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Abstract—We propose two new instructions, swperm and
sieve , that can be used to efficiently complete an arbitrary
bit-level permutation of an -bit word with or without repetitions.
Permutations with repetitions are rearrangements of an ordered
set in which elements may replace other elements in the set;
such permutations are useful in cryptographic algorithms. On a
four-way superscalar processor, we can complete an arbitrary
64-bit permutation with repetitions of 1-bit subwords in 11
instructions and only four cycles using the two proposed instruc-
tions. For subwords of size 4 bits or greater, we can perform an
arbitrary permutation with repetitions of a 64-bit register in a
single cycle using a singleswperm instruction. This improves
upon previous results by requiring fewer instructions to permute
4-bit or larger subwords packed in a 64-bit register and fewer ex-
ecution cycles for 1-bit subwords on wide superscalar processors.
We also demonstrate that we can accelerate the performance of
the popular DES block cipher using the proposed instructions.
We obtain a DES performance improvement of at least 55% in
constrained embedded environments and an improvement of 71%
on a four-way superscalar processor when applying DES as a
cryptographic hash function.

Index Terms—Cryptography, encryption, instruction set archi-
tecture, permutation, permutation instruction, processor architec-
ture, subword parallelism, subword permutation.

I. INTRODUCTION

A S THE POPULARITY of security applications grows,
the underlying cryptographic algorithms consume an

increasingly large percentage of processor workloads. These
applications often include several operations involving 1-bit
or multiple-bit register subwords. Many microprocessor
instruction set architectures have been extended to include
subword-parallel integer arithmetic instructions that improve
performance by executing several operations on low-precision
data in parallel. Some of these extensions include MAX [7]
and MAX-2 [10] for HP PA-RISC, VIS [22] for Sun SPARC,
AltiVec [5] for PowerPC, 3 DNow! by AMD [15], MMX [16]
for Intel IA-32, and IA-64 multimedia instructions [6], [11].

Before performing subword arithmetic operations, it may be
necessary to rearrange the subwords within a single register or
between multiple registers using subword permutation instruc-
tions. In addition, we can employ subword permutations to effi-
ciently perform transformations such as matrix transposition in
multimedia applications [8]. Certain cryptographic algorithms
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use permutations to achieve diffusion [21], a critical character-
istic of a secure cipher, in symmetric-key encryption algorithms
such as DES [14], Twofish [19], and Serpent [2]. Some permu-
tations in cryptographic algorithms are not bijections. For in-
stance, the expansion permutation in DES maps some bits in
the source datum to multiple destinations in the result datum.
We define such rearrangements of an ordered set in which el-
ements can be replicated and possibly replace other elements
in the set to be permutations with repetitions. If no informa-
tion is lost in a permutation with repetitions, the permutation is
invertible and therefore can be used in any cryptographic algo-
rithm. Even if information is lost, cryptographic hash functions
and encryption algorithms based upon Feistel networks can still
employ permutations with repetitions [18].

A. Past Work

Several methods exist for performing permutations in soft-
ware. In one method, individual bits of the source datum are
selected and shifted to their destination locations using a series
of bitwise AND, bitwiseOR, and shift instructions [12]. For an
arbitrary permutation of the bits in an-bit word, this proce-
dure requires as many as 4instructions. If the architecture in-
cludes instructions such asextract anddeposit [9], one
can reduce the instruction count of this procedure to 2, yet this
method is still unacceptably slow.

Alternatively, we can employ lookup tables to perform per-
mutations with repetitions in software [12]. First, we divide the

-bit source datum into groups of bits; we use each group to
index a unique lookup table. The output of a lookup table repre-
sents the input group of bits permuted per the desired permuta-
tion. The bits of the table output that do not represent any of the
input bits are set to zeroes. Therefore, we can combine the out-
puts of the lookup tables using bitwiseOR or bitwise
XOR operations to generate the desired permuted-bit result.

In general, assuming theextract instruction is available,
we require instructions to complete an-bit permuta-
tion using lookup tables. Each of thelookup tables consists
of entries, and each entry isbits in size, so the total size
of the tables is bits. This technique is commonly
used but is unattractive because the permutations must be stat-
ically encoded in the tables at compile-time. Furthermore, the
space required to store the lookup tables is large for acceptably
small permutation instruction sequences. For example, we need
2 MB of storage to permute a 64-bit datum in 11 instructions
using four lookup tables. With eight lookup tables, we require
16 kB of storage and 23 instructions to permute a 64-bit value.

Multiple instruction set architectures have been amended
to include instructions for permutations of 8-bit or larger
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subwords. Thepermute instruction in the MAX-2 extension
to PA-RISC supports permutations with and without repetitions
of 16-bit subwords in a 64-bit word by statically encoding
the permutation function in the instruction [10]. In IA-64, the
mux instruction supports a small set of permutations of 8-bit
subwords in a 64-bit word and supports all permutations of
16-bit subwords in a 64-bit word [6]. Similar topermute in
MAX-2, the permutation function is statically encoded in the
mux instruction at compile-time. Thevperm instruction in the
AltiVec extension to the PowerPC instruction set architecture
permutes the 8-bit subwords of a 128-bit vector register [5].
This instruction requires three 128-bit register reads and one
128-bit register write, and the permutation function is encoded
in one of the vector source registers. None of the permutation
instructions in popular popular instruction set architectures
(ISAs) efficiently support arbitrary permutations of 4-bit or
smaller subwords.

Recently, researchers have proposed several instructions
for performing arbitrary, dynamically specified permutations
of 1-bit or larger subwords. Using thepperm instruction,
we can complete an arbitrary permutation ofbits with or
without repetitions in instructions [12], [20]. The
xbox instruction performs -bit permutations in a similar
fashion [4]. We can conduct a 64-bit permutation by executing
8 pperm or xbox or instructions followed by 7 bitwiseXOR

or OR instructions to combine the results. Thexbox and
pperm instructions essentially dynamically configure and
invoke an -by- crossbar without requiring the processor to
maintain any additional state information. Amending an ISA
by requiring additional state variables would be undesirable:
such changes require explicit operating system (OS) support
and increase the complexity of context switches and interrupts.
Also, the number ofpperm or xbox instructions that we
need to complete an arbitrary permutation does not decrease as
subword size increases (and the total number of subwords to
permute decreases).

Using thegrp instruction, we can complete an arbitrary
permutation without repetitions of-bit subwords packed in an

-bit word in instructions [12], [20]. The hardware
needed to support thegrp instruction is expensive, however.
Thecross instruction employs a Benes network to complete
an arbitrary permutation without repetitions using
instructions [12], [26]. Theomflip instruction improves upon
the cross instruction by using more efficient hardware to
complete arbitrary permutations without repetitions in the same
number of instructions [12], [25]. Althoughgrp , cross ,
and omflip can perform an arbitrary permutation without
repetitions of 1-bit subwords quickly, these instructions cannot
efficiently perform permutations with repetitions.

B. Outline

In this paper, we describe two instructions that accelerate the
performance of subword permutations with repetitions. Since
the development of DES, cryptographers have often avoided
permutations of 1-bit subwords because general-purpose micro-
processors cannot complete these operations quickly. By adding
our proposed instructions to general-purpose ISAs, cryptogra-
phers can employ bit permutations with and without repetitions

to rapidly achieve a desired level of diffusion in future ciphers.
As a result, the proposed instructions could greatly improve the
overall throughput of cryptographic algorithms.

In Section II, we discuss the mathematics of permutations and
define two new instructions. We demonstrate how to apply these
instructions to achieve arbitrary subword permutations with rep-
etitions in Section III. In Section IV, we present the hardware re-
quired to implement the two new instructions. In Section V, we
analyze the performance of permutations for differently sized
subwords, and we evaluate the performance improvement ef-
fected by the proposed permutation instructions for a highly
popular symmetric-key encryption algorithm. We summarize in
Section VI.

II. PERMUTATION INSTRUCTIONS

We propose two new instructions to efficiently support per-
mutations with repetitions of 1-bit or multiple-bit subwords:
swperm andsieve [13]. Using these instructions, we can dy-
namically specify permutations with repetitions during program
execution rather than force the permutations to be statically en-
coded at compile-time.

A. Permutations With Repetitions

A permutation is a rearrangement of the elements in an or-
dered set, i.e., a bijective map from a setto itself [1]. In
the context of this paper, such a set is not a collection of all
possible -bit words; we are concerned with ordered sets that
are column vectors of-bit subwords. We define a surjective
(i.e., one-to-many) map from an ordered setto another or-
dered set —where the cardinality of equals that of —to
be apermutation with repetitions. In other words, a permuta-
tion with repetitions can map an element in the source setto
multiple elements in the destination set, whereas a permu-
tation without repetitions cannot map an element into more
than one element in . For example, if is the two-subword
column vector , there exist two possible permutations of

, and , but there exist four possible permutations
with repetitions of . We can
encode a permutation with repetitions by specifying the source
element in that is mapped to a particular destination element
in for all of the elements in . If the permutation is arbitrary,
the following expression describes the minimum number of bits
needed to encode a permutation with repetitions

(1)

In this paper, we examine permutations with repetitions of
-bit subwords packed in an-bit source register that we write

to -bit subwords of an -bit destination register. Hence, is
equivalent to the number of bits in the source register,, divided
by the subword size,, and is the number of bits in the
destination register, , divided by the subword size,. We can
rewrite the expression as follows:

(2)
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TABLE I
MINIMUM NUMBER OF BITS NEEDED TO SPECIFY AN

ARBITRARY PERMUTATION WITH REPETITIONS

We assume that all registers are 64–bits wide; therefore n equals
64. Table I summarizes the minimum number of bits needed to
specify an arbitrary 64-bit permutation with repetitions when
using subword sizes ranging from 1 32 bits.

RISC instructions typically allow two register reads and one
register write per instruction. We wish to design instructions
that allow us to dynamically specify permutations at run-time,
so we use one of the 64-bit source registers,rs , to store the
information to be permuted, and we use the other 64-bit source
register,rp , to store information concerning the permutation
function. For subwords of size greater than or equal to 4 bits,
we require at most 64 bits of information to specify the entire
permutation. Hence, we can describe the entire permutation in a
single instruction. Since we can specify 64 more configuration
bits with each additional permutation instruction, permutations
of 32 2-bit subwords require at least three RISC instructions,
and permutations of 64 1-bit subwords require at least six RISC
instructions.

In the rest of this paper, we use the term “permutation” to
mean a permutation with repetitions.

B. Theswperm Instruction

Theswperm instruction permutes the 16 4-bit subwords of
a 64-bit source registerrs according to information stored in a
64-bit source registerrp . The instruction writes the permuted
result to the 64-bit destination registerrd . The information
stored inrp fully describes the desired permutation, so one can
specify the permutation function dynamically. The instruction
format ofswperm is as follows:

We designed this instruction to permute subwords of size 4 bits
or greater in a single cycle and to expedite permutations of 1-bit
and 2-bit subwords.

Fig. 1 illustrates an example operation ofswperm . In the
figure, is the th 4-bit aligned subword of the source register
rs . We express the contents ofrp necessary to complete the
example permutation in hexadecimal. The value of theth 4-bit
subword inrp indicates which aligned 4-bit subword in the
source register should be mapped to theth 4-bit subword in
the destination register.

C. Thesieve Instruction

We use thesieve instruction to “filter” bits from rs and
then direct the resulting bits into particular destinations inrd .

More specifically, the instruction directs 1 (or 2 bits) from each
4-bit subword ofrs to 4 (or 2) possible locations in the corre-
sponding 4-bit subword ofrd . Thesieve instruction utilizes
a third register,rp , to configure the bit filter, whereas thesw-
perm instruction operates globally over the 4-bit subwords of
rs , thesieve instruction operates locally within the 4-bit sub-
words ofrs . In combination with theswperm instruction, we
can employ thesieve instruction to implement arbitrary per-
mutations of 1-bit or 2-bit subwords. The instruction format for
sieve is as follows:

The 4-bit function code ofsieve consists of a 1-bit value,h
, and a 3-bit value,f

Fig. 2 illustrates two example operations of thesieve in-
struction on theth 4-bit subword ofrs . In the figure, rep-
resents theth bit of the th subword ofrs , and represents
the th bit of the th 4-bit subword ofrd . Thesieve instruc-
tion operates in one of two modes: “1-bit mode” enables permu-
tations of 1-bit subwords, and “2-bit mode” facilitates permuta-
tions of 2-bit subwords. In 1-bit mode, the instruction directs
one of the 4 bits in theth subword ofrs to one of the 4 bits of
the th subword ofrd ; the instruction sets the remaining 3 bits
in the th subword ofrd to 0. Similarly, in 2-bit mode,sieve
directs either the leftmost (i.e., most significant) two bits or the
rightmost (i.e., least significant) 2 bits of theth 4-bit subword
of rs to either the left half or the right half of theth 4-bit sub-
word of rd . The instruction sets the remaining two bits of the
th subword ofrd to 0.

Bits from rp and the function code bit specify which 1-bit
or 2-bit subword that the instruction selects from theth sub-
word of rs . In 1-bit mode, 1 bit from every 4-bit subword of
rs is selected and passed tord . Hence, there exist 4 possible
selection operations perrs subword, so we need 2 bits to en-
code the selection operation for each subword. Since a 64-bit
register consists of 16 4-bit subwords, we need a total of 32
bits to encode the selection operations for all 16 subwords. We
store these 32 bits in the registerrp . To minimize the number of
memory access instructions that we potentially need to load the
bit selection information into registers, we use one 64-bit reg-
ister to store the 32 bits of selection information for twosieve
instructions. The function code bit indicates whether to use
the most significant or least significant 2-bit half of each 4-bit
rp subword to perform thers bit selection. In 2-bit mode, we
only require 1 bit (rather than 2 bits) of selection information
per 4-bitrs subword. Hence, we encoderp and as described
above, but the even bits ofrp are ignored.

Fig. 3 illustrates which bits ofrd receive bits ofrs given
different values of the three function code bits . In the
figure, the boxes containing 64 blocks represent the 64-bit reg-
ister rd . The gray blocks represent bits that receive bits from
rs ; the white blocks represent the bits ofrd that we set to ze-
roes. indicates whether to use 1-bit or 2-bit mode. Bits
of the function code indicate which bit of each 4-bitrd sub-
word receives a selected bit fromrs in 1-bit mode. For example,
when , only the zeroth bit of each 4-bitrd subword
receives a bit fromrs . In 2-bit mode, is ignored, and in-
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Fig. 1. Example operation of theswperm instruction.

Fig. 2. Example operation of thesieve instruction. (a) In 1-bit mode. (b) In
2-bit mode.

dicates which 2-bit half of each 4-bitrd subword receives se-
lected bits fromrs .

To summarize, thesieve instruction selects a single bit or
an aligned pair of bits from each of the 16 4-bit subwords of the
source registerrs , but sieve only maps these selected bits
to the destination registerrd in one of six possible ways, as
shown in Fig. 3. Fig. 4 illustrates a complete example operation
of thesieve instruction in 1-bit mode. For each of the regis-
ters, the least significant bit is located on the right end of the
box representing the register. The gray blocks in thers andrd
boxes indicate which bits are selected and the locations where
the selected bits are placed, respectively. The 64-bit values in
therp box specify the contents of the configuration registerrp
required to complete the examplesieve operation. The right
2-bit halves of each 4-bit subword ofrp possess values of xx,
i.e., “don’t care”, because equals 1.

III. A PPLYING THE INSTRUCTIONS

A. Permuting 1-Bit and 2-Bit Subwords

Using swperm and sieve , we can complete an arbitrary
permutation of 64 1-bit subwords with 11 instructions as shown
in Fig. 5(a). We can perform an arbitrary permutation of 32 2-bit
subwords with five instructions as shown in Fig. 5(b). In both
cases, we initially store the 64-bit value to be permuted inr1 ;
upon completion,r1 will contain the desired permuted result.
For 1-bit subwords,r5 throughr10 store configuration infor-
mation for theswperm andsieve instructions, and we user1

throughr4 to store intermediate values. For 2-bit subwords,r1
andr2 store intermediate values, andr3 throughr5 store con-
figuration information.

To complete a permutation of 1-bit subwords, we first per-
form four permutations of 4-bit subwords usingswperm . Upon
completion of these four instructions, the subwords in registers
r1 , r2 , r3 , andr4 will contain the zeroth, first, second, and
third bits of the corresponding subwords of the desired permuted
result, respectively. For example, after execution of the firstsw-
perm instruction, 1 of the 4 bits contained in theth subword of
r2 will ultimately be placed in bit position 1 of theth subword
of the desired permuted result. Likewise, following the execu-
tion of the secondswperm instruction, 1 of the 4 bits stored in
the th subword ofr3 will eventually be placed in bit position
2 of the th subword of the desired permuted result.

The foursieve instructions (in 1-bit mode) move 1 bit from
every 4-bit subword ofr1 throughr4 to either the zeroth, first,
second or third bit positions of the corresponding subwords in
the destination registers. Upon completion of thesieve in-
structions, the desired permuted result is distributed across four
64-bit registers. The 16 bits in the zeroth position of each 4-bit
subword inr1 are the bits that belong in the zeroth position of
each subword in the desired result. We set the remaining 48 bits
of r1 to zeroes with the firstsieve instruction. Similarly, the
bits located in the first positions of the 4-bitr2 subwords, the
second positions of the 4-bitr3 subwords, and the third posi-
tions of the 4-bitr4 subwords belong in the first, second, and
third positions of the corresponding subwords of the desired per-
muted result, respectively. The last threesieve instructions set
the bits inr2 , r3 , andr4 that do not correspond to bits of the
desired result to zeroes. The top four 64-block boxes in Fig. 3
illustrate this distribution of bits inr4 , r3 , r2 , and r1 . We
collect the results of the foursieve instructions into a single
register by performing 3 bitwiseXOR (or bitwiseOR) operations.
Following the completion of thexor instructions,r1 will con-
tain the 64-bit permuted result.

To permute 32 2-bit subwords packed into a 64-bit register,
we use the same method but fewer instructions, as shown in
Fig. 5(b). The last two rows in Fig. 3 show how the 64-bits of
the desired permuted result are distributed over the two regis-
tersr2 andr1 after thesieve instructions complete. We can
combine these two registers into the final 64-bit permuted result
by performing a singlexor (or a singleor ) instruction.

We assume that the registers used to store configuration infor-
mation are loaded with the appropriate data prior to the execu-
tion of these code segments. This preloading may require 6 or 3
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Fig. 3. Effect ofsieve function code bits onrd .

Fig. 4. Complete example operation ofsieve .

Fig. 5. Assembly code for performing 64-bit permutations. (a) For 1-bit
subwords. (b) For 2-bit subwords.

memory load instructions for permutations of 1-bit or 2-bit sub-
words, respectively. Cryptographic algorithms often employ the
same fixed permutation in every encryption or hash round, how-
ever. One can usually perform a round without spilling any reg-
isters to memory, so one could load the 6 or 3 permutation con-
figuration values into general-purpose registers once before the
execution of thousands of rounds required to encipher or hash
kilobytes of data. As a result, the amortized cost of the loads
would be negligible. Alternatively, these configuration registers
may be intermediate encryption or hash results; therefore, no
memory loads would be required.

B. Permuting 4-Bit or Larger Subwords

We can perform a permutation of 4-bit or larger subwords
using a singleswperm instruction. An example of a 64-bit per-
mutation of 4-bit subwords is illustrated in Fig. 1. Given a reg-
ister r1 that stores a 64-bit value to be permuted and a 64-bit
registerr2 that contains the configuration information neces-

sary to conduct the permutation, the following instruction com-
pletes a permutation of 4-bit subwords in a single cycle:

Theswperm instruction stores the desired permuted result in
r1 . One can also complete 64-bit permutations of 8-bit, 16-bit,
and 32-bit subwords by executing a singleswperm instruction.
We can divide 8-bit or larger subwords into 4-bit subwords, and
it is easy to translate a permutation encoding for 8-bit or larger
subwords into a permutation encoding usable byswperm for
4-bit subwords.

C. Configuration Information Generation

We describe an efficient and simple algorithm that runs in
time, where is the number of bits in a register, which

produces the configuration information necessary to complete
an arbitrary 64-bit permutation. Choosing the appropriate in-
structions to use, as described above, is a trivial operation that
only depends on the subword size. Generating the configuration
registers for these instructions is a more complicated process,
however. We present source code that produces the permutation
configuration information when provided with a simple descrip-
tion of the desired permutation.

The C functionGenPermInfo , displayed in Fig. 6, gen-
erates therp values for thesieve andswperm instructions
involved in a 64-bit permutation. In Fig. 6,i64 is a type
declaration for a 64-bit unsigned integer (i.e.,unsigned
long long ). The function accepts three inputs:sigma ,
sigma_size , andinverse . sigma is an array of integers
with sigma_size elements;sigma_size must be a power
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Fig. 6. C source code for configuration data generation.

of 2 and less than 128. The contents of the array, which are
specified by the programmer, represent the desired permutation
of a 64-bit register. The array elementsigma[i] indicates
which subword from the source register should be directed
to the i th subword in the permuted result. The number of
subwords therefore equalssigma_size , and the size of each
subword (in bits) equals 64 divided bysigma_size .

In some situations, it may be desirable to generate configu-
ration information required byswperm andsieve to perform
the inverse of a given permutation. If the value ofinverse is 1
and the permutation specified bysigma[] is a bijection (and
therefore the permutation is invertible),GenPermInfo pro-
duces the configuration information required to conduct the in-
verse of the permutation specified bysigma[] . The algorithm
generates this information by first quickly computing the in-
verse of the provided permutation. Then,GenPermInfo pro-
duces configuration information for the inverse permutation by
performing the same procedure used to generate configuration
information for a regular (i.e., uninverted) permutation.

GenPermInfo outputs two integer arrays:swperm_rp[]
andsieve_rp[] . Upon completion of theGenPermInfo
routine, these two arrays contain the appropriate values of the
rp registers required by thesieve andswperm instruction(s)
to complete the desired permutation. The algorithm operates
by simply extracting bits from the elements ofsigma[]
and placing them in prespecified destination locations in
swperm_rp[] andsieve_rp[] . For instance, suppose we
wish to generate configuration information for a permutation of
64 1-bit subwords. In this case,sigma_size equals 64. Each
element ofsigma[] is an integer between 0 and 63, inclusive,
so we require 6 bits to encode each element.GenPermInfo

extracts the two least significant bits from all of the elements
of sigma[] and writes those bits to appropriate locations
in sieve_rp[0] and sieve_rp[1] . The algorithm also
extracts the four most significant bits from each 6-bit element
of sigma[] and places those bits in certain locations in the
elements ofswperm_rp[] . Observe thatsigma_size
and inverse are the only input variables upon which the
destination locations of the bits extracted fromsigma[]
depend.

Performing a bijective permutation usingswperm and
sieve requires the same number of instructions as completing
its inverse using these instructions. Therefore, the size of
the GenPermInfo output is independent of the value of
inverse . For 64-bit permutations of 1-bit subwords,Gen-
PermInfo outputs six 64-bitrp values for 4swperm and
4 sieve instructions. For 2-bit subwords,GenPermInfo
outputs three 64-bitrp values for 2swperm and 2sieve
instructions. In addition, if the subword size is 4 bits or greater,
the function generates a single 64-bitrp value for a single
swperm instruction.

Inspection of the function reveals that the maximum number
of steps is a constant multiplied by the number of bits in a reg-
ister, . Hence, the running time of the algorithm is . For
the sieve andswperm instructions presented in this paper,

.

D. Permuting Large Values

The techniques presented above involve arbitrary permuta-
tions of a 64-bit word with 1-bit or larger subwords. It may
be desirable, however, to complete an arbitrary permutation of
128-bit, 256-bit, or larger words that are distributed across mul-
tiple 64-bit registers. We describe a method of applying the
swperm and sieve instructions to complete such arbitrary
permutations of large words. Let be the size of the large word
in bits. Let be a multiple of 64, and . Therefore,
we have 64-bit blocks in the initial large word and 64-bit
blocks in the destination (permuted) large word. Each of the
blocks of the initial word can contribute 0 to 64 bits to each of
the blocks of the destination word.

We perform a large word permutation as follows. For each
block in the initial word, we perform 64-bit permutations,
one for each block in the destination word. After each 64-bit
permutation, we perform a bitwiseAND operation on the 64-bit
permuted result and a 64-bit mask. The mask corresponding to
a particular 64-bit initial block and 64-bit destination block pair
contains a 1 in bit position if and only if a bit from the ini-
tial block should be mapped to bit positionin the destination
block. Since we require one mask for each 64-bit initial block
and 64-bit destination block pair, at most unique masks will
be required to conduct the permutation. Upon completing all
of the 64-bit permutations and masking operations for a single
64-bit destination block, the 64-bit results are collected into
a 64-bit destination block by performing bitwise XOR

operations.
We present a block diagram that conceptually illustrates the

operations needed to complete an arbitrary permutation with
repetitions of a 128-bit word in Fig. 7. In the figure, the64-bit
Perm objects include the instructions required to complete an
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Fig. 7. Permutation with repetitions of a 128-bit word.

arbitrary permutation of a 64-bit word. Depending on the size
of the subwords, this code sequence may consist of 11, 5, or
1 instruction(s), as described above. We assume that the initial
large word, the masks, and the configuration information for the
sieve andswperm instructions have been previously loaded
into registers. Hence, if is the number of instructions needed
to perform an arbitrary permutation of a 64-bit word, the total
number of instructions required to complete a permutation of a
128-bit word is . In general, for a large word of size

, the maximum number of instructions required to complete
an arbitrary permutation is .
When using 4-bit subwords, permutations of 128-bit and 256-bit
words require at most 10 instructions and 44 instructions, re-
spectively. To permute 128 1-bit subwords stored in two 64-bit
registers, we require 50 instructions.

IV. HARDWARE IMPLEMENTATION

We now describe the CMOS hardware implementation for the
swperm andsieve instructions. First, we present the selec-
tion unit, which enables the execution of theswperm instruc-
tion. We can implement the selection unit by building a 4-bit
16-to-1 multiplexer for every 4-bit subword inrd . Such a de-
sign is extremely expensive in hardware, however. Using a re-
duced crossbar, we can greatly decrease the transistor and wire
cost. The reduced crossbar only requires 1 decoder for every 16
intersections betweenrs andrd tracks as opposed to 1 decoder
for each intersection in a full crossbar.

A high-level representation of the reduced crossbar is illus-
trated in Fig. 8(a). is the th 4-bit subword ofrs , is the th
4-bit subword ofrd , and is the th 4-bit subword ofrp . A
rectangle represents a single cell, and we present an example cell
in Fig. 8(b). Each cell consists of a 4-inputAND gate, 4 n-type
transistors, and 0, 1, 2, 3, or 4 inverters. Recall that theswperm
instruction directs the to if and only if equals . In the
example cell, the leftmost and bottommost wires are the most
significant bits of the subwords. From inspecting the negation
bubbles on the inputs to theAND gate, we know that in

(a) (b)

Fig. 8. Hardware implementation of the Selection Unit. (a) High-level
organization. (b) Example of a selection unit cell.

Fig. 8(b). Hence, if , only the fifth 4-bit subword, , is
enabled onto . The other 15 4-bit subwords fromrs similarly
connected to are not enabled onto when equals 5.

We now discuss the hardware cost of this implementation in
terms of transistor and track counts. Since we need 16 cells for
each of the 16 4-bit subwords ofrd , the total number of cells
in the reduced crossbar is . On average, there
are two negation bubbles on the inputs to theAND gate per cell,
so the average number of transistors per cell is 16. These 16
transistors include eight transistors to implement a 4-inputAND

gate, four transistors to implement two inverters, and four n-type
transistors controlled by the output of theAND gate. The reduced
crossbar consists of 256 cells, so the total transistor count is
4096. Note that this count does not include any buffers that we
may potentially need to drive the long wires.

We define a track to be a wire routing lane that is reserved
for connections between different cells. The number of vertical
tracks is roughly the number of bits inrs , 64, and the number
of horizontal tracks is the number of bits inrd plus the number
of bits in rp , 128. The critical path latency of this circuit is the
time needed for a signal to traverse two long wires (that each
span the width of 16 selection unit cells) plus the logic delay
through a single selection unit cell. This is at most the sum of
the propagation delays of two long wires, a 4-inputAND gate, an
inverter, and an n-type transistor. Assuming the delays through
the wires are not extremely high, the selection unit can complete
answperm instruction in a single cycle. In a deeply pipelined
processor, however, the propagation delays through wires could
force multiple-cycle execution ofswperm instructions.

We present a block diagram of the filter unit, which supports
thesieve instruction, in Fig. 9(a). Each rectangle represents a
single 4-bit slice, and we can implement a 4-bit slice with four
1-bit 5-to-1 multiplexers. Each of these multiplexers simply se-
lect the bit value “0” or 1 of 4 input bits from a 4-bit subword
of rs ; the multiplexer output is directed to a single bit in the
corresponding 4-bit subword ofrd . Using the 4-bit slice struc-
ture illustrated in Fig. 9(b), however, we can reduce the tran-
sistor count without increasing the critical path latency by elim-
inating redundant logic operations. We replicate the slice shown
in Fig. 9(b) 16 times, once for each 4-bit subword inrd . The
variable represents theth bit of the th subword ofrs ; the
variable represents theth bit of the th subword ofrd .
Each 4-bit slice requires two 1-bit 2-to-1 multiplexers and four
1-bit 4-to-1 multiplexers. In addition, theth subword slice in-
cludes a set of signals to control these multiplexers:, , ,
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(a)

(b)

Fig. 9. Hardware implementation of the filter unit. (a) High-level organization.
(b) Structure of a 4-bit slice.

Fig. 10. Control signals in the filter unit.

, , and . We define these signals in Fig. 10, whereis
the th bit of rp , and , , , and are function code bits.

We can implement a 2-to-1 multiplexer using four transistors,
and we can implement a 4-to-1 multiplexer using only seven
transistors each since the two lowest bit inputs are always ze-
roes. Using buffers to reduce the fan-out of the function code
bits and logic optimization techniques to reduce the transistor
count, each 4-bit subword slice requires 116 transistors. The
total number of transistors required for the 16 4-bit subword
slices of the filter unit is 1856. Nearly all of the data and con-
trol for each 4-bit subword slice in the filter unit is local, so we
do not require many long vertical or horizontal tracks. We only
need four horizontal tracks for the 4sieve function code bits.
The critical path latency in the filter unit is at most the sum of
the propagation delays through a horizontal wire (that spans the
width of 16 4-bit slices), a 2-to-1 multiplexer, a 4-to-1 multi-
plexer, and the logic required to compute. Therefore, it is
highly likely that the filter unit can complete the execution of a
sieve instruction in a single cycle.

The total number of transistors needed to implement a permu-
tation unit, which consists of a selection unit and a filter unit, is
5952. This transistor count is of the same order of magnitude
as that required to construct a simple 64-bit CMOS ripple-carry
adder [23]. We compare the hardware cost of the permutation
unit to past work in Table II. Due to the imprecision of the
track metric, we compare numbers of tracks using-notation
in terms of the number of bits in a register,. When considering
both transistor count and wire area, it appears that the permu-
tation unit is nearly as efficient as a very large scale integration
(VLSI) implementation of theomflip instruction. The permu-
tation unit requires nearly twice as many transistors as anom-
flip implementation, but it potentially consumes only half as
much wire area due to constants hidden by the-notation. The

TABLE II
HARDWARE COST COMPARISON

TABLE III
PERFORMANCE OF64-BIT PERMUTATIONS USING sieve AND swperm

permutation unit also requires significantly fewer transistors and
tracks than a crossbar network.

V. PERFORMANCE

A. 64-Bit Permutation Performance

Table III summarizes the number of instructions, cycles,
and registers required to complete arbitrary permutations of
different-sized subwords packed into a 64-bit register. For
subword sizes of 4 bits or larger, we only need oneswperm
instruction and two registers to complete an arbitrary 64-bit
permutation with repetitions. Using bothsieve andswperm ,
arbitrary 64-bit permutations with repetitions of 2-bit and
1-bit subwords require 5 and 11 instructions, respectively.
In past work, Yang and Lee demonstrated that theomflip
instruction could be used to complete 64-bit permutations
without repetitions using five and six instructions, respectively
[25]. Theseomflip instruction sequences must be executed
serially, however. Therefore, even on an ultra-wide superscalar
processor, a 64-bit permutation of 1-bit subwords without
repetitions requires six cycles usingomflip instructions.

Superscalar execution can accelerate permutations that em-
ploy sieve andswperm , however. True data dependencies do
not exist between any of theswperm instructions or between
any of thesieve instructions listed in Fig. 5. Hence, a mul-
tiple-issue processor can improve the performance of an arbi-
trary 64-bit permutation that employs the proposed instructions
by executing certain instructions in parallel. On a four-way su-
perscalar processor, we can complete permutations of 1-bit and
2-bit subwords in as few as four and three cycles, respectively.
For 1-bit subwords, the 4swperm instructions can be executed
in parallel in a single cycle, and the 4sieve instructions can be
executed in parallel in the following cycle. The 3xor instruc-
tions must be executed in two cycles following the completion
of thesieve instructions due to data dependencies.

We compare the performance ofsieve andswperm to past
work in Table IV. The table lists the number of instructions and
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TABLE IV
PERMUTATION PERFORMANCECOMPARISON

cycles required by the different methods to complete a 64-bit
permutation and to write the result to a single 64-bit register.
The bit values in the heading of the table indicate the size of the
subwords to be permuted within a 64-bit word. We determine
the cycle counts using a simulation of a 4-way superscalar pro-
cessor with four integer execution units and a single load/store
unit.

TheExisting ISAsrow indicates the minimum number of in-
structions in conventional ISAs required to perform a 64-bit per-
mutation using eight lookup tables or existing permutation in-
structions. Note that instructions in existing ISAs that permute
8-bit subwords are generally limited to performing a small set of
predefined permutations. Also, the instruction counts listed for
permutations of 4-bit and smaller subwords using existing ISAs
are only achievable if the permutation is statically encoded in
lookup tables. The cycle counts listed in Table IV were obtained
using a perfect data cache model with a single-cycle access la-
tency. If the data cache were small or initially cold, however,
table lookup operations could require many additional cycles to
complete due to cache misses. Hence, the cycle counts in the
Existing ISAsrow could be much larger in certain scenarios.

Other thansieve/swperm , only the pperm instruction
can efficiently complete bit-level permutations with repetitions.
Theomflip , cross andgrp instructions only perform per-
mutations without repetitions. However,cross , omflip , and
grp can be applied to any register sizethat is a power of 2,
whereasswperm andsieve are only defined for .

For 64-bit permutations, we observe thatsieve and sw-
perm perform as well as or better than all previously proposed
permutation instructions and existing ISAs with the exception of
the number of instructions required to complete a 64-bit permu-
tation using 1-bit subwords. Note that the performance improve-
ment provided bysieve andswperm over existing methods
on 2-way and 4-way superscalar processors requires 2 or 4 per-
mutation units, respectively. Methods that employcross ,grp ,
and omflip only require 1 unit to achieve the cycle counts
listed in Table IV.

B. Performance Improvement for DES

We now demonstrate the degree to which our permutation
instructions can improve the performance of a highly popular
symmetric-key block cipher, the Data Encryption Standard
(DES) [14]. A large number of secure communications,
banking, and storage protocols employ DES (and its more
secure variant, 3DES) to provide services such as data con-
fidentiality and data integrity. We begin with an optimized C
implementation of the DES algorithm that is based upon Eric

Young’s libdes [27]. We compile the implementation for the
64-bit Alpha ISA (augmented with the proposed permutation
instructions) using gcc with the -O2 optimization flag. To
improve the performance of the block cipher, we apply our
permutation instructions to four permutation operations within
DES: the initial permutation (IP), the final permutation (FP),
the P-box permutation (PP), and the compression permutation
(CP). Most software implementations of DES complete these
permutations using a series of table lookup operations. We
seek to increase performance by replacing these table lookup
operations with our permutation instructions.

For processors with small and simple caches, we can achieve
a significant speedup for the P-box permutation. In our baseline
software implementation, the P-box permutation is built into
the lookup tables used to complete operations known as S-box
substitutions. Performing the P-box permutation using our
proposed instructions allows us to decrease the size of the S-box
lookup tables and consequently reduce cache misses. Also,
the compression permutation in the round key computation
function can consume a large percentage of the total clock
cycles involved in a DES operation. By accelerating the com-
pression permutation using the new permutation instructions,
we can greatly improve performance in some scenarios, which
we describe below. We can also accelerate the performance of
the IP and the FP, although these permutations only account
for a small percentage of the computation required per DES
operation.

We use the SimpleScalar superscalar processor simulator [3]
to obtain cycle-accurate performance statistics concerning the
execution of DES. We perform simulations for four different
processor configurations, which range from a typical embedded
processor found in low-power wireless information appliances
to a wide superscalar processor used in high-end servers. The
four microarchitectural configurations consist of a single-issue
processor core with small cache, a 2-issue superscalar processor,
a 4-issue superscalar processor, and an 8-issue superscalar pro-
cessor. For each model, the fetch, decode, and commit widths
equal the issue width. Also, the number of ALUs equals the
issue width, and we assume that each ALU contains a permuta-
tion unit. In Table V, we summarize the memory system param-
eters used in the SimpleScalar simulations. The L2 latency for
the 2-way processor is larger than those of the 4-way and 8-way
processors because we model the 2-way superscalar’s Level 2
cache (L2) as being off-die Rather than modify the C compiler
to identify and utilize our permutation instructions, we strate-
gically insert standard RISC integer ALU instructions that rep-
resent our permutation instructions into the DES source code.
The DES implementation that uses these special integer ALU
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TABLE V
SIMULATION MEMORY PARAMETERS

instructions maintains the same instruction-level control depen-
dence and data dependence structure as that of a DES imple-
mentation that employs the proposed permutation instructions.
We carefully choose the special ALU instructions such that the
compiler does not eliminate or combine any of those instruc-
tions during code optimization. In addition, we modify the Sim-
pleScalar simulator to recognize the special integer ALU in-
structions and treat them as permutation instructions.

We obtain performance data by simulating the execution of
DES for 8 kB input data blocks after allowing the caches suf-
ficient time to warm up. The input size is not a critical simula-
tion parameter, however; we find that once the caches are warm,
the performance speedup results are independent of the input
data size. The speedups effected by the proposed permutation
instructions are presented in Fig. 11. The graph illustrates the
speedups associated with each processor configuration for dif-
ferent numbers of input bytes per round key computation. For
example, data points associated with the number 32 on the hor-
izontal axis of the figure corresponds to 8 kB inputs in which
the round key computation is performed one time for each 32 B
block of the input. We use the variableto represent the number
of input bytes per round key computation.

Although, the simulation results are independent of the total
input size, the results are heavily dependent on the value of.
The round key computation must be performed at least once
for each unique key used to complete DES operations. When
DES is used for encryption, a single key is often employed to
encrypt all input data. As a result, we only need to perform the
round key computation once during the encryption of an entire
input block. is therefore equal to the total input size in this
case. However, when DES (or any other block cipher) is used to
implement a cryptographic hash function for digital signature
and data integrity operations, a different key is often employed
for each 8-byte input block, for the key is a function of the 8-byte
input block [17], [24]. Hence, we must perform the round key
computation once for every 8 B of input, soequals 8.

Fig. 11 displays speedup results when we complete the IP,
FP, and CP (but not the PP) using the new permutation instruc-
tions. We attain speedups of 2.37 and 1.71 whenequals 8 on
a single-issue processor and a four-way superscalar processor,
respectively. As the number of input bytes per round key compu-
tation increases, the speedups decrease to 1.11 or less, however.
This occurs because the relative computational cost of the CP

Fig. 11. DES speedups for IP/FP/CP optimization.

decreases as the number of input bytes per round key computa-
tion increases. Consequently, the CP performance acceleration
caused by the permutation instructions becomes less significant.

We obtain different results when we complete all DES permu-
tations of interest, i.e., the IP, FP, CP, and PP, usingsieve and
swperm . For a single-issue processor with a small cache, we
achieve a speedup of 3.71 whenis 8. As the number of input
bytes per round key computation increases, the speedup falls to
1.55. The single-issue processor experiences a much larger per-
formance improvement for all values of in the IP/FP/CP/PP
optimization case than in the IP/FP/CP case due to memory
system behavior. When the PP is built into the S-box lookup
tables, the amount of memory required to store the tables and
intermediate values exceeds the size of the single-issue pro-
cessor’s data cache. As a result, performance suffers due to
frequent cache misses. By implementing the PP using the pro-
posed permutation instructions, the number of cache misses ex-
perienced by the single-issue processor is greatly reduced, and
therefore performance is significantly enhanced.

The wider processors do not suffer many cache misses be-
cause their caches easily accommodate the S-box lookup tables.
Consequently, reducing the size of the lookup tables by imple-
menting the PP with permutation instructions does not improve
performance for any value of . We achieve the highest per-
formance for 2-way and wider superscalar processors when we
only use the permutation instructions to implement the IP, FP,
and CP.

We conclude that we should always employ the proposed
permutation instructions to perform the IP, FP, and CP in
software implementations of DES. When using DES as a
cryptographic hash function, the performance impact of the
proposed permutation instructions is substantial: we obtain
speedups ranging from 1.59–2.37. Software implementations of
DES should only use 1-bit permutation instructions to perform
the PP if the target processor contains an extremely small or
nonexistent cache, however. This is often true for processors
found in smart cards and wireless information appliances. Such
processors containing our permutation unit could achieve large
speedups for DES encryption without incurring the cost and
power consumption associated with the extra memory required
by table lookup schemes.
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VI. CONCLUSION

In this paper, we proposed two 64-bit instructions for accel-
erating the performance of subword permutations with repeti-
tions: swperm andsieve . Using these two instructions, we
can complete 64-bit permutations with repetitions of 4-bit or
larger subwords in one instruction. In addition, we can achieve
permutations with repetitions of 1-bit and 2-bit subwords using
11 instructions and five instructions, respectively. These instruc-
tions are highly parallelizable, and a 4-way superscalar pro-
cessor can execute these two instruction sequences in four cy-
cles and three cycles, respectively. Furthermore, we can em-
ploy the proposed instructions to improve the performance of
the popular DES block cipher, especially in constrained envi-
ronments with small cache memories. We also described effi-
cient hardware that enables the single-cycle execution ofsw-
perm andsieve .

Using these instructions, cryptographers can design ciphers
and hash algorithms that obtain a desirable level of diffusion
more rapidly. As a result, less encryption rounds may be
required to achieve adequate security, and the throughput of
encryption algorithms could be significantly improved. Future
work includes investigating the degree to which permutations
with and without repetitions contribute to the security of a
cipher.
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