
 

 1

 
 
 
 
 
 
 
 
 
 
 

SecureCore 
 
 

SP Processor Architecture Reference Manual  
 
 

Princeton University 
 

Version 1.0 – 8/11/2008 
Jeffrey Dwoskin and Ruby Lee 

(with feedback from NPS & ISI) 
 

  
 
 

Princeton University Department of Electrical Engineering 
Technical Report CE-L2008-008 

jdwoskin
Typewritten Text
Jeffrey S. Dwoskin and Ruby B. Lee. SP Processor Architecture Reference Manual. 
Princeton University Department of Electrical Engineering Technical Report CE-L2008-008, August 2008.



 

 2

 
Table of Contents Page 
 
1 Overview ............................................................................................................................................. 3 
2 SP Registers ........................................................................................................................................ 4 
3 SP Instructions .................................................................................................................................... 6 
4 Modifications to Base ISA ................................................................................................................ 22 
5 SP Exceptions/Faults ........................................................................................................................ 29 
6 Operation........................................................................................................................................... 30 

6.1 CEM (Concealed Execution Mode) for TSM Protection ......................................................... 30 
6.2 SP Module ................................................................................................................................. 32 
6.3 Hierarchical Ring Protection ..................................................................................................... 33 

7 References ......................................................................................................................................... 34 
Appendix A – 32-bit Word-size ................................................................................................................ 35 



 

 3

 

1 Overview 
 
This manual documents the architecture extensions for Authority-mode SP, to be added to an existing 
base processor. Refer to [Dwoskin07] and [Lee05] for further details about the architectural features and 
their intended uses. It also provides the interface for the software SP Emulation Module for the 
SecureCore demo, as well as the TSM Interface for a key management application for the SecureCore 
demo.  
 
Architectural Specifications 
 
Current specification is for: 
- Single-core 
- Single-threaded execution 
- Single active or suspended CEM thread – Authority-mode SP 
- 64-bit word size (see Appendix A for 32-bit) 
 
Note: Multi-core and simultaneous multithreading (i.e. hyper-threading) are open issues.  
 

 
Figure 1: Basic SP Architecture Block Diagram for an authority-mode SP device 
 



 

 4

2 SP Registers 
 

 
Figure 2: SP Registers 
 
Little-endian bit-addressing is used. In the rest of this document, the ‘right half’ of a register refers to 
the low-order bits (e.g. bits 0-127 of the SRH), and the left-half refers to the high-order bits (e.g. bits 
128-255 of the SRH). 
 
 
CEM Registers 
 
CEM_Mode (2 bits)  
 Indicates CEM state for Authority-mode SP. Authority mode can be in one of three states: 
normal (non-CEM), suspended CEM, or active CEM.  
 

CEM_Mode Authority CEM 

00 Normal (Non-CEM) 

01 Active CEM 

10 Suspended CEM 

11 Reserved 
 
Device Root Key (DRK) (128 bits – Non-volatile) – Authority-mode 
 Device Root Key. Master device key for Authority-mode CEM protection and for deriving keys. 
Writable only through DRK.set instruction when DRK_Lock == 0. Not directly readable via instruction 
set.  
 
DRK_Lock (1 bit) – Authority-mode 
 DRK lock bit. Cleared to 0 on reboot. Set to 1 using DRK.lock instruction in Secure BIOS. Once 
the DRK_Lock register is set, it cannot be cleared to 0 without rebooting. The DRK.set instruction raises 
an exception if DRK_Lock == 1. 
 



 

 5

Storage Root Hash (SRH) (256 bits – Non-volatile) – Authority-mode 
 Storage Root Hash. On-chip root hash for Authority-mode TSM storage tree. Used by Authority-
mode TSM to verify integrity of its protected data structures. Accessible only through SRH.get & 
SRH.set instructions when in Active Authority-CEM mode.  
 
CEM_Buffer (256 bits) – Authority-mode 
 Intermediate register used by the CEM instructions so the SRH register can be set atomically and 
for reading and writing SP registers which are larger than the word-size of the general registers. Used for 
accessing newly created derived keys and for retrieving and atomically setting the SRH register. 
Accessible only through GR.set and GR.get instructions when in Active Authority CEM mode. 
 The size of the CEM_Buffer register is implementation specific, but has to be at least 256 bits 
wide. 
 
Interrupt_Hash (128 bits) – Authority-mode 
 Hash of general purpose registers for suspended Authority-mode CEM thread. (May be expanded 
to include the Initialization Vector (IV) for register encryption.) 
 
Interrupt_Address, PID, & CID (64 + 32 + 16  bits) – Authority-mode 
 Interrupt Address (64 bits), PID (Process ID) (32 bits), and CID (Compartment ID) (16 bits) 
which triggers return to Active CEM mode from Suspended CEM mode for Authority mode. The values 
are saved when an interrupt occurs during CEM, and the processor hardware checks the stored values 
every time a return from interrupt is detected, triggering return to CEM on a match.. 
 
The PID is used to distinguish OS contexts (i.e. processes), and the CID is used to distinguish 
Hypervisor/Kernel compartments (i.e. partitions or virtual machines). The PID & CID are assumed to be 
available in the base architecture and are saved with the Interrupt Address by SP to prevent accidental 
return to CEM.  If the OS or Hypervisor does not use the base architecture’s PID and CID registers, or if 
they are used improperly, a false match using only the virtual address may trigger a return from CEM 
which will then fail integrity checking. 
 
The PID & CID are also assumed to be used by the base architecture to tag cache lines and reduce 
unnecessary flushing of the cache for isolation of processes and compartments. Without the tags, the 
cache needs to be flushed on every process context switch or compartment switch, whereas the tags 
allow cache values from a different context to remain in cache but be inaccessible from other contexts. 
  
 



 

 6

3 SP Instructions 
 
Summary of SP Instructions  
 

 Instr. 

Class 

Mnemonic Operation Restrictions Explanation 

      

A
ut

ho
ri

ty
-m

od
e 

C
E

M
 

Initialize drk.set.sel Rs1, 

Rs2 

DRK[sel]  Rs1||Rs2 drk_lock  

== 0 

Sets the selected word of the DRK 

register. 

drk.lock DRK_Lock = 1 none Locks the DRK register. drk.set can no 

longer be used until the next reboot. 

Master  

Root 

Secrets / 

CEM 

Register 

Access 

drk.derive Rs1, 

Rs2 

CEM_Buffer  

Derive(DRK, Rs1||Rs2) 

CEM_Mode 

== 01 

(Active 

Auth CEM) 

Derives a new key from the DRK, 

using the contents of Rs1 and Rs2 as a 

nonce. Result stored in the lower 128-

bits of the CEM Buffer register.  

srh.get CEM_Buffer  SRH CEM_Mode 

== 01 

Copies the SRH register into the CEM 

Buffer register. 

srh.set SRH  CEM_Buffer  CEM_Mode 

== 01 

Atomically copies the CEM_Buffer 

into the SRH register. 

gr.get.sel Rs1, 

Rs2 

CEM_Buffer[sel]  

Rs1||Rs2 

CEM_Mode 

== 01 

Retrieves two words from general 

registers into a selected region of the 

CEM Buffer. 

gr.set.sel Rd Rd  CEM_Buffer[sel] CEM_Mode 

== 01 

Sets a general register with the selected 

word of the CEM Buffer register.  

CEM begin_cem.a CEM_Mode = 01 CEM_Mode 

== 00 

(Normal) 

Enter active Authority CEM mode for 

next instruction. CIC checking using 

DRK begins.  

* end_cem CEM_Mode = 00 CEM_Mode 

== 01 

Exits Active CEM mode and returns to 

Normal.  

Secure 

Memory 

* secure_load 

Rd, Rs, imm 

Rd  Mem[Rs + imm] CEM_Mode 

== 01 

Secure load from memory. Reads from 

a cache line with “secure data” flag set, 

or from main memory, decrypting and 

MAC verification with the appropriate 

device key (DRK). 

* secure_store 

Rd, Rs. imm 

Rd  Mem[Rs + imm] CEM_Mode 

== 01 

Secure store to memory. Writes to a 

cache line with the “secure data” flag 

set. Eviction from cache will cause 



 

 7

encryption and MAC generation using 

the appropriate device key (DRK).  

      
* Authority-mode SP instruction also used for User-mode SP  
 
We assume a base instruction set with a RISC architecture, such as MIPS. Slight modifications might be 
necessary for implementation on other architectures, especially in regards to memory access semantics.   
 
We assume a general register file with 32 general purpose registers of 64-bit word size. Instructions 
with Rd, Rs parameters can use any of the GPRs, numbered R0-R31. R0 is hard wired to binary zero. 
We assume two read ports and one write port on the register file.  
 
The CEM_Buffer register is an implementation-dependent storage location that is at least 256 bits wide. 
The term “X.get” in the instruction mnemonics refers to copying X to the CEM_Buffer, where X = gr or 
srh. The term “X.set” in the instruction mnemonics refers to copying from the CEM_Buffer to X, where 
X = gr or srh.  
 
The subop “sel” in the instruction mnemonics refers to the selected word in the CEM_Buffer which is 
read, or the selected two words in the CEM_Buffer (or DRK) which are written. When single words are 
selected, as in gr.set.sel, sel = 0, 1, 2 or 3 for 64-bit words, and sel = 0, 1,…, or 7 for 32-bit words. 
When two words are selected, as in gr.get.sel and drk.set.sel, the even indicies are used. Hence, sel = 0 
or 2 for 64-bit words, and sel = 0, 2, 4 or 6 for 32-bit words. 
 



 

 8

 
Instruction Details 
 
sample 
 
Sample Instruction Name 
 
Format:  mnemonic Rd,Rs1,Rs2 
Description: Each instruction detail page describes the semantics and usage of each SP 

instruction. The Format section shows the mnemonic, subops, and arguments for 
the instruction.  
 
Instructions can produce one register result, written to Rd, the destination register. 
Instructions may take parameters Rs1 and Rs2, the source registers. Rd, Rs1, and 
Rs2 can be chosen independently from any of the general registers R0…R31, 
where R0 is hard-wired to binary zero. Memory instructions may also take an 
immediate argument.  

 
Exceptions:  Sample Exception – If the instruction can generate any exceptions, they are listed 

here.  
 

 



 

 9

 
drk.set 
 
DRK Set 
 
Format:  drk.set.sel Rs1,Rs2 
Description: Sets the selected portion of the DRK register with the concatenation of Rs1 and 

Rs2. Requires DRK_Lock == 0.  
  
 sel = 0 for 64-bit registers, since all 128-bits of the drk register can be written in 

one instruction.  
 

sel = 0 or 2 for 32-bit registers, to indicate whether the right (sel = 0) or left 
(sel = 2) half of the drk is written to. 

 
 

Note: DRK_Lock is automatically reset to 0 on each reboot or power cycle. 
Typically the Secure BIOS, regular BIOS or OS/Hypervisor kernel will allow 
DRK initialization and then lock the register before loading other software.  

 
Exceptions:  SP Exception (Initialization) – Raised if DRK_Lock == 1. 
 



 

 10

drk.lock 
 
DRK Lock 
 
Format:  drk.lock  
Description: Sets DRK_Lock = 1, and prevents using the drk.set instruction until the next 

reboot.  
 

Note: The DRK_Lock register is automatically reset to 0 on each reboot or power 
cycle and cannot be cleared to 0 by any instruction.  
 
On boot, the Secure BIOS will either: 
a. Perform device initialization, generating a new DRK and writing it with the 

drk.set instruction, followed by the drk.lock instruction, before proceeding to 
normal boot. Typically this is only performed in a trusted depot by the 
authority.  

b. Skip device initialization, execute the drk.lock instruction and proceed to a 
normal boot. 

 
The normal boot proceeds by continuing with the regular system BIOS, which 
also executes drk.lock as an added precaution. Normal software will therefore not 
have an opportunity to overwrite the DRK register. Access to the Secure BIOS is 
required in order to attack the DRK by overwriting it. 

 
Exceptions:   None 



 

 11

drk.derive 
 
DRK – Derive Key 
 
Format:  drk.derive Rs1,Rs2 
Description: Generates a new key that is derived from the DRK and the 128-bit nonce formed 

by concatenating Rs1 and Rs2. The 128-bit result is stored in the rightmost (low-
order) 128-bits of the CEM Buffer, with the remaining 128-bits set to zero. 

 
The derived key is generated by the hardware hashing engine which reads the 
DRK without revealing its contents. A cryptographic MAC is computed over the 
nonce, keyed with the DRK. Repeated generation of derived keys is guaranteed to 
always give the same result when used with the same DRK and same nonce. The 
MAC algorithm used is implementation specific.  
 
Note: See Appendix A for the operation of drk.derive for processors with 32-bit 
word size. 
 

Exceptions:  CEM Exception (Access) – Raised if not in an active authority-mode CEM: 
CEM_Mode != 01 (Active CEM). 



 

 12

srh.get 
 
SRH Get 
 
Format:  srh.get 
Description: Copy the entire SRH register into the rightmost (low-order) 256 bits of the 

CEM_Buffer register.  
 

Exceptions:  CEM Exception (Access) – Raised if not in an active authority-mode CEM: 
CEM_Mode != 01 (Active CEM). 

 



 

 13

srh.set 
 
SRH Set 
 
Format:  srh.set 
Description: Stores the contents of the rightmost (low-order) 256 bits of the CEM_Buffer 

register into the SRH register. The entire SRH register is set atomically, in a 
single cycle. 
 

Exceptions:  CEM Exception (Access) – Raised if not in an active authority-mode CEM: 
CEM_Mode != 01 (Active CEM). 



 

 14

 
gr.get.sel 
 
GR Get to CEM Buffer 
 
Format:  gr.get.sel Rs1, Rs2 
Description: Retrieves Rs1 and Rs2 from general registers and stores the concatenation of the 

registers into the selected 128-bit region, sel, of the CEM_Buffer register.  
 
sel = 0 or 2 for 64-bit words, or sel = 0, 2, 4 or 6 for 32-bit words, where 0 
indicates the rightmost (low-order) region. 
 

Exceptions:  CEM Exception (Access) – Raised if not in an active authority-mode CEM: 
CEM_Mode != 01 (Active CEM). 
 
 

 



 

 15

gr.set.sel 
 
GR Set from CEM Buffer 
 
Format:  gr.set.sel Rd 
Description: Sets a general register, Rd, from the selected word, sel, of the CEM_Buffer 

register.  
 
sel = 0, 1, 2, or 3 for 64-bit words, or sel = 0, 1, …, or 7 for 32-bit words, where 0 
indicates the rightmost (low-order) word. 
 

Exceptions:  CEM Exception (Access) – Raised if not in an active authority-mode CEM: 
CEM_Mode != 01 (Active CEM). 
 
 

 



 

 16

begin_cem.a 
 
Begin CEM – Authority-mode 
 
Format:  begin_cem.a 
Description: Sets CEM_Mode = 01, entering Authority-mode CEM for the next instruction. 

The subsequent instructions will be fetched with CIC checking using the DRK. 
 

Note: When CEM_Mode = 01, if an instruction fetch triggers a cache miss, 
requiring bringing in a new instruction cache line from off-chip memory, code 
integrity checking (CIC) does MAC-verification using the DRK as the key. If 
MAC verification passes, the instruction cache line is loaded into the cache and 
tagged as “Secure Instruction”; otherwise it is not loaded into the cache and a 
CEM Exception (Code Integrity) is rasied.  
 
If a cache hit occurs for the instruction fetch, the “Secure Instruction” tags is 
required. If these tags are not set, the fetch is treated as a cache miss. 
 

Exceptions:  CEM Exception (Busy) – Raised if CEM_Mode != 00 (Normal). Authority-mode 
CEM cannot be started if another CEM thread is active or if another authority-
CEM thread is suspended. 

 



 

 17

end_cem 
 
End CEM 
 
Format:  end_cem 
Description: Exits the active CEM thread. Sets CEM_Mode = 00 (Normal). The subsequent 

instructions will be fetched without CIC checking. 
 

Exceptions:  CEM Exception (Access) – Raised if not in an Active CEM mode: 
CEM_Mode != 01 (Active CEM). 



 

 18

secure_load 
 
Secure Load 
 
Format:  secure_load Rd,Rs,imm 
Description: Secure load from memory using displacement mode, where the effective address 

is calculated as Rs+immediate. Fetches the word from memory into register Rd. 
Must be in Active CEM mode (CEM_Mode == 01). 

 
 Loading from secure memory is dependent on the state of the cache tags: 

Hardware 

Hit/Miss 

CEM Cache Tags Dirty Process 

Hit “Secure Data” X Previously verified cache line. 

Requested word fetched from cache 

into the specified general register. 

“Hit” !“Secure Data” 0 Treat as cache miss. 

“Hit” !“Secure Data” 1 Evict dirty cache line and then treat 

as a cache miss. 

Miss N/A N/A Encrypted cache line and 

corresponding MAC fetched from 

off-chip memory. MAC verification 

performed. If verification passes, 

“Secure Data” tag is set, the line is 

decrypted and stored in cache, and 

requested word fetched to the 

general register. If verification fails, 

CEM Exception (Data Integrity) is 

raised, the line is not stored in cache, 

and no data is written to the register. 
 
 Note: When a cache-line with “Secure Data” tag set is later evicted from the 

cache, it will first be encrypted and a MAC calculated, both using the DRK, 
before being written to off-chip memory. 

 
 Note: If a cache-line with “Secure Data” tag set is later accessed using regular 

rather than secure load/store instructions (or for a secure or regular instruction 
fetch), it will first be evicted and then re-fetched into the cache in encrypted state.  

 
Note: Memory accesses must be word-aligned (otherwise Unaligned Address 
Exception occurs).  
 

Exceptions:  CEM Exception (Access) – Raised if not in Active CEM mode: 
CEM_Mode != 01 (Active CEM). 



 

 19

 
CEM Exception (Data Integrity) – Raised if MAC verification fails when fetching 
a secure data cache line from off-chip memory. If requested line is in cache, but 
the required “Secure Data” cache tag is not set, the line will first be evicted (if 
necessary) and then re-fetched from memory to perform MAC check.  



 

 20

secure_store 
 
Secure Store 
 
Format:  secure_store Rd,Rs,imm 
Description: Secure store to memory using displacement mode, where the effective address is 

calculated as Rs+immediate. Stores the word from register Rd into memory. Must 
be in Active CEM mode (CEM_Mode == 01).  
 
Storing to secure memory is dependent on the state of the cache tags: 

Hardware 

Hit/Miss 

CEM Cache Tags Dirty Process 

Hit “Secure Data” X Previously verified cache line. Requested 

word written into cache from the 

specified general register. 

“Hit” !“Secure Data” 0 Treat as cache miss. 

“Hit” !“Secure Data” 1 Evict dirty cache line and then treat as a 

cache miss. 

Miss N/A N/A Encrypted cache line and corresponding 

MAC fetched from off-chip memory. 

MAC verification performed. If 

verification passes, “Secure Data” tag is 

set, the line is decrypted and stored in 

cache, and requested word is written to 

cache from the general register. If 

verification fails, CEM Exception (Data 

Integrity) is raised, the line is not stored 

in cache, and the word is not written. 
 
Note: When a cache-line with the “Secure Data” tag set is later evicted from the 
cache, it will first be encrypted and a MAC calculated, both using the DRK, 
before being written to off-chip memory.  
 
Note: If a cache-line with the “Secure Data” tag set is later accessed using regular 
rather than secure load/store instructions (or for a secure or regular instruction 
fetch), it will first be evicted and then re-fetched into the cache in encrypted state. 
 
Note: Memory accesses must be word-aligned (otherwise Unaligned Address 
Exception occurs). 
 

Exceptions:  CEM Exception (Access) – Raised if not in Active CEM mode: 
CEM_Mode != 01 (Active CEM). 
 



 

 21

CEM Exception (Data Integrity) – Raised if MAC verification fails when fetching 
a secure data cache line from off-chip memory. If requested line is in cache, but 
the required “Secure Data” cache tag is not set, the line will first be evicted (if 
necessary) and then re-fetched from memory to perform MAC check.  

 



 

 22

 

4 Modifications to Base ISA 
 
The following instructions and operations have modified semantics from the base ISA to support SP and 
CEM.  
 
Summary of Modified Instructions and Operations 
 

 Component Mnemonic/ 

Name 

Operation Restrictions Explanation 

      

M
od

if
ic

at
io

ns
 to

 B
as

e 
IS

A
 

Execution Instruction 

Fetch 

Execution pipeline  

Mem[Program Counter] 

none The next instruction to be executed is 

fetched into the processor. If in Active 

CEM mode, the “secure instruction” 

tag is required. In all other CEM 

modes, no “secure” tag is permitted. If 

a cache-line does not have the correct 

tags, it must first be evicted and then 

refetched.  

Normal 

Memory 

Access 

load Rd, Rs, 

imm 

Rd  Mem[Rs + imm] none Normal (non-secure) load from 

memory. Reads unprotected data from 

a cache line which has no CEM cache 

tags set. If the cache line has a “secure” 

tag set, the line will first be evicted and 

then refetched in encrypted state 

without the “secure” tag.  

store Rd, Rs. 

imm 

Rd  Mem[Rs + imm] none Normal (non-secure) store to memory. 

Writes unprotected data to a cache line 

without the CEM cache tags set. If the 

cache line has a “secure” tag set, the 

line will first be evicted and then 

refetched in encrypted state without the 

“secure” tag.  

Interrupt 

Handling 

Interrupt CEM_Mode == 01 

(Active CEM)  

CEM_Mode == 10 

(Suspended CEM) 

none  If an interrupt occurs during Active 

CEM mode, secure the register state 

(encrypt registers with DRK, save 

Interrupt Hash and Interrupt Address) 

and enter Suspended CEM mode. 



 

 23

Return From 

Interrupt 

(RFI) 

CEM_Mode == 10 

(Suspended CEM)  

CEM_Mode == 01 

(Active CEM) 

none If in Suspended CEM mode when 

returning from an interrupt and the 

saved Interrupt Address matches the 

current return address, verify and 

restore the register state and resume 

Active CEM mode.  

      

 



 

 24

Details of Modifications to Base ISA 
ifetch 
 
Instruction fetch 
 
Format:  N/A – implicit operation 
Description: Instruction fetch occurs as part of the execution pipeline as the next instruction is 

retrieved from memory at the address pointed to by the Program Counter. 
Instructions are fetched from L1-instruction cache, possibly resulting in misses to 
L2 cache or main memory.   

 
Fetching instruction from memory is dependent on the CEM mode and the state 
of the cache tags: 
CEM_Mode HW 

Hit/ 
Miss 

CEM Cache 
Tags 

Process 

00 
(Normal) 
 

or 
 
10 
(Suspended 
CEM) 

Hit none Normal execution – no Code 
Integrity Checking (CIC). 

“Hit” “Secure 
Instruction” 
or “Secure 
Data” 

The cache line will first be evicted 
(if dirty) and refetched as if a miss. 

Miss N/A Instructions are fetched without 
Code Integrity Checking, and no 
CEM cache tags are set. 

01 
(Active CEM) 

Hit “Secure 
Instruction” 

Normal CEM execution – with Code 
Integrity Checking. 

“Hit” none or 
“Secure Data” 

The cache line will first be evicted 
(if dirty) and refetched as if a miss. 

Miss N/A Cache line is fetched from off-chip 
memory with Code Integrity 
Checking, performing MAC-
verification using the DRK. If MAC 
verification passes, the line is loaded 
into the cache, tagged as “Secure 
Instruction”, and the requested 
instruction is executed; otherwise 
the line is not loaded into the cache 
and a CEM Exception (Code 
Integrity) is raised.  

11 
(Reserved) 

X X N/A 

 
Note: Memory accesses must be word-aligned (otherwise Unaligned Address 
Exception occurs). 
 

Exceptions:  CEM Exception (Code Integrity) – Raised if MAC check fails when fetching a 
secure instruction cache line from memory. 



 

 25

load 
 
Normal Load 
 
Format:  load Rd,Rs,imm 
Description: Normal load from memory using displacement mode, where the effective address 

is calculated as Rs+immediate. Fetches the word from memory into register Rd. 
Available in all CEM modes. 

 
 Loading from normal memory is dependent on the state of the cache tags: 

Hardware 
Hit/Miss 

CEM Cache Tags Process 

Hit none Cache line is unprotected. The requested 
word is fetched from cache into the specified 
general register. 

“Hit” “Secure Data” Data cache line protected by CEM. The 
cache line must first be evicted, causing it to 
be encrypted and have a MAC calculated, 
both using the DRK, before being written to 
off-chip memory. It is then refetched into 
cache in encrypted state as a miss. 

“Hit” “Secure 
Instruction” 

Verified and tagged CEM instructions must 
be evicted from cache and then treated as a 
miss. 

Miss N/A The cache line is fetched from memory 
without protection or verification, and no 
CEM cache tags are set. The requested word 
is then fetched from cache into the specified 
general register. 

 
Note: Memory accesses must be word-aligned (otherwise Unaligned Address 
Exception occurs).  
 

Exceptions:   None 
  



 

 26

store 
 
Normal Store 
 
Format:  store Rd,Rs,imm 
Description: Normal store to memory using displacement mode, where the effective address is 

calculated as Rs+immediate. Stores the word from register Rd into memory. 
Available in all CEM modes. 
 
Storing to normal memory is dependent on the state of the cache tags: 
Hardware 
Hit/Miss 

CEM Cache Tags Process 

Hit none Cache line is unprotected. Requested word 
written into cache from the specified general 
register. 

“Hit” “Secure Data” Data cache line protected by CEM. The 
cache line must first be evicted, causing it to 
be encrypted and have a MAC calculated, 
both using the DRK, before being written to 
off-chip memory. It is then refetched into 
cache in encrypted state as a miss. 

“Hit” “Secure 
Instruction” 

Verified and tagged CEM instructions must 
be evicted from cache and then treated as a 
miss. 

Miss N/A The cache line is fetched from memory 
without protection or verification, and no 
CEM cache tags are set. The requested word 
is then written into cache from the specified 
general register. 

 
Note: Memory accesses must be word-aligned (otherwise Unaligned Address 
Exception occurs). 
 

Exceptions:   None 



 

 27

 
interrupt 
 
Interrupt 
 
Format:  N/A – implicit operation due to software trap, exception, or hardware fault 
Description: The actions taken when an interrupt occurs are dependent on the CEM mode: 

CEM_Mode Interrupt handling 
00 
(Normal) 
 

or 
 
10 
(Suspended 
CEM) 

Normal interrupts handling. Control of the execution is 
transferred to the corresponding interrupt handling routine in 
the supervisor or kernel. 

01 
(Active CEM) 

CEM interrupt protection is triggered before execution is 
transferred to the supervisor or kernel. Registers are encrypted 
in place, and a hash is taken and stored in the Interrupt Hash 
register on-chip. The return address of the program counter is 
stored in the Interrupt Address register (along with the current 
PID & CID), and the CEM mode is changed from Active CEM 
to Suspended CEM. See Section 6.1.3 for details. 

11 
(Reserved) 

N/A 

 
Exceptions:   None 



 

 28

return_from_interrupt 
 
Return From Interrupt 
 
Format: N/A – dependent on base ISA – may be explicit return from interrupt (rfi) 

instruction, or may be implicit on a regular return or jump instruction. 
Description: The actions taken when a return from interrupt occurs are dependent on the CEM 

mode: 
CEM_Mode Interrupt handling 
00 
(Normal) 

Normal return from interrupt. Control of the execution is 
transferred to the corresponding return location specified by the 
supervisor or kernel. 

01 
(Active 
CEM) 

N/A. Interrupt handling does not take place in Active CEM 
mode. Any returns or jumps while in Active CEM must be to 
other verified code, tagged as “Secure Instruction”, and CEM 
mode remains unchanged.  

10 
(Suspended 
CEM) 

Upon any Return From Interrupt (RFI), the return address (and 
current PID & CID) is checked against the suspended CEM 
state. A match triggers the reverse process to verify the Interrupt 
Hash and then restore (decrypt) the register state.  
 
An RFI that does not match the Interrupt Address is presumably 
not returning to the suspended CEM thread and will continue 
silently, remaining in Suspended CEM mode.  
 
If an RFI matches, but the Interrupt Hash does not verify 
correctly, a CEM Exception (Register Integrity) is raised. 

11 
(Reserved) 

N/A 

 
Exceptions:  CEM Exception (Registry Integrity) – Raised if hash check fails for general 

registers (when computed hash does not match the contents of the Interrupt Hash 
register), when resuming Active CEM mode from Suspended CEM mode. 



 

 29

5 SP Exceptions/Faults 
 
 
Table 1: SP Exceptions/Faults 

Name Val Description 

SP Exception (Initialization) 1 Raised if attempting to execute drk.set when the 

DRK_Lock register is set to 1. 

CEM Exception (Access) 2 Raised if a CEM-only instruction is executed while not in 

Active CEM mode. 

CEM Exception (Busy) 3 Raised if trying to enter authority-mode CEM when 

another CEM thread is already active or when another 

CEM thread is suspended. 

CEM Exception (Code Integrity) 4 Raised if MAC check fails when fetching a secure 

instruction cache line from memory.  

CEM Exception (Data Integrity) 5 Raised if MAC check fails when fetching a secure data 

cache line from memory. 

CEM Exception (Register Integrity) 6 Raised if hash check fails for general registers (when 

computed hash does not match the contents of the 

Interrupt Hash register), when resuming Active CEM 

mode from Suspended CEM mode. 

SP Exception (Not Implemented) 7 Raised when trying to access a feature not implemented 

on the device. (May also be used for user-mode SP 

instructions on a device where only authority-mode is 

implemented.) 

SP Exception (Virtualization) 8 Raised for errors during CEM Save/Restore virtualization 

instructions. It can be caused by a protection ring access 

control violation, an improper CEM state during the call 

(e.g. trying to save or restore while in Active CEM), or by 

restoring an invalid state. (Note: CEM Save/Restore not 

yet defined for authority mode) 
 
 
 



 

 30

6 Operation 
 

6.1 CEM (Concealed Execution Mode) for TSM Protection 
 
The SP Hardware directly protects temporary data handled by the TSM code. This is called Concealed 
Execution Mode (CEM). Code Integrity Checking is also performed for all TSM instruction cache lines. 
 
Below, we describe the CEM protection mechanisms. 

6.1.1 Code Integrity Checking (CIC) 
Authority-mode CEM is triggered by the corresponding Begin_CEM instruction, entering Active CEM 
mode for the next instruction. During CEM execution, Code Integrity Checking is used, verifying the 
hash of each TSM instruction before execution. A keyed-hash (MAC) is pre-computed and stored with 
each cache line of TSM code, either in-line with the code (as shown in Figure 3) or in a separate area of 
memory. The hash is keyed with the DRK for authority mode. The hash is computed over the 
instructions of the cache line and the virtual address of the start of the line. As each cache line of TSM 
code is loaded, the hash is recomputed by the on-chip hashing engine and compared to the stored value. 
Upon verification, the line is tagged as “Secure Instruction” in cache. Subsequent fetches from cache 
with the “Secure Instruction” tag set need not be verified again.  If the cache line’s MAC does not verify 
correctly upon loading from memory, a CEM Exception (Code Integrity) is raised. If the cache line is in 
cache without the correct “Secure Instruction” tag, it is first evicted and then reloaded for MAC 
verification.  
 

 
Figure 3: Sample cache line with embedded MAC for CIC checking. 
 

6.1.2 CEM Secure Memory 
Data in memory is protected explicitly by the TSM using Secure_Load and Secure_Store instructions to 
access sensitive data. Similarly to Code Integrity Checking, secure data lines are protected in cache by a 
“Secure Data” tag when written with a Secure_Store instruction. When a tagged cache line is evicted, it 
is first encrypted before writing to memory, and a MAC is computed with the DRK and stored 
separately in memory (in a predetermined location). A Secure_Load that causes a cache line to be read 
in from memory triggers integrity checking of the MAC and then decryption, setting the “Secure Data” 
tag on the new cache line. Any regular load/store operations on a “Secure Data” cache line will cause 
the line to be evicted and then re-read from memory as ciphertext that is does not have the “Secure 
Data” tag set in cache.  
 

6.1.3 CEM Interrupt Handling 
During Active CEM mode, any interrupt, trap or exception will trigger CEM interrupt protection before 
execution is transferred to the supervisor or kernel. Registers are encrypted as a single block using the 
on-chip encryption & hashing engine; the resulting ciphertext is divided and placed back into the 
registers. A hash is then taken of the result and stored in the Interrupt Hash register on-chip. The return 



 

 31

address of the program counter is stored in the Interrupt Address register along with the current PID & 
CID, and the CEM mode is changed from Active CEM to Suspended CEM. Upon each subsequent 
Return From Interrupt (RFI) instruction, the return address (and current PID & CID) is checked against 
the suspended CEM state. A match triggers the reverse process to verify the Interrupt Hash and then 
restore (decrypt) the register state. An RFI that does not match the Interrupt Address is presumably not 
returning to the suspended CEM thread and will continue silently, remaining in Suspended CEM mode. 
If an RFI matches, but the Interrupt Hash does not verify correctly, a CEM Exception (Register 
Integrity)  is raised.  
 
See [Lee05] and [Dwoskin07] for more details. 
 

6.1.4 Cache-tag Details 
All cache lines store tags to indicate CEM protection (secure/normal) and CEM instruction/data (implied 
in L1 split cache). The combined tags indicate either “Secure Instruction”, “Secure Data”, or “Normal” 
The instruction/data bits are currently used only for secure CEM cache lines and are ignored when the 
”secure” tag == normal (0). (Note: However, we leave open the possibility that these bits could be used 
in the future to distinguish instructions and data even for non-secure lines, to implement addition 
protection outside of CEM.) 
 
If one or both caches are physically tagged, an additional virtual-address tag is added. This virtual tag is 
from the virtual address that was used to correctly verify the cache line’s MAC as it was read in. When 
reading/writing a “secure”-tagged cache line from a physically-tagged cache for CEM instructions or 
CEM data, the virtual tag must also match. Otherwise the line is first evicted and then reloaded from 
main memory as if the line were not in cache. (This prevents certain splicing attacks on CEM code and 
data.) When evicting dirty cache lines of CEM data, the virtual tag is also used for MAC computation.  
 
The virtual tags in each cache may also contain the Process ID, ensuring that each process can only 
access its own tagged data in cache.  Otherwise that entire cache must be flushed by the OS on each 
context switch. ** This is not an SP/CEM security requirement, but is necessary for proper isolation by 
the OS. ** 
 
 L1 instruction cache lines 
  “secure” tag (1 bit):  1 = secure instruction, 0 = normal instruction 
 
 L1 data cache lines 
  “secure” tag (1 bit):  1 = secure data, 0 = normal data 
 
 L2 shared cache lines 
  “secure” tag (1 bit):  1 = secure, 0 = normal 
  instruction/data tag (1 bit):  1 = instruction, 0 = data 
 
 



 

 32

6.2 SP Module 
 
Figure 4 shows the datapath for the new SP registers and the Encryption/Hashing Engine in an SP 
module. Code Integrity Checking (secure instruction fetch) uses the Encryption/Hashing Engine and the 
DRK to process instructions as they are fetched from off-chip memory into on-chip caches. Similarly the 
engine processes secure data lines for secure load/store as they move between the caches and memory. 
On interrupts, the engine performs encryption/decryption and integrity checking of the entire register 
file, saving the Interrupt Hash, Interrupt Address, PID, and CID in the corresponding SP registers when 
the interrupt occurs and checking them for return to CEM.  
 
Other SP registers are used explicitly for new SP instructions. General registers are used to access the 
CEM Buffer and to set the DRK. They are also the source for the nonce in generating derived keys, 
which are then stored in the lower half of the CEM Buffer. The SRH is accessed by copying to or from 
the CEM Buffer in one operation. The DRK Lock is set directly by an instruction, and the CEM Mode is 
set by hardware in response to Begin/End CEM instructions, interrupts, or returns from interrupt. 
 

 
Figure 4: Datapath for new Authority-mode SP module 



 

 33

 

6.3 Hierarchical Ring Protection 
 
This is not currently part of SP, but is assumed to be present in the base architecture. For x86, we 
assume the presence of rings to provide at least user- and supervisor- modes, as well as VT support for 
negative rings to protect the TML.  

 



 

 34

7 References 
 
[Lee05]  Ruby B. Lee, Peter C. S. Kwan, John Patrick McGregor, Jeffrey Dwoskin, and 
Zhenghong Wang, Architecture for Protecting Critical Secrets in Microprocessors, Proceedings of the 
32nd International Symposium on Computer Architecture, Madison, Wisconsin, June 2005. 
 
[Dwoskin07] Jeffrey Dwoskin and Ruby Lee, "Hardware-rooted Trust for Secure Key Management 
and Transient Trust," to appear at ACM CCS 2007 
 
[SecureCore] Ganesha Bhaskara, Timothy E. Levin, Thuy D. Nguyen, Cynthia E. Irvine, Terry V. 
Benzel, Jeffrey Dwoskin, Ruby Lee, Virtualization and Integration of SP Services in SecureCore, 
University of California, Information Sciences Institute Technical Report ISI-TR-623, September 2006 
 
 
 



 

 35

Appendix A – 32-bit Word-size 
 
Word size is implementation-specific and affects the semantics of some CEM instructions. Software can 
determine the word size from the processor model for compatibility.  
 
With 32-bit word-size, the follow changes are required: 
- Setting the DRK requires selecting either the upper or lower 64-bit (2-word) portion of the register 

using sel == 0 or 1. (See Section 3.) 
- Accessing the CEM Buffer register will take place with 32-bit words: 32-bits for gr.set using 

sel == 0, 1, 2, …, or 7 and 64-bits for gr.get using sel == 0, 2, 4, or 6. (See Section 3.) 
- Creating derived keys will take the 128-bit nonce from the CEM Buffer register rather than from two 

register parameters. (See modified instruction details below.) 
 



 

 36

drk.derive (32-bit word-size) 
 
DRK – Derive Key (32-bit word-size) 
 
Format:  drk.derive  
Description: Generates a new key that is derived from the DRK and a 128-bit nonce located in 

the rightmost (low-order) 128-bits of the CEM Buffer. The 128-bit result is stored 
back into the rightmost (low-order) 128-bits of the CEM Buffer, overwriting the 
nonce, with the remaining 128-bits set to zero. 

 
To emulate the behavior of the 64-bit version of drk.derive, first gr.get is called 
twice to copy the nonce from general registers into the rightmost 4 words of the 
CEM Buffer. Then drk.derive is called (without parameters) to generate the 
derived key. 
 
The derived key is generated by the hardware hashing engine which reads the 
DRK without revealing its contents. A cryptographic MAC is computed over the 
nonce, keyed with the DRK. Repeated generation of derived keys is guaranteed to 
always give the same result when used with the same DRK and same nonce. The 
MAC algorithm used is implementation specific.  
 
Note: See Section 3 for the operation of drk.derive for processors with 64-bit 
word size. 
 

Exceptions:  CEM Exception (Access) – Raised if not in an active authority-mode CEM: 
CEM_Mode != 01 (Active CEM). 

 




