,1 di,0 ...

 ... si,3 si,2 si,1 si,0 ... r s

of r s is selected from the leftmost 2-bit half of the ith
subword of r p. Otherwise, pk+1pk is selected from the
rightmost 2-bit half of the ith subword of r p. Hence, the
value of k is a function of h and the subword index i: k =
2⋅h + 4⋅i. The gray blocks indicate which bit or bits of the
ith subword of r s are selected, and the white boxes
indicate which bits of the ith 4-bit r s subword are
discarded.

We now discuss how the bits f2f1f0 of the function
code are used to choose which bits in r d receive the
selected bits from r s and which bits of r d are set to 0. f2
indicates whether to use 1-bit or 2-bit mode. If 1-bit
mode is employed, 3 bits out of every 4-bit subword of r d
are set to 0, so a total of 48 bits of r d are set to 0. If 2-bit
mode is used, 2 bits out of every 4-bit subword of r d are
set to 0, so a total of 32 bits of r d receive zeroes. Bits f1f0
of the function code indicate which bit of each r d
subword receives a selected bit from r s in 1-bit mode. In
2-bit mode, f0 is ignored, and f1 indicates which 2-bit half
of each 4-bit r d subword receives selected bits from r s .

Figure 6 illustrates which bits of r d receive bits of
r s given different values of the function code bits f2f1f0.
In the figure, the boxes containing 64 blocks represent the
64-bit register r d. The gray blocks represent bits that
receive bits from r s ; the white blocks represent the bits of
r d that are set to zeroes. Counting from zero, the most
significant bit (third bit) of each 4-bit subword is located
on the left end of the subword, and the most significant 4-

bit subword (fifteenth subword) of the 64-bit register is
located at the left end of the register.

To summarize, the si eve instruction allows a single
bit or an aligned pair of bits to be selected from each of
the 16 4-bit subwords of the source register r s , but
si eve only allows these selected bits to be mapped to
the destination register r d in 1 of 6 possible ways, as
shown in Figure 6. Figure 7 illustrates a complete
example operation of the si eve instruction. For each of
the registers, the least significant bit is located on the right
end of the box representing the register. The gray blocks
in the r s and r d boxes indicate which bits are selected
and the locations where the selected bits are placed,
respectively. The 64 bit values in the r p box specify the
contents of the configuration register r p required to
complete the example si eve operation. The right 2-bit
halves of each 4-bit subword of r p have values of xx, i.e.,
“don’ t care” , because the value of h is 1.

3. Applying swper m and si eve

3.1. Permuting 1-bit and 2-bit Subwords

Using swper m and si eve, we can complete an
arbitrary permutation of 64 1-bit subwords with 11
instructions as shown on the left side of Figure 8. We can
perform an arbitrary permutation of 32 2-bit subwords
with 5 instructions as shown on the right side of Figure 8.

f2f1f0 = 011

f2f1f0 = 010

f2f1f0 = 001

f2f1f0 = 000

f2f1 = 11

f2f1 = 10

Figure 6. Effect of si eve function code bits on r d

h = 1 f2f1f0 = 011

Figure 7. Complete example operation of si eve

0

1 0 x x 1 1 x x 0 1 x x 0 1 x x 1 1 x x 0 0 x x 0 1 x x 1 0 x x 0 0 x x 1 1 x x 0 1 x x 1 0 x x 0 1 x x 0 0 x x 0 0 x x 0 0 x x

r s

r d

r p

In both cases, the 64-bit value to be permuted is initially
stored in r 1; upon completion, r 1 will contain the
desired permuted result. For 1-bit subwords, r 5 through
r 10 store configuration information for the swper m and
si eve instructions, and r 1 through r 4 are used to store
intermediate values. For 2-bit subwords, r 1 and r 2 store
intermediate values, and r 3 through r 5 store
configuration information.

We assume the registers used to store configuration
information are loaded with the appropriate data prior to
the execution of these code segments. This pre-loading
could require 6 or 3 memory load instructions for
permutations of 1-bit or 2-bit subwords, respectively. In
cryptographic algorithms, the same fixed permutation is
often employed in every encryption or hash round. A
round can usually be performed without spilling any
registers to memory, so the 6 or 3 permutation
configuration values could be loaded into general-purpose
registers once before the execution of the thousands or
millions of rounds required to encipher or hash kilobytes
or megabytes of data. As a result, the cost of the loads
would be negligible. Alternatively, these configuration
registers may be intermediate encryption or hash results;
therefore zero memory loads would be required.

To complete a permutation of 1-bit subwords, we first
perform 4 permutations of 4-bit subwords using swper m.
Upon completion of these 4 instructions, the subwords in
registers r 1, r 2, r 3, and r 4 will contain the zeroth, first,
second, and third bits of the corresponding subwords of
the desired permuted result, respectively. For example,
after execution of the first swper m instruction, 1 of the 4
bits contained in the ith subword of r 2 will ultimately be
placed in bit position 1 of the ith subword of the desired
permuted result. Likewise, following the execution of the
second swper m instruction, 1 of the 4 bits stored in the
ith subword of r 3 will eventually be placed in bit position
2 of the ith subword of the desired permuted result.

The four si eve instructions (in 1-bit mode) move 1
bit from every 4-bit subword of r 1 through r 4 to either
the zeroth, first, second or third bit positions of the
subwords in the destination registers. Upon completion of
the si eve instructions, the desired permuted result is
distributed across four 64-bit registers. The 16 bits in the
zeroth position of each 4-bit subword in r 1 are the bits
that belong in the zeroth position of each subword in the
desired result. The remaining 48 bits of r 1 are set to
zeroes by the first si eve instruction. Similarly, the bits
located in the first positions of the 4-bit r 2 subwords, the
second positions of the 4-bit r 3 subwords, and the third
positions of the 4-bit r 4 subwords belong in the first,
second, and third positions of the corresponding subwords
of the desired permuted result, respectively. The last 3
si eve instructions set the 144 bits in r 2, r 3 and r 4 that
do not correspond to bits of the desired result to zeroes.

The top four 64-block boxes in Figure 6 illustrate this
distribution of bits in r 4, r 3, r 2, and r 1. We collect the
results of the 4 si eve instructions into a single register
by performing 3 bitwise XOR (or bitwise OR) operations.
Following the completion of the xor instructions, r 1 will
contain the 64-bit permuted result.

To permute 32 2-bit subwords packed into a 64-bit
register, we use the same method but fewer instructions.
The last two rows in Figure 6 show how the 64-bits of the
desired permuted result are distributed over the two
registers r 2 and r 1 after the si eve instructions
complete. We can combine these two registers into the
final 64-bit permuted result by performing a single xor
(or a single or) instruction.

We developed an algorithm that generates the
configuration registers for the swper m and si eve
instructions given a list that represents a mapping from
subwords in the source value to subwords in the permuted
value. The algorithm runs in O(n) time, where n is the
number of bits in a register.

3.2. Permuting 4-bit or Larger Subwords

A permutation of 4-bit or larger subwords can be
performed using a single swper m instruction. Given a
register r 1 that stores a 64-bit value to be permuted and a
64-bit register r 2 that contains the configuration
information necessary to conduct the permutation, the
execution the following instruction completes a
permutation of 4-bit subwords in a single cycle:

swper m r 1, r 1, r 2

The swper m instruction stores the desired permuted
result in r 1. One can also complete 64-bit permutations
of 8-bit, 16-bit, and 32-bit subwords by executing a single
swper m instruction. 8-bit and larger subwords can be
divided into 4-bit subwords, and it is trivial to translate a
permutation encoding for 8-bit or larger subwords into a
permutation encoding usable by swper m for 4-bit
subwords.

swper m r 2, r 1, r 5
swper m r 3, r 1, r 6
swper m r 4, r 1, r 7
swper m r 1, r 1, r 8
si eve, 0, 000 r 1, r 1, r 9
si eve, 1, 001 r 2, r 2, r 9
si eve, 0, 010 r 3, r 3, r 10
si eve, 1, 011 r 4, r 4, r 10
xor r 1, r 1, r 2
xor r 3, r 3, r 4
xor r 1, r 1, r 3

Figure 8. Assembly code for performing
permutations of 1-bit and 2-bit subwords

swper m r 2, r 1, r 3
swper m r 1, r 1, r 4
si eve, 0, 100 r 1, r 1, r 5
si eve, 1, 110 r 2, r 2, r 5
xor r 1, r 1, r 2

1-bit subwords 2-bit subwords

Figure 9. Selection Unit cell

dj

pj

si 4. Hardware Implementation

We now describe the CMOS hardware

implementation for the swperm and sieve instructions.
The Selection Unit enables the execution of the swperm
instruction. We can implement the Selection Unit by
building a 4-bit 16-to-1 multiplexer for every 4-bit
subword in rd. Such a design is extremely expensive in
hardware, however. Using a reduced crossbar, we can
greatly decrease the transistor and wire cost. The reduced
crossbar only requires 1 decoder for every 16 intersections
between rs and rd tracks as opposed to 1 decoder for
each intersection in a full crossbar.

We present an example cell of the reduced crossbar in
Figure 9. Each cell consists of a 4-input AND gate, 4 n-
type transistors, and 0, 1, 2, 3 or 4 inverters. si is the ith
4-bit subword of rs, dj is the jth 4-bit subword of rd, and
pj is the jth 4-bit subword of rp. Recall that the swperm
instruction directs the si to dj if and only if pj equals i. In
the example cell, the leftmost and bottommost wires are
the most significant bits of the subwords. From inspecting
the negation bubbles on the inputs to the AND gate, we
know that i = 5 in Figure 9. Hence, only the fifth 4-bit
subword s5 is enabled onto dj. The other fifteen 4-bit
subwords from rs similarly connected to dj are not
enabled onto dj.

We now discuss the hardware cost of this
implementation. The example cell is replicated 16 times
for each of the 16 4-bit subwords of rd, so the total
number of cells in the reduced crossbar is 16⋅16 = 256.
On average, there are two negation bubbles on the inputs
to the AND gate per cell, so the average number of
transistors per cell is 16. Since there are 256 cells in the
crossbar, the total transistor count is 4096. Furthermore,
the number of vertical tracks is roughly the number of bits
in rs, 64, and the number of horizontal tracks is the
number of bits in rd plus the number of bits in rp, 128.
The critical path of this circuit is at most the sum of the
propagation delays of a 4-input AND gate, an inverter, an
n-type transistor, a horizontal track, and a vertical track.
Assuming the delays through the wires are not extremely
high, we contend that the Selection Unit can complete an
swperm instruction in a single cycle. In a deeply
pipelined processor, however, the propagation delays
through wires could force multiple-cycle execution of
swperm instructions.

Figure 10 shows a 4-bit slice of the Filter Unit, which
supports the sieve instruction. We can implement each
4-bit slice of the Filter Unit using four 1-bit 5-to-1
multiplexers. Using the implementation illustrated in
Figure 10, however, we can reduce the transistor count
without increasing the critical path length. The slice in the
figure is replicated 16 times, once for each 4-bit subword
in rd. The variable si,j represents the jth bit of the ith

subword of rs; the variable di,j represents the jth bit of the
ith subword of rd. Each 4-bit slice requires two 1-bit 2-
to-1 multiplexers and four 1-bit 4-to-1 multiplexers. In
addition, the ith subword slice includes a set of signals to
control these multiplexers: Ai, Bi, Ci, Di, Ei, and Fi. These
signals are defined in Figure 11, where pk is the kth bit of
rp, and h, f2, f1, and f0 are function code bits.

We can implement a 2-to-1 multiplexer using 4
transistors, and we can implement a 4-to-1 multiplexer
using only 7 transistors each since the two lowest inputs
are hard-wired to zeroes. Using buffers to reduce the fan-
out of the function code bits and logic optimization
techniques to reduce the transistor count, each 4-bit
subword slice requires 116 transistors. The total number
of transistors required for the 16 4-bit subword slices of
the Filter Unit is 1856. All the data and control for each
4-bit subword slice in the Filter Unit is local, so no long

Figure 10. 4-bit slice of the Filter Unit

si

2

di,3 di,2 di,1 di,0

 si,3 si,2 si,1 si,0

Ai Bi

0 0
 Di

0 0
 Ei

0 0
 Fi

2 2 2

di

0 0
 Ci

Ai = Bi = (h ⋅ p4i+3) + (¬h ⋅ p4i+1)
Ci,1 = f1 ⋅ (f2 + f0) Di,1 = f1 ⋅ (f2 + ¬f0)

Ei,1 = ¬f1 ⋅ (f2 + f0) Fi,1 = ¬f1 ⋅ (f2 + ¬f0)
Ci,0 = Ei,0 = (¬f2 ⋅ ((h ⋅ p4i+2) + (¬h ⋅ p4i))) + f2

Di,0 = Fi,0 = (¬f2 ⋅ ((h ⋅ p4i+2) + (¬h ⋅ p4i)))
 Figure 11. Control signals in the Filter Unit

vertical or horizontal tracks are required. The critical path
in the Filter Unit is the sum of the propagation delays
through a 2-to-1 multiplexer, a 4-to-1 multiplexer, and the
logic required to compute Ai. Therefore, it is highly likely
that the Filter Unit can complete the execution of a
si eve instruction in a single cycle.

The total number of transistors needed to implement a
Permutation Unit, which consists of a Selection Unit and a
Filter Unit, is 5952. This transistor count is of the same
order of magnitude as that required to construct a simple
64-bit CMOS ripple-carry adder [17]. The total numbers
of long horizontal and vertical tracks are 128 and 64,
respectively. We compare the hardware cost of the
Permutation Unit to past work in Table 2. Due to the
imprecision of the track metric, we compare numbers of
tracks using O(⋅) notation in terms of the number of bits in
a register, n. When considering both transistor count and
wire area, we argue that the Permutation Unit is as
efficient as a VLSI implementation of the omf l i p
instruction. The Permutation Unit requires nearly twice
as many transistors as an omf l i p implementation, but it
potentially consumes much less wire area due to constants
hidden by the O(⋅) notation. The Permutation Unit also
requires significantly fewer transistors and tracks than a
crossbar network.

Table 2. Hardware cost comparison

Implementation Hor izontal

Tracks
Ver tical
Tracks

Transistor
Count

Permutation Unit
(swper m/ si eve) O(n) O(n) 5952

Omega-flip Network
(omf l i p) [18]

O(n) O(n) 3072

Crossbar Network
[18]

O(n) O(n log n) > 73,728

5. Permutation Per formance

 Table 3 summarizes the number of instructions,
cycles and registers required to complete arbitrary
permutations of different-sized subwords packed into a
64-bit register. For subword sizes of 4 bits or larger, only
one swper m instruction and two registers are needed to
complete an arbitrary 64-bit permutation with repetitions.
Using both si eve and swper m, arbitrary 64-bit
permutations with repetitions of 2-bit and 1-bit subwords
require 5 and 11 instructions, respectively. In past work,
Yang and Lee demonstrated that the omf l i p instruction
could be used to complete 64-bit permutations without
repetitions using 5 and 6 instructions, respectively [18].
These omf l i p instruction sequences must be executed
serially, however. Therefore, even on an ultra-wide
superscalar processor, a 64-bit permutation of 1-bit
subwords without repetitions requires 6 cycles using the
omf l i p instruction.

In cryptographic algorithms, operations performed on
intermediate values are highly serialized. Therefore, the
superscalar execution of the instructions involved in a
permutation plays a major role in performance. The
instruction sequences presented in this paper that employ
si eve and swper m are highly parallelizable. True data
dependencies do not exist between any of the swper m
instructions or between any of the si eve instructions
listed in Figure 8. Hence, the performance of an arbitrary
64-bit permutation with repetitions using these
instructions may be limited by the issue width of the
processor. On a 4-way superscalar processor,
permutations of 1-bit and 2-bit subwords can be
completed in as few as 4 and 3 cycles, respectively. Note
that the performance improvement provided by si eve
and swper m over existing methods on 2-way and 4-way
superscalar processors requires 2 or 4 Permutation Units.

Table 4. Permutation performance comparison

 Maximum # of instructions # of cycles for 4-way superscalar
 Instruction(s) used to

 per form a 64-bit permutation Subword
Size

32
bits

16
bits

8
bits

4
bits

2
bits

1
bit

32
bits

16
bits

8
bits

4
bits

2
bits

1
bit

si eve/ swper m 1 1 1 1 5 11 1 1 1 1 3 4
pper m3r [14] 8 8 8 8 8 8 4 4 4 4 4 4

omf l i p [18], cr oss [19], and gr p [14] 1 2 3 4 5 6 1 2 3 4 5 6
Existing ISAs 1 1 1 23 23 23 1 1 1 10 10 10

Table 3. Performance of 64-bit permutations using si eve and swper m

Subword
size

Maximum # of
instructions required

Minimum # of cycles
for single-issue

Minimum # of cycles
for 2-way superscalar

Minimum # of cycles
for 4-way superscalar

Maximum # of
registers required

32 bits 1 1 1 1 2
16 bits 1 1 1 1 2
8 bits 1 1 1 1 2
4 bits 1 1 1 1 2
2 bits 5 5 3 3 5
1 bit 11 11 6 4 10

Methods that employ cross, grp, and omflip only
require 1 unit to achieve the cycle counts listed in Table 3.

We compare the performance of sieve and
swperm to past work in Table 4. The table lists the
number of instructions and cycles required by the different
methods to complete a 64-bit permutation (such as the
Initial Permutation in DES [10]). The bit values in the
heading of the table indicate the size of the subwords to be
permuted within a 64-bit word. We determine the cycle
counts using a simulation of a 4-way superscalar
processor with 4 integer execution units and a single
load/store unit. The Existing ISAs row indicates the
minimum number of instructions in conventional ISAs
required to perform a 64-bit permutation using 8 lookup
tables or existing permutation instructions.

If the pperm3r instruction is restricted to reading 2
registers rather than 3, 64-bit permutations require 15
instructions rather than 8 [9]. Furthermore, if 3 register
reads per instruction are permitted, sieve can be
trivially modified to reduce the total number of
instructions required to perform permutations of 1-bit and
2-bit subwords by nearly a factor of 2. Other than
sieve/swperm, only the pperm3r instruction is
capable of completing permutations with repetitions; the
omflip, cross and grp instructions only perform
permutations without repetitions. Also, sieve and
swperm do not scale as efficiently as grp in permuting
values larger than 64 bits that are stored in multiple 64-bit
registers. We observe that sieve and swperm perform
as well as or better than all previously proposed
permutation instructions and existing ISAs with the
exception of the number of instructions required to
complete a 64-bit permutation using 1-bit subwords.

6. Conclusion

 In this paper, we proposed two 64-bit instructions for
accelerating the performance of subword permutations
with repetitions: swperm and sieve. Using these two
instructions, we can complete 64-bit permutations with
repetitions of 4-bit or larger subwords in 1 instruction. In
addition, we can achieve permutations with repetitions of
1-bit and 2-bit subwords using 11 instructions and 5
instructions, respectively. These instructions are highly
parallelizable, and a 4-way superscalar processor can
execute these two instruction sequences in 4 cycles and 3
cycles, respectively. We also described hardware that
efficiently implements swperm and sieve and can
execute both instructions in a single cycle.

Using these instructions, cryptographers can design
ciphers and hash algorithms that obtain a desirable level
of diffusion more rapidly. As a result, less encryption
rounds may be required to achieve adequate security, and
the throughput of encryption algorithms could be

significantly improved. Future work includes
investigating the degree to which permutations with and
without repetitions contribute to the security of a cipher.

References

[1] M. Artin, Algebra, Upper Saddle River, NJ: Prentice-Hall,
Inc., 1991.
[2] E. Biham, R. Anderson and L. Knudsen, “Serpent: A New
Block Cipher Proposal,” Proceedings of the 5th International
Workshop on Fast Software Encryption, Springer-Verlag, pp.
260-271, 1998.
[3] K. Diefendorff, et al., “AltiVec Extension to PowerPC
Accelerates Media Processing,” IEEE Micro, vol. 20, no. 2, pp.
85-95, March/April 2000.
[4] Intel Corporation, IA-64 Application Developer's
Architecture Guide, Intel Corporation, 1999.
[5] R. Lee, “Accelerating Multimedia with Enhanced
Microprocessors,” IEEE Micro, vol. 15, no. 2, pp. 22-32, April
1995.
[6] R. Lee, “Multimedia Extensions for General-purpose
Processors,” Proceedings of the IEEE Workshop on Signal
Processing Systems: Design and Implementation, pp. 9-23,
November 1997.
[7] R. Lee, “Precision Architecture,” IEEE Computer, vol. 22,
no. 1, pp. 78-91, January 1989.
[8] R. Lee, “Subword Parallelism with MAX-2,” IEEE Micro,
vol. 16, no. 4, pp. 51-59, August 1996.
[9] R. Lee, Z. Shi and X. Yang, “Efficient Permutation
Instructions for Fast Software Cryptography,” Princeton
University Department of Electrical Engineering Technical
Report no. CE-L01-001, 2001.
[10] National Bureau of Standards, “Data Encryption Standard,”
NBS FIPS Publication 46, January 1977.
[11] A. Peleg and U. Weiser, “MMX Technology Extension to
the Intel Architecture,” IEEE Micro, vol. 16, no. 4, pp. 42-50,
August 1996.
[12] B. Schneier, Applied Cryptography, 2nd ed., New York,
NY: John Wiley & Sons, Inc., 1996.
[13] B. Schneier, et al., The Twofish Encryption Algorithm: A
128-bit Block Cipher, John Wiley & Sons, 1999.
[14] Z. Shi and R. Lee, “Bit Permutation Instructions for
Accelerating Software Cryptography,” Proceedings of the IEEE
International Conference on Application-specific Systems,
Architectures and Processors, pp. 80-86, July 2000.
[15] D. Stinson, Cryptography: Theory and Practice, Boca
Raton, FL: CRC Press, LLC, 1995.
[16] M. Tremblay, et al., “VIS Speeds New Media Processing,”
IEEE Micro, vol. 16, no. 4, pp. 10-20, August 1996.
[17] N. Weste and K. Eshraghian, Principles of CMOS VLSI
Design: A Systems Perspective, 2nd ed., Reading, Massachusetts:
Addison-Wesley, 1993.
[18] X. Yang and R. Lee, “Fast Subword Permutation
Instructions Using Omega and Flip Network Stages,”
Proceedings of the International Conference on Computer
Design, pp. 15-22, September 2000.
[19] X. Yang, M. Vachharajani and R. Lee, “Fast Subword
Permutation Instructions Based on Butterfly Networks,”
Proceedings of SPIE: Media Processors 2000, vol. 3970, pp.
80-86, January 2000.

