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Abstract 
 
Subword parallelism has succeeded in accelerating 

many multimedia applications. Subword permutation 
instructions have been proposed to efficiently rearrange 
subwords in or among registers.  Bit-level permutation 
instructions have also been proposed recently for their 
importance in cryptography.  However, some important 
algorithms, especially ones with lots of conditional control 
dependencies such as sorting, have not exploited the 
advantage of subword parallel instructions.  In this paper, 
we show how one of the bit permutation instructions, 
GRP, can be used for fast sorting.  In the process, we 
demonstrate the versatility of this permutation instruction 
for uses other than bit permutations.  This versatility is 
important in considering the addition of a new instruction 
to a general-purpose processor.  The results show that our 
sorting methods have a significant speedup even when 
compared with the fastest sorting algorithms. We also 
discuss the hardware implementation of the GRP 
instruction and compare its latency to a typical 
processor's cycle time. 

 
 

1. Introduction 
 

General-purpose processors are optimized for word-
oriented computation.  Hence, their instruction set 
architecture (ISA) provides limited support for the 
manipulation of data items smaller than a word.  Logical 
operations AND, OR, and NOT along with SHIFT are 
common bit-level operations.  Today, most processor ISAs 
support subword parallel computation [1-6].  Subwords are 
data items that are smaller than a word.  Multiple 
subwords can be packed into one register, so that one 
instruction can perform an operation on multiple data 
items simultaneously.  Efficient rearrangement of 
subwords is often necessary to put subwords into proper 
positions in registers so that operations can be applied to 
all subwords at the same time.  Without such fast 
arrangement of subwords, called subword permutation, the 
performance gain achieved by subword parallelism may be 
diminished. 

The PERMUTE and MIX instructions are proposed in 
the MAX-2 multimedia instructions for PA-RISC 2.0 
processors to address subword permutations [2].  The 
PERMUTE instruction can perform any arbitrary 
permutation of 16-bit subwords from one source register, 
with a single instruction.  The MIX instruction combines 
even or odd subwords from two source registers.  While 
these are the first general-purpose subword permutation 
primitives introduced into microprocessors, both 
PERMUTE and MIX dealt only with 16-bit subwords in 
MAX-2 [2].  IA-64 extended MIX to support 8-bit 
subwords and added five variants of byte permute 
instructions called MUX [17].  However, it has not been 
shown whether these permutation primitives can efficiently 
generate all desired subword rearrangements.  Lee further 
proposed new subword permutation primitives for 2-
dimensional rearrangements of subwords packed into 
registers [7].  A minimal canonical set includes MIX and 
PERMSET, defined for subword sizes that are powers of 
two.   PERMSET repeats a permutation on a small set of 
subwords over the entire set of subwords in a register. 

While most subword permutation instructions are 
proposed to handle subwords of at least 8 bits in size, 
instructions for permutations on subwords of 1 bit (also 
called bit permutations) have recently been proposed [13-
16].  Bit permutations are useful for achieving diffusion [8, 
9] in symmetric-key algorithms such as DES, Twofish and 
Serpent [10-12].  The new instructions, GRP [13,15], 
OMFLIP [14,15], and SIEVE [16], can efficiently perform 
arbitrary bit permutations, which are very slow on existing 
word-oriented processors.  These new instructions are 
designed to have two operands and one result, to fit in the 
datapath of a typical processor.  Each of them has different 
strong and weak points [15].  Any one is sufficient to 
achieve bit-level permutations efficiently.  Which one to 
choose depends on its cost (in area and latency), and its 
versatility, not only for bit permutations, but also for other 
functions.  In this paper, we demonstrate the versatility of 
one of these bit permutation instructions, GRP, showing 
the large speedup achievable in sorting subwords packed 
in one or more registers. 

Although subword instructions have been used to 
implement many algorithms, such as IDCT [2], with 
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significant speedups, it has not been exploited by some 
control-intensive algorithms such as sorting.  Most fast 
sorting algorithms, such as quicksort, are control intensive 
[18, 19].  In such sorting algorithms, since the subwords in 
a register affect the control flow in different ways, it 
appears difficult to exploit the performance benefits of the 
SIMD-style operation provided by subword-parallel 
instructions.  A few attempts have been made to show how 
conditional branches may be eliminated in doing parallel 
compare-and-swap operations in the implementation of 
median filters, but not for general-purpose sorting [22].  In 
this paper, we show another way in which control flow 
dependencies can be eliminated, and subword parallelism 
at the subword or bit levels fully exploited, to sort 
subwords packed into one or more registers.  In the 
process, we also show the versatility and effectiveness of a 
bit permutation instruction, GRP, for accelerating subword 
sorting.   

In section 2, we describe the GRP instruction, and 
show how to use it to do subword sorting.  In Section 3, 
we describe a hardware implementation of the GRP 
operation.  The performance is compared in Section 4. 
Section 5 summarizes the paper. 

 

2. Sorting subwords with the GRP instruction 
 

Sorting rearranges the data items in a list by its value 
in a monotonically increasing, or decreasing, order.  Many 
algorithms such as binary search require the input data to 
be sorted.   In this section, we focus on sorting a small 
number of positive integers.  We assume these values are 
stored contiguously in memory.   

 

2.1. The GRP instruction 
 

The GRP instruction was first proposed to do arbitrary 
permutations of n bits [13] very quickly. It uses a typical 
two-operand, one-result instruction format: 

GRP R1, R2, R3 

R1 and R2 are the source registers, and R3 is the 
destination register.  If R1[i] represents the ith bit of R1, 
the function of the GRP instruction can be described with 
pseudo code shown in Figure 1. 

j = 0; 
for (i = 0; i < n; i ++) 

if (R2[i] == 0) 
  R3[j ++] = R1[i] 
for (i = 0; i < n; i ++) 
 if (R2[i] == 1) 
  R3[j ++] = R1[i]  

Figure 1: The GRP instruction 

The GRP instruction divides the bits in the source R1 
into two groups according to the bits in R2.  For each bit in 
R1, we check the corresponding bit in R2.  If the bit in R2 
is 0, the bit in R1 is put into the first group.  Otherwise the 
bit in R1 is put into the second group.  During this process 
we do not change the relative position of bits within each 
group.  Finally, putting the first group to the left of the 
second group, we get the result in R3.  Figure 2 shows how 
the GRP instruction works on 8-bit registers. 

 

a b c d e f g h 

1 0 0 1 1 0 1 0 

b c f h a d e g 

Data       R1 

Control Bits   R2 

Result      R3 

0 7 

 

Figure 2: The GRP instruction on 8-bit registers 
It has been shown that on n-bit systems, at most lg(n) 

GRP instructions can perform any n-bit permutations [13].  
Figure 3 shows how a permutation is done on an 8-bit 
system.  The permutation (7,6,5,4,3,2,0,1) indicates that 
bit 0 of the output is bit 7 of the input; bit 1 of the output is 
bit 6 of the input; and so forth.  Comments right before an 
instruction show the register contents before the execution 
of that instruction.  The underlined bits have a control bit 
of 1 in R2, thus will be moved to the right after the 
execution of the instruction.  After the execution of the 
third instruction, R1 contains the desired result. 

; R2=00101010        R1=(0,1,2,3,4,5,6,7) 
GRP R1, R2, R1  
; R3=11010010        R1=(0,1,3,5,7,2,4,6) 
GRP R1, R3, R1  
; R4=10101100       R1=(3,7,2,6,0,1,5,4) 
GRP R1, R4, R1 
;        R1=(7,6,5,4,3,2,0,1)  

Figure 3: GRP instructions used to do the 
permutation specified by (7,6,5,4,3,2,0,1) 

 

2.2. Sorting subwords within a register  
 

The GRP instruction can be described as sorting bits 
in the first operand according to the bit values (0 or 1) in 
the second operand.  When used in radix sort [18], it can 
sort multi-bit subwords in a register.  Radix sort takes the 
least significant bit (LSB) of each subword, sorts the 
subwords by that bit maintaining the order of subwords 
that have the same value for that bit, and repeats the 
sorting with the next more significant bit.  During this 
process, all bits in a subword should be moved together.  
This requires the control bits have the same value for all 



bits in a subword.  To quickly generate control bits in this 
format, we introduce a new instruction BroadcastBit: 

BroadcastBit,s,i R1, R2 

BroadcastBit has one source operand R1 and one 
destination R2.  It broadcasts a bit in a subword to all bits 
in that subword.  s specifies the subword size in bits, and i 
specifies which bit in each subword is broadcast.   After 
the instruction is executed, all bits in each subword in R2 
have the same value, the value of bit i of the corresponding 
subword in R1.  Table 1 shows the results of some 
BroadcastBit instructions when R1 = 0x01234567.  The 
first instruction broadcasts the LSB of each 4-bit subword, 
giving a result of alternating 0s and 1s.  The second 
instruction broadcasts bit 1 of each 4-bit subword.  The 
third instruction sets all the bits in R2 to 1 because the 
LSB of all the 8-bit subwords (i.e. 0x01, 0x23, 0x45, 
0x67) is 1. 

Note: R1 and R2 are 32-bit words, and R1 = 0x01234567 
Instruction Result in R2 

BroadcastBit,4,0   R1, R2 0x0F0F0F0F 

BroadcastBit,4,1   R1, R2 0x00FF00FF 

BroadcastBit,8,0   R1, R2 0xFFFFFFFF 

Table 1: Example of the BroadcastBit instruction 

The BroadcastBit instruction can be added to an ISA 
with little overhead because it requires only small control 
modifications to the functional unit that does parallel 
addition with saturation, which is included in almost all 
subword instruction sets [1-5, 17].  When saturation occurs 
during an addition, all bits in a subword are set to 0s or 1s.  
When doing BroadcastBit, we force bits in a subword to 
all 0s or all 1s, determined by whether bit i of the source 
subword is 0 or 1.  Note that BroadcastBit can be 
considered a special case of PERMSET [7]. 

BroadcastBit and GRP can sort subwords packed in a 
register.  For every bit i in a subword from the LSB to the 
most significant bit (MSB), repeat the following: broadcast 
bit i in each subword; then perform the GRP operation on 
the subwords, using the result of broadcasting as the 
control bits.  A BroadcastBit instruction uses the result of 
the previous GRP instruction, except for the first 
BroadcastBit which uses the original input.  An example of 
sorting 8-bit subwords in R1 is shown in Figure 4, using 
16 instructions.  

The program in Figure 4 can be used to sort eight 8-
bit subwords in a 64-bit register, or sixteen 8-bit subwords 
in a 128-bit register, or thirty-two 8-bit subwords in a 256-
bit register.  Although the time complexity of radix sort is 
O(kn), which depends on both the key length k and the 
number of items n, the number of instructions required in 
our method is 2k, where k is the number of bits in a 

subword.  For example, sorting four 16-bit subwords in a 
64-bit register requires 32 instructions. 

;The subword size is 8 bits  
;The register size is 64 bits 
;R1 contains the subwords to be sorted 
;The sorted subwords are also placed back into R1 
 
BroadcastBit,8,0 R1, R2 
GRP   R1, R2, R1 
BroadcastBit,8,1 R1, R2 
GRP   R1, R2, R1 
BroadcastBit,8,2 R1, R2 
GRP   R1, R2, R1 
BroadcastBit,8,3 R1, R2 
GRP   R1, R2, R1 
BroadcastBit,8,4 R1, R2 
GRP   R1, R2, R1 
BroadcastBit,8,5 R1, R2 
GRP   R1, R2, R1 
BroadcastBit,8,6 R1, R2 
GRP   R1, R2, R1 
BroadcastBit,8,7 R1, R2 
GRP   R1, R2, R1 

 
Figure 4: Sorting subwords in a register with the 

GRP and BroadcastBit instructions 

 

2.3. Sorting subwords in multiple registers 
 

A problem with the above method is that only a few 
subwords can be packed within a register, and thus sorted 
by GRP and BroadcastBit.  In this section, we will 
introduce another method to sort more subwords packed in 
multiple registers.  We rearrange the bits so that each 
register has only one bit from each subword, then sort n 
subwords simultaneously where n is the number of bits in 
the registers. 

 w0 w1 w2 w3 w4 w5 w6 w7 R10 

R11 

w8 w9 w10 w11 w12 w13 w14 w15 

w56 w57 w58 w59 w60 w61 w62 w63 R17 

a) All 8 bits in each subword are together 

R10 Bit 0 of w0, w1, …,w63 

Bit 1 of w0, w1, …,w63 

R17 Bit 7 of w0, w1, …,w63 

b) Each bit of each subword is in a different register 

R11 

 
Figure 5: Arrangement of bits in subwords 



Figure 5 shows two different storage formats for 
subwords.  Suppose registers are 64 bits in width, and 
subwords are 8 bits.  If we can keep all 8 bits in a subword 
together, as in Section 2.2, each register can hold eight 
subwords, and 64 subwords require 8 registers, R10, R11, 
…, R17.  This is shown in Figure 5a.  Alternatively, we 
can rearrange bits so that the first register, R10, holds bit 0 
for all 64 subwords, the second register, R11, holds bit 1 
for all 64 subwords, and so on.  This is shown in Figure 
5b.  The two formats require the same number of registers 
to store 64 subwords.   

We can easily apply radix sort to sort subwords in 
Figure 5b: use the GRP instruction to sort all the registers 
R10, R11, …, R17 by each bit from the LSB  (R10) to the 
MSB (R17).  The code is shown in Figure 6.  R10, the 
LSB, is first used to sort each register, R10 through R17.  
Then R11, the second least significant bit, is used to sort 
the eight registers, and so forth.  Thus, 8x8 = 64 
instructions can sort 64 8-bit subwords.   

 
GRP  R17, R10, R17 
GRP  R16, R10, R16 
GRP  R15, R10, R15 
GRP  R14, R10, R14 
GRP  R13, R10, R13 
GRP  R12, R10, R12 
GRP  R11, R10, R11 
GRP  R10, R10, R10 
 
GRP  R17, R11, R17 
GRP  R16, R11, R16 
GRP  R15, R11, R15 
GRP  R14, R11, R14 
GRP  R13, R11, R13 
GRP  R12, R11, R12 
GRP  R10, R11, R10 
GRP  R11, R11, R11 
……… 
 
GRP  R16, R17, R16 
GRP  R15, R17, R15 
GRP  R14, R17, R14 
GRP  R13, R17, R13 
GRP  R12, R17, R12 
GRP  R11, R17, R11 
GRP  R10, R17, R10 
GRP  R17, R17, R17  

Figure 6: Sort subwords after the pre-transpose  
The subwords, however, are normally not in the format 

shown in Figure 5b when stored in the main memory.  
Instead, they are more likely in the format shown in Figure 
5a.  To convert the subwords into the format we need, we 
consider the 8 bytes in the same column of 8 registers as 
an 8x8 bit matrix. Thus, the 64 subwords shown in Figure 
5a can be considered as eight 8x8 bit matrices.  We 
transpose these matrices so that R10 will have bit 0 of w0, 
w8, …, w56, w1, w9, …, w57, …, w7, w15, …, w63.  
Similarly, R11 will have bit 1 of w0, w8, …, w56, w1, w9, 
…,w57, …, w7, w15, …, w63, and so on.  We call this the 

pre-transpose step.  Although the bit order after this pre-
transpose is different from that shown in Figure 5b, the 
subwords can be sorted in the same way.    
 

a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0 
R1 R2 

a7 b7 a5 b5 a3 b3 a1 b1 

MIX,8,L R1, R2, R3 
R3 

a6 b6 a4 b4 a2 b2 a0 b0 

MIX,8,R R1, R2, R4 
R4 

 
Figure 7: The MIX instruction 

Lee showed that the MIX instruction can do matrix 
transpose efficiently [2]. Each MIX instruction takes two 
registers as input, each of which consists of r subwords.  
Subwords are further divided into pairs, and each pair has 
a left subword and a right subword.  “MIX, L”  selects the 
left subwords alternately from each register; “MIX, R”  
similarly selects the right subwords.  The subword size is 
specified in the MIX instruction.  For example, in Figure 
7, “MIX, 8, L”  indicates MIX operation on 8-bit 
subwords, selecting the left subwords of each pair.  Let 
R1, R2, R3 and R4 be 64-bit registers, and each a0, a1, …, 
a7, b0, b1, …, b7 be an 8-bit subword.  “MIX, 8, L”  puts 
all left subwords into R3, and “MIX, 8, R”  puts all right 
subwords into R4.  

 a7 a6 a5 a4 a3 a2 a1 a0 

b7 b6 b5 b4 b3 b2 b1 b0 

c7 c6 c5 c4 c3 c2 c1 c0 

d7 d6 d5 d4 d3 d2 d1 d0 

e7 e6 e5 e4 e3 e2 e1 e0 

f7 f6 f5 f4 f3 f2 f1 f0 

g7 g6 g5 g4 g3 g2 g1 g0 

h7 h6 h5 h4 h3 h2 h1 h0 

a7 b7 a5 b5 a3 b3 a1 b1 

a6 b6 a4 b4 a2 b2 a0 b0 

c7 d7 c5 d5 c3 d3 c1 d1 

c6 d6 c4 d4 c2 d2 c0 d0 

e7 f7 e5 f5 e3 f3 e1 f1 

e6 f6 e4 f4 e2 f2 e0 f0 

g7 h7 g5 h5 g3 h3 g1 h1 

g6 h6 g4 h4 g2 h2 g0 h0 

a7 b7 c7 d7 a3 b3 c3 d3 

a6 b6 c6 d6 a2 b2 c2 d2 

a5 b5 c5 d5 a1 b1 c1 d1 

a4 b4 c4 d4 a0 b0 c0 d0 

e7 f7 g7 h7 e3 f3 g3 h3 

e6 f6 g6 h6 e2 f2 g2 h2 

e5 f5 g5 h5 e1 f1 g1 h1 

e4 f4 g4 h4 e0 f0 g0 h0 

a) The original matrix b) After MIX for 1-bit subwords 

d) After MIX for 4-bit subwords c) After MIX for 2-bit subwords 

a7 b7 c7 d7 e7 f7 g7 h7 

a6 b6 c6 d6 e6 f6 g6 h6 

a2 b2 c2 d2 e2 f2 g2 h2 

a3 b3 c3 d3 e3 f3 g3 h3 

a4 b4 c4 d4 e4 f4 g4 h4 

a5 b5 c5 d5 e5 f5 g5 h5 

a1 b1 c1 d1 e1 f1 g1 h1 

a0 b0 c0 d0 e0 f0 g0 h0 

 
Figure 8: 8x8 matrix transpose with MIX 

As proposed in [7], the MIX instruction is extended to 
support subwords that are powers of 2, including 1-bit 
subwords.  We use Lee's method [2] to do bit matrix 
transpose in the pre-transpose step.  Figure 8 shows how 
the pre-transpose of an 8x8 bit matrix can be done with 24 
MIX instructions.  The other seven matrices are transposed 



in parallel at the same time, courtesy of subword 
parallelism.  Figure 8a is the original matrix.  All bits in a 
subword are in the same register.  Using “MIX, 1, L” and 
“MIX, 1, R” on pairs of registers, we can get the matrix 
shown in Figure 8b.  Then, we generate the Figure 8c with 
“MIX, 2”.  Then, Figure 8d with “MIX, 4”.  In each step, 
the MIX instructions work on different pairings of 
registers.  The first row of the matrix in Figure 8b to 
Figure 8d is generated by the pairs highlighted in Figure 8a 
to Figure 8c, respectively.  The total number of MIX 
instructions used in Figure 8 is 24 because each row in 
Figure 8b, Figure 8c and Figure 8d is generated by one 
MIX instruction.  Generally, the number of MIX 
instructions to do a k x k matrix transpose  (singly or in 
parallel) is klg(k).  When eight 8x8 bit matrices packed 
into 64-bit registers are transposed in parallel, the number 
of MIX instructions required remains the same. 

 

t0 t8 t16 t24 t32 t40 t48 t56 R10 

R11 

t1 t9 t17 t25 t33 t41 t49 t57 

t7 t15 t23 t31 t39 t47 t55 t63 R17 

b) After bit matrix transpose 

R10 Bit 0 of t0, t1, …,t63 

Bit 1 of t0, t1, …,t63 

R17 Bit 7 of t0, t1, …,t63 

a) After sorting, where  
        (t0, t1, …, t63) = sort(w0, w1, w2,…,w63) 

t0 t1 t2 t3 t4 t5 t6 t7 R10 

t8 t9 t10 t11 t12 t13 t14 t15 

t56 t57 t58 t59 t60 t61 t62 t63 R17 

c) After subword matrix transpose 

R11 

R11 

 
Figure 9:  Post-transpose after sorting 8-bit 

subwords 

After the pre-transpose step, sorting is done as shown 
in Figure 6.  After sorting, a post-transpose step is needed 
to convert the sorted subwords back into the original 
format.  Again, we use the MIX instruction.  However, we 
need more instructions here than in the pre-transpose step.   
A subword matrix transpose needs to be done after the 
local bit matrix transpose (performed on all eight 8x8 bit 
matrices in parallel).  Figure 9 gives an example of the 

post-transpose process for sorting 8-bit subwords.  Figure 
9a shows the register contents right after the sorting.  R10 
has bit 0 of all sorted subwords, R11 has bit 1 of all sorted 
subwords, and so on.  Figure 9c is the format we need to 
store sorted subwords into memory.  After performing 
eight 8x8 bit matrix transpositions in parallel on the eight 
registers in Figure 9a, all bits in each subword gather 
together as shown in Figure 9b. (This is identical to the 
pre-transpose step, using MIX instructions on 1, 2 and 4-
bit subwords.)  Figure 9b can now be considered a single 
8x8 matrix where each element is an 8-bit subword.  
Figure 9b has to be converted to Figure 9c with an 
additional subword matrix transpose, which can be done 
again with the MIX instructions, this time on 8, 16 and 32 
bit subwords, to get the final sorted list in the desired 
format for storing to memory.  

Table 2 summarizes the number of instructions 
required for sorting subwords of different sizes using 64-
bit registers.  Basically we need to do pre-transpose, 
followed by sorting and post-transpose.  If each subword 
consists of k bits and each register has r subwords, k2 GRP 
instructions are required for sorting; klg(k) MIX 
instructions for the pre-transpose; klg(k) MIX instructions 
for the bit matrix transpose in the post-transpose; and 
klg(k) (or klg(r) when k > r) MIX instructions for the 
subword matrix transpose in the post-transpose. 

The GRP instruction is useful for bit-level 
permutations, as well as for sorting subwords.  Although it 
has not been shown, it appears that other permutation 
instructions like OMFLIP, PPERM and SIEVE are not as 
amenable for sorting since they do not incorporate the 
intrinsic sorting capability of GRP.  However, the GRP 
instruction may be conceptually harder to implement than 
these other bit permutation instructions.  In the next 
section we describe how it may be implemented, and then 
estimate its latency. 

Subword size, k 4  8  16  
# of subwords per register, r 16 8 4 
# of registers for storing 64 subwords = k 4 8 16 
# of instructions for pre-transpose 8 24 64 
# of instructions for sorting 16 64 256 

bit matrices 8 24 64 # of instructions  
for post-transpose  subword matrices 8 24 32 

Total 40 136 416 Total # of 
instructions with  load/ store (+2k) 48 152 448 

Table 2: Number of instructions for sorting 64 
subwords using GRP and MIX on 64-bit registers 

 

3. Hardware design of the GRP operation 
 

A GRP operation is composed of three conceptual 
steps.  Step 1 grabs input bits whose corresponding control 



bits are 0. These bits are referred to as z bits.  Step 2 grabs 
input bits whose corresponding control bits are 1. These 
bits are referred to as w bits.  In Step 3, the results of the 
previous two steps are merged to get the result of the GRP 
instruction.  The circuit that grabs z bits puts all z bits at 
the left end, and pads out the word with zeros.   The same 
circuit can grab w bits with inverted control bits, and 
produce a result with w bits and padded zeros.    Hence, 
the control bits are inverted when fed into the circuit for 
grabbing w bits.  To easily combine the z bits and the w 
bits, we want the w bits at the right end with the padded 
zeros at the left.  This allows a simple OR operation to 
combine the z bits from Step 1 with the w bits from Step 2, 
since all other bits have been set to 0. This can be achieved 
by either using the mirror image of the circuit in Step 1 for 
Step 2, or using the same circuit for both steps but 
providing data and control bits in the reverse order in Step 
2.  Also, the control bits are inverted in Step 2, as 
described earlier. 

We use the divide-and-conquer strategy to grab z bits 
from n bits, as shown in Figure 10. First, the n input bits 
are divided into two halves of n/2 bits each.  After putting 
z bits at the left end in each half, we combine the z bits in 
both halves, putting all z bits at the left end and setting the 
rest of the bits to 0.  For each half of n/2 bits, we can apply 
the same method by dividing n/2 bits into two halves of 
n/4 bits.  Each group of n/4 bits can be further divided 
until a 1-bit group has been reached.  For groups of 1 bit, 
the z bit is already at the left end if the only bit is a z bit.  
Otherwise, we set it to 0.  We call this a GRP1Z circuit. 

 n/2 bits n/2 bits 

n bits 

z bits 0’ s   
Figure 10: Grab z bits recursively 

A GRP1Z circuit grabs z bits from 1-bit groups. A 
GRP2Z circuit consists of two GRP1Zs, and combines 
their outputs; this circuit is called a GRP2ZD circuit.  
GRP4Z consists of two GRP2Zs, and combines their 
results in a GRP4ZD circuit, and so on.  Besides the data 
bits (z bits and padded 0s) generated in the previous 
stages, the combining circuit also needs to know the 
number of padded 0s in each set of data bits.  We call the 
circuit that generates this information GRP1ZS, GRP2ZS, 
GRP4ZS, and so on, since they are similar to the 
GRP1ZD, GRP2ZD, …, circuits.  

Figure 11 shows a diagram of GRP8ZD.  The small 
boxes are the basic cell shown in Figure 12.  It has a data 
input i, a data output o, and a select signal s.  The output o 

is connected with the input i only when s = 1.  A P-type 
transistor can be put in the basic cell for better signal at the 
output.  In GRP8ZD, (I0, I1, I2, I3) and (I4, I5, I6, I7) are the 
outputs of two GRP4Z circuits.  Both of them have the z 
bits at the left end and padded 0s at the right end.  (S4, S3, 
S2, S1, S0) is the one-hot encoded number of padded 0s in 
(I0, I1, I2, I3).  Depending how many padded 0s are in (I0, 
I1, I2, I3), one of (S4, S3, S2, S1, S0) is set to 1.  That bit 
determines at which row the outputs are connected to the 
inputs.  Padded 0s in (I0, I1, I2, I3) are replaced with bits 
shifting in from (I4, I5, I6, I7).  For example, when (I0, I1, I2) 
are z bits and I3 is padded with 0, only S1 is set to 1.  The 
inputs and outputs are connected at the second row.  The 
output (O0,…,O7) = (I0, I1, I2, I4, I5, I6, I7, 0).  
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Figure 11: Diagram of GRP8ZD 
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Figure 12: Basic cell  

Figure 13 shows the block diagram of the datapath of 
GRP64, a GRP functional unit for 64 bits.  We first use 
GRP1Z to generate z bits and w bits for 1-bit groups.  
Then, we keep combining the output of smaller groups to 
generate z bits and w bits for a larger group until we get all 
the z bits and w bits for the full 64 bits.  Then, the z bits 
and w bits are combined with OR gates to get the result of 
the 64-bit GRP operation. 

We use logical effort to estimate the latency of 
GRP64, in a technology independent manner. Logical 
effort is a method to estimate the delay in MOS circuits 
[20].  It can quickly determine a circuit’s maximum 
possible speed and how to achieve it.  The time unit used 
in logical effort is τ, the delay of an inverter driving an 
identical inverter with no parasitic capacitance.   

Our calculations show that with aggressive design, the 
delay of GRP32 can reach 15τ4, and the delay of GRP64 



can reach 19τ4, where τ4 is the delay of a fanout-of-4 
(FO4) inverter, an inverter driving 4 identical inverters.  A 
typical processor's cycle time is estimated at 16τ4 [21].  
Even if GRP64 can only finish in two cycles, the 
throughput can still be one operation per cycle if the 
circuit is pipelined.  For example, a row of pipeline latches 
can be added before GRP32ZD or GRP64ZD in Figure 13 
to divide the circuit into 2 execution stages, each taking 
one cycle. 

 

output 

64 data bits and 64 control bits 
64 data bits and 64 inverted 
control bits  in reverse order 

GRP1Z 

GRP4ZD/S 

GRP2ZD/S 

GRP32ZD/S 

GRP64ZD 

64 OR gates 

 
Figure 13: Hierachical structure of GRP64 

 

4. Performance 
 

We now discuss the performance of our sorting 
method versus popular sorting algorithms like bubble sort, 
selection sort and quicksort [18,19].  These algorithms are 
implemented assuming each element to be sorted occupies 
one memory word.  Comparison is made to a basic RISC-
like ISA, without subword parallelism.   

Bubble sort is a common easily implemented sorting 
algorithm.  In each iteration of bubble sort, we compare 
two neighboring elements in the unsorted list, and swap 
them if necessary, so that the largest element is moved to 
the bottom of the unsorted list at the end of each iteration.  
This largest element is not included in the unsorted list in 
the next iteration.  In Selection sort, we maintain two lists, 
an unsorted list and a sorted list, and repeat the following 
until the unsorted list is empty: scan the unsorted list, pick 
up the largest element, and move it into the sorted list.  
The time complexity of both bubble sort and selection sort 
is O( n2 ).   

Quicksort is a recursive algorithm with two phases: 
the partition phase and the sort phase.  The partition phase 
divides the elements to be sorted into two parts, a lower 
part and an upper part, such that all elements in the lower 
part are smaller than those in the upper part; the sort phase 
sorts each part recursively.  In the partition phase, we 

choose the element in the middle of the list as pivot and 
keep two pointers: one moving in form the left and the 
other from the right.  They are moved towards the center 
until the left pointer finds an element greater than the pivot 
and the right one finds an element less than the pivot.  
These two elements are then swapped.  The pointers are 
then moved inward again until they cross over.  The 
average time of quicksort is O( nlgn ).   

We assume that the GRP functional unit is pipelined 
with a latency of two cycles.  One GRP instruction can be 
issued, or completed, in each cycle.  Tables 3 and 4 show 
the speedup of our sorting algorithms over traditional 
sorting algorithms described above.  Our speedup 
estimates are conservative since we do not consider 
superscalar processors and cache misses.  The conditional 
branch instructions incurred by the three methods above 
can degrade performance relative to our methods on a 
superscalar processor.  Similarly, our methods require 
much fewer memory accesses and hence will perform 
better if cache miss cycles are counted. 

Although bubble sort and selection sort are slow when 
sorting a large number of elements, their performance is 
comparable with quicksort when only a small number of 
items are sorted.  Table 3 shows that quicksort is the 
slowest when we sort only 4 or 8 items, since our method 
has the largest speedup for quicksort.  When sorting 8 
bytes, GRP and BroadcastBit is 13 times faster.  The 
speedup of GRP and BroadcastBit decreases when the 
subword size increases, since there are fewer subwords to 
sort, and increases as the subword size decreases, for more 
subwords are packed in a single 64-bit register. 

# of subwords 16 4-bit 8 8-bit  4 16-bit  
over bubble sort 89.9 12.2 1.7 
over selection sort 65.5 9.8 1.4 
over quicksort 62.1 13.3 3.0 

Table 3: Speedup of GRP and BroadcastBit  

Table 4 shows the speedup of GRP and MIX for 
sorting 64 values.  When sorting 64 16-bit integers, our 
method achieves 10x speedup even when compared with 
the fastest quicksort.   We achieve a 30x speedup when 
sorting 64 bytes, and 94x speedup when sorting 64 nibbles.  
The number of cycles taken in our method depends on the 
subword size.  Compared to bubble sort of 64 bytes or 
nibbles, we are two orders of magnitude faster.  

Subword size 4 bits 8 bits 16 bits 
over bubble sort 408.3 128.9 43.7 

over selection sort 272.7 86.1 29.2 

over quicksort 94.4 29.8 10.1 

Table 4: Speedup of GRP and MIX for 64 values 

When sorting a larger number of elements, we can use 
our methods in recursive algorithms like quicksort or 



merge sort in which the elements are divided and sorted 
recursively.  For example, when sorting 128 elements in a 
64-bit processor using merge sort, we sort two lists of 64 
elements by our method.  We then merge the two sorted 
lists, as in normal merge sort, by comparing the first 
elements of two lists and moving the smaller one to the 
new list. 

For simplicity, we have only discussed sorting 
unsigned subwords.  Sorting signed subwords needs only 
one more instruction: a NOT instruction to invert the 
control bits when subwords are sorted by the MSB.  This 
has insignificant impact on the speedup.  

 

5. Conclusions 
 

This paper introduced a new method for sorting a 
small number of positive integers using the GRP bit 
permutation instructions, with support from either the MIX 
or the BroadcastBit instruction.  Our methods achieve 
large speedups up to 408x compared with bubble sort, and 
from 10x to 94x compared with quicksort when sorting 64 
integers.  We show that it is possible to accelerate control 
intensive algorithms like sorting with subword parallelism, 
while eliminating conditional branches and conditional 
execution.  Our methods are very fast for sorting up to n 
integers, where n is the word size of the processor.  For 
sorting more elements, our method can be incorporated 
into recursive sorting algorithms, to speedup the sorting of 
small sets of n or fewer elements.   

We have demonstrated that the GRP instruction is 
useful not only for fast permutations of n bits, but also for 
sorting n subwords.  This versatility is important if GRP is 
to be included in a general-purpose processor.  Our 
proposed implementation of GRP indicates that it can be 
done with a latency of 2 cycles, with 1 GRP instruction 
completed per cycle using a pipelined functional unit.  
Future work will investigate whether GRP can be 
implemented even more efficiently and its uses in other 
applications. 
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