
Zhijie Shi and Ruby B. Lee, “Subword Sorting with Versatile Permutation Instructions” , Proceedings of ICCD 2002 International Conference on
Computer Design, pp. 234- 341, September 2002

Subword Sorting with Versatile Permutation Instructions

Zhijie Shi and Ruby B. Lee
Department of Electrical Engineering, Princeton University

{ zshi, rblee} @ee.princeton.edu

Abstract

Subword parallelism has succeeded in accelerating

many multimedia applications. Subword permutation
instructions have been proposed to efficiently rearrange
subwords in or among registers. Bit-level permutation
instructions have also been proposed recently for their
importance in cryptography. However, some important
algorithms, especially ones with lots of conditional control
dependencies such as sorting, have not exploited the
advantage of subword parallel instructions. In this paper,
we show how one of the bit permutation instructions,
GRP, can be used for fast sorting. In the process, we
demonstrate the versatility of this permutation instruction
for uses other than bit permutations. This versatility is
important in considering the addition of a new instruction
to a general-purpose processor. The results show that our
sorting methods have a significant speedup even when
compared with the fastest sorting algorithms. We also
discuss the hardware implementation of the GRP
instruction and compare its latency to a typical
processor's cycle time.

1. Introduction

General-purpose processors are optimized for word-
oriented computation. Hence, their instruction set
architecture (ISA) provides limited support for the
manipulation of data items smaller than a word. Logical
operations AND, OR, and NOT along with SHIFT are
common bit-level operations. Today, most processor ISAs
support subword parallel computation [1-6]. Subwords are
data items that are smaller than a word. Multiple
subwords can be packed into one register, so that one
instruction can perform an operation on multiple data
items simultaneously. Efficient rearrangement of
subwords is often necessary to put subwords into proper
positions in registers so that operations can be applied to
all subwords at the same time. Without such fast
arrangement of subwords, called subword permutation, the
performance gain achieved by subword parallelism may be
diminished.

The PERMUTE and MIX instructions are proposed in
the MAX-2 multimedia instructions for PA-RISC 2.0
processors to address subword permutations [2]. The
PERMUTE instruction can perform any arbitrary
permutation of 16-bit subwords from one source register,
with a single instruction. The MIX instruction combines
even or odd subwords from two source registers. While
these are the first general-purpose subword permutation
primitives introduced into microprocessors, both
PERMUTE and MIX dealt only with 16-bit subwords in
MAX-2 [2]. IA-64 extended MIX to support 8-bit
subwords and added five variants of byte permute
instructions called MUX [17]. However, it has not been
shown whether these permutation primitives can efficiently
generate all desired subword rearrangements. Lee further
proposed new subword permutation primitives for 2-
dimensional rearrangements of subwords packed into
registers [7]. A minimal canonical set includes MIX and
PERMSET, defined for subword sizes that are powers of
two. PERMSET repeats a permutation on a small set of
subwords over the entire set of subwords in a register.

While most subword permutation instructions are
proposed to handle subwords of at least 8 bits in size,
instructions for permutations on subwords of 1 bit (also
called bit permutations) have recently been proposed [13-
16]. Bit permutations are useful for achieving diffusion [8,
9] in symmetric-key algorithms such as DES, Twofish and
Serpent [10-12]. The new instructions, GRP [13,15],
OMFLIP [14,15], and SIEVE [16], can efficiently perform
arbitrary bit permutations, which are very slow on existing
word-oriented processors. These new instructions are
designed to have two operands and one result, to fit in the
datapath of a typical processor. Each of them has different
strong and weak points [15]. Any one is sufficient to
achieve bit-level permutations efficiently. Which one to
choose depends on its cost (in area and latency), and its
versatility, not only for bit permutations, but also for other
functions. In this paper, we demonstrate the versatility of
one of these bit permutation instructions, GRP, showing
the large speedup achievable in sorting subwords packed
in one or more registers.

Although subword instructions have been used to
implement many algorithms, such as IDCT [2], with

This material is based upon work supported by the National Science
Foundation under grant No. 0105677.

significant speedups, it has not been exploited by some
control-intensive algorithms such as sorting. Most fast
sorting algorithms, such as quicksort, are control intensive
[18, 19]. In such sorting algorithms, since the subwords in
a register affect the control flow in different ways, it
appears difficult to exploit the performance benefits of the
SIMD-style operation provided by subword-parallel
instructions. A few attempts have been made to show how
conditional branches may be eliminated in doing parallel
compare-and-swap operations in the implementation of
median filters, but not for general-purpose sorting [22]. In
this paper, we show another way in which control flow
dependencies can be eliminated, and subword parallelism
at the subword or bit levels fully exploited, to sort
subwords packed into one or more registers. In the
process, we also show the versatility and effectiveness of a
bit permutation instruction, GRP, for accelerating subword
sorting.

In section 2, we describe the GRP instruction, and
show how to use it to do subword sorting. In Section 3,
we describe a hardware implementation of the GRP
operation. The performance is compared in Section 4.
Section 5 summarizes the paper.

2. Sorting subwords with the GRP instruction

Sorting rearranges the data items in a list by its value
in a monotonically increasing, or decreasing, order. Many
algorithms such as binary search require the input data to
be sorted. In this section, we focus on sorting a small
number of positive integers. We assume these values are
stored contiguously in memory.

2.1. The GRP instruction

The GRP instruction was first proposed to do arbitrary
permutations of n bits [13] very quickly. It uses a typical
two-operand, one-result instruction format:

GRP R1, R2, R3

R1 and R2 are the source registers, and R3 is the
destination register. If R1[i] represents the ith bit of R1,
the function of the GRP instruction can be described with
pseudo code shown in Figure 1.

j = 0;
for (i = 0; i < n; i ++)

if (R2[i] == 0)
 R3[j ++] = R1[i]
for (i = 0; i < n; i ++)
 if (R2[i] == 1)
 R3[j ++] = R1[i]

Figure 1: The GRP instruction

The GRP instruction divides the bits in the source R1
into two groups according to the bits in R2. For each bit in
R1, we check the corresponding bit in R2. If the bit in R2
is 0, the bit in R1 is put into the first group. Otherwise the
bit in R1 is put into the second group. During this process
we do not change the relative position of bits within each
group. Finally, putting the first group to the left of the
second group, we get the result in R3. Figure 2 shows how
the GRP instruction works on 8-bit registers.

a b c d e f g h

1 0 0 1 1 0 1 0

b c f h a d e g

Data R1

Control Bits R2

Result R3

0 7

Figure 2: The GRP instruction on 8-bit registers
It has been shown that on n-bit systems, at most lg(n)

GRP instructions can perform any n-bit permutations [13].
Figure 3 shows how a permutation is done on an 8-bit
system. The permutation (7,6,5,4,3,2,0,1) indicates that
bit 0 of the output is bit 7 of the input; bit 1 of the output is
bit 6 of the input; and so forth. Comments right before an
instruction show the register contents before the execution
of that instruction. The underlined bits have a control bit
of 1 in R2, thus will be moved to the right after the
execution of the instruction. After the execution of the
third instruction, R1 contains the desired result.

; R2=00101010 R1=(0,1,2,3,4,5,6,7)
GRP R1, R2, R1
; R3=11010010 R1=(0,1,3,5,7,2,4,6)
GRP R1, R3, R1
; R4=10101100 R1=(3,7,2,6,0,1,5,4)
GRP R1, R4, R1
; R1=(7,6,5,4,3,2,0,1)

Figure 3: GRP instructions used to do the
permutation specified by (7,6,5,4,3,2,0,1)

2.2. Sorting subwords within a register

The GRP instruction can be described as sorting bits
in the first operand according to the bit values (0 or 1) in
the second operand. When used in radix sort [18], it can
sort multi-bit subwords in a register. Radix sort takes the
least significant bit (LSB) of each subword, sorts the
subwords by that bit maintaining the order of subwords
that have the same value for that bit, and repeats the
sorting with the next more significant bit. During this
process, all bits in a subword should be moved together.
This requires the control bits have the same value for all

bits in a subword. To quickly generate control bits in this
format, we introduce a new instruction BroadcastBit:

BroadcastBit,s,i R1, R2

BroadcastBit has one source operand R1 and one
destination R2. It broadcasts a bit in a subword to all bits
in that subword. s specifies the subword size in bits, and i
specifies which bit in each subword is broadcast. After
the instruction is executed, all bits in each subword in R2
have the same value, the value of bit i of the corresponding
subword in R1. Table 1 shows the results of some
BroadcastBit instructions when R1 = 0x01234567. The
first instruction broadcasts the LSB of each 4-bit subword,
giving a result of alternating 0s and 1s. The second
instruction broadcasts bit 1 of each 4-bit subword. The
third instruction sets all the bits in R2 to 1 because the
LSB of all the 8-bit subwords (i.e. 0x01, 0x23, 0x45,
0x67) is 1.

Note: R1 and R2 are 32-bit words, and R1 = 0x01234567
Instruction Result in R2

BroadcastBit,4,0 R1, R2 0x0F0F0F0F

BroadcastBit,4,1 R1, R2 0x00FF00FF

BroadcastBit,8,0 R1, R2 0xFFFFFFFF

Table 1: Example of the BroadcastBit instruction

The BroadcastBit instruction can be added to an ISA
with little overhead because it requires only small control
modifications to the functional unit that does parallel
addition with saturation, which is included in almost all
subword instruction sets [1-5, 17]. When saturation occurs
during an addition, all bits in a subword are set to 0s or 1s.
When doing BroadcastBit, we force bits in a subword to
all 0s or all 1s, determined by whether bit i of the source
subword is 0 or 1. Note that BroadcastBit can be
considered a special case of PERMSET [7].

BroadcastBit and GRP can sort subwords packed in a
register. For every bit i in a subword from the LSB to the
most significant bit (MSB), repeat the following: broadcast
bit i in each subword; then perform the GRP operation on
the subwords, using the result of broadcasting as the
control bits. A BroadcastBit instruction uses the result of
the previous GRP instruction, except for the first
BroadcastBit which uses the original input. An example of
sorting 8-bit subwords in R1 is shown in Figure 4, using
16 instructions.

The program in Figure 4 can be used to sort eight 8-
bit subwords in a 64-bit register, or sixteen 8-bit subwords
in a 128-bit register, or thirty-two 8-bit subwords in a 256-
bit register. Although the time complexity of radix sort is
O(kn), which depends on both the key length k and the
number of items n, the number of instructions required in
our method is 2k, where k is the number of bits in a

subword. For example, sorting four 16-bit subwords in a
64-bit register requires 32 instructions.

;The subword size is 8 bits
;The register size is 64 bits
;R1 contains the subwords to be sorted
;The sorted subwords are also placed back into R1

BroadcastBit,8,0 R1, R2
GRP R1, R2, R1
BroadcastBit,8,1 R1, R2
GRP R1, R2, R1
BroadcastBit,8,2 R1, R2
GRP R1, R2, R1
BroadcastBit,8,3 R1, R2
GRP R1, R2, R1
BroadcastBit,8,4 R1, R2
GRP R1, R2, R1
BroadcastBit,8,5 R1, R2
GRP R1, R2, R1
BroadcastBit,8,6 R1, R2
GRP R1, R2, R1
BroadcastBit,8,7 R1, R2
GRP R1, R2, R1

Figure 4: Sorting subwords in a register with the

GRP and BroadcastBit instructions

2.3. Sorting subwords in multiple registers

A problem with the above method is that only a few
subwords can be packed within a register, and thus sorted
by GRP and BroadcastBit. In this section, we will
introduce another method to sort more subwords packed in
multiple registers. We rearrange the bits so that each
register has only one bit from each subword, then sort n
subwords simultaneously where n is the number of bits in
the registers.

 w0 w1 w2 w3 w4 w5 w6 w7 R10

R11

w8 w9 w10 w11 w12 w13 w14 w15

w56 w57 w58 w59 w60 w61 w62 w63 R17

a) All 8 bits in each subword are together

R10 Bit 0 of w0, w1, …,w63

Bit 1 of w0, w1, …,w63

R17 Bit 7 of w0, w1, …,w63

b) Each bit of each subword is in a different register

R11

Figure 5: Arrangement of bits in subwords

Figure 5 shows two different storage formats for
subwords. Suppose registers are 64 bits in width, and
subwords are 8 bits. If we can keep all 8 bits in a subword
together, as in Section 2.2, each register can hold eight
subwords, and 64 subwords require 8 registers, R10, R11,
…, R17. This is shown in Figure 5a. Alternatively, we
can rearrange bits so that the first register, R10, holds bit 0
for all 64 subwords, the second register, R11, holds bit 1
for all 64 subwords, and so on. This is shown in Figure
5b. The two formats require the same number of registers
to store 64 subwords.

We can easily apply radix sort to sort subwords in
Figure 5b: use the GRP instruction to sort all the registers
R10, R11, …, R17 by each bit from the LSB (R10) to the
MSB (R17). The code is shown in Figure 6. R10, the
LSB, is first used to sort each register, R10 through R17.
Then R11, the second least significant bit, is used to sort
the eight registers, and so forth. Thus, 8x8 = 64
instructions can sort 64 8-bit subwords.

GRP R17, R10, R17
GRP R16, R10, R16
GRP R15, R10, R15
GRP R14, R10, R14
GRP R13, R10, R13
GRP R12, R10, R12
GRP R11, R10, R11
GRP R10, R10, R10

GRP R17, R11, R17
GRP R16, R11, R16
GRP R15, R11, R15
GRP R14, R11, R14
GRP R13, R11, R13
GRP R12, R11, R12
GRP R10, R11, R10
GRP R11, R11, R11
………

GRP R16, R17, R16
GRP R15, R17, R15
GRP R14, R17, R14
GRP R13, R17, R13
GRP R12, R17, R12
GRP R11, R17, R11
GRP R10, R17, R10
GRP R17, R17, R17

Figure 6: Sort subwords after the pre-transpose
The subwords, however, are normally not in the format

shown in Figure 5b when stored in the main memory.
Instead, they are more likely in the format shown in Figure
5a. To convert the subwords into the format we need, we
consider the 8 bytes in the same column of 8 registers as
an 8x8 bit matrix. Thus, the 64 subwords shown in Figure
5a can be considered as eight 8x8 bit matrices. We
transpose these matrices so that R10 will have bit 0 of w0,
w8, …, w56, w1, w9, …, w57, …, w7, w15, …, w63.
Similarly, R11 will have bit 1 of w0, w8, …, w56, w1, w9,
…,w57, …, w7, w15, …, w63, and so on. We call this the

pre-transpose step. Although the bit order after this pre-
transpose is different from that shown in Figure 5b, the
subwords can be sorted in the same way.

a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0
R1 R2

a7 b7 a5 b5 a3 b3 a1 b1

MIX,8,L R1, R2, R3
R3

a6 b6 a4 b4 a2 b2 a0 b0

MIX,8,R R1, R2, R4
R4

Figure 7: The MIX instruction

Lee showed that the MIX instruction can do matrix
transpose efficiently [2]. Each MIX instruction takes two
registers as input, each of which consists of r subwords.
Subwords are further divided into pairs, and each pair has
a left subword and a right subword. “MIX, L” selects the
left subwords alternately from each register; “MIX, R”
similarly selects the right subwords. The subword size is
specified in the MIX instruction. For example, in Figure
7, “MIX, 8, L” indicates MIX operation on 8-bit
subwords, selecting the left subwords of each pair. Let
R1, R2, R3 and R4 be 64-bit registers, and each a0, a1, …,
a7, b0, b1, …, b7 be an 8-bit subword. “MIX, 8, L” puts
all left subwords into R3, and “MIX, 8, R” puts all right
subwords into R4.

 a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

c7 c6 c5 c4 c3 c2 c1 c0

d7 d6 d5 d4 d3 d2 d1 d0

e7 e6 e5 e4 e3 e2 e1 e0

f7 f6 f5 f4 f3 f2 f1 f0

g7 g6 g5 g4 g3 g2 g1 g0

h7 h6 h5 h4 h3 h2 h1 h0

a7 b7 a5 b5 a3 b3 a1 b1

a6 b6 a4 b4 a2 b2 a0 b0

c7 d7 c5 d5 c3 d3 c1 d1

c6 d6 c4 d4 c2 d2 c0 d0

e7 f7 e5 f5 e3 f3 e1 f1

e6 f6 e4 f4 e2 f2 e0 f0

g7 h7 g5 h5 g3 h3 g1 h1

g6 h6 g4 h4 g2 h2 g0 h0

a7 b7 c7 d7 a3 b3 c3 d3

a6 b6 c6 d6 a2 b2 c2 d2

a5 b5 c5 d5 a1 b1 c1 d1

a4 b4 c4 d4 a0 b0 c0 d0

e7 f7 g7 h7 e3 f3 g3 h3

e6 f6 g6 h6 e2 f2 g2 h2

e5 f5 g5 h5 e1 f1 g1 h1

e4 f4 g4 h4 e0 f0 g0 h0

a) The original matrix b) After MIX for 1-bit subwords

d) After MIX for 4-bit subwords c) After MIX for 2-bit subwords

a7 b7 c7 d7 e7 f7 g7 h7

a6 b6 c6 d6 e6 f6 g6 h6

a2 b2 c2 d2 e2 f2 g2 h2

a3 b3 c3 d3 e3 f3 g3 h3

a4 b4 c4 d4 e4 f4 g4 h4

a5 b5 c5 d5 e5 f5 g5 h5

a1 b1 c1 d1 e1 f1 g1 h1

a0 b0 c0 d0 e0 f0 g0 h0

Figure 8: 8x8 matrix transpose with MIX

As proposed in [7], the MIX instruction is extended to
support subwords that are powers of 2, including 1-bit
subwords. We use Lee's method [2] to do bit matrix
transpose in the pre-transpose step. Figure 8 shows how
the pre-transpose of an 8x8 bit matrix can be done with 24
MIX instructions. The other seven matrices are transposed

in parallel at the same time, courtesy of subword
parallelism. Figure 8a is the original matrix. All bits in a
subword are in the same register. Using “MIX, 1, L” and
“MIX, 1, R” on pairs of registers, we can get the matrix
shown in Figure 8b. Then, we generate the Figure 8c with
“MIX, 2”. Then, Figure 8d with “MIX, 4”. In each step,
the MIX instructions work on different pairings of
registers. The first row of the matrix in Figure 8b to
Figure 8d is generated by the pairs highlighted in Figure 8a
to Figure 8c, respectively. The total number of MIX
instructions used in Figure 8 is 24 because each row in
Figure 8b, Figure 8c and Figure 8d is generated by one
MIX instruction. Generally, the number of MIX
instructions to do a k x k matrix transpose (singly or in
parallel) is klg(k). When eight 8x8 bit matrices packed
into 64-bit registers are transposed in parallel, the number
of MIX instructions required remains the same.

t0 t8 t16 t24 t32 t40 t48 t56 R10

R11

t1 t9 t17 t25 t33 t41 t49 t57

t7 t15 t23 t31 t39 t47 t55 t63 R17

b) After bit matrix transpose

R10 Bit 0 of t0, t1, …,t63

Bit 1 of t0, t1, …,t63

R17 Bit 7 of t0, t1, …,t63

a) After sorting, where
 (t0, t1, …, t63) = sort(w0, w1, w2,…,w63)

t0 t1 t2 t3 t4 t5 t6 t7 R10

t8 t9 t10 t11 t12 t13 t14 t15

t56 t57 t58 t59 t60 t61 t62 t63 R17

c) After subword matrix transpose

R11

R11

Figure 9: Post-transpose after sorting 8-bit

subwords

After the pre-transpose step, sorting is done as shown
in Figure 6. After sorting, a post-transpose step is needed
to convert the sorted subwords back into the original
format. Again, we use the MIX instruction. However, we
need more instructions here than in the pre-transpose step.
A subword matrix transpose needs to be done after the
local bit matrix transpose (performed on all eight 8x8 bit
matrices in parallel). Figure 9 gives an example of the

post-transpose process for sorting 8-bit subwords. Figure
9a shows the register contents right after the sorting. R10
has bit 0 of all sorted subwords, R11 has bit 1 of all sorted
subwords, and so on. Figure 9c is the format we need to
store sorted subwords into memory. After performing
eight 8x8 bit matrix transpositions in parallel on the eight
registers in Figure 9a, all bits in each subword gather
together as shown in Figure 9b. (This is identical to the
pre-transpose step, using MIX instructions on 1, 2 and 4-
bit subwords.) Figure 9b can now be considered a single
8x8 matrix where each element is an 8-bit subword.
Figure 9b has to be converted to Figure 9c with an
additional subword matrix transpose, which can be done
again with the MIX instructions, this time on 8, 16 and 32
bit subwords, to get the final sorted list in the desired
format for storing to memory.

Table 2 summarizes the number of instructions
required for sorting subwords of different sizes using 64-
bit registers. Basically we need to do pre-transpose,
followed by sorting and post-transpose. If each subword
consists of k bits and each register has r subwords, k2 GRP
instructions are required for sorting; klg(k) MIX
instructions for the pre-transpose; klg(k) MIX instructions
for the bit matrix transpose in the post-transpose; and
klg(k) (or klg(r) when k > r) MIX instructions for the
subword matrix transpose in the post-transpose.

The GRP instruction is useful for bit-level
permutations, as well as for sorting subwords. Although it
has not been shown, it appears that other permutation
instructions like OMFLIP, PPERM and SIEVE are not as
amenable for sorting since they do not incorporate the
intrinsic sorting capability of GRP. However, the GRP
instruction may be conceptually harder to implement than
these other bit permutation instructions. In the next
section we describe how it may be implemented, and then
estimate its latency.

Subword size, k 4 8 16
of subwords per register, r 16 8 4
of registers for storing 64 subwords = k 4 8 16
of instructions for pre-transpose 8 24 64
of instructions for sorting 16 64 256

bit matrices 8 24 64 # of instructions
for post-transpose subword matrices 8 24 32

Total 40 136 416 Total # of
instructions with load/ store (+2k) 48 152 448

Table 2: Number of instructions for sorting 64
subwords using GRP and MIX on 64-bit registers

3. Hardware design of the GRP operation

A GRP operation is composed of three conceptual
steps. Step 1 grabs input bits whose corresponding control

bits are 0. These bits are referred to as z bits. Step 2 grabs
input bits whose corresponding control bits are 1. These
bits are referred to as w bits. In Step 3, the results of the
previous two steps are merged to get the result of the GRP
instruction. The circuit that grabs z bits puts all z bits at
the left end, and pads out the word with zeros. The same
circuit can grab w bits with inverted control bits, and
produce a result with w bits and padded zeros. Hence,
the control bits are inverted when fed into the circuit for
grabbing w bits. To easily combine the z bits and the w
bits, we want the w bits at the right end with the padded
zeros at the left. This allows a simple OR operation to
combine the z bits from Step 1 with the w bits from Step 2,
since all other bits have been set to 0. This can be achieved
by either using the mirror image of the circuit in Step 1 for
Step 2, or using the same circuit for both steps but
providing data and control bits in the reverse order in Step
2. Also, the control bits are inverted in Step 2, as
described earlier.

We use the divide-and-conquer strategy to grab z bits
from n bits, as shown in Figure 10. First, the n input bits
are divided into two halves of n/2 bits each. After putting
z bits at the left end in each half, we combine the z bits in
both halves, putting all z bits at the left end and setting the
rest of the bits to 0. For each half of n/2 bits, we can apply
the same method by dividing n/2 bits into two halves of
n/4 bits. Each group of n/4 bits can be further divided
until a 1-bit group has been reached. For groups of 1 bit,
the z bit is already at the left end if the only bit is a z bit.
Otherwise, we set it to 0. We call this a GRP1Z circuit.

 n/2 bits n/2 bits

n bits

z bits 0’ s
Figure 10: Grab z bits recursively

A GRP1Z circuit grabs z bits from 1-bit groups. A
GRP2Z circuit consists of two GRP1Zs, and combines
their outputs; this circuit is called a GRP2ZD circuit.
GRP4Z consists of two GRP2Zs, and combines their
results in a GRP4ZD circuit, and so on. Besides the data
bits (z bits and padded 0s) generated in the previous
stages, the combining circuit also needs to know the
number of padded 0s in each set of data bits. We call the
circuit that generates this information GRP1ZS, GRP2ZS,
GRP4ZS, and so on, since they are similar to the
GRP1ZD, GRP2ZD, …, circuits.

Figure 11 shows a diagram of GRP8ZD. The small
boxes are the basic cell shown in Figure 12. It has a data
input i, a data output o, and a select signal s. The output o

is connected with the input i only when s = 1. A P-type
transistor can be put in the basic cell for better signal at the
output. In GRP8ZD, (I0, I1, I2, I3) and (I4, I5, I6, I7) are the
outputs of two GRP4Z circuits. Both of them have the z
bits at the left end and padded 0s at the right end. (S4, S3,
S2, S1, S0) is the one-hot encoded number of padded 0s in
(I0, I1, I2, I3). Depending how many padded 0s are in (I0,
I1, I2, I3), one of (S4, S3, S2, S1, S0) is set to 1. That bit
determines at which row the outputs are connected to the
inputs. Padded 0s in (I0, I1, I2, I3) are replaced with bits
shifting in from (I4, I5, I6, I7). For example, when (I0, I1, I2)
are z bits and I3 is padded with 0, only S1 is set to 1. The
inputs and outputs are connected at the second row. The
output (O0,…,O7) = (I0, I1, I2, I4, I5, I6, I7, 0).

O0 O1 O2 O3 O4 O5 O6 O7

I0 I1 I2 I3 I4 I5 I6 I7 0

S0

S1

S2

S3

S4

Figure 11: Diagram of GRP8ZD

s

i

o
Figure 12: Basic cell

Figure 13 shows the block diagram of the datapath of
GRP64, a GRP functional unit for 64 bits. We first use
GRP1Z to generate z bits and w bits for 1-bit groups.
Then, we keep combining the output of smaller groups to
generate z bits and w bits for a larger group until we get all
the z bits and w bits for the full 64 bits. Then, the z bits
and w bits are combined with OR gates to get the result of
the 64-bit GRP operation.

We use logical effort to estimate the latency of
GRP64, in a technology independent manner. Logical
effort is a method to estimate the delay in MOS circuits
[20]. It can quickly determine a circuit’s maximum
possible speed and how to achieve it. The time unit used
in logical effort is τ, the delay of an inverter driving an
identical inverter with no parasitic capacitance.

Our calculations show that with aggressive design, the
delay of GRP32 can reach 15τ4, and the delay of GRP64

can reach 19τ4, where τ4 is the delay of a fanout-of-4
(FO4) inverter, an inverter driving 4 identical inverters. A
typical processor's cycle time is estimated at 16τ4 [21].
Even if GRP64 can only finish in two cycles, the
throughput can still be one operation per cycle if the
circuit is pipelined. For example, a row of pipeline latches
can be added before GRP32ZD or GRP64ZD in Figure 13
to divide the circuit into 2 execution stages, each taking
one cycle.

output

64 data bits and 64 control bits
64 data bits and 64 inverted
control bits in reverse order

GRP1Z

GRP4ZD/S

GRP2ZD/S

GRP32ZD/S

GRP64ZD

64 OR gates

Figure 13: Hierachical structure of GRP64

4. Performance

We now discuss the performance of our sorting
method versus popular sorting algorithms like bubble sort,
selection sort and quicksort [18,19]. These algorithms are
implemented assuming each element to be sorted occupies
one memory word. Comparison is made to a basic RISC-
like ISA, without subword parallelism.

Bubble sort is a common easily implemented sorting
algorithm. In each iteration of bubble sort, we compare
two neighboring elements in the unsorted list, and swap
them if necessary, so that the largest element is moved to
the bottom of the unsorted list at the end of each iteration.
This largest element is not included in the unsorted list in
the next iteration. In Selection sort, we maintain two lists,
an unsorted list and a sorted list, and repeat the following
until the unsorted list is empty: scan the unsorted list, pick
up the largest element, and move it into the sorted list.
The time complexity of both bubble sort and selection sort
is O(n2).

Quicksort is a recursive algorithm with two phases:
the partition phase and the sort phase. The partition phase
divides the elements to be sorted into two parts, a lower
part and an upper part, such that all elements in the lower
part are smaller than those in the upper part; the sort phase
sorts each part recursively. In the partition phase, we

choose the element in the middle of the list as pivot and
keep two pointers: one moving in form the left and the
other from the right. They are moved towards the center
until the left pointer finds an element greater than the pivot
and the right one finds an element less than the pivot.
These two elements are then swapped. The pointers are
then moved inward again until they cross over. The
average time of quicksort is O(nlgn).

We assume that the GRP functional unit is pipelined
with a latency of two cycles. One GRP instruction can be
issued, or completed, in each cycle. Tables 3 and 4 show
the speedup of our sorting algorithms over traditional
sorting algorithms described above. Our speedup
estimates are conservative since we do not consider
superscalar processors and cache misses. The conditional
branch instructions incurred by the three methods above
can degrade performance relative to our methods on a
superscalar processor. Similarly, our methods require
much fewer memory accesses and hence will perform
better if cache miss cycles are counted.

Although bubble sort and selection sort are slow when
sorting a large number of elements, their performance is
comparable with quicksort when only a small number of
items are sorted. Table 3 shows that quicksort is the
slowest when we sort only 4 or 8 items, since our method
has the largest speedup for quicksort. When sorting 8
bytes, GRP and BroadcastBit is 13 times faster. The
speedup of GRP and BroadcastBit decreases when the
subword size increases, since there are fewer subwords to
sort, and increases as the subword size decreases, for more
subwords are packed in a single 64-bit register.

of subwords 16 4-bit 8 8-bit 4 16-bit
over bubble sort 89.9 12.2 1.7
over selection sort 65.5 9.8 1.4
over quicksort 62.1 13.3 3.0

Table 3: Speedup of GRP and BroadcastBit

Table 4 shows the speedup of GRP and MIX for
sorting 64 values. When sorting 64 16-bit integers, our
method achieves 10x speedup even when compared with
the fastest quicksort. We achieve a 30x speedup when
sorting 64 bytes, and 94x speedup when sorting 64 nibbles.
The number of cycles taken in our method depends on the
subword size. Compared to bubble sort of 64 bytes or
nibbles, we are two orders of magnitude faster.

Subword size 4 bits 8 bits 16 bits
over bubble sort 408.3 128.9 43.7

over selection sort 272.7 86.1 29.2

over quicksort 94.4 29.8 10.1

Table 4: Speedup of GRP and MIX for 64 values

When sorting a larger number of elements, we can use
our methods in recursive algorithms like quicksort or

merge sort in which the elements are divided and sorted
recursively. For example, when sorting 128 elements in a
64-bit processor using merge sort, we sort two lists of 64
elements by our method. We then merge the two sorted
lists, as in normal merge sort, by comparing the first
elements of two lists and moving the smaller one to the
new list.

For simplicity, we have only discussed sorting
unsigned subwords. Sorting signed subwords needs only
one more instruction: a NOT instruction to invert the
control bits when subwords are sorted by the MSB. This
has insignificant impact on the speedup.

5. Conclusions

This paper introduced a new method for sorting a
small number of positive integers using the GRP bit
permutation instructions, with support from either the MIX
or the BroadcastBit instruction. Our methods achieve
large speedups up to 408x compared with bubble sort, and
from 10x to 94x compared with quicksort when sorting 64
integers. We show that it is possible to accelerate control
intensive algorithms like sorting with subword parallelism,
while eliminating conditional branches and conditional
execution. Our methods are very fast for sorting up to n
integers, where n is the word size of the processor. For
sorting more elements, our method can be incorporated
into recursive sorting algorithms, to speedup the sorting of
small sets of n or fewer elements.

We have demonstrated that the GRP instruction is
useful not only for fast permutations of n bits, but also for
sorting n subwords. This versatility is important if GRP is
to be included in a general-purpose processor. Our
proposed implementation of GRP indicates that it can be
done with a latency of 2 cycles, with 1 GRP instruction
completed per cycle using a pipelined functional unit.
Future work will investigate whether GRP can be
implemented even more efficiently and its uses in other
applications.

6. References

[1] Ruby Lee, “Accelerating Multimedia with Enhanced
Microprocessors”, IEEE Micro, Vol. 15, No. 2, 1995, pp.22-32
[2] Ruby Lee, “Subword Parallelism in MAX-2”, IEEE Micro,
Vol. 16, No. 4, 1996, pp.51-59
[3] A. Peleg and U. Weiser, “MMX Technology Extension to
the Intel Architecture”, IEEE Micro, Vol. 16, No. 4, 1996, pp.
10-20
[4] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung,
Hunter Scales, “AltiVec Extension to PowerPC Accelerates
Media Processing”, IEEE Micro, Vol. 20, No. 2, 2000, pp. 85-95

[5] Stuart Obeman, Greg Favor, Fred Weber, “AMD 3Dnow!
Technology: Architecture and Implementations”, IEEE Micro,
Vol. 19, No. 2, 1999, pp. 37-48
[6] Marc Tremblay and J. Michael O'Connor Venkatesh
Narayanan and Liang He, “VIS Speeds New Media Processing”,
IEEE Micro, Vol. 16, No. 4, 1996, pp. 35-42
[7] Ruby B. Lee, “Subword Permutation Instructions for Two-
Dimensional Multimedia Processing in MicroSIMD
Architectures”, Proceedings of the IEEE International
Conference on Application-specific Systems, Architectures and
Processors , July 10-12, 2000, pp. 3-14
[8] C. E. Shannon, “Communication Theory of Secrecy
Systems”, Bell System Tech. Journal, Vol. 28, Oct., 1949, pp.
656-715
[9] Bruce Schneier, Applied Cryptography, 2nd Ed., John
Wiley & Sons, Inc.,1996
[10] National Bureau of Standards (NBS), “DATA
ENCRYPTION STANDARD (DES)”, Federal Information
Processing Standards Publication 46-2, Dec 1993
[11] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N.
Ferguson, “Twofish: A 128-Bit Block Cipher”, June 1998,
http://www.counterpane.com/twofish-paper.html
[12] Ross Anderson, Eli Biham and Lars Knudsen, “Serpent: A
Proposal for the Advanced Encryption Standard”,
http://www.cl.cam.ac.uk/~rja14/serpent.html
[13] Zhijie Shi and Ruby B. Lee, “Bit Permutation Instructions
for Accelerating Software Cryptography”, Proceedings of the
IEEE International Conference on Application-Specific Systems,
Architectures and Processors, pp. 138-148, July 10-12, 2000.
[14] Xiao Yang and Ruby B. Lee, “Fast Subword Permutation
Instructions Using Omega and Flip Network Stages”,
Proceedings of the International Conference on Computer
Design , pp. 15-22, September 17-20, 2000.
[15] Ruby B. Lee, Zhijie Shi and Xiao Yang, “Efficient
Permutation Instructions for Fast Software Cryptography”, IEEE
Micro , Vol. 21, No. 6, pp. 56-69, December 2001
[16] John P. McGregor and Ruby B. Lee, “Architectural
Enhancements for Fast Subword Permutations with Repetitions
in Cryptographic Applications”, Proceedings of ICCD 2001
International Conference on Computer Design , September 23-
26, 2001, pp. 453-461
[17] Intel Corporation, IA-64 Application Developers
Architecture Guide, Intel Corporation, May 1996
[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, Introduction to Algorithms, The MIT Press, 1994
[19] C. A. R. Hoare, “Quicksort”, Computer Journal, Vol. 5,
NO. 1, 1962, pp.10-15
[20] Ivan Sutherland, Bob Sproull, David Harris, Logical Effort:
Designing Fast CMOS Circuits, Morgan Kaufmann Publishers,
1999
[21] Vikas Agarwal, M. S. Hrishikesh, S. W. Keckler, D. Burger,
“Clock Rate versus IPC: The End of the Road for Conventional
Microarchitectures”, Proceedings of the 27th Annual
International Symposium on Computer Architecture, June 2000,
pp. 248-259
[22] Priyadarshan Kolte, Roger Smith, Wen Su, “A Fast Median
Filter Using AltiVec”, Proceedings of ICCD 1999 International
Conference on Computer Design, Oct 10-13, 1999, pp. 384-391

