
Algorithm Exploration for Efficient Public-Key Security Processing on Wireless
Handsets

Nachiketh Potlapally†, Srivaths Ravi†, Anand Raghunathan† and Ganesh Lakshminarayana‡ �

†C & C Research Labs, NEC USA, Princeton, NJ 08540
‡Alphion Corp., Eatontown, NJ 07724

fnachiketh,sravi,anandg@nec-lab.com, ganeshl@yahoo.com

Abstract

Security protocols are critical to enabling the growth of a
wide range of wireless data services and applications. However,
they impose a high computational burden that is mismatched with
the modest processing capabilities and battery resources available
on wireless clients. In this work, we consider the task of effi-
cient public-key security processing on wireless handsets. Our
approach is based on extensive algorithmic exploration and tun-
ing of the cryptographic algorithms that form the computational
core of security protocols. In order to identify the optimum al-
gorithm configuration, we have developed a novel performance
estimation methodology based on automatic characterization and
macro-modeling of software libraries, that enables us to replace
target simulation with native execution during algorithm explo-
ration. The proposed methodology results in two to three orders
of magnitude speedup in the simulation time required. As a result,
identifying the optimal algorithm configuration in the context of
the popular SSL Handshake protocol takes less than a day, as op-
posed to several months using state-of-the-art processor models.

I. Introduction

The proliferation of the Internet has clearly demonstrated that a
large fraction of the applications and services that are of interest to
users involve access to, and transmission of, sensitive information
(e.g., e-commerce, access to corporate data, virtual private net-
works, online banking and trading, multimedia conferencing) [1].
This has led to the development of various mechanisms to provide
security to users, by ensuring the privacy and integrity of com-
municated data, and the authenticity of the parties involved in a
transaction [2, 3]. While security has already been established as
a very serious concern in wired networks [4], the deployment of
wireless communications ushers in even greater challenges. Wire-
less communications relies on the use of a public transmission
medium, which makes the communicated signals easily accessi-
ble to malicious people or entities. This imposes new threats, in
addition to security threats in the supporting wired infrastructure
networks themselves. Surveys of current and potential users of
mobile commerce (m-commerce) services have indicated security
concerns as the single largest bottleneck to their adoption (52%
of phone users and 47% of PDA users surveyed cited security as
their primary concern)[5]. Several security mechanisms have been
developed for the wired Internet, based on providing security en-
hancements to various layers of protocols (e.g., IPSec at the net-
work layer, SSL/TLS at the transport layer, SET at the application
layer,etc.) [2, 3].

While the above mechanisms provide satisfactory security if
utilized appropriately, there is a critical bottleneck that prevents
their use to address security concerns in wireless networks. Wire-
less clients (e.g., smart phones, PDAs) are much more resource

�Work done when the author was with NEC USA Inc.

(processing capability, battery) constrained than their wired coun-
terparts. On the other hand, security protocols significantly
increase computation requirements at the network clients and
servers [6, 7], placing them beyond the capabilities of wireless
handsets. For example, sample performance measurements [8]
of thepilotSSLeay security libraries running on a Palm IIIx
PDA [9] indicate that (i) 512-bit RSA key generation, digital sig-
nature generation, and signature verification require 3.4 minutes,
7.028 seconds, and 1.376 seconds, respectively, and (ii) DES en-
cryption/decryption can be performed at a maximum data rate of
around 13 kbps, assuming that the CPU is completely dedicated
to security processing. Further, security operations are reported
to quickly drain the Palm’s batteries [8]. The poor performance
of embedded processors in processing security protocols leads to
very high network transaction latencies and low data rates. Hence,
techniques to alleviate the computational burden of security pro-
cessing are required.

A. Paper Overview and contributions

In this work, we present techniques to improve the perfor-
mance and energy efficiency of security processing on wireless
handsets. We focus on extensive algorithmic exploration and tun-
ing of the underlying cryptographic algorithms as the mechanism
to achieve these objectives. The proposed techniques are com-
plementary to, and can be applied in conjunction with, improve-
ments in security mechanisms, protocols, and hardware architec-
tures [7, 10, 11, 12, 13, 14, 15, 16].

For most secure wireless transactions, the processing at the
client is dominated by the public-key algorithm [7, 17]. Hence, we
focus on the encryption/decryption operation used in most popular
public-key algorithms [3, 18], namely modular exponentiation1.

We present an extensive suite of algorithmic optimizations to
the basic modular exponentiation algorithm, including known op-
timizations such as Chinese Remainder Theorem, Montgomery
Multiplication, in addition to novel techniques such as input block
size selection and software caching,etc. We formulate the various
techniques as parametrizeable algorithmic optimizations, leading
to a formal “algorithm design space” that is defined by the vari-
ous possible algorithm configurations. We demonstrate that per-
formance varies significantly (over an order-of-magnitude) across
this space, which contains several hundred algorithmic configura-
tions. Further, we show that the optimum algorithm configuration
depends on input data characteristics, and the underlying hard-
ware processor architecture, motivating the need for systematic
algorithm exploration.

In conjunction with optimizing and tuning security algorithms,
we are developing an optimized wireless security processor using

1While our ideas are demonstrated using modular exponentiation and
hence directly apply to many public-key algorithms (RSA, El-Gamal,
Diffie-Helman etc.), the proposed methodology is equally applicable to
other computation intensive security algorithms.

the extensible processor platform from Tensilica Inc. [19]. Con-
current development of the security algorithms and the underlying
hardware architecture requires that the performance of algorithms
be evaluated using processor models (e. g., instruction set simu-
lator (ISS) or hardware simulation models). In such a scenario,
algorithmic exploration may be infeasible due to the size of the
algorithm space, and the amount of time required to simulate real-
istic network transactions on hardware models. For example, sim-
ulating a single transaction of the SSL handshake protocol over
a space of 495 RSA algorithm configurations would require 38
days of simulation time with instruction set simulation models of
the Xtensa Processor on a 440MhZ Ultra 10 workstation with 0.5
GB memory. We propose a novel methodology to enable effi-
cient and accurate exploration of the algorithm space, based on
automatic performance characterization and macro-modeling of
software functions that implement the various atomic steps in the
modular exponentiation algorithm. The proposed methodology
completes design space exploration in just 4 hours and 40 min-
utes, resulting in significant design time savings.

B. Organization of the paper

The rest of the paper is organized as follows. Section II
presents some preliminary material on public-key algorithms.
Section III then describes the parameters that affect their perfor-
mance and define their design space. Section IV presents a novel
methodology to completely traverse this design space for deter-
mining a performance-optimal algorithmic configuration. Sec-
tion V describes the experimental results, while Section VI con-
cludes.

II. Public-Key Algorithms

Public-key algorithms [2] perform two basic tasks:key gener-
ation andencryption/decryption. Key generation consists of gen-
erating theprivate key and thepublic key, which are used in the
encryption and decryption of input data. The public key is dis-
closed to the world, whereas the private key is kept secret by the
legitimate owner of the keys.

The key generation step is a one-time per session process,i.e.,
keys are generated once and used for the entire length of the ses-
sion 2. Encryption/decryption constitutes bulk of the work done
by a public-key cryptographic algorithm. Thus, any attempts
to improve public-key algorithm performance should target this
stage. In most public-key algorithms (e.g., RSA, El Gamal, Diffie-
Hellman,etc.), encryption/decryption is performed using modular
exponentiation. Therefore, an optimization targeting modular ex-
ponentiation becomes applicable to most public-key algorithms.

Key generation consists of determining three quantities: the
modulus (n), the public exponent (e) and the private exponent (d).
The two tuples (e,n) and (d,n) constitute the public and the private
key, respectively. To encrypt a messagem (plaintext), we divide
m into blocksm1� � � � �mp. Then, encryption is the modular expo-
nentiation defined byci � me

i mod n, f or i � 1 to p, where,ci is
the ciphertext corresponding tomi. To decrypt a message, we take
each encrypted blockci, and computemi � cd

i mod n.

III. Algorithm Design Space

Many commercial implementations of public-key algorithms
exist [18], each with its choice of the data block size it operates on,
the modular exponentiation core it uses, and so on. The different
parameters controlling the implementation of an algorithm define
its design space. The purpose of our study is to first identify the
various algorithm parameters that control the implementation of
modular exponentiation. With the algorithm design space defined,
we not only want to identify the best values for each parameter

2A session can be defined as a length of time for which the sender and
receiver exchange information

(with respect to performance) for a particular hardware architec-
ture, but also to examine if there is an interplay, among the various
parameters, to improve the overall performance of the algorithm.

The factors that control the performance of a public-key algo-
rithm are the size of the input block, the algorithms used for per-
forming modular exponentiation and modular multiplication and
the use of special-purpose enhancements like the Chinese Remain-
der Theorem. In addition, software engineering techniques can
also speed up the implementation of an algorithm. We look at a
specific optimization (software caches) relevant to this work. Each
of the optimizations considered in this work is detailed below:

Input Block Size: Since the message is divided into blocks on
which encrytption (decryption) computations are performed, the
block size affects performance. Typically, input block sizes are
powers of 2 (e.g., 32, 64, 128,etc.). To ensure that plaintext can
be encrypted without data loss, the block size should be lesser than
the size of the modulus.
Modular Exponentiation (ME) Algorithms: There are two
ways of performing modular exponentiation [20], depending on
how the bits in the exponent are scanned, namely:left-to-right
(LR) andright-to-left (RL).
Chinese Remainder Theorem: Whenever the exponent size of
ME is large (as in decryption), the Chinese Remainder Theorem
(CRT) [21] can be used to break a single exponentiation into sim-
pler steps. There are two ways of implementing CRT: single-radix
conversion (SRC) and mixed-radix conversion (MRC) [20].

0

1

2

3

4

5

6

7

8

1 2 3 4 5
(a)

K
cy

cl
es

 (
x

10
7)

(b)
K

cy
cl

es
 (

x
10

7)

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

2

16 32 64 128 256 512

(MM Algorithm) (Radix Size)

Figure 1: Performance of modular exponentiation with dif-
ferent (a) MM algorithms and (b)Radix sizes
Modular Multiplication (MM) Algorithms : Modular exponen-
tiation (ME) is implemented as a sequence of modular multiplica-
tion (MM) operations. Thus, the performance of the MM opera-
tion can have a major influence on that of the ME operation (and
thereby on the encryption/decryption operations). Figure 1(a) il-
lustrates the performance of encryption/decryption using different
MM algorithms in sample ME operations. ALGO 1 implements
a basic Montgomery MM, with the mod operation implemented
as divisions by a power of 2. ALGO 2 first computes the prod-
uct and then breaks the subsequent mod operation into a series of
atomic steps (each step operates on a part of the product as de-
termined by a radix). ALGO 3 interleaves both product and mod
computations. ALGO 4 uses the Karatsuba-Ofman method to first
obtain the product [20] and then reduces the result using the opti-
mized normalization method [22]. ALGO 5 is a specific instance
of ALGO 3 with the radix set to 2. From Figure 1(a), we can
see that ALGO 5 is the costliest. This can be explained by the
large number of bitwise operations the algorithm has to perform
for large inputs in order to compute the result.
Radix in MM Algorithms: The performance of the MM al-
gorithms (Algos 2 and 3) is affected by the choice of the radix.
Figure 1(b) shows the cumulative performance of encryption and
decryption using Algo 3 (in ME), as the radix is varied from 8 to
512. The plot shows that minimum cost is obtained by using a
radix of size 256 in this instance.
Caching: Modular exponentiation is a very costly operation and

appreciable time savings can be obtained, if the ME operation can
be avoided for repeated input blocks (using the previously com-
puted ciphertext instead). This observation prompted us to con-
sider software caches before the ME operation (pre-ME cache).
Software caches can also be used inside the MM units (intra-
MM cache). Although, multiply and mod operations are not as
costly as the ME operation, appreciable savings can still be ob-
tained for a moderate hit-ratio. For example, Algo 1 has a step
M � T�N� �mod R�, in which N’ and R are fixed for the entire
duration of encryption (or decryption). We use a cache in the fol-
lowing manner:if (T is present in the cache)then assign the cor-
responding computed value from the cache toM, else compute
M � T�N� �mod R� and store it in the cache.
Inter-dependencies and trade-offs: The different combinations
of the parameters seen above result in a very large design space.
Such a design space needs to be explored completely in order to
determine the optimal choice of parameter values. This is nec-
essary because the best-performing value for one parameter does
not necessarily figure in the overall best configuration (with other
parameters included) for the public-key algorithm.

For example, an input block size of 512 bits is typically con-
sidered a good choice for public-key encryption/decryption with
a 1024-bit RSA modulus.With this configuration and using “algo
1”, the cost of encrypting an example wireless data transaction is
64301.07 Kcycles on the target processor. On the other hand, the
cost of encrypting the same transaction with a 32-bit input block
size and a pre-ME cache is only 15714.5 Kcycles. This figure
reflects a performance improvement of 75.5% (also includes the
overhead introduced by the cache). Exploring the large design
space to determine the optimal configuration of parameters, there-
fore, becomes inevitable.

IV. A methodology for efficient algorithmic design
space exploration

In this section, we present an overview of the proposed
methodology for evaluating algorithmic trade-offs in wireless se-
curity processing3.

Performance
models

Software
Libraries

Native
compilation

Cross
compilation

Target Arch.
Emulator

Regression
Macromodeling

Testbench

Target binaries

Profiling
statistics

Security
Algorithms

Source code

Performance
Estimate

(Pre-)Characterization flow
for software libraries

Figure 2: Enhanced architectural simulation with pre-
characterized software libraries

Most algorithms, including security algorithms, are designed
today as high-level entities that invoke functions from one or more
pre-existing software libraries. Such an approach is used in design
of our security processing platform, wherein the security algo-
rithm sits atop a layer of software libraries , which in turn sit above
the actual target architecture. As seen in Section III, there are
many algorithmic choices or combinations of optimzations that

3Note that the proposed flow is general enough to be applied for explor-
ing the algorithmic design space of other embedded software applications

must be examined so as to arrive at thebest possible software im-
plementation. Thebest choice is the one that requires the least
number of CPU cycles, on an average.

Traditional methods of performing this evaluation would re-
quire running each candidate algorithm (serially, or, in parallel)
on a target architecture ISS to derive performance metrics. Since
each simulator run is expensive (see Section V)), we propose an
alternative evaluation flow as shown in Figure 2. In this flow, we
migrate the simulation runs to the native architecture and estimate
the performance of an algorithm on the target architecture. Such
a flow uses models of the software library routines that replicate
(to a high degree of accuracy) their performance characteristics on
the target architecture.

A performance model is a function that parameterizes the num-
ber of cycles incurred by the actual run of a library routine with
some input data in terms of variables that characterize the input
data. This characterization is performed by regression macro-
modeling (as shown in Figure 2) that takes as its input, (a) perfor-
mance data of the library routine on the target for different input
samples, and, (b) data values for the variables characterizing those
input samples.

The performance data is collected from the profiling statistics
generated by simulation runs on test programs containing the li-
brary routines for different input stimuli. This is a one-time cost,
thereby accelerating the overall simulation process. Since the in-
put space for a library routine can potentially be infinite, testbench
generation is application-driven in the sense that the input samples
are generated for the input space used by the application. For ex-
ample, the GNU MP library provides a wide variety of C functions
that can perform arbitrary precision arithmetic on integers, ratio-
nals and floats. However, a 1024-bit RSA algorithm requires only
a few of those arithmetic functions with the operations restricted
to (less than or equal to) 1024-bit arithmetic. Therefore, we char-
acterize the library routines for this restricted domain only.

0
200

400
600

800
1000

0

200

400

600

800

1000
0

5

10

15

20

25

Kcycles

BitWidth(in1)
BitWidth(in2)

Figure 3: Performance profile of functionmod�in2� in1�
over different input bit-widths

The performance profiles of arithmetic functions show a reg-
ular behavior (piecewise linear, quadratic,etc.) over input bit-
width subspaces. For example, the average performance of func-
tion mod for different input bit-widths (the cartesian product of
BW1 : �32�96� � � � �992�XBW 2 : �32�96� � � � �992�) on a specific
Xtensa processor configuration is shown in Figure 3. The plot
indicates that a single function cannot fit the profile in an accu-
rate manner. Therefore, the profile is partitioned along the lines
�bw1 � bw2�, ��bw1 �� bw2�&& �bw2 � 32�� and �bw1 ��
bw2�&& �bw2�� 32�. The corresponding fits obtained using S-

PLUS [23] are indicated below.

cost � 0�06990126�0�0005330226�bw1�2�62605e�06�bw2
cost � 0�3416738�3�998125e�05�bw1�bw2�1�450325e�06

�bw1�bw1�3�844676e�05�bw2�bw2�0�02121358
�bw1�0�02028056�bw2

cost � 0�5812022�0�000106492�bw1�bw2�0�01292429�bw1
�0�02093991�bw2

The mean absolute errors of this model are very small
(0.01853528, 0.01337336 and 0.128225 for the three fits). To
understand the accuracy of this fit, we can compare the perfor-
mance estimate for an input sample not used in the regression ma-
cormodeling process with the measured value. For example, the
performance estimate for�BW1 � 1024�BW 2 � 1024� is 1�385
Kcycles, while an actual simulation run with 500 uniform random
values averages to 1�35 Kcycles.

In this way, the performance model for a library routine can
be derived fairly easily and accurately using regression based ap-
proaches. All library routines instantiated in the source code of
an algorithm can now be augmented with their respective perfor-
mance models to estimate the overall performance of the algo-
rithm on the target architecture, while running solely through na-
tive execution.

V. Experimental Results

In this section, we tackle the task of determining an optimum
configuration in the public-key algorithm design space for use
in the SSL handshake protocol [3]. This section is divided into
five sub-sections. Section A outlines the SSL handshake pro-
tocol, while Section B gives the implementation details of the
public-key algorithms and the configuration details of the pro-
cessing hardware. Section C then describes the optimized SSL
handshake algorithms determined by the proposed methodology.
Section D discusses the merits of the proposed design space ex-
ploration techniques.

A. Public-Key Computations in SSL handshake

The SSL handshake constitutes the initialization part of the
SSL protocol. It is primarily used to authenticate the client and
server, and securely exchange the key that is to be used subse-
quently for secure bulk data transfers. SSL handshake is dom-
inated by public-key algorithm computations. The client is re-
quired to perform public-key operations at three stages of the SSL
handshake protocol, which are:

� Stage 1: To verify the digital signature of the certificate au-
thority (CA) who has signed the server certificate. This in-
volves decryption using the public-key of the CA.

� Stage 2: To prepare its (client) digital signature. This is
achieved by encrypting a piece of data using the private-key
of the client.

� Stage 3: Encrypting thepre-master secret using the public-
key of the server. The “pre-master secret” is used both by
the client and the server to derive the session key.

The sizes of the data handled (encrypted or decrypted) in each
stage and corresponding key sizes are given in the following Ta-
ble. 1.

Parameter Stage 1 Stage 2 Stage 3

Data Size 1024 bits 288 bits 384 bits
Key Size 16 bits 1024 bits 16 bits

Table 1: SSL handshake protocol: Characteristics of data
and keys used for public-key encryption

Since the duration of the SSL handshake computations directly
affects network transaction latencies (and hence battery drain due

to security processing), we want to determine the best performing
public-key algorithm configurations that can be used in the proto-
col.

B. Experimental set-up

The public-key algorithm candidates are highly modular, opti-
mized C implementations and use library routines from two well-
known software libraries: (i) the GNU MP library [22] provides
a wide variety of C functions that can perform arbitrary precision
arithmetic on integers, rationals and floats, and (ii) a hash library
that provides a reliable means for creating hash tables. Figure 4
plots the function call graph for a sample algorithmic configura-
tion performing encryption. Over 450 algorithm candidates must
be evaluated using the ISS model for the target handset proces-
sor, due to the permutations arising from five MM algorithms,
five input block sizes, three CRT implementations (two distinct
implementations, in addition to the absence of CRT), two radix
sizes and three cache options (no cache, only pre-ME cache and
only intra-MM cache). The target is an Xtensa configurable pro-
cessor running at 214MHz, generated using Tensilica’s T1030.1
processor generator [19]. The ISS model runs on top of the na-
tive development platform, which is a SUN Ultra 10 workstation
with 0.5GB memory, running at 440 MHz. Simulating a single
transaction of the SSL handshake protocol over the entire algo-
rithm configuration space requires nearly 38 days of CPU time.
This necessitates the efficient performance estimation methodol-
ogy described in this paper.

root

_init[libc.so.1/1858]

_start

main

encrypt

modPow
fopen

open
_filbuf

_read_open

mpz_inp_str

_open

modMul

mpz_mul mpz_mod

mpz_tdiv_r__mpn_mul

__mpn_add_mul_1 __mpn_divrem

__mpn_sub_mul_1

Legend: Function name
Line Weight: Linear
Quantify’d program:
rsa_0.1 (pid 26052)

Figure 4: Function call graph for an algorithm performing
public-key encryption

C. SSL Handshake Protocol: Optimal Algorithm Choice

Table 2 summarizes the results of design space exploration
with the parameter values determined for optimal performance
of the three public-key stages in the SSL Handshake protocol.
The presence of CRT introduced a significant performance gain in
Stage 2, and to a lesser degree in Stages 1 and 3. But,single-radix
conversion (SRC) implementation of CRT results in better perfor-
mance in Stages 1 and 3, whilemixed-radix conversion method
of implementing CRT performs better in Stage 2. The presence
of Pre-ME cache did not contribute to a performance gain in any
of the stages, while theIntra-MM cache resulted in modest gains
only in Stages 1 and 3. The use of ALGO 4 for modular multi-
plication resulted in the best performing RSA encryption and de-
cryption, in all the stages. Likewise, an input block size of 512
bits resulted in optimal performance across all the stages. The
radix value applies to ALGO 2, which was observed to be the next

best performing MM algorithm. The radix value of 256 consider-
ably improved the performance of ALGO 2 over the conventional
Montgomery implementations (ALGO 1). The last row in the ta-
ble indicates the overall performance gain of the optimal algorith-
mic configuration indicated for each stage over the conventional
choice (that uses Montgomery MM algorithm, with 128-bit input
block sizes [3], and radix size is fixed at 32 [24])

Parameter Stage 1 Stage 2 Stage 3

Input Block Size 512 512 512
Radix 256 256 256

MM Algorithm Algo 4 Algo 4 Algo 4
CRT SRC MRC SRC

Pre-ME Cache No No No
Intra-MM Cache Yes No Yes

Speedup 74.6 % 82.9 % 66.37 %

Table 2: SSL handshake protocol: Optimal stage-wise pa-
rameter values

From Table 2, we also note that a particular set of values result
in optimal performance in Stages 1 and 3, while a different set
of values yield the best performance in Stage 2 (especially with
respect to using the Intra-MM cache and the CRT algorithm). Ta-
ble 3 gives the cost of a SSL handshake session on a wireless client
using the conventional configuration, only the optimal configura-
tion determined forStage 1 for all the three stages (fixed solu-
tion) and the optimal configuration for each stage (adaptive). SSL
handshake incorporating optimal parameter assignment (fixed and
adaptive) demonstrates nearly a 5X speedup over SSL handshake
using the conventional public-key algorithm configuration. We
can also see that while the difference in performances from using
theadaptive andfixed solutions is not large, theadaptive solution
comes at practically no extra cost. This observation justifies the
use of anadaptive strategy (with the different stage parameters as
defined in Figure 3) for effective execution of public-key opera-
tions in the SSL handshake protocol.

Parameter Assignment Total Cost (Kilo Cycles)

Conventional 562115.54
Fixed 98968.86

Adaptive 98744.42

Table 3: Performance of conventional, fixed and adaptive
public-key solutions to SSL Handhake Protocol

D. Efficiency and Accuracy of the Proposed Methodology

This section presents some results that demonstrate the accu-
racy and efficiency of performance macro-model based method-
ology for algorithmic design space exploration. Figure 5(a) plots
the actual and estimated cycle counts per byte of input data, for
six configurations in the design space of modular exponentiation.
The plot shows that the performance profile determined by the
proposed methodology accurately tracks the profile determined
by actual target simulation.The mean absolute error in the macro-
model-based estimates was only 11.8 %. Figure 5(b) indicates the
corresponding speed-up in simulation time obtained by using the
proposed methodology. Note that the Y-axis units are multiples of
1000 seconds. Macro-Model-based performance estimation com-
pletes for all the configurations (not just the six shown) in under
4 hours and 40 minutes. However, using target simulation, we
could cover only six configurations in nearly 66 hours of CPU
time. On an average, macro-model-based performance estimation
was found to be 1407 times faster than target simulation.

VI. Conclusions

Existing efforts towards improving the efficiency of security
processing have led to the development of many algorithmic opti-
mizations and/or alternatives. Our work on exploration and tuning

0

5

10

15

20

25

30

35

1 2 3 4 5 6

P
er

fo
rm

an
ce

(M

cy
cl

es
/ b

yt
e)

Cycle-accurate
simulation

Proposed

S
im

ul
at

io
n

T
im

e
(x

 1
03

se
co

nd
s)

Proposed
0

20

40

60

80

100

120

1 2 3 4 5 6
Algo. configuration Algo. configuration

(a) (b)

Cycle-accurate
simulation

Figure 5: Accuracy (cycle count) and efficiency (simula-
tion time) comparisons of the proposed methodology with
cycle-accurate target simulation

of the algorithmic design space is complementary to these efforts
since it can be applied to any such algorithm(s) running on any
given hardware platform. Such techniques provide the capability
needed for finding solutions that can alleviate the computational
burden associated with secure wireless data communications.

References
[1] U. S. Department of Commerce,The Emerging Digital Economy II.

http://www.ecommerce.gov/ede/report.html, 1999.
[2] B. Schneier, Applied Cryptography: Protocols, Algorithms and

Source Code in C. John Wiley and Sons, 1996.
[3] W. Stallings,Cryptography and Network Security: Principles and

Practice. Prentice Hall, 1998.
[4] W. W. W. Consortium, The World Wide Web Security FAQ.

http://www.w3.org/Security/faq/www-security-faq.html, 1998.
[5] ePaynews. http://www.epaynews.com/statistics/ecappstats.html.
[6] S. K. Miller, “Facing the Challenges of Wireless Security,” inIEEE

Trans. Comput., pp. 46–48, July 2001.
[7] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, “Securing

Electronic Commerce: Reducing SSL Overhead,” inIEEE Network,
pp. 8–16, July 2000.

[8] D. Boneh and N. Daswani, “Experimenting with Electronic Com-
merce on the PalmPilot,” inProc. Financial Cryptography, pp. 1–16,
1999.

[9] Palm Inc. http://www.palm.com.
[10] A. Goldberg, R. Buff, and A. Schmitt, “Secure Server Performance

Dramatically Improved by Caching SSL Session Keys,” inACM
Wksp. Internet Server Performance, June 1998.

[11] N. Koblitz, A Course in Number Theory and Cryptography.
Springer-Verlag, 1987.

[12] NTRU Communications and Content Security. http://www.ntru.com.
[13] ARM SecurCore. http://www.arm.com.
[14] SmartMIPS. http://www.mips.com.
[15] Z. Shi and R. Lee, “Bit Permutation Instructions for Accelerat-

ing Software Cryptography,” inProc. IEEE Intl. Conf Application-
specific Systems, Architectures and Processors, pp. 138–148, 2000.

[16] J. Burke, J. McDonald, and T. Austin, “Architectural Support for
Fast Symmetric-Key Cryptography,” inProc. Intl. Conf. ASPLOS,
pp. 178–189, Nov. 2000.

[17] Intel, Enhancing Security Performance through IA-64 Architecture.
http://developer.intel.com/design/security/rsa2000/itanium.pdf,
2000.

[18] RSA Security Inc. http://www.rsa.com.
[19] Tensilica, Xtensa application specific microprocessor solutions -

Overview handbook. http://www.tensilica.com, 2001.
[20] D. E. Knuth,The Art of Computer Programming: Seminumerial Al-

gorithms. Addison Wesley, 1981.
[21] J. J. Quisquater and C. Couvreur, “Fast Decipherment algorithm for

RSA public-key cryptosystems,” inElectronic Letters, pp. 905–907,
Oct. 1982.

[22] T. Granlund, The GNU Multiple Precision Arithmetic Library.
http://www.gnu.org, 2000.

[23] W. N. Venables and B. D. Ripley,Modern Applied Statistics with
S-PLUS. Springer-Verlag, 1998.

[24] S. R. Dusse and B. S. Kaliski, “A Cryptographic Library for the
Motorola DSP 5600,” inProc. EUROCRYPT, pp. 230–244, 1991.

