
Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

Bit Permutation Instructions for Accelerating Software Cryptography

Zhijie Shi, Ruby B. Lee
Department of Electrical Engineering, Princeton University

{zshi, rblee}@ee.princeton.edu

Abstract

Permutation is widely used in cryptographic algorithms. However, it is not well-supported
in existing instruction sets. In this paper, two instructions, PPERM3R and GRP, are proposed
for efficient software implementation of arbitrary permutations. The PPERM3R instruction
can be used for dynamically specified permutations; the GRP instruction can be used to do
arbitrary n-bit permutations with up to lg(n) instructions. In addition, a systematic method for
determining the instruction sequence for performing an arbitrary permutation is described.

1. Introduction

Secure information processing using cryptography is becoming increasingly important.
Confusion and diffusion are two basic techniques used in cryptography algorithms [1].
Diffusion spreads the redundant information in the plain text over the cipher text.  As a
primary method to achieve diffusion, permutation is widely used in cryptographic algorithms
[1].  For example, there are six different permutations in DES [1], two permutations in Twofish
[8], and two permutations in Serpent [11].  Although it is not a problem for hardware to
implement a pre-defined permutation [3], data-dependent permutations are not easy.
Furthermore, there is no efficient way to do arbitrary permutations in software on most
existing processor architectures.

Currently, several methods are used to perform permutation operations in software.  The
most straightforward method moves bits one by one [1].  We fetch one bit from the source, and
put it into the correct position in the destination.  We need 4n operations for an n-bit
permutation with this method on most existing microprocessors.  The first two operations
generate the mask and extract a bit with an AND instruction, the third moves the bit to the
correct position with a SHIFT instruction, and the fourth sets the correct bit in the destination
register with an OR instruction.  This process can be accelerated on systems having
instructions like EXTRACT and DEPOSIT [5][6], but still require 2n operations.  This method
does not require an extra functional unit, and uses a small amount of memory, but it is
expensive in execution time.

Another widely used technique is table lookup [4]. In this method, the source is divided into
several sections.  Then, the bits in each section are permuted simultaneously by looking up a
table.  Finally, we combine the result of each section to obtain the result of the permutation.
The number of instructions in this method is dependent on how many sections we divide the
source into.  Fewer sections require fewer instructions.  However, fewer sections also lead to
more memory.  For example, suppose we want to do a 64-bit permutation, we could do it with



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

one table lookup by putting all possible results in a large table of  264*8 bytes, which is too
large to be feasible.  Alternatively, we can divide the source into 8 sections, and build 8 tables.
Each table has 2K bytes (256 entries and 8 bytes in each entry).  Only 8 bits are permuted in
one table lookup.  Each table entry has 64 bits, and bits not permuted with that table are set to
0.  Including the instructions for extracting indexes, we need 8 EXTRACTs [5][6], 8 table
lookups and 7 ORs for one 64-bit permutation.  This method is faster but consumes too much
memory.  The comparison of these two methods is shown in Table 1.

Table 1: Traditional methods to do a 64-bit permutation on 64-bit systems

Number of  instructions Memory needed
AND,SHIFT,OR 256 (4n) 0

Table Lookup 23 (8 EXTRs, 8 LOADs and 7 ORs,) 16Kbytes (8 2K-byte tables)

Smart methods exist for some regular permutations.  For example, the initial permutation in
DES is similar to a transpose of bit matrices.  It can be done in an efficient way with 30
operations on a 32-bit platform [1], rather than 4n = 256 instructions as in the first method
described above.  However, not all permutations are regular.  Even for regular permutations,
we do not have a systematic strategy to find the shortest sequence of instructions for an
arbitrary permutation, which implies that we have to attack each permutation separately and
can not guarantee finding the fastest solution.

Due to the difficulty in the software implementation of permutations, complex permutation
operations are avoided when designing new algorithms.  In this paper, we propose two novel
permutation instructions that can perform arbitrary permutations of n bits efficiently.  There
has been limited past work on general-purpose permutation instructions.  In [7], Lee proposed
the first instruction-level support for general-purpose permutations in microprocessors: the
MIX and PERMUTE instructions.  One PERMUTE instruction can generate in a single cycle
any permutation of four 16-bit subwords, including permutations with repetition of elements.
The MIX instruction can combine the contents of two registers.  If we extend it to handle 1-bit
subwords, it can perform many regular permutations efficiently, such as the initial permutation
in DES.  In [2], Hansen proposed the group-8-mux and group-transpose-8-mux instructions.
However, their instructions do 64-bit permutations on 128-bit systems, and require more than
two operands.  By proposing two general-purpose permutation instructions in this paper for
arbitrary bit-level permutations, we hope to give cryptography algorithm designers more
flexibility in designing faster and more secure encryption algorithms.  Our permutation
techniques can be implemented in any programmable processor, whether they are general-
purpose microprocessor or application-specific cryptography processors.  This paper is
organized as follows: Section 2 provides some mathematical properties of permutations.
Section 3 and section 4 introduce two new permutation instructions, PPERM3R and GRP,
respectively.  Section 5 compares the performance of these two permutation methods with the
table lookup method.  Section 6 concludes the paper.

2. Mathematical properties of permutations

Before we get into the details of the instructions, let us take a look at the mathematical
properties of permutations.  The number of n-bit permutations without repetitions is !n .
According to Stirling’s approximation [9][10],



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

)10,0(2! 122

1

<<>=
+−+

θπ
θ

nenn n
nn

(1)

When doing an n-bit permutation, we need to choose one result out of n! possibilities.   At
least, we should be able to distinguish all the n! possibilities.  Thus, at least lg(n!) bits need to
be specified in a permutation operation.  According to [10], we can prove that

)(! nnon = (2)
))lg(()!lg( nnn Θ= (3)

which means that the number of bits needed to specify one permutation is on the order of
).lg(nn  Besides performing normal permutations without repeating any bit, we also need to

do permutations, such as the expansion permutation in DES, in which some bits are replicated.
The repetition of bits increases the number of possible permutations to nn.  Therefore, the
number of bits required to specify a permutation of n bits with repetition is

)lg()lg( nnnn = (4)
Most instruction-set architectures today have instructions with only two operands.  If one of

them specifies the n bits to be permuted, the other can only specify n bits of control
information towards determining the required permutation.  Consequently, the number of
instructions required to specify any arbitrary permutation of n bits is lg(n) instructions.

3. The PPERM3R instruction

An intuitive way to do permutations is to explicitly specify the position in the source for
each bit in the destination.  This is done by the Permute instruction in MAX-2 [7], where any
subword in the source register can go to any subword position in the destination register.  The
Permute instruction currently supports only 16-bit subwords, so all position information can be
encoded in 8 bits in the instruction.  To perform bit-level permutation, we need to generalize
the Permute instruction to support the subword size of 1.  In this case, each bit is a subword
and the number of subwords becomes n.  Because there are n positions in the source, we need
lg(n) bits to represent each of them.  nlg(n) bits are required to specify the position information
for all of the n bits.  Obviously, all of these bits can not be specified in one instruction.  So we
have to use more than one instruction to do a single permutation, and with each instruction, we
specify the permutation of a subset of bits.  Suppose the source positions for k bits can be
specified with one instruction, we define PPERM3R instructions as follows:

PPERM3R,x R1, R2, R3

R1 and R2 are the source registers, and R3 is the destination register.  R1 contains the bits to
be permuted; R2 contains the control bits.  x specifies which k bits in R3 will change.  In R3,
only k bits specified by x are updated; other bits are copied from R1 unchanged.  We use klg(n)
bits in R2 to specify where to extract the k consecutive bits.  In order to store the position
information in one register, the following inequality should hold:

nnk ≤lg (5)
Therefore,

 
)lg(n

n
k ≤ (6)

Approximately nn lg/  bits can be specified with one instruction.  In total, we need around
nkn lg/ ≈  instructions for an n-bit permutation.



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

Table 2 shows the number of instructions to perform one permutation on systems with
different word sizes and PPERM3R instructions permuting different number of bits per
instruction.

Table 2: Number of the PPERM3R instructions for one permutation on different systems

Register
width n lg(n)

Maximum
k

n

n

lg

Least number of
instructions

required

Power of 2
less than k

Typical
number of

instructions

32 5 6 6 4 8
64 6 10 7 8 8
128 7 18 8 16 8

As shown in Table 2, although the least number of instructions is around lg(n), the actual
number may be greater than lg(n) if we permute a subset of bits, k, that is rounded to the
nearest power of 2.

The following codes give an example of using the PPERM3R instruction to do the initial
permutation in DES.  Suppose all registers are 64 bits in width.  R1 is the source and R2 is the
target.  R10 through R17 are registers containing permutation control bits.  We use 8 bits to
represent the position of each bit in the source register.  Thus, each instruction permutes a
subset of 8 bits and 8 instructions are required to permute all 64 bits.

PPERM3R,0 R1, R10, R2 ; R10 = 0x3931292119110901
PPERM3R,1 R1, R11, R2 ; R11 = 0x3B332B231B130B03
PPERM3R,2 R1, R12, R2 ; R12 = 0x3D352D251D150D05
PPERM3R,3 R1, R13, R2 ; R13 = 0x3F372F271F170F07
PPERM3R,4 R1, R14, R2 ; R14 = 0x3830282018100800
PPERM3R,5 R1, R15, R2 ; R15 = 0x3A322A221A120A02
PPERM3R,6 R1, R16, R2 ; R16 = 0x3C342C241C140C04
PPERM3R,7 R1, R17, R2 ; R17 = 0x3E362E261E160E06

The first byte in R10, 0x39, indicates that the first bit in the target register R2 is bit 57 in
the source register R1.

The advantages of PPERM3R are:
1. Besides normal permutations without any repetition of elements, permutations with

repetitions can also easily be done with PPERM3R.  For instance, the expansion
permutation in DES is a transformation from 32 bits to 48 bits in which some bits are
replicated.

2. Since the control bits for each PPERM3R instruction are very easy to generate, we can
handle dynamically specified permutations.  This is a feature of software-implemented
permutations that is not easily achieved by reordering wires in hardware-implemented
permutations.

3. If the PPERM3R functional unit allows storage of intermediate permutation results, then
fewer instructions are needed as both source registers can carry control bits.  A new
PPERM3R_ctl instruction is needed.

The PPERM3R instruction has the following disadvantages:
1. Because only part of the destination register is updated, PPERM3R requires that the

register file either has a partial write capability, or has three read ports.  In the latter case,



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

we read out the destination register, combine the updated bits with the unchanged bits, and
write back a whole word.  Either alternative is expensive.

2. Usually, we need the same number of instructions, lg(n), for all permutations of n bits, no
matter how simple a particular permutation might be.

3. It is hard to perform a 2n-bit permutation on n-bit systems.  Two registers are needed to
store 2n source bits, and one more is needed for control bits.  We need three source
registers.  Moreover, because the bits in the target register might come from any position
in the source registers, we need more control bits to specify positions.

4. When the size of lg(n) does not match n well,  some bits in control register R2 are wasted.
More than lg(n) PPERM3R instructions are required for a permutation.

Because of the disadvantages of PPERM3R, we propose the GRP instruction.

4. The GRP instruction

The GRP instruction looks like any two-operand, one-result instruction on typical
microprocessors:

GRP R1, R2, R3

R1 and R2 are the source registers, and R3 is the destination register.   If we use R1[i] to
represent the i(th) bit of R1, the function of the GRP instruction can be described with pseudo
codes as follows:

  

j = 0; 
 for (i = 0; i < n; i ++) 

 if (R2[i] == 0) 
  R3[j ++] = R1[i] 
for (i = 0; i < n; i ++) 
 if (R2[i] == 1) 

   R3[j ++] = R1[i] 

The basic idea of the GRP instruction is to divide the bits in the source R1 into two groups
according to the bits in R2.  For each bit in R1, we check the corresponding bit in R2.  If the
bit in R2 is 0, we put this bit in R1 into the first group.  Otherwise we put this bit in R1 into the
second group.  During this process we do not change the relative positions of bits in the same
group.  Finally, putting the first group to the left of the second group, we get the result value in
R3.  From the position of two groups, we call the first the left group, and the second the right
group.  Figure 1 shows how the GRP instruction works on 8-bit systems.

 

0 7 

a b c d e f g h 

1 0 0 1 1 0 1 0 

b c f h a d e g 

Data       R1 

Control Bits   R2 

Result      R3 

Figure 1: The GRP instruction on 8-bit systems

On n-bit systems, we can do any n-bit permutations with no more than lg(n) GRP
instructions.  This can be proved by construction: we show the sequence of GRP instructions to



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

perform any arbitrary permutation, and we show how to determine the control bits for the GRP
instructions in the sequence.  But first, we introduce some definitions used to describe the
algorithm.

To avoid confusion, we use permutation to represent the transformation we want to perform
on a sequence of bits, and arrangement to represent the order of bits in a sequence.  So, each
permutation operation takes an arrangement as input, and produces another arrangement.  The
permutation determines the relationship between the initial arrangement and the final
arrangement.  We call the input the initial arrangement, and the output the final arrangement.

We use an integer sequence to represent an arrangement.  An integer in the sequence
denotes the position of the corresponding bit in the initial arrangement.  For example, in an 8-
bit permutation, the integer sequence (1, 2, 5, 7, 0, 3, 6, 4), which represents an arrangement,
indicates that bit 0 in this arrangement is bit 1 in the initial arrangement.  Similarly, bit 1 in this
arrangement is bit 2 initially; bit 2 is bit 5 initially, and so forth.  In an identity permutation, the
final arrangement can be represented with a sequence (0, 1, 2, 3, 4, 5, 6, 7), which indicates
that the bits in this arrangement come from the same positions in the initial arrangement.
Since the n-bit initial arrangement can always be represented as (0, 1, 2, …, n-1,n), we use the
integer sequence for the final arrangement to represent a permutation.

We define monotonically increasing sequences as follows:

Definition 1: Given an integer sequence b1, b2,…,bi,…,bj,…,bn, its subsequence bi,…,bj is a
monotonically increasing sequence (MIS) if  bi < bi+1< bi+2< … < bj , bi-1 > bi or i = 1, bj > bj+1

or j = n.

For example, given a sequence (1, 2, 5, 7, 0, 3, 6, 4),  we can find the following MISes in it:
(1, 2, 5, 7),  (0, 3, 6), (4).   It is easy to see that any integer sequence can be considered a
concatenation of a number of non-overlapping MISes.  We define a function numMIS to get
the number of MISes in an integer sequence.

Definition 2: numMIS is a function that takes an integer sequence as input, and returns the
number of MISes in it.

For example, numMIS(1, 2, 5, 7, 0, 3, 6, 4) = 3; numMIS(1,2,3,4)  = 1; numMIS(1,3,2,4)  =
2;  numMIS(4,3,2,1)  = 4.

Because each MIS has at least one number, it is easy to notice Fact 1.

Fact 1: The maximum value of numMIS is the length of the input sequence.

Because we can use an integer sequence to represent an arrangement, we also define the
numMIS value of arrangements for convenience.

Definition 3: The numMIS value of an arrangement is the value of the numMIS function when
it takes as input the integer sequence representation of the arrangement.  We use numMIS(P) to
represent the numMIS value of arrangement P.

For an n-bit permutation, the numMIS value of the final arrangement can not exceed n.  The
numMIS value of the initial arrangement is always 1.

Fact 2: Given an arrangement P, if numMIS(P) = k (k > 1),  there exists an arrangement Q,
such that numMIS(Q) = k/2 , and P can be generated from Q with one GRP instruction.  k/2
denotes the least integer not less than k/2.

Fact 2 inspires us to perform any arbitrary permutations of n bits with the GRP instruction.
For example, let us consider a case where n = 8.  We have an arrangement of 8 bits, which is
the final arrangement of an 8-bit permutation: Pd = (7,6,5,4,3,2,0,1).  numMIS(Pd) = 7.



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

According to Fact 2, we can find an arrangement Pc and an instruction Ic, such that
numMIS(Pc) = 4 and Ic generates Pd from Pc.  Similarly, we can find arrangements Pb and Pa,
instructions Ib and Ia, such that Ib generates Pc from Pb and numMIS(Pb) = 2.  Similarly, Ia

generates Pb from Pa and numMIS(Pa) = 1.  Since numMIS(Pa) = 1, Pa is the initial
arrangement.  Hence, we can use Ia, Ib, and Ic to perform the permutation corresponding to Pd.
We shall show that Fact 2 holds by giving a method, which is described in Algorithm 1, to find
Q and the GRP instruction that generates P from Q.

Algorithm 1:  To generate one GRP instruction and the arrangement Q 
INPUT:  Arrangement P 
OUTPUT:  Arrangement Q and control bits c for GRP instruction 
 
Let Pi represent the i(th) MIS in P.  (x, y) denotes the operations that combine integer 
sequence x and y into a longer sequence. Sort(x) is a function that sorts elements in sequence 
x in increasing order. P can be represented by k MISes as follows: 

P = (P1, P2, P3, …, Pm, Pm+1 , Pm+2 …,Pk-1, Pk) 
Note that m= k/2, and P1, P2, P3, …, Pm is the first half MISes. 
 

1. Generate temporary sequences T1, T2,…,Tm: 
For i = 1, 2, … ,m-1 

Ti = (Pi , Pi+m)  
If (k is odd) then 

Tm = Pm 
else 

Tm=(Pm , Pk) 
2. Generate Q: 

For i = 1, 2, … , m 
Qi= Sort(Ti) 

Let  Q = (Q1, Q2, Q3,…,Qm). 
3. Generate control bits c: 

Q can also be considered as a bit string: 
Q = (Q1, Q2, Q3,…,Qm) = (b0, b1, b2, …,bn-1) 
For j = 0, 1, … , n-1 

if  (bj is in P1, P2, P3, … , or Pm) 
cj = 0 

else 
cj = 1 

If R1 and R2 contain Q and c, respectively, P will be in R3 after executing the following
instruction:

GRP R1, R2, R3

Finally, we give Algorithm 2, which generates the GRP instruction sequence for a
permutation.  In Algorithm 2, starting from the final arrangement, we keep invoking Algorithm
1 to search some temporary arrangements that have a lower numMIS value until we get an
arrangement whose numMIS value is 1.  At the same time, we keep the control bits generated
in Algorithm 1 in an array aC.  Every time we call Algorithm 1, we reduce arrangement P to



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

an easier arrangement Q.  When the process terminates, we get an arrangement whose
numMIS value is 1, which means it is the initial arrangement.

Algorithm 2: To generate sequence of GRP instructions for a permutation 
INPUT:  The final arrangement of a permutation P 
OUPUT:  aC : an array that stores the control bits for the GRP instructions that perform 

the permutation 
num_instr : the number of valid entries in aC 

1. num_instr = 0; 
2. If (numMIS(P) == 1) return; 
3. Call Algorithm 1 with P, and put the results of Algorithm 1 in Q and tmp_c. 
4. aC[num_instr ++] = tmp_c; 
5. P = Q; 
6. Goto step 2. 

We know from Fact 2 that every time we generate a new arrangement, its numMIS value
decreases by half.  We also know that the maximum numMIS value of the final arrangement is
its length n.  It implies that we need at most lg(n) steps to reduce the numMIS value of
arrangements from  n to 1.  Thus, the number of iterations in Algorithm 2 does not exceed
lg(n) and the number of valid entries in the returned array aC does not exceed lg(n).  For each
entry in aC, we generate one GRP instruction.  The total number of GRP instructions does not
exceed lg(n).

When performing the permutation P, we start from the initial arrangement whose numMIS
value is 1.  Using the control bits kept in array aC from entry (num_instr – 1) to entry 0, we
generate the temporary arrangements in the reverse order, and achieve the final arrangement
after the last GRP instruction.

Table 3 shows what happens on the example we mentioned above, an 8-bit permutation:
(7,6,5,4,3,2,0,1).

Table 3: Find out the GRP instruction sequence for an 8-bit permutation

Iteration 1 2 3
P (7,6,5,4,3,2,0,1) (3, 7, 2, 6, 0, 1, 5, 4) (0, 1, 3, 5, 7, 2, 4, 6)
MISes in P (7)(6)(5)(4)(3)(2)(0,1) (3,7)(2,6)(0,1,5)(4) (0, 1, 3, 5, 7)(2, 4, 6)
After Alg. 1, step 1 (7,3)(6,2)(5,0,1)(4) (3,7, 0,1,5)(2,6,4) (0, 1, 3, 5, 7, 2, 4, 6)
After Alg. 1, step 2 Q = (3,7)(2,6)(0,1,5)(4) Q=(0, 1, 3, 5, 7)(2, 4, 6) (0, 1, 2, 3, 4, 5, 6, 7)
After Alg. 1, step 3 c = 10101100 c = 11010010 c = 00101010

The permutation can be performed with the following instruction sequence:

GRP R1, R2, R1 ; R2 = 00101010 kept in aC[2]
GRP R1, R3, R1 ; R3 = 11010010 kept in aC[1]
GRP R1, R4, R1 ; R4 = 10101100 kept in aC[0]

Hence, lg(8) = 3 GRP instructions are sufficient to permute 8 bits.
Not only can the GRP instruction do an n-bit permutation efficiently, but it can also do 2n-

bit permutations with the help of an instruction like the SHIFT PAIR instruction in PA-RISC
[5][6].  The SHIFT PAIR instruction can process operands that cross word boundaries.  It
concatenates two source registers to form a double-word value, then extracts any contiguous



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

single-word value.  Suppose R1 and R2 store the bits to be permuted, and the results will be
put in R3 and R4.  The following steps perform the 2n-bit permutations:
1. Use GRP instructions to divide bits R1 and R2 into two groups.  In R1, put the bits going

to R3 into the left group, and the bits going to R4 into the right group.  In R2, put the bits
going to R4 into the left group, and the bits going to R3 into the right group.  This can be
done with two GRP instructions, one for R1 and one for R2.

2. Using two SHIFT PAIR instructions, we put all bits going to R3 into R3, and all bits going
to R4 into R4.  Two instructions are enough.

3. Considering R3 and R4 as separate n-bit words, do n-bit permutations on them.  Each of
R3 and R4 may need up to lg(n) instructions.

Figure 2 shows what happens when we perform 2n-bit permutations.
In total, excluding the instructions needed for loading control bits, we need (2lg(n)+4)

instructions to do a 2n-bit permutation, which is only two instructions more than 2lg(2n), the
minimum number of instructions required for any 2n-bit permutation on n-bit systems.

 

     R1 
 

R1 R2 

R3 R4 

                 R2 
 

GRP 

SHIFT PAIR 

Figure 2: Use the SHIFT PAIR and GRP instructions to do 2n-bit permutations

The GRP instruction has overcome all shortcomings of the PPERM3R instruction.  It
requires only two operands.  It can do any permutations with lg(n) instructions and do some
permutations with fewer.  Also, it can be used to do 2n-bit permutations.  The shortcomings of
this instruction are that the hardware implementation is either slow or expensive, and currently,
it does not support bit repetition.

5. Performance comparison

Table 4 shows the comparison of methods for performing permutations on 64-bit systems.
PPERM3R and GRP have their own advantages.  GRP is faster than PPERM3R, but currently,
its hardware implementation is either expensive or has a long latency.  The current ISA method
and table lookup methods were described in section 1.  Note that the 23 instructions in the
table lookup method include 8 LOAD instructions, each of which can cause a cache miss, or
other memory delay, resulting in an execution time that is much longer than that for 23
instructions.

Table 4: Compare the PPERM3R and GRP instruction for permuting n=64 bits

Instruction PPERM3R GRP Current ISA Table Lookup
Number of operands 3 2 2 2
Max number of instructions 8 6 256 (4n) 23(typically)
Do 128-bit permutations? no yes yes yes
Do permutations with bit repetition ? yes no yes yes
Hardware cost mid high low low



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

Table 5 shows the number of instructions needed to do permutations in DES with three
different methods.  The first four permutations are used in encryption and decryption.  The
expansion permutation and P-Box are in the loop, and need to be performed 16 times for each
block.  The other two permutations are used in key generation, and the compression
permutation needs to be done 16 times.  For the PPERM3R and GRP methods, the instructions
needed for loading control bits are included.  If the same permutation is repeated on many 64-
bit data, then the control bits are loaded only once, and the cost of loading can be amortized
over all these permutations.  For the table lookup, we divide the source into sections of 8 bits
each, and include the instructions that load the pointers to the permutation tables.  We also
assume that the instructions equivalent to EXTRACT and Load Indexed in PA-RISC are
available [5][6].  As shown in Table 5, while the GRP instruction needs the fewest instructions,
the table lookup needs the most.

Table 5: Number of instructions required for permutations in DES

Load control bits Control bits already loaded
Table Lookup PPERM3R GRP PPERM3R GRP

Initial permutation 31 16 12 8 6
Final permutation 31 16 12 8 6
Expansion permutation 15 12 9 6 5
P-Box 15 8 8 4 4
Key permutation 31 14 12 7 6
Compression permutation 27 12 10 6 5

The relative number of instructions required for the encryption and key generation in DES is
shown in Figure 3.  Smaller numbers are better.  We do not give the number of cycles required
by each method because this depends on the processor’s microarchitecture.  The left three bars
are for the programs explicitly doing all 6 permutations using the specified permutation
methodology.  The table lookup method used by current microprocessors needs 35% more
instructions for DES than the GRP method.  Different optimized versions of DES may
eliminate some of these permutations, resulting in different instruction counts.  The right three
bars are for key generation, where the computation is dominated by the two key permutations.
Here, the table lookup method needs more than 3 times the number of instructions than when
the GRP instruction is present.

1.35

3.03

1.04

1.66

1 1

0

0.5

1

1.5

2

2.5

3

3.5

Encryption Key generation

Table Lookup

PPERM3R

GRP

Figure 3: Number of instructions for DES encryption and key generation

Table 6 shows the number of instructions needed to do permutations in Serpent with three
different methods.  We use the same assumption as in Table 5.  Since the permutations are
performed on 128-bit data, we need two LOADs and two ORs for each section of the table
lookup.



Proceedings of the IEEE International Conference on Application-specific Systems, Architectures and
Processors, July 10-12, 2000, Boston, Massachusetts, USA, pp. 138-148

Table 6: Number of instructions required for permutations in Serpent

Table Lookup GRP
Load control bits

GRP
Control bits already loaded

Initial permutation 110 26 14
Final permutation 110 14 8

The two 8-bit permutations in Twofish are simple.  They can be done with one table lookup
or one PPERM3R instruction, which is faster than the GRP instruction.  Also, due to the
regular structure of the function in each round of Twofish, permutation operations can be
avoided in its software implementation.

6. Conclusion

We know that nlg(n) bits are necessary and sufficient to specify an arbitrary n-bit
permutation with bit repetition.  Different methods can be used to specify these bits.  Two
instructions are proposed in this paper.  The GRP instruction needs only two operands, and
requires fewer instructions than the PPERM3R instruction to perform an arbitrary permutation.
But it does not support bit repetition.  The PPERM3R instruction can perform permutations
with repetition of bits and can handle dynamically specified permutations, but it may need
more instructions.  Both of them can lead to a significant speedup on permutations in DES and
in new symmetric key cryptographic algorithms using permutations.

References:

1. Bruce Schneier, "Applied Cryptography", 2nd Ed., John wiley & Sons, Inc.,1996
2. Craig Hansen, "Microunity's Media Processor Architecture", IEEE Micro, Vol. 16, No. 4, Aug 1996, pp.34-41
3. Frank Hoornaert, Jo Goubert, Yvo Desmedt, "Efficient Hardware Implementation of the DES", Advances in

Cryptology, CRYPTO '84 Proceedings, Springer-Verlag, 1985, pp.147-173
4. Matt Bishop, "An Application of a Fast Data Encryption Standard Implementation",  Computing Systems, Vol.

1, No. 3, 1988, pp.221-254
5. Ruby Lee, “Precision Architecture”, IEEE Computer, Vol. 22, No. 1, Jan 1989, pp.78-91
6. Ruby Lee, Michael Mahon, Dale Morris, “Pathlength Reduction Features in the PA-RISC Architecture”,

Proceedings of IEEE Compcon, Feb 24-28, 1992, San Francisco, California, pp.129-135
7. Ruby Lee, “Subword Parallelism in MAX-2”, IEEE Micro, Vol. 16, No. 4, 1996, pp.51-59
8. Bruce Schneier, John Kelsey, “Twofish: A 128-bit block cipher”, http://www.counterpane.com/twofish-

paper.html
9. Milton Abramowitz, Irene A. Stegun, “Handbook of Mathematical Functions”, 9th printing, US  Department of

Commerce, National Bureau of Stanards, November 1970
10. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, “Introduction to Algorithms”, The MIT Press,

1994
11. Ross Anderson, Eli Biham and Lars Knudsen, “Serpent: A Proposal for the Advanced Encryption Standard”,

http://www.cl.cam.ac.uk/~rja14/serpent.html


