
Framework for Design Validation of Security Architectures
Jeffrey Dwoskin Mahadevan Gomathisankaran Ruby Lee

Abstract

New security architectures are difficult to prototype and
test. They require interactions between hardware, op-
erating systems, and applications, making them hard
to simulate and monitor. We have designed and proto-
typed a testing framework using a virtualization plat-
form which emulates the behavior of new hardware se-
curity architecture in the virtual CPU, and performs
a wide range of hardware and software attacks on the
system under test. Our testing framework significantly
speeds up development of the testing environment and
infrastructure, and provides APIs for launching attacks
and monitoring the effects of an attack on the hardware
and software layers, which is especially convenient dur-
ing the design and validation phases for new hardware-
software architectural solutions. We have used our test-
ing framework to test the trust chain of the SP archi-
tecture [1] as an example.

1 Introduction

Designers of security architectures face the challenge
of testing new designs to validate the required secu-
rity properties. To provide strong guarantees of pro-
tection, it is often necessary and desirable to put low-
level security mechanisms into the hardware which the
software layers can rely upon for a wide-range of ap-
plications. The resulting architecture is a combination
of hardware and software components which are diffi-
cult to test together. Testing must be done during the
design time to give confidence in the architecture be-
fore the complete system is built, at which point it is
costly to make fundamental changes in response to se-
curity flaws. To address this problem of design-time
security validation, we propose a new testing frame-
work for hardware-software security architectures. Our
framework provides a controlled environment to emu-
late the behavior of new hardware components with a
full software stack running in a virtualization environ-
ment, with which coordinated security attacks can be
performed and observed.
In a new architecture, security mechanisms may be
added to the processor at the lowest software-visible
layers, yet the effects on system operation reach up into
the operating system, middleware, and application soft-

ware, and can even span networked systems. Each of
these layers will use abstractions of the lower layers and
make assumptions about their security properties. Val-
idation requires that each layer be modeled and simu-
lated together to study the interactions of the compo-
nents and their effects on the overall operation of the
system. This is unlike traditional computer architecture
where performance and power optimizations can usually
be designed and tested with layer-specific measurements
that focus on the new components. Instead, our frame-
work must emulate all hardware and software layers si-
multaneously, while coordinating simulated attacks by
observing and controlling activity at each system layer.
Furthermore, the testing environment — including the
hardware implementation, software stack, threat mod-
els, and attack mechanisms — must be as realistic as
possible so that results are meaningful.

Our Approach

Our testing framework is composed of two components:
a system under test (SUT) containing the new hard-
ware architecture and software stack under considera-
tion, and a testing system (TS) which coordinates mon-
itoring of, and attacks on, the SUT. We build on top
of existing virtualization technology, which allows us to
run a full set of commodity software efficiently. In a
virtualized system, a Virtual Machine Monitor (VMM)
creates multiple virtual machines that run on a single
physical host machine [2, 3, 4]. Typically the virtual
machines are nearly identical to the host machine, how-
ever, we modify the VMM to emulate the new security
hardware features of the SUT. The SUT and the TS are
separate virtual machines, so that the environment of
the SUT is as realistic as possible — it runs a commod-
ity operating system (Linux), commodity user applica-
tions, and any new application software using the new
security mechanisms.

The SUT is attacked by the TS according to the threat
model being tested; the TS itself is not attacked. The
TS monitors hardware and software events that occur in
the SUT using hooks provided by our framework. It also
can inject attacks at all layers of the system. An attack
script running in the TS virtual machine coordinates
events and attacks from both hardware and software
components in the SUT.

1

jdwoskin
Typewritten Text
Jeffrey Dwoskin, Mahadevan Gomathisankaran, Ruby Lee. "Framework for Design Validationof Security Architectures", Princeton University Department of Electrical EngineeringTechnical Report CE-L2008-013, Nov 17, 2008.

jdwoskin
Typewritten Text
{jdwoskin, mgomathi, rblee}@princeton.edu

Our testing framework can model real attack mecha-
nisms using known penetration mechanisms. It can also
model unknown future attacks by more powerful adver-
saries by enabling direct attacks on software and hard-
ware components that may go beyond known penetra-
tion methods. We do this by mapping attacks to their
impacts on the SUT. Hence, a key advantage of our sys-
tem is that it allows design-time testing assuming a very
powerful attacker to test the limits of the SUT, without
the need to find a specific penetration path through the
system.
The primary contributions of this work are:

• a new flexible framework for design-time testing
of new hardware-software architectures for security
properties, leveraging VMM technology;

• a realistic environment using commodity operating
systems for testing different applications using the
new security mechanisms;

• a flexible, fast, and low-cost method for emulating
HW features in the VMM for the purpose of design
validation — without the need for costly and time-
consuming fabrication of HW prototypes;

• the ability to simulate the impact of very powerful
attackers for “future” attacks; and

• the application of our framework towards the val-
idation of the security properties of the SP archi-
tecture [1, 5].

The rest of our paper is organized as follows: Sec-
tion 2 discusses hardware-software architectures and
their threat models. Section 3 describes the architec-
ture and implementation of our new testing framework.
Section 4 describes the SP architecture, its emulation in
the testing framework, and methodologies for its test-
ing. Section 5 offers results and sample security attacks.
We discuss related work in Section 6 and conclude in
Section 7.

2 Hardware-Software Security
Architectures

New security architectures can take many forms. For
this work, we focus on hardware-software architectures
where new hardware security mechanisms are added
to a general-purpose computing platform to protect
security-critical software and its critical data. The hard-
ware provides strong security protection which cannot
be bypassed, and the software provides flexibility to im-
plement different applications and usage scenarios, with
different security policies.
Figure 1 shows a typical system with the addition of a
trusted software application and new trusted hardware

Figure 1: Threats and Attacks on Security Architec-
tures

security mechanisms added to the CPU (e.g. new in-
structions, faults, registers, and hardware mechanisms).
Sometimes, as shown in the figure, the OS cannot be
trusted, especially if it is a large monolithic OS like
Windows or Linux. Other times, an architecture might
trust parts of the operating system kernel (e.g. a mi-
crokernel [6]), but not the entire operating system.
The figure also shows the sources of attacks that we
consider in our testing framework. First, malware or ex-
ploitable software vulnerabilities can allow adversaries
to take full control over the operating system to perform
software attacks. They can access and modify all OS-
level abstractions such as processes, virtual memory and
virtual memory translations, file systems, system calls,
kernel data structures, interrupt behavior, general reg-
isters, and I/O.
Second, if adversaries get physical possession of a device,
they can perform hardware attacks, such as directly ac-
cessing data on the hard disk, probing physical memory,
intercepting data on the display and I/O buses. Very
powerful attackers may even be able to probe parts of
the processor chip.
Third, network attacks can be performed with either
software or hardware access to the device, or with ac-
cess to other parts of the network. Some network attack
mechanisms act like software attacks (e.g. remote ex-
ploits on software), while others attack the network it-
self (e.g. eavesdropping attacks) or application-specific
network protocols (e.g. modification attacks and man-
in-the-middle attacks).
In order to adequately test a new security architecture,
all of these attack mechanisms must be considered and
tested. Our testing framework provides hooks into each
relevant system component, and additionally allows in-
formation and events at each level to be correlated to

2

emulate the most knowledgable attacker.

3 Testing Framework

The design goals of our testing framework are to create a
generic platform that can emulate and test a wide range
of security architectures in a realistic environment. It
must test the architecture-specific application software
running on top of full commodity operating systems.
The testing framework should also allow easy monitor-
ing of software and hardware events, and allow modifi-
cation of software and hardware state to launch attacks
on the system.

3.1 Architecture

A virtual machine monitor (VMM) is the software which
creates Virtual Machines (VMs), efficiently providing
an execution environment in each VM which is almost
identical to the original machine [7]. By modifying an
existing VMM, we can augment the virtual machine to
have the additional hardware features of our new secu-
rity architecture in addition to those of the base ma-
chine. Since we are still using efficient virtualization
software, we can run commodity operating systems and
applications in our modified virtual machines.
Our Testing Framework is divided into two systems, as
shown in Figure 2, the System Under Test (SUT) and
the Testing System (TS), each running as a virtual ma-
chine on our modified VMM. The SUT machine simu-
lates the system being designed and tested for the new
security architecture, as if it were actually built and
programmed. The TS machine simulates the attacker,
who is trying to violate the security properties of the
SUT. Through a variety of hooks in our modified VMM
and guest OS, the TS has full access to the internal
operations and state of the SUT.

Figure 2: Testing Framework Design

In isolation, the SUT is meant to behave as closely as
possible to a real system which has the new security
architecture. It must behave as if it has all of the new
security primitives available in hardware, along with the
corresponding protected software for that architecture.
In our current system, the SUT runs a full commod-
ity operating system (Linux) as its guest OS, which is
vulnerable to attack and is untrusted. However, for the
purposes of the testing framework, we add a software
component, the TS Proxy (TSP), to the SUT to sim-
ulate the effect of a compromised operating system for
launching software attacks, allowing the OS to be fully
controllable by the TS — as if it has been compromised.
It is still necessary to keep the TS as a separate virtual
machine so that the TS Proxy in the SUT need not be
invoked to launch a virtual hardware attack.
For the purposes of fully exploring the design space of
new security architectures, the TS has the additional ca-
pability to be a super-attacker. The testing framework
itself is ignorant of the threat model of the system be-
ing designed, and instead enables full controllability and
observation of the SUT in both hardware and software.
This makes it suitable for many purposes during the de-
sign phase of a new architecture. For initial design and
implementation of the system, the TS can act as a de-
bugger, able to see the lowest-level micro-architectural
behaviors of the hardware features and all code behav-
ior and data in the software stack. When testing the
supposedly correct system, the TS is the attacker, con-
strained by a threat model to certain attack vectors.
A particular point of elegance of our framework is that
the threat model can be easily changed, and the set
of attack tools given to the attacker adjusted for each
test. The framework can be used for any combination of
mechanisms: access to internal CPU state of the virtual
processor, “physical” attacks on the virtual machine
hardware (e.g. hardware probes on the buses, mem-
ory, or disk), software attacks on the operating system
(e.g. a rootkit installed in the OS kernel), and network
attacks (e.g. interception and modification of network
packets and abuse of network protocols and application
data). For example, in some cases, it might be desir-
able to perform black-box testing of a new design using
only the network to gain access to the SUT, while in
other cases, white-box testing will allow the attacker
knowledge about the system’s activities, such as precise
timing of attacks with hardware interrupts or break-
points into the application code or observation of data
structures in memory.

3.2 Testing Framework Modules

The main components of our Testing Framework shown
in Figure 2 are: the Testing System Controller (TSC),
the Testing System Proxy (TSP), the Events and Attack

3

Table 1: Example Events and Attacks

Layer Events Monitored Impact of Attack
Protected Application API function entry/exit, Library calls,

User authentication, Network messages,
Other application-specific events.

Read/write application data structures,
Trigger application API calls, Inter-
cept/modify network messages, Other
application-specific attacks.

OS Memory access watchpoints, Virtual
memory paging, File system access, Sys-
tem calls, Process scheduling, Instruction
breakpoints, Device driver access, Net-
work socket access, Interrupt handler in-
vocation, etc.

Read/write virtual memory, Read/write
kernel data structures, Read/write file
system, Intercept/modify syscall pa-
rameters or return values, Read/write
suspended process state, Modify pro-
cess scheduling, Intercept/modify net-
work data, Modify virtual memory trans-
lations.

Base Hardware (x86) Privileged instruction execution, Trig-
gering of page faults and other in-
terrupts, Execution of an Instruction
pointer.

Read/write general registers, Read/write
physical memory, Trigger interrupts, In-
tercept device I/O (e.g. raw network &
disk accesses).

Secure Architecture
Hardware

Execution of new instructions, Trigger-
ing of new faults, Accesses to new regis-
ters.

Read/write new registers & state,
Read/write protected memory plaintext.

module, the Hardware Emulation Module, the Testing
Application, and the Attack Scripts. The TSC and TSP
are each divided into a user-level application and a com-
ponent in the OS kernel.

A System Under Test is comprised of three layers,
namely: Application, Operating System, and underly-
ing Hardware. The Testing System should be able to
both monitor the events and modify the state in all
three of these layers. The modified VMM monitors and
controls the hardware, while the the TSP monitors and
controls the applications and OS.

The TS and SUT components communicate to exchange
information about events occurring in the SUT and to
implement attacks from the TS by modifying system
state in the SUT. The user level components communi-
cate with the kernel components through system calls,
and the kernel components use signals to communicate
asynchronously with the user level components. The
VMM communicates with the guest OS kernel asyn-
chronously through a new virtual hardware interrupt
which we have defined.

Testing System Controller The TS Controller,
running on the TS, is the aggregation point that re-
ceives events from all three layers in the SUT. It re-
ceives OS and Application level (software) events from
the TS Proxy via a network channel and receives hard-
ware events from the VMM through a channel from its
kernel-level component. It provides APIs to the Attack
Scripts which can monitor or wait for specific events and

adaptively mount a coordinated attack on the SUT.

Testing System Proxy This module acts as a proxy
for the TSC running on the SUT itself. It controls
the application to be tested, and uses its corresponding
kernel-level component to control and monitor OS be-
havior and the OS-level abstractions used by the testing
application, including system calls, virtual memory, file
systems, sockets, etc. The TSC communicates with the
TSP over TCP/IP on the virtual network which con-
nects the VMs. Note that the TSP is used to simulate
the impact of a compromised OS in the SUT, whereas
in the framework the OS itself is not actually compro-
mised.

Event and Attack Module This module provides
hooks to both observe and control the internal machine
state of the SUT from inside the VMM. The TS Con-
troller registers with this module for the set of events
to be monitored, and uses the APIs provided by this
module to observe or modify (i.e., attack) the state.
Events that can be watched include: interrupts/faults
specific to the secure architecture, execution of new in-
structions, execution of new behaviors (e.g. modified
hardware interrupt handling), regular x86 interrupts,
etc. Machine state that is exposed includes CPU reg-
isters, physical memory, and the new registers for the
secure architecture. Note that unlike a normal attacker,
this model is very powerful and can stop the machine
precisely for observation or modification before or af-
ter any specific instruction execution or other detected

4

hardware event. In Figure 2, we show this module split
within the VMM into two separate components for each
VM to accommodate the split-VMM structure present
in some virtualization software.
Hardware Emulation Module This component,
added to the VMM, emulates the behavior of the new
security architecture to be tested. It enhances the
base micro-architecture with new instructions, func-
tional units, registers, interrupts/fault behaviors and
memory access behavior. New instructions are exported
to the software layers through hypercalls, which allow
application or OS layers to directly invoke the VMM.
Testing Application The Testing Application is the
actual implementation of the application software that
would be run on the secure architecture. It should
demonstrate the features of the architecture and pos-
sibly interact with a local user to provide access to se-
crets and data which the architecture is protecting. The
testing framework has hooks that allow the application
to report any internal events such as function calls or
decision points. The usage of these hooks are optional
and is required only if the application level events need
to be monitored for the attack script.
Attack Scripts The Attack Scripts reside on the TS
and specify how particular attacks are executed on the
SUT. They provide step-by-step instructions for mon-
itoring events and dynamically responding to them in
order to successfully launch attacks, or detect that an
attack was prevented by the security architecture. The
scripts act like a state-machine, acting on hardware and
software events which are aggregated by the TS. Scripts
can be written to form a library of generic attacks, that
can be used to attack any application. Alternatively
they can be specific to the behavior of the testing ap-
plication, written by the user of the testing framework.
The TS Controller reads and executes these scripts and
implements the communication mechanisms and control
of the SUT as needed.
In addition to these components, the TS hosts and emu-
lates any other trusted third parties required by the sys-
tem, possibly intercepting and modifying their network
traffic as an additional source of events and attacks.
By using two separate virtual machines to host the com-
ponents of our testing framework, we are able to keep
the SUT as close as possible to the real security archi-
tecture being tested, including all of its software com-
ponents, both trusted and untrusted. We do not need
to trust the SUT’s guest OS for the sake of correctness
of the emulation of new hardware security features. In
fact, the SUT’s guest OS can launch real attacks on the
system (as controlled by the TS).
We also have the ability to use the separate VM to
launch hardware attacks asynchronously from the TS;
the TS can pause the execution of the entire SUT VM

and continue running the attack scripts to inject attacks
at any instruction boundary.

3.3 Events and Attacks

The testing framework is designed to expose events from
the three layers of the SUT (application software, OS,
and hardware) to the TS, and to allow the TS access
to the state of the SUT to launch attacks. Table 1 lists
various events and attacks for each layer of the system.
The hardware layer is further classified into events and
attacks from the base hardware (x86 architecture in our
work) and the new emulated security architecture.
The hardware layer is accessed by the TS Controller
through the event and attack module in the VMM,
which communicates events across an inter-VM channel
inside the VMM to relay events and attacks between
the SUT and TS. This channel is used to communicate
with the TS during execution of a single instruction or
HW operation in the SUT, possibly changing the result
of that operation.
The software layers are accessed through the TS Proxy,
which hooks into the OS kernel through its kernel mod-
ule, and to the testing application using its user-mode
component. The TSP can function as a debugger tool
reading the application’s memory and accessing its sym-
bol table to map variable and function names to vir-
tual addresses. The application can also optionally be
instrumented to access its state and events. The TS
Proxy suspends scheduling of the application’s process
while it is communicating an event or attack to the TS
Controller.
The SUT modules in both the hardware and software
layers capture their relevant events and signal the TS
Controller. The controller, following its attack scripts,
can then attack the SUT based on those events. Table 2
lists the API which the TS Controller exports to the
attack scripts for event handling and the basic attack
mechanisms.
The attack mechanisms we provide are designed around
the impact that attacks have on the state of the SUT.
The security properties and attacks considered in the
threat model of a given security architecture may in-
stead focus on the method of penetration used to ac-
cess that state. For our testing framework, we enable
a powerful attacker without regard to how penetration
occurs. This is preferred since (1) new attack penetra-
tion methods are frequently discovered after a system
is deployed and often are not foreseen by the designer,
(2) most real attacks result in or can be modeled by the
impact of attacks which we provide in Table 1, and (3)
the attack scripts themselves can be restricted to model
specific penetration methods when testing for a more
limited attacker. Thus an architecture can be tested

5

Table 2: TS Controller API for Attack Scripts

Function Description
h ← INIT() Initializes the TSC and returns a handle h to access the resources.
FREE(h) Free the resources for the handle h.
EXECUTE(h,app,params) Execute the application app on SUT with the given parameters params.
EVENTADD(h,eventType) Add the eventType to watch-list.
EVENTDEL(h,eventType) Delete the eventType from the watch-list.
event ← WAIT(h) Blocking call that waits for any event in the watch-list to occur in

the SUT. Once an event is triggered, the SUT is paused and the TS
continues running the attack script. An application exit in the SUT
always causes a return from WAIT().

event ← WAITFOR(h,eventType) Similar to WAIT() but waits for the specified event (or application
exit), regardless of the watch-list.

CONT(h) Execution of the SUT is resumed.
ACCESSREG(h,type,r/w,buf) Reads/writes (r/w) the general registers or SP registers (type) of the

SUT to/from buf.
ACCESSMEM(h,v/p,r/w,addr,sz,buf) Reads/writes (r/w) sz bytes from virtual or physical memory (v/p) of

the SUT at address addr to/from the buffer buf.
INTERRUPT(h,num) Trigger a virtual hardware interrupt number num on the SUT.

against unknown attacks as well as known methods of
penetration by considering the most powerful attacker.

3.4 Implementation

We implemented our testing framework on VMware’s
virtualization platform [8], including all of the mod-
ules in Section 3.2 and events and attacks at each sys-
tem layer. The Hardware Emulation Module and VMM
Event & Attack Module required modifying the source
code of the VMware VMM. The kernel components of
the TSP and TSC are implemented as Linux kernel
modules. The TSP application is implemented as a
Linux user process and controls the execution of the
Testing Application. The TSC application is imple-
mented as a static library which is called by the Attack
Scripts. Upon initialization, the TSC connects with the
TSP over the virtual network, and the TSP registers
with the Event and Attack Module via a hypercall to
the VMM.
As a sample security architecture, we implement the SP
architecture, described in Section 4. Hence, the Hard-
ware Emulation Module emulates the SP architecture
including its master secrets, secure memory, and inter-
rupt protection. We have also implemented a library
of protected software for SP, which is used for a remote
key-management application as described in Section 4.4.
Our Testing Application uses this library to exercise the
software, and in turn, the SP hardware.

4 SP Architecture and Emula-
tion

For the rest of this paper, we will use the Secret Protec-
tion (SP) architecture [1][5] to demonstrate our frame-
work. We have chosen SP because it was specifically
designed to be as simple as possible to facilitate veri-
fication, while providing robust security utilizing both
hardware and software components. At the same time,
it uses a somewhat controversial and unproven design,
skipping layers in the trust chain by using hardware
to directly protect an application without trusting the
underlying operating system. To be accepted by the se-
curity community, SP’s security properties need to be
validated, demonstrating that it can protect the confi-
dentiality and integrity of cryptographic keys in its per-
sistent storage which in turn protect sensitive user data.
Furthermore, it is important to write and test many se-
cure software applications to run on SP in a realistic
environment, where the untrusted OS can be a source
of attacks. To the best of our knowledge no single tool
exists to test hardware-software security architectures
like SP.
Our testing framework first emulates SP’s hardware fea-
tures using modifications to the VMM. This allows us to
directly test the primitives and guarantees made by the
SP hardware itself and how those primitives interact
with software components. Additionally, we can con-
sider the hardware emulation as a constant and test a

6

range of software implementations which take advan-
tage of the SP hardware. We wish to test how SP hard-
ware protects its software, how trusted software can be
written to take advantage of the hardware guarantees,
and how trusted software interacts with untrusted soft-
ware on an SP device.

4.1 Secret Protection Architecture

In the Secret Protection (SP) architecture, the hardware
primarily protects a Trusted Software Module (TSM),
which protects the sensitive or confidential data of an
application. Hence, a TSM plus hardware SP mech-
anisms form the equivalent of the trusted computing
base (TCB) for the application. Rather than protect-
ing an entire application, only the security-critical parts
of an application are made into a TSM, while the rest of
the application can remain untrusted. Furthermore the
operating system is not trusted; the hardware directly
protects the TSM’s execution and data.
Protecting the TSM’s execution requires ensuring the
integrity of its code and the confidentiality and integrity
of its intermediate data. Code must be protected from
the time it is stored on disk until execution in the pro-
cessor. Data must be protected any time when the op-
erating system or other software can access it. This in-
cludes storage on disk, in main memory, and in general
registers when the TSM is interrupted.
To provide this protection, SP maintains its state using
new processor registers. It assumes the processor chip
to be the security boundary, safe from physical attacks
which are very costly to mount on modern processors.
As shown in Figure 3, SP uses two on-chip master se-
crets: the Device Root Key (DRK) and the Storage
Root Hash (SRH). For code integrity, the DRK is used
to sign a MAC (a keyed cryptographic hash) of each
block of TSM code on disk. When a TSM is execut-
ing, the processor enters a protected mode called Con-
cealed Execution Mode (CEM). As the code is loaded
into the processor for execution in the protected mode,
the processor hardware verifies the MAC before execut-
ing each instruction. For the TSM’s intermediate data,
while in protected mode, the TSM can designate cer-
tain memory accesses as “secure”, which will cause the
data to be encrypted and hashed before being written
to main memory. This secure data is verified and de-
crypted when it is loaded back into the processor from
secure memory. Secure data and code are tracked with
tag bits added to the on-chip caches. Additionally, the
SP hardware intercepts all faults and interrupts that
occur while in the protected mode before the OS gets
control of the processor. SP will encrypt the contents of
the general registers in place, and keep a hash of the reg-
isters on-chip in the interrupt registers to verify before
decryption when the TSM is resumed.

Figure 3: Secret Protection (SP) Architecture. Enlarge-
ments show (a) the additional CEM hardware and (b)
the application secrets protected by the TSM.

Secret data belonging to the application is also pro-
tected in persistent storage by encryption using keys
protected by the TSM. SP allows a TSM to derive new
keys from the DRK using a new hardware instruction,
DRK_DeriveKey. These derived keys are used by the
TSM to protect the confidentiality and integrity of its
persistent data. Other software, including the OS, may
not use the DRK_DeriveKey instruction. The TSM is
also the only software that can read and write the SRH
register, using it as the root of a hash tree to protect
the integrity of this persistent secure data.

Hence, to emulate SP hardware we require the follow-
ing components: new processor registers (including the
protected mode and master secrets); new instructions;
hardware mechanisms for code integrity checking, se-
cure memory, and interrupt protection; and new hard-
ware faults which these mechanisms generate.

4.2 Emulation of the SP Architecture

A traditional VMM provides a virtual machine which
is (nearly) identical to the physical machine, matching
the instruction set and behavior of the real CPU. It does
this by trapping or translating privileged code, while ig-
noring microarchitecture effects that do not affect pro-
gram correctness, such as cache memory. Most of the
time, the VMM runs code on the physical hardware,
and only emulates the components that are virtualized.
In order to implement and emulate new hardware archi-
tecture features, we take advantage of the VMM’s vir-
tualization methods. For example, the VMM maintains
data structures for the virtual CPU state, which we can
expand to store new security registers. The VMM then
emulates accesses that are made to those new registers.
Other useful VMM behaviors include: interception of all
hardware interrupts, binary translation of code, map-
ping of virtual memory translations, and virtualization

7

of hardware devices.
To emulate the SP architecture, a number of compo-
nents must be added to the virtual machine as part of
the Hardware Emulation Module:
Protected Mode SP’s Concealed Execution
Mode [5] requires new registers which are added to the
virtual CPU, including the registers holding SP’s mas-
ter secrets (DRK and SRH), mode bits, and interrupt
handling registers. New SP instructions are currently
modeled as hypercalls, where the TSM running in the
SUT is able to directly invoke the emulation module
without going through the guest OS. Any trapping
instruction would serve this purpose. Alternatively,
binary translation can be used by the VMM for TSM
code, which can be written with new unused opcodes
to implement new instructions.
Interrupts and SP Faults The SP architecture
changes the hardware behavior when interrupts occur
when in protected mode. Since the VMM already needs
to emulate interrupt behavior, we can simply detect that
an interrupt has occured during the protected mode and
emulate the effect on the CPU, which includes suspend-
ing the protected mode and encrypting and hashing the
general registers. To detect returning from an interrupt,
the VMM inserts a breakpoint at the current instruc-
tion pointer where the interrupt occurs, so that it is
invoked to emulate the return-from-interrupt behavior
of SP, which includes verifying the hash and decrypting
the general registers before resuming the TSM. Addi-
tionally, new SP faults can be triggered by both hard-
ware events and new SP instructions. When the emu-
lated hardware generates a new fault, it first reports to
the TSC, and then translates the fault into a real x86
fault, such as a general protection fault, which is raised
in the SUT causing the OS to detect the failure of the
TSM.
Secure Memory We change the SP abstraction of
secure memory to work on virtual memory pages instead
of cache lines, since the VMM does not intercept cache
memory behavior. While this limits the ability to model
a few low-level attacks on SP (such as the behavior of
cache tags), the majority of the security properties of
the hardware and all those of the software can still be
tested.
We also change how the hardware determines when to
access secure memory, so that the VMM need not trap
every individual memory access, causing performance
degradation. Rather than using new instructions to
access secure memory and regular memory, we allow
the TSM to define regions of memory which are always
accessed securely — an abstraction which fits the em-
bedded SP model [9]. This simplifies writing example
TSMs since an entire data structure or stack segment
can be protected, and the compiler need not be modi-

fied to emit new instructions for memory accesses. The
TSM simply declares which memory ranges should be
protected upon application launch.

Code Integrity SP verifies the integrity of the TSM
code dynamically during execution. The TSM’s code is
signed with a keyed hash over each cache-line of code
and the virtual address of that line, and is checked as
each cache line is loaded into the processor. We model
this using the VMM’s binary translator to execute the
TSM code. The implementation tags secure instruc-
tions as code fragments in the binary translator cache.
SP’s instruction signing (with keyed hashes) is similarly
generated and stored across larger regions of code (for
emulation efficiency) and saved in a separate file.

4.3 Other Architectures

While this paper focussed on testing the hardware and
software mechanisms of the SP architecture, our test-
ing framework is by no means limited to this architec-
ture. Other security architectures such as XOM [10],
AEGIS [11, 12, 13] and Arc3D [14, 15] modify hard-
ware in similar ways but have somewhat different goals
and assumptions from SP. However they combine hard-
ware and software in ways that also make them suitable
for validation in our framework. Similarly, TPM [16]
modifies hardware to protect all software layers and
provide cryptographic services. However, rather than
utilizing changes to the processor itself, TPM adds a
separate hardware chip that integrates with the system
board. This is still compatible with our testing frame-
work however requiring a different set of modifications
to the VMM to implement a virtual TPM device.

4.4 Remote Key-management TSM

SP’s Concealed Execution Mode provides code integrity,
a secure execution state, and secure memory for the
TSM. The TSM in turn must be written to support
applications that use sensitive data. In software, the
TSM uses the master secrets (in the DRK and SRH
registers) to protect the confidentiality and integrity of
persistent data, and to offer interfaces to unprotected
applications that need to use this data. It must also
manage secure communication with the user (including
authentication) and with third parties over the network.

A TSM can be written for many different usage sce-
narios. As an example we look at the remote key-
management scenario from Authority-mode SP [1]. We
use this TSM to test various aspects of the SP ar-
chitecture, from the hardware features in the virtual
processor (which are now protecting a real TSM), to
the software and network interfaces. We demonstrate

8

how the security-critical components of the remote key-
management software can be partitioned off into a TSM
which can be used by other software. Using the frame-
work, we then subject our TSM to a suite of attacks to
see if the desired security properties are preserved.
For remote key-management, we consider a central
trusted authority which owns multiple SP devices and
wants to distribute sensitive data to them. The author-
ity installs its remote key-management TSM on each
device as well as the protected data, consisting of se-
crets and cryptographic keys that protect these secrets.
It also stores policies for each key which dictate how it
may be used by the local user. During operation, the
TSM will accept signed and encrypted messages from
the authority to manage its stored keys, policies, and
data. It also provides an interface to the application
through which the local user can request access to data
according to the policies attached to the keys. The TSM
must authenticate the user, check the policy, and then
decrypt and display the data as necessary.
Testing SP requires testing TSM software in combina-
tion with SP hardware mechanisms. The TSM pro-
vides protection for the application’s critical data and
is itself protected by the SP hardware. We can at-
tack the robustness of the TSM’s memory usage, persis-
tent storage, network protocols, and software interfaces.
We thereby use our testing framework as a testbed for
secure software development in addition to the secure
hardware — both the software TSM and the hardware
SP features are required to provide SP’s confidentiality
and integrity guarantees.

4.5 Testing Example

We now give an example of how the TSC can test an ap-
plication and TSM running on the SUT. Table 3 shows,
on the left, the protected application using a TSM
(TSMapp) and a corresponding unprotected application
(unsafeApp). The attack script is shown on the right.
The attack simulates a compromised OS trying to access
confidential data currently being used by a TSM (in this
case, a secret key used for encrypting sensitive data) by
interrupting the TSM during its execution. The TSMapp
uses SP instructions to enter and exit protected mode
(BEGIN_TSM and END_TSM) and to generate a key
(DRK_DeriveKey). The unsafeApp is instrumented to
explicitly notify the TSP (with TSP_Notify)when it
generates a key.
The application first generates a new key, for
TTP_KeyID, which it uses to encrypt data. It then
sends the encrypted data over the network to the re-
mote Trusted Third Party (TTP). In the first line of the
attack script, the TSC launches the testing application,
either using the TSMapp (where we expect the attacks to

fail) or the unsafeApp (where the attacks should suc-
ceed). The script then watches for a particular event to
occur in the application, in this case the generation of a
key. The application executes normally until it triggers
this event which the attack script is monitoring.

Steps 1-5 in figure 4, show the steps taken by the testing
framework to detect an event. In step 1, the TSM uses
an SP instruction to generate a new derived key from
the DRK master secret. This requires making a hyper-
call down to the SP HW Emulation Module to emulate
the instruction and produce results into the general reg-
isters. In step 2, the SP HW notifies the Event & Attack
Module of this HW event (the execution of an SP in-
struction). In step 3, the event is passed up to the TSC
kernel module via a virtual HW interrupt/IRQ, and the
VMM freezes execution of the entire SUT. In step 4, the
TSC is notified of the event via a Linux signal. In step
5, the TSC returns the event to the attack script which
was waiting for notification of this key generation event.
It can now continue executing the script to perform any
hardware attacks while the SUT is frozen. These steps
are repeated for every hardware event monitored by the
TSC.

Figure 4: Example Attack Sequence

The script resumes the TSM and then attacks by in-
structing the TSC to generate an interrupt during the
TSM’s execution. This triggers the SP HW’s interrupt
protection mechanism, encrypting the general registers
and secure memory, and suspending protected mode for
the TSM. Next the script, acting like a corrupted oper-
ating system’s interrupt handler, attempts to read and
modify the TSM’s general registers. It overwrites the
generated key with a known key. With SP protection, it
can only read an encrypted version of the registers, and
upon resuming from the interrupt, the incorrect gen-
eral register values will cause an SP fault. If the same
attack is performed using the unprotected application
without SP and its TSM, the attacker would obtain the
generated key and the user of the SUT would remain
unaware of the modification to its registers, encrypting
with a key known to the attacker.

9

Table 3: Example Application and Attack Script for Eavesdropping and Spoofing Attack using Interrupt

Application with TSM (TSMapp)
BEGIN_TSM
· · ·
Reg1 ← DRK_DeriveKey(TTP_KeyID)
Ciphertext ← Encrypt(Reg1, &SecureMem, sz)
END_TSM
Network_Send(TTP, Ciphertext, sz)
· · ·

Application without TSM (UnsafeApp)

// No SP protection
· · ·
Reg1 ← App_Generate_Key(TTP_KeyID)
TSP_Notify(App_Keygen, Reg1)
Ciphertext ← Encrypt(Reg1, Data, sz)
Network_Send(TTP, Ciphertext, sz)
· · ·

Attack Script
EXECUTE(TSMapp, params) // or UnsafeApp
// Wait for key generation
EVENTADD(DRK_DeriveKey)
EVENTADD(App_Keygen)
EVT ← WAIT()
ACCESSREG(SP, r, SPRegs)
SPKey ← SPRegs.DerivedKey
AppKey ← EVT.param1
// Trigger an interrupt
INTERRUPT(03); CONT()
EVT ← WAITFOR(Interrupt)
// Attack confidentiality of general registers (GRs)
ACCESSREG(GR, r, GRegs)
if SPKey = GRegs.R1 OR AppKey = GRegs.R1 then

print “Register Confidentiality Attack Succeeded”
else

print “Register Confidentiality Attack Failed”
end if
// Attack integrity of general registers (GRs)
ACCESSREG (GR, w, KnownKey); CONT()
EVT ← WAITFOR(SPFault_All)
if EVT = SPFault_Reg_Integrity then

print “Register Integrity Attack Failed”
else

print “Register Integrity Attack Succeeded”
end if

5 Testing of SP

As we have shown in the previous section, it is possible
to use our new testing framework to perform a wide
range of tests and attacks on the SUT and the security
architecture it emulates. We now look more closely at
how we can use the framework to validate the security
properties of the SP architecture in particular through
a range of tests.
SP claims to provide a number of security properties,
of particular importance are the confidentiality and in-
tegrity of: master secrets (DRK & SRH), TSM execu-
tion, secure data, and usage policies. We must demon-
strate that each security property is enforced through
the combination of trusted and verified TSM software
and trusted SP hardware.
The main goal of the remote key-management TSM is
to enforce policies on secure data, as dictated by the Au-
thority, in an SP device. The following steps establish
the trust chain of the architecture:

1. The authority binds the TSM code to the SP device

(and its master secrets, which cannot leave the de-
vice) and provides secret data to the TSM on that
device.

2. The TSM executes in Concealed Execution Mode.

3. The TSM binds security policies and secure data
to the keys derived from SP’s master secrets on the
device.

We need to verify each of these steps by launching at-
tacks to test the SP’s trust chain.
In Table 4 we show a list of attacks which test these
aspects of the architecture, using our framework, the
emulated SP hardware, and our TSM. Each row in the
table indicates a specific attack we have implemented,
where ‘PASS’ indicates that the architecture success-
fully protected against the attack.
When the authority provides secret data, it needs to be
sure that it can only be used on the designated device
and only using the TSM it provided which is trusted
to enforce its security policies. Therefore it must not
be possible to replace that TSM with another, even

10

when an adversary has physical possession of the SP
device. Therefore, for step 1, we attempt to replace
the TSM by installing a new DRK which signs different
TSM code, however it then cannot access the author-
ity’s data which was protected by the original DRK.
Since the DRK never leaves the processor chip and can-
not be extracted, there is no other way to get access to
the original DRK.
In step 2, the integrity of a TSM must be protected both
before and during execution. This involves testing SP’s
hardware protection of the confidentiality and integrity
of all intermediate data that it generates. This inter-
mediate data can be attacked while in general registers
during a processor interrupt or in secure memory at any
time while the TSM is not running. Additionally, the
SP master secrets themselves must only be used by the
TSM itself and not other software. The code integrity
of the TSM must be protected both on disk and during
execution.
Finally, step 3 covers the proper design and implemen-
tation of the TSM itself. The TSM must store cryp-
tographic keys, security policies, and secure data in its
persistent secure storage, which it protects using SP’s
underlying hardware mechanisms (DRK & SRH). We
test the confidentiality and integrity of the storage itself,
plus the TSM’s use of the storage and its enforcement of
the policies on accesses to the data. Adversaries might
attack the TSM’s persistent data offline when stored on
disk or after the TSM has loaded it into secure memory.
Our system implements the SP hardware mechanisms,
a full TSM providing an API to the testing application,
and a suite of attacks which test both the software and
hardware components using our new testing framework.
This is a first step towards the complete validation of
the design of the SP architecture together with its ap-
plications, and provides a framework for further testing
the architecture with other software and attacks.

6 Related Work

Our testing-framework of a system architecture solution
has multiple related fields of research. Our emulation
of security architecture can be compared with hardware
simulation research, our validation mechanisms can be
compared with formal and hybrid verification method-
ologies, and our virtualization architecture can be com-
pared with systems virtualization solutions.
Micro-architectural simulators like Simplescalar [17] are
cycle-accurate and hence can be very useful in estimat-
ing performance metrics, but they can not simulate a re-
alistic software system with full commodity OS. Thus it
is impossible to test the security critical interactions of a
software-hardware security solution with such a simula-

tion architecture. Our emulation architecture, in using
the existing virtualization technology, enables reason-
able performance while allowing our SUT to provide
a realistic software stack. Other simulation and emu-
lation environments are available, such as Bochs [18],
Qemu [19], and Xen [20]. Where these environments
provide sufficient software performance and granularity
of hardware emulation, they could be used in place of
VMware to implement our framework as designed and
described in this paper.
The efforts by IBM [21], Intel [22] and others [23] pro-
vide the functionality of a virtual TPM device to soft-
ware, even when the physical device is not present. In
contrast, we not only emulate the new hardware but also
hook into the virtual device to observe and control its
behavior for testing purposes, and study the interaction
with other hardware and software components.
Another related area of research is the Formal Verifi-
cation of both hardware and software, in which formal
mathematics is used to write specifications for computer
hardware and software, and proof techniques are used
to determine the validity of such specifications. The
complexity of formal verification problems range from
NP-hard to undecidable [24, 25, 26, 27]. The com-
plexity of these formal verification mechanisms led to
the use of hybrid techniques [28] which uses some for-
mal as well as informal techniques. Some formal meth-
ods of verification are methods using theorem provers
(ACL2 [29], Isabelle/HOL [30]), model checkers, satis-
fiability solvers, etc. Some informal techniques used in
practice are control circuit exploration, directed func-
tional test generation, automatic test program genera-
tion, heuristic-based traversal, etc. The formal and hy-
brid techniques try to verify the hardware and software
separately, unlike our holistic verification of a software-
hardware system.
The important distinction between our approach and
these formal verification techniques is that we try to
verify the complete system while these formal tech-
niques try to verify each piece by piece. The complex-
ity of both specification and verification explodes ex-
ponentially with addition of more and more pieces to
be tested. In our approach we model both the security
critical hardware and software as a single entity, thus,
making the verification problem solvable in an informal
but systematic and efficient way.

7 Conclusion

We have designed and implemented a virtualization-
based framework for validation of new security archi-
tectures. This framework can realistically model a new
system during the design phase, and draw useful conclu-
sions about the operation of the new architecture and

11

Table 4: Verifications and Attacks

Security Property Attack Mechanism Results
1 Binding TSM to Secrets Attack the persistent storage protected

by one TSM from another TSM when
the DRK is changed.

Physical possession of
SP device

PASS

2 Confidentiality & In-
tegrity of Secure Memory

Attacks secure memory outside pro-
tected mode through eavesdropping,
spoofing, and splicing.

Virtual/physical mem-
ory access to TSM
pages

PASS

Confidentiality & In-
tegrity of General Regis-
ters

Attacks on registers during an interrupt
of a TSM through eavesdropping, spoof-
ing, splicing, and replay.

OS access to saved
process context

PASS

Access HW Master Se-
crets

Attack the SP master secrets (DRK &
SRH) from outside protected mode

Unprotected applica-
tion execution

PASS

Integrity of TSM Code Attacks on TSM code before and during
execution through spoofing and splic-
ing.

Disk access or access
to text pages in mem-
ory

Not Yet
Tested

3 Confidentiality & In-
tegrity of Persistent
Secure Storage

Attack the TSM’s secure storage, cre-
ated using DRK and SRH, on disk or
when loading into memory.

Disk access or access
to data pages in mem-
ory

PASS

Binding Security Policies
to Keys

Attack the TSM’s enforcement of secu-
rity policies on the use of keys in its
persistent storage, and the secrets those
keys protect.

Disk access or access
to data pages in mem-
ory

PASS

its software interactions. It also enables testing various
software applications using the new security hardware,
unlike a new hardware prototype which does not have
an OS running on it.

Our framework serves as a rapid prototyping vehicle
for black-box or white-box testing of security proper-
ties. It can utilize and integrate multiple event sources
and attack mechanisms from the hardware and software
layers of the system under test. These mechanisms can
test both low-level mechanisms and high-level applica-
tion behavior. As a result, a full range of attacks are
realizable on the hardware, operating system, and ap-
plications.

Finally, we implement the SP architecture in our frame-
work and test its security mechanisms thoroughly. We
demonstrate that the full trust chain of the architecture
holds up under attack, using a real TSM for remote key-
management.

References

[1] J. S. Dwoskin and R. B. Lee, “Hardware-rooted
Trust for Secure Key Management and Tran-
sient Trust,” in ACM Conference on Computer

and Communications Security (CCS), (Alexandria,
VA), pp. 389–400, October 2007.

[2] R. P. Goldberg, Architectural Principles for Virtual
Computer Systems. PhD thesis, Harvard Univer-
sity, 1972.

[3] R. Goldberg, “Survey of Virtual Machine Re-
search,” IEEE Computer, pp. 34–45, June 1974.

[4] M. Rosenblum and T. Garfinkel, “Virtual machine
monitors: current technology and future trends,”
IEEE Computer, vol. 38, no. 5, pp. 39–47, 2005.

[5] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. S.
Dwoskin, and Z. Wang, “Architecture for Protect-
ing Critical Secrets in Microprocessors,” in Intl.
Symposium on Computer Architecture (ISCA),
pp. 2–13, 2005.

[6] “OKL4 Microkernel.” Open Kernel Labs, http:
//www.ok-labs.com.

[7] G. Popek and R. P. Goldberg, “Formal Require-
ments for Virtualizable 3rd Generation Architec-
tures,” Communications of the A.C.M., vol. 17,
no. 7, pp. 412–421, 1974.

[8] “VMware Workstation.” VMware Inc., http://
www.vmware.com.

12

http://www.ok-labs.com
http://www.ok-labs.com
http://www.vmware.com
http://www.vmware.com

[9] J. Dwoskin, D. Xu, J. Huang, M. Chiang,
and R. Lee, “Secure Key Management Architec-
ture Against Sensor-node Fabrication Attacks,” in
Globecom, 2007.

[10] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. C. Mitchell, and M. Horowitz, “Ar-
chitectural Support for Copy and Tamper Resis-
tant Software,” in Intl. Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pp. 168–177, 2000.

[11] G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk,
and S. Devadas, “AEGIS: Architecture for Tamper-
evident and Tamper-resistant Processing,” in Intl.
Conference on Supercomputing (ICS), pp. 160–171,
2003.

[12] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. De-
vadas, “Design and Implementation of the AEGIS
Single-Chip Secure Processor Using Physical Ran-
dom Functions,” in Intl. Conference on Computer
Architecture (ISCA), pp. 25–36, 2005.

[13] G. E. Suh, C. W. O’Donnell, and S. Devadas,
“Aegis: A Single-Chip Secure Processor,” IEEE
Design & Test of Computers, vol. 24, no. 6,
pp. 570–580, 2007.

[14] M. Gomathisankaran and A. Tyagi, “Arc3D : A 3D
Obfuscation Architecture,” in High Performance
Embedded Architectures and Compilers (HiPEAC),
pp. 184–199, Springer, 2005.

[15] M. Gomathisankaran and A. Tyagi, “Architecture
Support for 3D Obfuscation,” IEEE Trans. Com-
puters, vol. 55, no. 5, pp. 497–507, 2006.

[16] Truscted Computing Group, Trusted Plat-
form Module Specification Version 1.2 Re-
vision 103, July 2007. https://www.
trustedcomputinggroup.org/.

[17] T. Austin, E. Larson, and D. Ernst, “SimpleScalar:
An Infrastructure for Computer System Model-
ing,” Computer, vol. 35, pp. 59–67, February 2002.

[18] D. Mihocka and S. Shwartsman, “Virtualization
Without Direct Execution or Jitting: Designing
a Portable Virtual Machine Infrastructure,” in 1st
Workshop on Architectural and Microarchitectural
Support for Binary Translation in ISCA-35, (Bei-
jing), June 2008.

[19] F. Bellard, “QEMU, a Fast and Portable Dynamic
Translator,” in USENIX Annual Technical Confer-
ence, FREENIX Track, pp. 41–46, 2005.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization,”
in SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, (New
York, NY, USA), pp. 164–177, ACM, 2003.

[21] S. Berger, R. Caceres, K. A. Goldman, R. Perez,
R. Sailer, and L. van Doorn, “vTPM: Virtual-
izing the Trusted Platform Module,” Tech. Rep.
RC23879, IBM, February 2006.

[22] V. Scarlata, C. Rozas, M. Wiseman, D. Grawrock,
and C. Vishik, Trusted Computing, ch. TPM Virtu-
alization: Building a General Framework, pp. 43–
56. Springer, 2008.

[23] M. Strasser, H. Stamer, and J. Molina, “Software-
based TPM Emulator.” http://tpm-emulator.
berlios.de.

[24] W. A. Hunt, “Mechanical Mathematical Meth-
ods for Microprocessor Verification,” in Intl. Con-
ference on Computer Aided Verification (CAV),
pp. 523–533, 2004.

[25] S. Ray and W. A. Hunt, “Deductive Verification of
Pipelined Machines Using First-Order Quantifica-
tion,” in Intl. Conference on Computer Aided Ver-
ification (CAV), pp. 31–43, 2004.

[26] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose,
“Automatic test program generation for pipelined
processors,” in Intl. Conference on Computer Aided
Design (ICCAD), pp. 580–583, 1994.

[27] R. C. Ho, C. H. Yang, M. Horowitz, and D. L.
Dill, “Architecture Validation for Processors,” in
Int. Symposium on Computer Architecture (ISCA),
pp. 404–413, 1995.

[28] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray,
“A Survey of Hybrid Techniques for Functional
Verification,” IEEE Design & Test of Computers,
vol. 24, no. 2, pp. 112–122, 2007.

[29] S. S. Moore, “Symbolic Simulation: An ACL2 Ap-
proach,” in Formal Methods in Computer-Aided
Design, pp. 334–350, 1998.

[30] T. Nipkow, L. Paulson, and M. Wenzel, Isabelle’s
Logics: HOL.

13

https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org/
http://tpm-emulator.berlios.de
http://tpm-emulator.berlios.de

