IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003 325

Architectural Technigues for Accelerating
Subword Permutations With Repetitions

John P. McGregor and Ruby B. Leeellow, IEEE

~ Abstract—We propose two new instructions, swperm and use permutations to achieve diffusion [21], a critical character-
sieve , that can be used to efficiently complete an arbitrary jstic of a secure cipher, in symmetric-key encryption algorithms
bit-level permutation of an n-bit word with or without repetitions. such as DES [14], Twofish [19], and Serpent [2]. Some permu-

Permutations with repetitions are rearrangements of an ordered tati . t hic algorith t bilecti For i
set in which elements may replace other elements in the set; ations In Cryptographic algorithms are not byections. For in-

such permutations are useful in cryptographic algorithms. On a Stance, the expansion permutation in DES maps some bits in
four-way superscalar processor, we can complete an arbitrary the source datum to multiple destinations in the result datum.

64-bit permutation with repetitions of 1-bit subwords in 11 \We define such rearrangements of an ordered set in which el-

instructions and only four cycles using the two proposed instruc- - e ents can be replicated and possibly replace other elements
tions. For subwords of size 4 bits or greater, we can perform an .

arbitrary permutation with repetitions of a 64-bit register in a in th_e set J_[O be permutgtlon§ with re_p_etltlons. If no |nfo_rma_1-
single cycle using a singleswperm instruction. This improves tion is lost in a permutation with repetitions, the permutation is

upon previous results by requiring fewer instructions to permute invertible and therefore can be used in any cryptographic algo-
4-bit or larger subwords packed in a 64-bit register and fewer ex- rithm. Even if information is lost, cryptographic hash functions

ecution cycles for 1-bit subwords on wide superscalar processors. and encryption algorithms based upon Feistel networks can still
We also demonstrate that we can accelerate the performance of h . i
employ permutations with repetitions [18].

the popular DES block cipher using the proposed instructions.
We obtain a DES performance improvement of at least 55% in
constrained embedded environments and an improvement of 71% A. Past Work
on a four-way superscalar processor when applying DES as a Several methods exist for performing permutations in soft-
cryptographic hash function. L .

ware. In one method, individual bits of the source datum are
selected and shifted to their destination locations using a series
of bitwise AND, bitwise OR, and shift instructions [12]. For an
arbitrary permutation of the bits in a#bit word, this proce-
dure requires as many as #hstructions. If the architecture in-
. INTRODUCTION cludes instructions such axtract anddeposit [9], one

S THE POPULARITY of security applications grows,can reduce the instruction count of this procedureritpy2t this
A the underlying cryptographic algorithms consume amethod is still unacceptably slow.
increasingly large percentage of processor workloads. Thesé\lternatively, we can employ lookup tables to perform per-
applications often include several operations involving 1-putations with repetitions in software [12]. First, we divide the
or multiple-bit register subwords. Many microprocessdt-Pit source datum inta: groups of bits; we use each group to
instruction set architectures have been extended to inclUBE€x & unique lookup table. The output of a lookup table repre-
subword-parallel integer arithmetic instructions that improy@ents the input group of bits permuted per the desired permuta-
performance by executing several operations on low-precisipn- The bits of the table output that do not represent any of the
data in parallel. Some of these extensions include MAX [#JPut bits are set to zeroes. Therefore, we can combine the out-
and MAX-2 [10] for HP PA-RISC, VIS [22] for Sun SPARC, Puts of thex lookup tables usingz — 1) bitwise OR or bitwise
AltiVec [5] for PowerPC, 3 DNow! by AMD [15], MMX [16] XOR operations to generate the desir_ed permmmixit res_ult.
for Intel IA-32, and 1A-64 multimedia instructions [6], [11]. In general, assuming theextract instruction is available,
Before performing subword arithmetic operations, it may B¥€ require(3z — 1) instructions to complete amrbit permuta-
necessary to rearrange the subwords within a single registefi§f usingz lookup tables. Each of thelookup tables consists
between multiple registers using subword permutation instru@-2 /) entries, and each entryiisbits in size, so the total size
tions. In addition, we can employ subword permutations to efff the tables ignz) - 2(*/*) bits. This technique is commonly
ciently perform transformations such as matrix transposition #$€d but is unattractive because the permutations must be stat-

multimedia applications [8]. Certain cryptographic aIgorithm§a”y encoded in the tables at compile-time. Furthermore, the
space required to store the lookup tables is large for acceptably
. . . _ mall permutation instruction sequences. For example, we need
Manuscript received May 22, 2002; revised October 3, 2002. This wo
was supported in part by the National Science Foundation under Gr. t'_VIB of storage to permUte' a 6_4'b|t datum in 11 'nStrUC“O.nS
CCR-0105677 and by Hewlett Packard Laboratories. using four lookup tables. With eight lookup tables, we require
The authors are with the Department of Electrical Engineering, Princetqig kB of storage and 23 instructions to permute a 64-bit value.
University, Princeton, NJ 08540 USA (email: mcgregor@ee.princeton.edu;
rblee@ee princeton.edu). Multiple instruction set architectures have been amended

Digital Object Identifier 10.1109/TVLSI.2003.812318 to include instructions for permutations of 8-bit or larger

Index Terms—Cryptography, encryption, instruction set archi-
tecture, permutation, permutation instruction, processor architec-
ture, subword parallelism, subword permutation.

1063-8210/03%$17.00 © 2003 IEEE

326 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

subwords. Theermute instruction in the MAX-2 extension to rapidly achieve a desired level of diffusion in future ciphers.
to PA-RISC supports permutations with and without repetitionss a result, the proposed instructions could greatly improve the
of 16-bit subwords in a 64-bit word by statically encodingverall throughput of cryptographic algorithms.

the permutation function in the instruction [10]. In IA-64, the In Section I, we discuss the mathematics of permutations and
mux instruction supports a small set of permutations of 8-bitefine two new instructions. We demonstrate how to apply these
subwords in a 64-bit word and supports all permutations ofstructions to achieve arbitrary subword permutations with rep-
16-bit subwords in a 64-bit word [6]. Similar fpermute in etitions in Section Ill. In Section IV, we present the hardware re-
MAX-2, the permutation function is statically encoded in thguired to implement the two new instructions. In Section V, we
mux instruction at compile-time. Theperm instruction in the analyze the performance of permutations for differently sized
AltiVec extension to the PowerPC instruction set architectuseibwords, and we evaluate the performance improvement ef-
permutes the 8-bit subwords of a 128-bit vector register [Fected by the proposed permutation instructions for a highly
This instruction requires three 128-bit register reads and opepular symmetric-key encryption algorithm. We summarize in
128-bit register write, and the permutation function is encod&kction VI.

in one of the vector source registers. None of the permutation

instructions in popular popular instruction set architectures [I. PERMUTATION INSTRUCTIONS

(ISAs) efficiently support arbitrary permutations of 4-bit or

smaller subwords. We propose two new instructions to efficiently support per-

Recently, researchers have proposed several instructigﬁ%tat'ons with repetitions of 1-bit or multiple-bit subwords:

for performing arbitrary, dynamically specified permutationg\’vp?rm and3|e_ve [13]. U_smg th_ese 'nSt.rL.JC“O”S’ we can dy-
of 1-bit or larger subwords. Using theperm instruction namically specify permutations with repetitions during program

. : . . execution rather than force the permutations to be statically en-
we can complete an arbitrary permutationsofbits with or

without repetitions inO(log =) instructions [12], [20]. The coded at compile-time.
xbox instruction performsn-bit permutations in a similar . . o
fashion [4]. We can conduct a 64-bit permutation by executiﬁag‘;' Permutations With Repetitions
8 pperm or xbox or instructions followed by 7 bitwis®or A permutation is a rearrangement of the elements in an or-
or OR instructions to combine the results. Thieox and dered set, i.e., a bijective map from a seto itself [1]. In
pperm instructions essentially dynamically configure anéhe context of this paper, such a set is not a collection of all
invoke ann-by-n crossbar without requiring the processor t®0ssiblen-bit words; we are concerned with ordered sets that
maintain any additional state information. Amending an ISAre column vectors of-bit subwords. We define a surjective
by requiring additional state variables would be undesirablé:€., one-to-many) map from an ordered seto another or-
such changes require explicit operating system (OS) suppdered seD—where the cardinality of equals that ofD—to
and increase the complexity of context switches and interrupp§& apermutation with repetitionsn other words, a permuta-
Also, the number Ofpperm or xbox instructions that we tion with repetitions can map an element in the sourceSget
need to complete an arbitrary permutation does not decreas@#fiple elements in the destination sBt whereas a permu-
subword size increases (and the total number of subwordstagon without repetitions cannot map an elementito more
permute decreases). than one element il. For example, ifS is the two-subword

Using thegrp instruction, we can complete an arbitrarycolumn vector(a, b)”, there exist two possible permutations of
permutation without repetitions @fbit subwords packed in an S, (a,b)" and(b,)™, butthere exist four possible permutations
n-bit word in log,(n/b) instructions [12], [20]. The hardware With repetitions ofS : (a,b)", (b,a)", (a,a)", (b,b)". We can
needed to support thgrp instruction is expensive, however.encode a permutation with repetitions by specifying the source
Thecross instruction employs a Benes network to completglement inS that is mapped to a particular destination element
an arbitrary permutation without repetitions usihg, (n./b) in D for all of the elements itD. If the permutation is arbitrary,
instructions [12], [26]. Themflip instruction improves upon the following expression describes the minimum number of bits
the cross instruction by using more efficient hardware tdeeded to encode a permutation with repetitions
complete arbitrary permutations without repetitions in the same DIl
number of instructions [12], [25]. Althouglgrp , cross , i
and omfli i ion wi 2 loga IS

p can perform an arbitrary permutation without P
repetitions of 1-bit subwords quickly, these instructions cannot
efficiently perform permutations with repetitions. In this paper, we examine permutations with repetitions of
b-bit subwords packed in am-bit source register that we write

B. Outline to b-bit subwords of am-bit destination register. HencgsS|| is

In this paper, we describe two instructions that accelerate ffguivalentto the number of bits in the source registedjvided
performance of subword permutations with repetitions. Sin&¥ the subword size), and||D]| is the number of bits in the
the development of DES, cryptographers have often avoid@@Stination register;, divided by the subword sizé, We can
permutations of 1-bit subwords because general-purpose midfdVrite the expression as follows:
processors cannot complete these operations quickly. By adding | pj £

. . .) n n n
our proposed instructions to general-purpose ISAs, cryptogra Z log, 18] = Zlogz (Z) -2 10g, (3) . @)
=1 =1

)

phers can employ bit permutations with and without repetitions

MCGREGOR AND LEE: ARCHITECTURAL TECHNIQUES FOR ACCELERATING SUBWORD PERMUTATIONS WITH REPETITIONS 327

TABLE | More specifically, the instruction directs 1 (or 2 bits) from each
MiNIMUM NUMBER OF BITS NEEDED TO SPECIFY AN 4-bit subword ofrs to 4 (or 2) possible locations in the corre-
ARBITRARY PERMUTATION WITH REPETITIONS-
sponding 4-bit subword afd . Thesieve instruction utilizes
Subword Number of Number of bits to encode a a third. registe.rrp , to configure the bit filter, Whereas thsav-
size subwords per 64-bit 64-bit permutation with perm instruction operates globally over the 4-bit subwords of
- register repetitions rs ,thesieve instruction operates locally within the 4-bit sub-
32 bits 2 subwords 2 bits words ofrs . In combination with theswperm instruction, we
186;_”‘5 ‘; S“E‘”‘”gs 8 bits can employ theieve instruction to implement arbitrary per-
s Subwores 24 bits mutations of 1-bit or 2-bit subwords. The instruction format for
4 bits 16 subwords 64 bits sieve is as follows:
2 bits 32 subwords 160 bits ’
1 bit 64 subwords 384 bits

sieve,h,f rd,rs,rp.

We assume that all registers are 64—bits wide; therefore n equahe 4-bit function code ofieve consists of a 1-bit valueh
64. Table | summarizes the minimum number of bits neededt®), and a 3-bit valuef (ff1 fo)
specify an arbitrary 64-bit permutation with repetitions when Fig. 2 illustrates two example operations of tieve in-
using subword sizes ranging from 1 32 bits. struction on theth 4-bit subword ofs . In the figure,s; ; rep-
RISC instructions typically allow two register reads and ongsents theth bit of theith subword ofts , andd;_; represents
register write per instruction. We wish to design instructiorﬁ;,ejth bit of theith 4-bit subword ofd . Thesieve instruc-
that allow us to dynamically specify permutations at run-timgion operates in one of two modes: “1-bit mode” enables permu-
so we use one of the 64-bit source registess, to store the tations of 1-bit subwords, and “2-bit mode” facilitates permuta-
information to be permuted, and we use the other 64-bit soufgghs of 2-bit subwords. In 1-bit mode, the instruction directs
register,rp , to store information concerning the permutatiogne of the 4 bits in théth subword offs to one of the 4 bits of
function. For subwords of size greater than or equal to 4 bitge jth subword ofrd ; the instruction sets the remaining 3 bits
we require at most 64 bits of information to specify the enting the jth subword ofrd to 0. Similarly, in 2-bit modesieve
permutation. Hence, we can describe the entire permutation igigects either the leftmost (i.e., most significant) two bits or the
single instruction. Since we can specify 64 more configuratigiyhtmost (i.e., least significant) 2 bits of thih 4-bit subword
bits with each additional permutation instruction, permutatioRs rs to either the left half or the right half of thi¢h 4-bit sub-

of 32 2-bit subwords require at least three RISC instructiongord of rd . The instruction sets the remaining two bits of the
and permutations of 64 1-bit subwords require at least six RIS subword ofrd to O.

instructions. _) ____Bitsfromrp and the function code bit specify which 1-bit
In the rest of this paper, we use the term “permutation” tg 2-pit subword that the instruction selects from ftte sub-
mean a permutation with repetitions. word of rs . In 1-bit mode, 1 bit from every 4-bit subword of

rs is selected and passedrtb. Hence, there exist 4 possible
selection operations pes subword, so we need 2 bits to en-
The swperm instruction permutes the 16 4-bit subwords o¢ode the selection operation for each subword. Since a 64-bit
a 64-bit source registes according to information stored in aregister consists of 16 4-bit subwords, we need a total of 32
64-bit source registap . The instruction writes the permutedbits to encode the selection operations for all 16 subwords. We
result to the 64-bit destination registed . The information store these 32 bits in the registgr. To minimize the number of
stored inrp fully describes the desired permutation, so one canemory access instructions that we potentially need to load the
specify the permutation function dynamically. The instructiopit selection information into registers, we use one 64-bit reg-
format of swperm is as follows: ister to store the 32 bits of selection information for tsieve
instructions. The function code bit indicates whether to use
the most significant or least significant 2-bit half of each 4-bit
We designed this instruction to permute subwords of size 4 bifs subword to perform thes bit selection. In 2-bit mode, we
or greater in a single cycle and to expedite permutations of 1-bitly require 1 bit (rather than 2 bits) of selection information
and 2-bit subwords. per 4-bitrs subword. Hence, we encode andh as described
Fig. 1 illustrates an example operation ssperm. In the above, but the even bits g are ignored.
figure, s; is theith 4-bit aligned subword of the source register Fig. 3 illustrates which bits ofd receive bits ofrs given
rs . We express the contents gf necessary to complete thedifferent values of the three function code bftsf, fo. In the
example permutation in hexadecimal. The value ofithel-bit figure, the boxes containing 64 blocks represent the 64-bit reg-
subword inrp indicates which aligned 4-bit subword in theisterrd . The gray blocks represent bits that receive bits from
source register should be mapped to ttie4-bit subword in s ; the white blocks represent the bitsrdf that we set to ze-
the destination register. roes. f» indicates whether to use 1-bit or 2-bit mode. Bfit,
of the function code indicate which bit of each 4-hit sub-
word receives a selected bit fram in 1-bit mode. For example,
We use thesieve instruction to “filter” bits fromrs and whenf; f, = 00, only the zeroth bit of each 4-hitl subword
then direct the resulting bits into particular destinationsdin receives a bit fromms . In 2-bit mode,f is ignored, andf; in-

B. Theswperm Instruction

swperm rd,rs,Trp

C. Thesieve Instruction

328 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

TS s sulsis s]sulsw] so | ss | s [s [ss[sa s3[sa[si]so

Y Y
rd [[53]Sz [Su [515 [S0 [59 [58 | 57 [50 | 56] S0 | S0 | S0 | S0 | So |

rp | F[DfJC|B|JFJ]AJO9[8]7]JoJ6eJOoOJoJOJOoOTO]

Fig. 1. Example operation of th@vperm instruction.

throughr4 to store intermediate values. For 2-bit subwords,

rs
Lo Dsiafsiolsig [sio] e andr2 store intermediate values, arl throughr5 store con-
figuration information.
@) 0 0 0 To complete a permutation of 1-bit subwords, we first per-
l l form four permutations of 4-bit subwords usissgperm. Upon
rd [o [dia[diz|dis[dig] o= | completion of these four instructions, the subwords in registers

rl,r2,r3,andrd will contain the zeroth, first, second, and
third bits of the corresponding subwords of the desired permuted
result, respectively. For example, after execution of thedinst
perm instruction, 1 of the 4 bits contained in tit subword of
r2 will ultimately be placed in bit position 1 of thi#h subword
(b) 0 0 of the desired permuted result. Likewise, following the execu-
tion of the secondwperm instruction, 1 of the 4 bits stored in
theith subword ofr3 will eventually be placed in bit position
2 of theith subword of the desired permuted result.
. The foursieve instructions (in 1-bit mode) move 1 bit from
Eﬂ%;fr'mf; ample aperation of tateve instruiction. (a) In 1-bit macle. (b) In every 4-bit subword ofl throughr4 to either the zeroth, first,
second or third bit positions of the corresponding subwords in
dicates which 2-bit half of each 4-tid subword receives se- the destination registers. Upon completion of gieve in-
lected bits fronrs . structions, the desired permuted result is distributed across four
To summarize, theieve instruction selects a single bit or64-bit registers. The 16 bits in the zeroth position of each 4-bit
an aligned pair of bits from each of the 16 4-bit subwords of ttf/oword inrl are the bits that belong in the zeroth position of
source registers , butsieve only maps these selected pit€ach subword in t_he deS|_red_resuIt._ We set_ the remaining 48 bits
to the destination registed in one of six possible ways, asof rl to zeroes Wlth the flrs_$_|eve instruction. Similarly, the
shown in Fig. 3. Fig. 4 illustrates a complete example operatidHfS located in the first positions of the 4-b2 subwords, the
of thesieve instruction in 1-bit mode. For each of the regisS€c0nd positions of the 4-m8 subwords, and the third posi-
ters, the least significant bit is located on the right end of tHi9nS of the 4-bir4 subwords belong in the first, second, and
box representing the register. The gray blocks inrthendrd third positions of the c_orrespondlng sul_)wordg ofthe Qeswed per-
boxes indicate which bits are selected and the locations whapdted result, respectively. The last theseve instructions set
the selected bits are placed, respectively. The 64-bit valuedh§ bits inr2, r3 , andr4 that do not correspond to bits of the
therp box specify the contents of the configuration regisper de€sired result to zeroes. The top four 64-block boxes in Fig. 3
required to complete the exampiieve operation. The right illustrate this distribution of bits in4 , r3, r2, andrl . We

2-bit halves of each 4-bit subword gf possess values of xx collect the results of the fowgieve instructions into a single
i.e., “don't care”, becausk equals 1. register by performing 3 bitwiseor (or bitwiseoR) operations.

Following the completion of theor instructionsy1 will con-
lIl. APPLYING THE INSTRUCTIONS tain the 64-bit permuted result.

))) To permute 32 2-bit subwords packed into a 64-bit register,
A. Permuting 1-Bit and 2-Bit Subwords we use the same method but fewer instructions, as shown in
Using swperm andsieve , we can complete an arbitraryFig. 5(b). The last two rows in Fig. 3 show how the 64-bits of
permutation of 64 1-bit subwords with 11 instructions as shovthe desired permuted result are distributed over the two regis-

in Fig. 5(a). We can perform an arbitrary permutation of 32 2-biérsr2 andrl after thesieve instructions complete. We can
subwords with five instructions as shown in Fig. 5(b). In bothombine these two registers into the final 64-bit permuted result
cases, we initially store the 64-bit value to be permuted.in by performing a singleor (or a singleor) instruction.

upon completionrl will contain the desired permuted result. We assume that the registers used to store configuration infor-
For 1-bit subwordst5 throughrl0 store configuration infor- mation are loaded with the appropriate data prior to the execu-
mation for theswperm andsieve instructions, and we ugé tion of these code segments. This preloading may require 6 or 3

rsl,

| Si3] Sio | Si1 | Si0 | .

AR
rd [, [dis|dia|diy|dipg] o |

MCGREGOR AND LEE: ARCHITECTURAL TECHNIQUES FOR ACCELERATING SUBWORD PERMUTATIONS WITH REPETITIONS 329

A T T TE T T T E T T T T I T eI T T eI T eIl
ffifo=011

[ﬂll.lI“IjllmllIII"T'T_.ﬁlc}!oiol.ll-llmllﬂll—.lll:[l

CHENHEN NEE EEN ENE EEECEEECEEE EENCEEN AEENEE EEEC EEECNEN N
fofifo =001

OETTEITE T T I TEH I T T T W TEI e E e (W EmIrEirm
Lofifo =000

rp o] 1fx[x[1[1]x[x[1]ox[x[tTolx[x1T1]x[x]o[o[x[x 1ol x[x[o[T TxIx[ofox[x[1 T 1[x[x[1]olx[x[o[1 [x]x[1]olx]x[o[ox[x[o[o[x[x[0]O[x]x]

h=1 ffifo=011

Fig. 4. Complete example operationsiéve .
swperm gﬁ;g zgzg ﬁ ﬁ:i sary to conduct the permutation, the following instruction com-
sxem cd.rl.z7 sieve, 0,100 rl.rl.rs pletes a permutation of 4-bit subwords in a single cycle:
swperm rl,rl,r8 sieve,1,110 1r2,r2,r5
sieve,0,000 rl,rl,r9 xor rl,rl,r2 swperm rl,ril, r2.
sieve,1,001 r2,r2,r9
sieve,0,010 r3,r3,rl0 Theswperm instruction stores the desired permuted resultin
sieves 1,011 ;‘i'ﬁ'go rl . One can also complete 64-bit permutations of 8-bit, 16-bit,
X ' '
xor £3.73.74 and 32-bit subwords by executing a sing¥eperm instruction.
xor rl,rl,r3 We can divide 8-bit or larger subwords into 4-bit subwords, and

it is easy to translate a permutation encoding for 8-bit or larger

Fig. 5. Assembly code for performing 64-bit permutations. (a) For 1-bj ; ; i
subwords, (b) For 2-bit subwords. iug\t/v;:%\s/v :;tgsa permutation encoding usablestyperm for

memory load instructions for permutations of 1-bit or 2-bit sub. Configuration Information Generation

words, respectively. Cryptographic algorithms often employ the e gescribe an efficient and simple algorithm that runs in

same fixed permutation in every encryption or hash round, how-(n) time, wheren is the number of bits in a register, which

ever. One can usually perform a round without spilling any reg,j,ces the configuration information necessary to complete
ISters to memory, so one could load the 6 or 3 permutation cafly arbitrary 64-bit permutation. Choosing the appropriate in-
figuration values into general-purpose registers once before g, ions to use, as described above, is a trivial operation that
E?recutlon ?f thousands of rcl)unﬁs required to enup?ek: 0: hastly depends on the subword size. Generating the configuration
llobytes of data. As a result, the amortized cost of the l0adgyisiers for these instructions is a more complicated process,
would be negligible. Alternatively, these configuration registets . over. We present source code that produces the permutation

may be intermediate encrypt!on or hash results; therefore, &9nfiguration information when provided with a simple descrip-
memory loads would be required. tion of the desired permutation.

i) The C functionGenPerminfo , displayed in Fig. 6, gen-
B. Permuting 4-Bit or Larger Subwords erates thep values for thesieve andswperm instructions
We can perform a permutation of 4-bit or larger subwordavolved in a 64-bit permutation. In Fig. 664 is a type
using a singleswperm instruction. An example of a 64-bit per-declaration for a 64-bit unsigned integer (i.ensigned
mutation of 4-bit subwords is illustrated in Fig. 1. Given aredong long). The function accepts three inputsigma ,
isterrl that stores a 64-bit value to be permuted and a 64-Bigma_size , andinverse . sigma is an array of integers
registerr2 that contains the configuration information neceswith sigma_size elementssigma_size must be a power

330

void GenPermInfo (i64 sigmal[], 164 sigma_size,
i64 swperm_rpl[], i64 sieve_rpl[],
i64 inverse) {
i64 j,k,limit,subword_size,sigma2[64];
subword_size = 64/sigma_size;
for (j=0;3j<4;j++) swperm_rp[jl=sieve_rp[j>>1]=0;
if (inverse==1) {
for (j=0;j<sigma_size;j++) sigma2([sigmaljll=3j;
sigma = sigma2; }
if (subword_size == 1) {
/* For permutations of 64 1l-bit subwords */
for (j=0;3j<64;j++) {

swperm_rp [j&0x3] |= (sigmal[j]l>>2)

<< (j&0x3C);
sieve_rp[(j>>1)&0x1] |= (sigma[j]&0x3)
<< ((J&0x3C)+((j&0x1)<<1)); } }
else if (subword_size == 2) {

/* For permutations of 32 2-bit subwords */
for (3=0;3<32;3++) {
swperm_rp[j&0x1] |= (sigma[j]l>>1)
<< ((j&0x1E)<<1);
sieve_rp([0] |= (sigmaljl&l)
<< (1+(j<<1)); } }
else /* (subword_size >= 4) */ {
/* For permutations of 16 4-bit, 8 8-bit,
4 16-bit, or 2 32-bit subwords */
limit = subword_size/4;
for (j=0;j<sigma_size;j++)
for (k=0;k<limit;k++)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

extracts the two least significant bits from all of the elements
of sigma]] and writes those bits to appropriate locations
in sieve_rp[0] andsieve_rp[1l] . The algorithm also

extracts the four most significant bits from each 6-bit element

of sigma[] and places those bits in certain locations in the
elements ofswperm_rp[] . Observe thatsigma_size
andinverse are the only input variables upon which the

destination locations of the bits extracted frosigmal]
depend.

Performing a bijective permutation usingwperm and
sieve requires the same number of instructions as completing
its inverse using these instructions. Therefore, the size of
the GenPerminfo output is independent of the value of
inverse . For 64-bit permutations of 1-bit subwordSen-
Perminfo outputs six 64-bitrp values for 4swperm and
4 sieve instructions. For 2-bit subwordszenPerminfo
outputs three 64-bitp values for 2swperm and 2sieve
instructions. In addition, if the subword size is 4 bits or greater,
the function generates a single 64-hjit value for a single
swperm instruction.

Inspection of the function reveals that the maximum number
of steps is a constant multiplied by the number of bits in a reg-

swperm_rp[0] |= (sigmal[j]*limit+k)

ister,n. Hence, the running time of the algorithm@xn). For
<< ((J*limit+k)<<2); } }

the sieve andswperm instructions presented in this paper,
n = 64.
Fig. 6. C source code for configuration data generation.

D. Permuting Large Values

of 2 and less than 128. The contents of the array, which areThe techniques presented above involve arbitrary permuta-
specified by the programmer, represent the desired permutatimms of a 64-bit word with 1-bit or larger subwords. It may
of a 64-bit register. The array elemesigmali] indicates be desirable, however, to complete an arbitrary permutation of
which subword from the source register should be directd@8-bit, 256-bit, or larger words that are distributed across mul-
to thei th subword in the permuted result. The number diple 64-bit registers. We describe a method of applying the
subwords therefore equagma_size , and the size of each swperm and sieve instructions to complete such arbitrary
subword (in bits) equals 64 divided lsjgma_size permutations of large words. Let be the size of the large word
In some situations, it may be desirable to generate confign-bits. Letm be a multiple of 64, and = m/64. Therefore,
ration information required bgwperm andsieve to perform we havex 64-bit blocks in the initial large word and 64-bit
the inverse of a given permutation. If the valueroferse is1 blocks in the destination (permuted) large word. Each ofithe
and the permutation specified Bigma[] is a bijection (and blocks of the initial word can contribute O to 64 bits to each of
therefore the permutation is invertiblegenPerminfo pro- thexz blocks of the destination word.
duces the configuration information required to conduct the in- We perform a large word permutation as follows. For each
verse of the permutation specified figma[] . The algorithm block in the initial word, we perform: 64-bit permutations,
generates this information by first quickly computing the inene for each block in the destination word. After each 64-bit
verse of the provided permutation. Th&enPerminfo pro- permutation, we perform a bitwigeND operation on the 64-bit
duces configuration information for the inverse permutation lpermuted result and a 64-bit mask. The mask corresponding to
performing the same procedure used to generate configuratéoparticular 64-bit initial block and 64-bit destination block pair
information for a regular (i.e., uninverted) permutation. contains a 1 in bit positiom if and only if a bit from the ini-
GenPerminfo outputs two integer arrayswperm_rp|[] tial block should be mapped to bit positiemn the destination
andsieve rp[] . Upon completion of th&senPerminfo block. Since we require one mask for each 64-bit initial block
routine, these two arrays contain the appropriate values of tred 64-bit destination block pair, at masgt unique masks will
rp registers required by theeve andswperm instruction(s) be required to conduct the permutation. Upon completing all
to complete the desired permutation. The algorithm operatgisthe 64-bit permutations and masking operations for a single
by simply extracting bits from the elements efgma]] 64-bit destination block, the 64-bit results are collected into
and placing them in prespecified destination locations &n64-bit destination block by performir(@: — 1) bitwise XOR
swperm_rp[] andsieve rp[] . Forinstance, suppose weoperations.
wish to generate configuration information for a permutation of We present a block diagram that conceptually illustrates the
64 1-bit subwords. In this cassigma_size equals 64. Each operations needed to complete an arbitrary permutation with
element okigma[] is an integer between 0 and 63, inclusiverepetitions of a 128-bit word in Fig. 7. In the figure, t6é-bit
SO we require 6 bits to encode each elem@@nPerminfo Perm objects include the instructions required to complete an

MCGREGOR AND LEE: ARCHITECTURAL TECHNIQUES FOR ACCELERATING SUBWORD PERMUTATIONS WITH REPETITIONS 331
Initial Large Word S1 S 516
64 bits 64 bits | —A
p1, d ™

.—Q:é = dj

P2 d; oo q‘ q‘ T

. . . I : P DP »P
podo H Fe T y
@

(b)

Fig. 8. Hardware implementation of the Selection Unit. (a) High-level
organization. (b) Example of a selection unit cell.

Fig. 8(b). Hence, ipp; = 5, only the fifth 4-bit subwordss, is
[eabis | o6dbis | enabled ontd,. The other 15 4-bit subwords frora similarly
connected ta/; are not enabled ontd; whenp; equals 5.
We now discuss the hardware cost of this implementation in
Fig. 7. Permutation with repetitions of a 128-bit word. terms of transistor and track counts. Since we need 16 cells for
each of the 16 4-bit subwords o , the total number of cells
]])) _in the reduced crossbar i$ - 16 = 256. On average, there
arbitrary permutan_n of a 64-bit word. Dependm_g on the siz& two negation bubbles on the inputs toAle gate per cell,
of the subwords, this code sequence may consist of 11, 5, the average number of transistors per cell is 16. These 16
1 instruction(s), as described above. We assume that the inifjahsistors include eight transistors to implement a 4-inpit
large word, the masks, and the configuration information for the,e four transistors to implement two inverters, and four n-type
sieve andswperm instructions have been previously loadegansistors controlled by the output of theo gate. The reduced
into registers. Hence, if is the number of instructions needed. osshar consists of 256 cells, so the total transistor count is

to perform an arbitrary permutation of a 64-bit word, the t0t3lngg Note that this count does not include any buffers that we
number of instructions required to complete a permutation Ofrﬁ‘ay potentially need to drive the long wires.

128-bit word isly +6. In general, for alarge word of size > \ye define a track to be a wire routing lane that is reserved

128, the maximum number of instructions required to complefg, connections between different cells. The number of vertical
an arbitrary permutation i (y+1)+a(z—1) = yz°+22°—2. gacksis roughly the number of bits is , 64, and the number
When using 4-bit subwords, permutations of 128-bitand 256-Wf 1, rizontal tracks is the number of bitsrid plus the number
words require at most 10 instructions and 44 instructions, & its inrp , 128. The critical path latency of this circuit is the
spectively. To permute 128 1-bit subwords stored in two 64-Qiie needed for a signal to traverse two long wires (that each
registers, we require 50 instructions. span the width of 16 selection unit cells) plus the logic delay
through a single selection unit cell. This is at most the sum of
the propagation delays of two long wires, a 4-inpnb gate, an
inverter, and an n-type transistor. Assuming the delays through
We now describe the CMOS hardware implementation for thiee wires are not extremely high, the selection unit can complete
swperm andsieve instructions. First, we present the selecanswperm instruction in a single cycle. In a deeply pipelined
tion unit, which enables the execution of th&perm instruc- processor, however, the propagation delays through wires could
tion. We can implement the selection unit by building a 4-bforce multiple-cycle execution awperm instructions.
16-to-1 multiplexer for every 4-bit subword nd . Such a de- We present a block diagram of the filter unit, which supports
sign is extremely expensive in hardware, however. Using a teesieve instruction, in Fig. 9(a). Each rectangle represents a
duced crossbar, we can greatly decrease the transistor and wingle 4-bit slice, and we can implement a 4-bit slice with four
cost. The reduced crossbar only requires 1 decoder for everyltbit 5-to-1 multiplexers. Each of these multiplexers simply se-
intersections betweas andrd tracks as opposed to 1 decodefect the bit value “0” or 1 of 4 input bits from a 4-bit subword
for each intersection in a full crossbar. of rs ; the multiplexer output is directed to a single bit in the
A high-level representation of the reduced crossbar is illuserresponding 4-bit subword odl . Using the 4-bit slice struc-
trated in Fig. 8(a)s; is theith 4-bit subword ofs , d; is thejth ture illustrated in Fig. 9(b), however, we can reduce the tran-
4-bit subword ofrd , andp; is thejth 4-bit subword ofp . A sistor count without increasing the critical path latency by elim-
rectangle represents a single cell, and we present an exampleinaling redundant logic operations. We replicate the slice shown
in Fig. 8(b). Each cell consists of a 4-inpatid gate, 4 n-type in Fig. 9(b) 16 times, once for each 4-bit subwordéh. The
transistors, and 0, 1, 2, 3, or 4 inverters. Recall thastygerm variables; ; represents thgth bit of theith subword ofrs ; the
instruction directs the, to d; if and only if p; equalsi. In the variabled; ; represents thgth bit of theith subword ofrd .
example cell, the leftmost and bottommost wires are the mdsach 4-bit slice requires two 1-bit 2-to-1 multiplexers and four
significant bits of the subwords. From inspecting the negatidnbit 4-to-1 multiplexers. In addition, thi#h subword slice in-
bubbles on the inputs to thieud gate, we know that = 5 in cludes a set of signals to control these multiplexdrs:B;, C;,

Permuted Large Word

IV. HARDWARE IMPLEMENTATION

332

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL.

11, NO. 3, JUNE 2003

St pr S2 p2 53 p3 ceoe S16 P16 TABLE I
h] | |] | | HARDWARE COST COMPARISON
S TIIV YV Y Yv e
l | | | I] LN) Implementation Horizontal Vertical Transistor
+ + * tracks tracks count
d; d, ds XX dis Permutation Unit
(swperm/sieve) O(m) o) ~6000
(@) Omega-flip net
‘("gf; I ‘)‘e[;";’]’k O(n) O(n) ~3100
St p1 S2 P2 S3 p3 cee S16 Pl6 P
| | | |] | Crossbar network
3 A o o s e e s e . —ﬁ l [25]) O(mlogn) | >73728
[. [| . | | .] eee | |
d, d, ds oo dye TABLE Il ‘
PERFORMANCE OF64-BIT PERMUTATIONS USING Sieve AND swperm
(b) —
Fid.9. Hard ol o ofthe il it (@) High-level o Subword | Max. # of Minimum # of cycles Max. # of
ig.9. Hardware implementation of the filter unit. (a) High-level organization size instructions [7.1 ~ P registers
(b) Structure of a 4-bit slice. l-issue | 2-issue | 4-issue g
32 bits 1 1 1 1 2
16 bits 1 1 2
A;=B;=(h- psixs) + (=h- psiv1) 3 bits N 1 N 1 >
Ca=fi-(b+fo) Dia=fi-+—f) 4 bits 1 1 1 1 2
Ea=—fi-(h+f) Fu=—h +—f) 2 bits 5 5 3 3 5
Cio=Eio=(—f2- (h- psis2) + (=h- pa)) + o 1 bit 11 11 6 4 10

Doy =Fig=(—f - (h* psis2) + (=h- p4)))

permutation unit also requires significantly fewer transistors and

Fig. 10. Control signals in the filter unit.
tracks than a crossbar network.

D;, E;, andF;. We define these signals in Fig. 10, wheyeis
thekth bit of rp , andh, f5, f1, andfy are function code bits.) .
We can implement a 2-to-1 multiplexer using four transistoré; 64-Bit Permutation Performance
and we can implement a 4-to-1 multiplexer using only sevenTable Ill summarizes the number of instructions, cycles,
transistors each since the two lowest bit inputs are always zexd registers required to complete arbitrary permutations of
roes. Using buffers to reduce the fan-out of the function codkfferent-sized subwords packed into a 64-bit register. For
bits and logic optimization techniques to reduce the transistibword sizes of 4 bits or larger, we only need smgerm
count, each 4-bit subword slice requires 116 transistors. Tiétruction and two registers to complete an arbitrary 64-bit
total number of transistors required for the 16 4-bit subwoiRErmutation with repetitions. Using bosfeve andswperm,
slices of the filter unit is 1856. Nearly all of the data and cor@rbitrary 64-bit permutations with repetitions of 2-bit and
trol for each 4-bit subword slice in the filter unit is local, so wel-Pit subwords require 5 and 11 instructions, respectively.
do not require many long vertical or horizontal tracks. We onl? Past work, Yang and Lee demonstrated that dheflip
need four horizontal tracks for thesfeve function code bits, nStruction could be used to complete 64-bit permutations
The critical path latency in the filter unit is at most the sum gyithout repetitions using five and six instructions, respectively

the propagation delays through a horizontal wire (that spans {ﬁé] Theseomflip _ instruction sequences must be executed

width of 16 4-bit slices), a 2-to-1 multiplexer, a 4-to-1 multi_serlally, however. Therefore, even on an ultra-wide superscalar

plexer, and the logic required to computle. Therefore, it is processor, a 6.4'bit _permutation of .1'bit. subwqrds without
highly likely that the filter unit can complete the execution of éepetltlons requires six cycles usioglip mstructpns.
Superscalar execution can accelerate permutations that em-

sieve _instruction in a smg_le cycle. . loy sieve andswperm, however. True data dependencies do
The total number of transistors needed to mplementapernﬁgt exist between any of th@vperm instructions or between
tation unit, which consists of a selection unit and a filter unit, i

.’ dny of thesieve instructions listed in Fig. 5. Hence, a mul-
5952. This transistor count is of the same order of magnituggia_issye processor can improve the performance of an arbi-

as that required to construct a simple 64-bit CMOS ripple-cargy,; 64-bjt permutation that employs the proposed instructions
adder [23]. We compare the hardware cost of the permutatigh eyecuting certain instructions in parallel. On a four-way su-
unit to past work in Table II. Due to the imprecision of thyerscalar processor, we can complete permutations of 1-bit and
track metric, we compare numbers of tracks usingotation 2_pjt subwords in as few as four and three cycles, respectively.
in terms of the number of bits in a register,When considering For 1-bit subwords, the gwperm instructions can be executed
both transistor count and wire area, it appears that the perffiiparallel in a single cycle, and thesteve instructions can be
tation unit is nearly as efficient as a very large scale integratieecuted in parallel in the following cycle. Thex8r instruc-
(VLSI) implementation of themflip instruction. The permu- tions must be executed in two cycles following the completion
tation unit requires nearly twice as many transistors asmn of thesieve instructions due to data dependencies.

flip implementation, but it potentially consumes only half as We compare the performancesiéve andswperm to past
much wire area due to constants hidden bydheotation. The work in Table IV. The table lists the number of instructions and

V. PERFORMANCE

MCGREGOR AND LEE: ARCHITECTURAL TECHNIQUES FOR ACCELERATING SUBWORD PERMUTATIONS WITH REPETITIONS 333

TABLE IV
PERMUTATION PERFORMANCE COMPARISON

Instruction(s) used to Maximum # of instructions per subword size Number of cycles for 4-way superscalar

perform a 64-bit permutation | Subword | 32 16 8 4 2 1 32 16 8 4 2 1
Size bits bits bits bits bits bit bits bits bits bits bits bit

sieve/swperm 1 1 1 1 5 11 1 1 1 1 3 4

pperm [12] and xbox [4] 15 15 15 15 15 15 5 5 5 5 5 5

omflip [25], cross [26], and grp [20] 1 2 3 4 5 6 1 2 3 4 5 6
Existing ISAs 1 1 >1 23 23 23 1 1 >1 10 10 10

cycles required by the different methods to complete a 64-dbung’s libdes [27]. We compile the implementation for the
permutation and to write the result to a single 64-bit registé4-bit Alpha ISA (augmented with the proposed permutation
The bit values in the heading of the table indicate the size of thestructions) using gcc with the -O2 optimization flag. To
subwords to be permuted within a 64-bit word. We determinmprove the performance of the block cipher, we apply our
the cycle counts using a simulation of a 4-way superscalar ppermutation instructions to four permutation operations within
cessor with four integer execution units and a single load/stdd&S: the initial permutation (IP), the final permutation (FP),
unit. the P-box permutation (PP), and the compression permutation

TheExisting ISAgow indicates the minimum number of in-(CP). Most software implementations of DES complete these
structions in conventional ISAs required to perform a 64-bit pepermutations using a series of table lookup operations. We
mutation using eight lookup tables or existing permutation irseek to increase performance by replacing these table lookup
structions. Note that instructions in existing ISAs that permutgerations with our permutation instructions.
8-hit subwords are generally limited to performing a small set of For processors with small and simple caches, we can achieve
predefined permutations. Also, the instruction counts listed farsignificant speedup for the P-box permutation. In our baseline
permutations of 4-bit and smaller subwords using existing ISAsftware implementation, the P-box permutation is built into
are only achievable if the permutation is statically encoded fhe lookup tables used to complete operations known as S-box
lookup tables. The cycle counts listed in Table IV were obtainesibstitutions. Performing the P-box permutation using our
using a perfect data cache model with a single-cycle accessgesposed instructions allows us to decrease the size of the S-box
tency. If the data cache were small or initially cold, howevelgokup tables and consequently reduce cache misses. Also,
table lookup operations could require many additional cyclestioe compression permutation in the round key computation
complete due to cache misses. Hence, the cycle counts in filnvection can consume a large percentage of the total clock
Existing ISAsow could be much larger in certain scenarios. cycles involved in a DES operation. By accelerating the com-

Other thansieve/swperm , only the pperm instruction pression permutation using the new permutation instructions,
can efficiently complete bit-level permutations with repetitiongve can greatly improve performance in some scenarios, which
Theomflip , cross andgrp instructions only perform per- we describe below. We can also accelerate the performance of
mutations without repetitions. Howeverpss ,omflip ,and the IP and the FP, although these permutations only account
grp can be applied to any register sizethat is a power of 2, for a small percentage of the computation required per DES
whereaswperm andsieve are only defined fon = 64. operation.

For 64-bit permutations, we observe tlsitve andsw- We use the SimpleScalar superscalar processor simulator [3]
perm perform as well as or better than all previously proposdd obtain cycle-accurate performance statistics concerning the
permutation instructions and existing ISAs with the exception ékecution of DES. We perform simulations for four different
the number of instructions required to complete a 64-bit permprocessor configurations, which range from a typical embedded
tation using 1-bit subwords. Note that the performance improverocessor found in low-power wireless information appliances
ment provided bysieve andswperm over existing methods to a wide superscalar processor used in high-end servers. The
on 2-way and 4-way superscalar processors requires 2 or 4 gewr microarchitectural configurations consist of a single-issue
mutation units, respectively. Methods that emptoyss ,grp , Processor core with small cache, a 2-issue superscalar processor,
andomflip only require 1 unit to achieve the cycle count@ 4-issue superscalar processor, and an 8-issue superscalar pro-
listed in Table IV. cessor. For each model, the fetch, decode, and commit widths
equal the issue width. Also, the number of ALUs equals the
issue width, and we assume that each ALU contains a permuta-
tion unit. In Table V, we summarize the memory system param-

We now demonstrate the degree to which our permutatieters used in the SimpleScalar simulations. The L2 latency for
instructions can improve the performance of a highly popul#inie 2-way processor is larger than those of the 4-way and 8-way
symmetric-key block cipher, the Data Encryption Standamtocessors because we model the 2-way superscalar’s Level 2
(DES) [14]. A large number of secure communicationgache (L2) as being off-die Rather than modify the C compiler
banking, and storage protocols employ DES (and its mote identify and utilize our permutation instructions, we strate-
secure variant, 3DES) to provide services such as data cgically insert standard RISC integer ALU instructions that rep-
fidentiality and data integrity. We begin with an optimized Gesent our permutation instructions into the DES source code.
implementation of the DES algorithm that is based upon Erithe DES implementation that uses these special integer ALU

B. Performance Improvement for DES

334 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

TABLE V
—_— |- —_— D —— 4 - —— 8-
SIMULATION MEMORY PARAMETERS | 1-way 2-way 4-way 8 way]
Processor model 3
Parameter
1-issue 2-issue 4-issue 8-issue 25
Memory ports 1 1 2 2 a \
L/S queue size 4 16 32 64] 2
1-way 1-way 2-way 2-way 3 \
L1 data cache 2 KB 8 KB 16 KB 32 KB % 1.5 4
. 1-way 1-way 2-way 2-way
L1 inst. cache 2 KB 8 KB 16 KB 32 KB 1 *
L2 cache none 122_ SWI:)],S 2:_%55 2:_6“}:;3 0.5 T r T T T T T
L1/L2 latency - 1120 /5 /5 0 32 64 96 128 160 192 224 256
Memory latency 50 50 100 100 Number of input bytes per

round key computation (Z)

instructions maintains the same instruction-level control depernd- 11. DES speedups for IP/FP/CP optimization.
dence and data dependence structure as that of a DES imple-
mentation that employs the proposed permutation instructiodgcreases as the number of input bytes per round key computa-
We carefully choose the special ALU instructions such that thien increases. Consequently, the CP performance acceleration
compiler does not eliminate or combine any of those instrucaused by the permutation instructions becomes less significant.
tions during code optimization. In addition, we modify the Sim- We obtain different results when we complete all DES permu-
pleScalar simulator to recognize the special integer ALU inations of interest, i.e., the IP, FP, CP, and PP, usiage and
structions and treat them as permutation instructions. swperm. For a single-issue processor with a small cache, we
We obtain performance data by simulating the execution athieve a speedup of 3.71 whars 8. As the number of input
DES for 8 kB input data blocks after allowing the caches sulbytes per round key computation increases, the speedup falls to
ficient time to warm up. The input size is not a critical simulal.55. The single-issue processor experiences a much larger per-
tion parameter, however; we find that once the caches are wafarmance improvement for all values 4fin the IP/FP/CP/PP
the performance speedup results are independent of the inmptimization case than in the IP/FP/CP case due to memory
data size. The speedups effected by the proposed permutatigstem behavior. When the PP is built into the S-box lookup
instructions are presented in Fig. 11. The graph illustrates tables, the amount of memory required to store the tables and
speedups associated with each processor configuration for ditermediate values exceeds the size of the single-issue pro-
ferent numbers of input bytes per round key computation. Foessor's data cache. As a result, performance suffers due to
example, data points associated with the number 32 on the Hoegquent cache misses. By implementing the PP using the pro-
izontal axis of the figure corresponds to 8 kB inputs in whichosed permutation instructions, the number of cache misses ex-
the round key computation is performed one time for each 32@rienced by the single-issue processor is greatly reduced, and
block of the input. We use the varialffeto represent the numbertherefore performance is significantly enhanced.
of input bytes per round key computation. The wider processors do not suffer many cache misses be-
Although, the simulation results are independent of the totehuse their caches easily accommodate the S-box lookup tables.
input size, the results are heavily dependent on the valug of Consequently, reducing the size of the lookup tables by imple-
The round key computation must be performed at least onwenting the PP with permutation instructions does not improve
for each unique key used to complete DES operations. Wheerformance for any value of. We achieve the highest per-
DES is used for encryption, a single key is often employed formance for 2-way and wider superscalar processors when we
encrypt all input data. As a result, we only need to perform tlanly use the permutation instructions to implement the IP, FP,
round key computation once during the encryption of an entieed CP.
input block. Z is therefore equal to the total input size in this We conclude that we should always employ the proposed
case. However, when DES (or any other block cipher) is usedgermutation instructions to perform the IP, FP, and CP in
implement a cryptographic hash function for digital signatureoftware implementations of DES. When using DES as a
and data integrity operations, a different key is often employedyptographic hash function, the performance impact of the
for each 8-byte input block, for the key is a function of the 8-bytproposed permutation instructions is substantial: we obtain
input block [17], [24]. Hence, we must perform the round kegpeedups ranging from 1.59-2.37. Software implementations of
computation once for every 8 B of input, goequals 8. DES should only use 1-bit permutation instructions to perform
Fig. 11 displays speedup results when we complete the fiRe PP if the target processor contains an extremely small or
FP, and CP (but not the PP) using the new permutation instrunmnexistent cache, however. This is often true for processors
tions. We attain speedups of 2.37 and 1.71 wHesguals 8 on found in smart cards and wireless information appliances. Such
a single-issue processor and a four-way superscalar procegs@cessors containing our permutation unit could achieve large
respectively. As the number of input bytes per round key compspeedups for DES encryption without incurring the cost and
tation increases, the speedups decrease to 1.11 or less, howpegrer consumption associated with the extra memory required
This occurs because the relative computational cost of the @ytable lookup schemes.

MCGREGOR AND LEE: ARCHITECTURAL TECHNIQUES FOR ACCELERATING SUBWORD PERMUTATIONS WITH REPETITIONS 335

VI. CONCLUSION [17] B. Preneel, Analysis and Design of Cryptographic Hash Func-
tions Leuven, Belgium: Katholieke Universiteit, Jan. 1993.

In this paper, we proposed two 64-bit instructions for accel{1s] B. SchneierApplied Cryptography2nd ed. New York: Wiley, 1996.
erating the performance of subword permutations with repetill9] B. Schneieet al, The Twofish Encryption Algorithm: A 128-bit Block

tions: swperm andsieve . Using these two instructions, we [

Cipher. Wiley, 1999.
20] Z.shiandR. B. Lee, “Bit permutation instructions for accelerating soft-

can complete 64-bit permutations with repetitions of 4-bit or ~ ware cryptography,” ifProc. IEEE Int. Conf. Application-Specific Syst.,
larger subwords in one instruction. In addition, we can achieve Architectures Processarduly 2000, pp. 80-86.

permutations with repetitions of 1-bit and 2-bit subwords usindﬂ]

D. Stinson,Cryptography: Theory and Practice Boca Raton, FL:
CRC, 1995.

11 instructions and five instructions, respectively. These instrug22] M. Tremblayet al, “VIS speeds new media processingEEE Micro,
tions are highly parallelizable, and a 4-way superscalar pro- vol. 16, pp. 10-20, Aug. 1996.

cessor can execute these two instruction sequences in four cy-

3] N. Weste and K. EshraghiaRrinciples of CMOS VLSI Design: A Sys-
tems Perspectivénd ed. Reading, MA: Addison-Wesley, 1993.

cles and three cycles, respectively. Furthermore, we can enp4] R. S. Winternitz, “Producing one-way hash functions from DES,” in
ploy the proposed instructions to improve the performance of Proc. CRYPTO '83 Advances Cryptolod84, pp. 203-207.

the popular DES block cipher, especially in constrained envil

25] X. Yang and R. B. Lee, “Fast subword permutation instructions using
omega and flip network stages,” Proc. Int. Conf. Comput. Design

ronments with small cache memories. We also described effi- sept. 2000, pp. 15-22.
cient hardware that enables the single-cycle executiswef [26] X. Yang, M. Vachharajani, and R. Lee, “Fast subword permutation in-

perm andsieve

structions based on butterfly networks,”Bmoc. SPIE: Media Proces-
sors 20003970, Jan. 2000, pp. 80-86.

Using these instructions, cryptographers can design ciphe[s7] E. Young. (1997, Jan.) libdes. [Online]http://www.shmoo.com/crypto/
and hash algorithms that obtain a desirable level of diffusion
more rapidly. As a result, less encryption rounds may be

required to achieve adequate security, and the throughput
encryption algorithms could be significantly improved. Futur
work includes investigating the degree to which permutatiol
with and without repetitions contribute to the security of .
cipher.

(1]
(2]

(3]

[4]

(5]

(6]
(71

(8]

9]
(20]
[11]
(12]
(23]

[14]
[15]

[16]

John P. McGregor received the B.S. and M.S.
degrees in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA, in 1998,
and the M.A. degree in electrical engineering from
Princeton University, NJ, in 2000. He is currently
working toward the Ph.D. degree at Princeton
University.

His research interests include processor architec-
ture, cryptography, and computer security.

REFERENCES

M. Artin, Algebra Englewood Cliffs, NJ: Prentice-Hall, 1991.

E. Biham, R. Anderson, and L. Knudsen, “Serpent: a new block cipher

proposal,” inProc. 5th Int. Workshop Fast Software EncryptiorNew

York: Springer-Verlag, 1998, pp. 260-271. Ruby B. Lee (S'75-M'79-SM'01-F'02) received

D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0, the M.S. degree in computer science and the Ph.D.
Univ. Wisconsin-Madison Comput. Sci. Dept , Tech. Rep 1342, Jur degree in electrical engineering from Stanford
1997. University, Palo Alto, CA, and the A.B. degree from

J. Burke, J. McDonald, and T. Austin, “Architectural support for fas Cornell University, Ithaca, NY.

symmetric-key cryptography,” ifProc. ASPLOS-IXNov. 2000, pp. In 1998, she joined the faculty at Princeton Uni-
178-189. versity where she is currently the Forrest G. Hamrick
K. Diefendorffet al,, “AltiVec extension to PowerPC accelerates medig Professor of Engineering and Professor of Electrical
processing, 1EEE Micro, vol. 20, no. 2, pp. 85-95, Mar./Apr. 2000. Engineering. She also has an appointment in the De-
1A-64 Application Developer‘s Architecture Gui,detel Corp., 1999. partment of Computer Science’ and is the Director
R. B. Lee, “Accelerating multimedia with enhanced microprocessors;, of the Princeton Architecture Laboratory for Multi-
IEEE Micro, vol. 15, Apr. 22-32, 1995. media and Security (PALMS). Prior to joining Princeton University, she was a
—, “Multimedia extensions for general-purpose processorfat. Chief Architect at Hewlett-Packard (HP), responsible for processor architecture,
IEEE Workshop on Signal Processing Syst: Design and ImplementatigAultimedia architecture, and security architecture for e-commerce and extended

17

Nov. 1997, pp. 9-23. enterprises. She was a key architect in the initial definition and the evolution of
——, “Precision architecture [EEE Comput.vol. 22, pp. 78-91, Jan. the PA-RISC processor architecture used in HP servers and workstations. As
1989. Chief Architect for HP’s multimedia architecture team, she led an interdisci-
—, “Subword parallelism with MAX-2,"IEEE Micro, vol. 16, pp. plinary team focused on architecture to facilitate pervasive multimedia infor-
51-59, Aug. 1996. mation processing using general-purpose computers. She introduced innovative
R.B. Lee, A. M. Fiskiran, and A. Bubshait, “Multimedia instructions inmultimedia instruction-set architecture (MAX and MAX-2) in microprocessors,
IA-64," in Proc. Int. Conf. Multimedia ExpcAug. 2001. resulting in the industry’s first real-time, high fidelity MPEG video and audio

R.B. Lee, Z. Shi, and X. Yang, “Efficient permutation instructions fol|ayer, implemented in software on low-end desktop computers. She also co-led
fast software cryptography\EEE Micro, vol. 21, pp. 5669, Dec. 2001. an Intel-HP multimedia architectural team for 1A-64, recently released in Intel's

J. P.McGregor and R. B. Lee, "Architectural enhancements for fast suanjum microprocessors. While at HP, she also served as a Consulting Pro-
word permutations with repetitions in cryptographic applications,” ifessor in the Department of Electrical Engineering at Stanford University. She
Proc. 2001 Int. Conf. Comput. DesigBept. 2001, pp. 453-461. has been granted over 90 U.S. and international patents, with several patent ap-
National Bureau of Standards, Data Encryption Standard, Jan. 1977 plications pending. Her current research interests include designing security and
S. Oberman, G. Favor, and F. Weber, “AMD 3 DNow! technology: almew media support into core architecture.

chitecture and implementationdEEE Micro, vol. 19, pp. 37-48, Apr. Dr. Lee is a Fellow of ACM, a Member of IS&T, Phi Beta Kappa, and Alpha
1999. Lambda Delta. She has served on the editorial boards of IEEE Micro and Spec-

A. Peleg and U. Weiser, “MMX technology extension to the intel architrym magazines and as Program Chair or Committee Member for several IEEE
tecture,”IEEE Micro, vol. 16, pp. 42-50, Aug. 1996. conferences.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

