

 1

SecureCore

SecureCore Prototype/Demo Manual:
Definition & Concept of Operations,

SP TSM Interfaces,
TML & SCOS Interface,

and SP Emulation Module Interface

Princeton University & ISI

Version 1.1 – 8/25/2009
Jeffrey Dwoskin, Ganesha Bhaskara, Thuy D. Nguyen and Ruby Lee

DRAFT
For internal discussion only

jdwoskin
Typewritten Text

jdwoskin
Typewritten Text
Jeffrey S. Dwoskin, Ganesha Bhaskara, Thuy D. Nguyen, and Ruby B. Lee. SecureCore Prototype/Demo Manual. Princeton University Department of Electrical Engineering Technical Report CE-L2008-009, August 2008.(Updated 8/25/2009)

jdwoskin
Typewritten Text

jdwoskin
Typewritten Text

 2

(This page intentionally left blank)

 3

Table of Contents Page

I. Introduction ... 4
II. Definition of Key-management Application .. 5

a) Introduction ... 5
b) Assumptions & Definitions... 5
c) Concept of Operations .. 6
d) Structures .. 8
e) Commands & Interfaces ... 11

III. SP Library/TSM Interface API for SP Services ... 12
IV. TML & SCOS Interfaces .. 14
V. SP Emulation Module API ... 16
VI. Demonstration Details .. 30
VII. References ... 35

 4

I. Introduction

This document describes the architecture and implementation details for the SecureCore
prototype/demo [SCDemo]. The prototype will be a simplified software implementation of the real
SecureCore architecture, as shown in Figure 1.

Figure 1: SecureCore Architecture

The SP hardware features will be implemented as a software emulation module running inside the
TML. The SP Emulation Module API in Section V documents its interface, including both
requirements and interfaces for the TML and interfaces provided to user-level applications. These
user-level interfaces are exported by the SP Emulation Module to the SCOS, which in turn exports
them to applications where they are used by TSM code. The TSM implements its own interfaces,
specified in Section III, and provides an abstraction of authority- and third-party-managed keychains
with associated policies and access control. The TSM is called via the SP Services Library (using
internal calling conventions), which provides the services to a key-management application. The
semantics and internal structures of the TSM are described in Section II, and define the operations of
the key-management application.

 5

II. Definition of Key-management Application

a) Introduction

This section describes the purpose and design of the key management application and its interaction
with the SP TSM. The TSM will provide (and protect) multiple keychains on behalf of the authority and
any authorized third parties. Each keychain can contain multiple keys belonging to either the authority
or a single third party. The keys are associated with key usage policies. The keys are then used on the
SecureCore device through the key management application which makes all accesses through the TSM.
The TSM will allow the keys to be used only according to the policies, and will never reveal the keys
themselves to other software.

The authority is able to add/delete keychains from the device by managing a set of encryption/MAC
keys that is unique for each keychain. Those keys can then be used to add/delete keys within each
keychain, either by the authority itself or by a third party that is given the keys. There is no fixed limit to
the number of keychains or the number of keys per keychain.

b) Assumptions & Definitions

Assumptions:

o All keys used by the TSM (for encryption and signing) are symmetric keys.
o The authority and each third party securely exchange, out of band, a unique pair of symmetric keys

which are used for encryption (ENC_KEY) and generating a MAC (MAC_KEY) respectively.
These are used for sending authenticated command messages to the device. (If a single third party
controls multiple keychains, it can have multiple pairs of keys.)

o The authority assigns and communicates to each third party a globally unique identifier we call key
chain identifier (KC_ID) for each keychain.

o The assurance of enforcement of per-user key usage policies by TSM is only as high as the entity
supplying the user identification. Without reliable user identification, other users may be able to
access keys with the permissions assigned to the primary user of each key.

Definitions:

o Owner

- An owner of a keychain. The party, either the authority or a third party data provider, who is
authorized to manage a particular keychain and can add or remove keys from that keychain
and set the policy for those keys.

o Primary User
- A user on the SecureCore device, identified and authenticated by the operating system, who

is listed as the primary user of a particular key of a keychain. The allowed actions of a policy
applied to a key can be different for the Primary User and all Other Users. The TSM enforces
this distinction on behalf of the OS or calling application, but does not itself authenticate the
user. It trusts the user identification (or possibly an authentication token) provided in the
TSM function call.

 6

o Master Keychain
- A special keychain, with ID = 1, used by the TSM to store the keys used to authenticate

messages for updating the other keychains. This master keychain is managed only by the
authority. Its keys will be set with policies that deny all actions by the user on the device, as
these keys are only used internally by the TSM.

o Command/Update Message
- A command message or an update message is a signed message sent by either the authority

or a third party owner of a keychain to add or delete a key on a keychain, along with its
associated policy. The message follows the structure provided below, and is signed with a
MAC using the signing key for the keychain that is stored in the master keychain. Messages
from the authority to update the master keychain are signed with a MAC using a derived key.

o Keychain Message Counter
- A monotonically increasing counter kept for each keychain to prevent replay attacks on

command/update messages. The authority and third parties keep a similar counter for each
keychain they manage and send a new (incremented) count on each command message they
send. The device will only accept a message as fresh if the count in the message is greater
than the one stored with the keychain. It then updates the stored value to the one in the
message.

c) Concept of Operations
.The demonstration of the capabilities of the integrated SP/TML design will consists of a series of
serialized operations. Following are the subjects who are referred to in the usage scenarios:

Subjects

 Authority (AUTH)
 Third party A (3P-A)
 Third party B (3P-B)
 User X of the device (User_X)
 User Y of the device (User_Y)
 SecureCore device with unique DRK (DEVICE)

As a first, the user will not be able to select the sequence of individual operations. The demo application
will output its progress between steps and wait for user input (key “n”) before the next operation is
performed. If time permits, we will later provide a menu to exercise the functions interactively.
Following is the high level sequence of operations, with additional details in Section Error! Reference
source not found.:

1. Initialization
a. SP emulation module in TML

i. Hardware power-on and lock DRK
b. Key-management application which includes the TSM and demo front–end

i. TSM initializes SecureArea and loads Secure Storage
2. Manage Keychains

a. Authority adds a new keychain for 3P-A
b. Authority adds a new keychain for 3P-B
c. Attempt attacks on adding keychains

i. Replay message for adding 3P-A keychain
ii. Corrupt/modify an add message in-transit

 7

iii. 3P-A attempts to add a keychain
3. Manage keys on keychains

a. 3P-A adds keys: 3P-A-Key1-User_X, 3P-A-Key2-User_Y
b. 3P-A deletes existing key: 3P-A-KeyB
c. 3P-B adds keys: 3P-B-Key1, 3P-B-Key2
d. Attempt attacks on keys

i. 3P-A attempts to add key to master keychain: Fake-Key1
ii. 3P-B attempts to delete key from 3P-A’s keychain: 3P-A-Key1

iii. Replay and/or modify message for adding key from 3P-B for 3P-B-Key1
iv. 3P-A modifies a previous message from 3P-B to try to add key 3P-B-Key1 to its

own keychain
4. Access control on usage of keys

a. Login as User_X
b. Use keys from 3P-A to encrypt/decrypt/sign/MAC/re-encrypt data according to policy.
c. Demonstrate attacks on access control

i. Exceed usage limit on a key
ii. Attempt to perform operations not permitted for User_X

iii. Attempt to perform operations not permitted for any user
iv. Attempt to use a key that was deleted

d. Login as User_Y
e. Use keys from 3P-A according to policy that were not available to User_X
f. Demonstrate attacks on access control

i. Attempt to perform operations not permitted for User_Y that were permitted for
User_X

5. Modification of Secure Storage
a. Save modified keychains in Secure Storage and update SRH
b. Demonstrate attacks on Secure Storage

i. Attempt to reload old version of Secure Storage and detect replay attack
6. Demonstrate attacks on memory protection

a. Attempt to read/modify/replay data in SecureAreas from key-management application,
in-between calls to the TSM (after an EndCEM and before the next BeginCEM)

b. Attempt to read/modify/replay data in SecureAreas during an interrupt
c. Attempt to read/modify/replay data in saved CEM registers during an interrupt

7. Demonstrate attacks on SP registers
a. Attempt to reset the DRK after it has been locked
b. Attempt to use CEM-only instructions from outside of TSM code

Resilience against the following attacks will be demonstrated:

1. Loading/unloading secure storage
a. Replay attack of encrypted secure storage structure stored on disk

2. Messages to create/delete key chains
a. Demonstrate attack by corrupted/modified packet
b. Demonstrate replay attack
c. Demonstrate attack where 3P tries to add/delete a keychain

3. Messages to create/delete keys in keychains
a. Demonstrate attack by corrupted/modified packet
b. Demonstrate replay attack

 8

c. Demonstrate attack where 3P-A tries to add/delete/modify key from AUTH key chain
d. Demonstrate attack where 3P-A tries to add/delete/modify key from 3P-B

4. Use of keys in a keychain on behalf of a user
a. Demonstrate attack where users attempts to perform an action not permitted by the policy
b. Demonstrate attack where user exceeds limits (number of uses) on a particular action
c. Demonstrate attack on use by primary user vs. other users

5. SP hardware protection
a. Demonstrate attack on confidentiality and integrity of secure data in memory and

registers during an interrupt and between calls to the TSM.

d) Structures

Keychain structure (see Figure 2)

 DRK + SRH
 Derived Key from DRK

■ [KC_ID]
 COUNTER
 [KEY_ID]

 KEY
 KEY_POLICY

■ POLICY_MATRIX
■ PRIMARY_USER_ID

KC_ID (keychain IDs) are globally unique IDs, assigned by the authority. The authority can assign third
parties one or more KC_IDs. The third parties can manipulate keys and policies within the key chains
they are assigned. KEY_ID (key IDs) are unique within each keychain. Monotonically increasing
counters are associated with each KC_ID and are maintained by the owner of the keychain is used by the
TSM to prevent replay attacks on update messages.

 9

Figure 2: Keychain Structure

Figure 2 shows a sample keychain structure, where the authority owns and manages m keychains
(including the master keychain), and the authority delegates access to other keychains (ID = m+1, m+2,
…) to third parties. Each of the regular keychains (ID > 1) contains a list of keys, each with an
associated policy (see Table 1). The TSM controls access to these keys, enforcing the attached policies.
The TSM never permits the keys of the master keychain to be used by applications. They are only used
to authenticate and decrypt update messages for the remaining keychains.

 10

Policy Matrix

Table 1: Policy Matrix

Action Primary User Other Users “Remaining

Uses” validity

Remaining Uses

Encrypt Allow/Deny Allow/Deny True/False Integer

Decrypt Allow/Deny Allow/Deny True/False Integer

Re-encrypt Allow/Deny Allow/Deny True/False Integer

Generate MAC Allow/Deny Allow/Deny True/False Integer

Verify MAC Allow/Deny Allow/Deny True/False Integer

Gen. Session Key Allow/Deny Allow/Deny True/False Integer

Note: For the current demo, we only allow a policy for “Remaining Uses” and not a Start Date/Time
and Expiration Date/Time. This simplifies the demo by not requiring the TSM to have a trusted time
source. User authentication is provided by the OS through credentials passed-in when using keys.

Message structure – for SPSLib_Process_ExternMsg(). See Table 2.

Confidentiality and integrity protected message from authority arrives and is interpreted by the TSM.
 P_KC_ID

 Keychain ID
 P_MAC_NONCE (KC_ID=1 only)

 For keychain add/delete commands on KC_ID=1, the nonce used to produce derived key for
MAC of the message.

 P_ENC_NONCE (KC_ID=1 only)
 For keychain add/delete commands on KC_ID=1, the nonce used to produce derived key for

encryption of the E_* fields of the message.
 E_COMMAND

 Encrypted.
 Command: “Add Key” or “Delete Key”. (KC_ID≠1 only)
 Command: “Add Keychain” or “Delete Keychain” available only to authority. (KC_ID=1

only)
 Modification of keys or policy is performed by deleting and re-adding a key.

 E_COUNTER
 Encrypted.
 Keychain Message Counter.

 E_KEY_ID (delete only)
 Encrypted.
 Key ID to delete.

 E_KEY_STRUCTURE (add only)
 Encrypted.
 Key structure to add, including one or more key nodes and a policy node (with primary user

ID).
 P_MAC

 MAC over the rest of the structure using a derived key for KC_ID=1 or the stored signing
key otherwise.

 11

e) Commands & Interfaces

The following are the commands that the third party or the authority can use to add and delete keys from
their respective key chains, or for the authority to add or delete keychains.

Authority or third party:

 Add key to key chain
o <”TSM_Key_Add”, KC_ID, KEY_STRUCTURE>

 Delete key from key chain
o <”TSM_Key_Delete”, KC_ID, KEY_ID>

Authority only:
 Add keychain with specified authentication keys

o <”TSM_Keychain_Add”, KC_ID, KEY_STRUCTURE>
 Delete keychain

o <”TSM_Keychain_Delete”, KC_ID>

Relevant TSM Interfaces

SPSLib_Process_ExternMsg (void *memLoc, size_t size)

This interface is a generic interface that can be used to add/delete keys and policies from the
authority and third parties, as well as add/delete keychains from the authority. A signed message
(see message structure above) is sent by the authorized party, and is verified by the TSM before
the operation is completed.

Other interfaces, including “Actions” that make use of keys, are specified in the TSM API. See Table 2.

 12

III. SP Library/TSM Interface API for SP Services

This TSM API is specifically targeted at the key-management application (rather than general purpose
TSM interface for arbitrary applications). The SP Services Library should implement the following
TSM_Interface API calls:

Table 2: SP Library/TSM Interface API

TSM API Description

SPSLib_Process_ExternMsg (tsm_msg_t *message, size_t

size, counter_t counter, msg_sig_t MAC)

Process a remote command from the authority or a third party

to create/delete keys or keychains. The message structure

specifies the command and its parameters as well as any nonces

used to encrypt and sign the message. The counter prevents

replay and the MAC verifies the integrity and source of the

message. The authority uses DRK-derived keys to encrypt &

sign messages to create/delete keychains or to enable/disable

keychains. The authority and third parties use dedicated keys to

create/delete keys on keychains they have authorization for.

T
S

M
 E

xt
er

na
l M

es
sa

ge
 C

om
m

an
ds

TSM_Set_Emergency_Level (level_t

emergency_level, unsigned int

emergency_counter)

Authority sets the emergency level and emergency state of the

device, to either EMERGENCY_NONE (0) for no emergency

or a value in the range from EMERGENCY_LOW (1) to

EMERGENCY_HIGH (n) for an active emergency. The new

counter value is set and must be monotonically increasing from

the previous value. The authority authenticates the message

using nonces and DRK-derived keys.

TSM_Keychain_Create (keychain_t keychain_ID,

key_struct_t keys, level_t emergency_level)

Authority creates a new keychain, specifying the new ID and

the key structure that will later authenticate access to the

keychain. The emergency_level specifies the minimum

emergency level that must be set on the device in order to use

the keys on this keychain. The authority authenticates the

message using nonces and DRK-derived keys.

TSM_Keychain_Delete (keychain_t keychain_ID) Authority deletes an existing keychain entirely, specifying its

ID. The authority authenticates the message using nonces and

DRK-derived keys.

TSM_Keychain_Disable (keychain_t

keychain_ID)

Authority disables the use of an entire keychain, regardless of

any policies attached to the keys. The authority authenticates

the message using nonces and DRK-derived keys.

TSM_Keychain_Enable (keychain_t keychain_ID) Authority enables the use of a keychain that has been

previously disabled. The authority authenticates the message

using nonces and DRK-derived keys.

 13

TSM_Key_Add (keychain_t keychain_ID,

key_struct_t keys)

Add a new key structure onto an existing keychain (includes

key + policy). The message is authenticated using the

keychain-specific encryption and MAC keys.

TSM_Key_Delete (keychain_t keychain_ID, key_t

key_ID)

Delete an existing key from a keychain, specifying its ID. The

message is authenticated using the keychain-specific

encryption and MAC keys.

level_t SPSLib_Get_Emergency_Level (user_t user) Retrieves the current value of the emergency level and state of

the device. May be optionally limited to the TML only or

require user authentication.

SPSLib_KeyOp_Encrypt (user_t user, keychain_t

keychain_ID, key_t key_ID, void *data, size_t len)

Encrypt data with the specified key.

SPSLib_KeyOp_Decrypt (user_t user, keychain_t

keychain_ID, key_t key_ID, void *data, size_t len)

Decrypt data with the specified key.

SPSLib_KeyOp_ReEncrypt (user_t user, keychain_t

keychain_ID, key_t dec_key_ID, key_t enc_key_ID,

void *data, size_t len)

Decrypt data with one key and encrypt with another key from

the same keychain in one atomic operation. Requires

permissions for “re-encrypt” on the decryption key and

“encrypt” on the encryption key.

SPSLib_KeyOp_GenerateMAC (user_t user, keychain_t

keychain_ID, key_t key_ID, void *mac, void *data,

size_t len)

Generate a MAC over the data with the specified key.

int SPSLib_KeyOp_VerifyMAC (user_t user, keychain_t

keychain_ID, key_t key_ID, void *mac, void *data,

size_t len)

Verify an existing MAC over the data with the specified key.

Returns a result for either a “MAC Match” or a “MAC

Mismatch”

SPSLib_KeyOp_GenerateSessionKey(user_t user,

keychain_t keychain_ID, key_t key_ID, void *sessionkey,

void *nonce, size_t len)

Generate a new session key using the specified key and

provided nonce data.

SPSLib_Load_SecureStorage (void *addr, size_t size) Tells the TSM where the encrypted secure storage structure is

located in memory.

size_t SPSLib_getSize_SecureStorage (void) Returns the amount of memory necessary to save a copy of the

current secure storage structure. Used to pre-allocate memory

before calling SPSLib_Store_SecureStorage().

SPSLib_Store_SecureStorage (void *addr, size_t size) Requests that the TSM write an updated copy of the secure

storage structure to a memory location to be saved to disk. The

TSM will also update the SRH register.

Note: For the demo, we only support symmetric keys and a limited set of key operations and policies.

 14

IV. TML & SCOS Interfaces

To be defined by NPS and ISI.

The following SCOS interfaces are defined in [SCOSspec]:

 scos_flush_segment
unsigned int scos_flush_segment(const selector_type selector);

 scos_read_next
unsigned int scos_read_next(

const unsigned int major, const unsigned int minor,
const unsigned int num_requested,
void * const buffer, unsigned int * num_read);

 scos_read_random
unsigned int scos_read_random(

const unsigned int major, const unsigned int minor,
const unsigned int offset, const unsigned int num_requested,
void * const buffer, unsigned int * num_read);

 scos_write_next
unsigned int scos_write_next(

const unsigned int major, const unsigned int minor,
const unsigned int num_requested,
const void * const buffer1, unsigned int * num_written);

 scos_write_random
unsigned int scos_write_random(

const unsigned int major, const unsigned int minor,
const unsigned int offset, const unsigned int num_requested,
const void * const buffer2, unsigned int * num_written);

 scos_shutdown
void scos_shutdown(const char * const3 message);

 scos_powerdown
void scos_powerdown(void);

 scos_login
unsigned int scos_login(const char * const username, const char * const password);

 scos_who
void scos_who(char * const username);

 scos_logout
void int scos_logout(void);

 scos_set_password
unsigned int scos_set_password(const char * const password);

 15

The following TML interfaces are defined in [TMLspec] (see also [TMLguide]):

 kio_printf
void kio_printf(const char * const buffer);

 kio_printf_str
void kio_printf_str(const char * const format, const char * const buffer);

 kio_printf_int
void kio_printf_int(const char * const format, const int value);

 kio_printf_char
void kio_printf_char(const char * const format, const char value);

 register state
/* This structure defines the register state passed to the CEMInterrupt calls */
typedef struct {

/* The ‘plx’ fields below refer to the register state at the time the
interrupt occurred. If the interrupt occurred inside PL0 the
‘ssplx’ and ‘espplx’ fields will contain 0 */
unsigned int ssplx; /* the SS register at the time of the interrupt */
unsigned int espplx; /* the ESP register at the time of the interrupt */
unsigned int eflags; /* the flags register */
unsigned int csplx; /* the CS register at the time of the interrupt */
unsigned int eipplx; /* the IP register at the time of the interrupt */
unsigned int error_code; /* the error code that caused the interrupt,
only supported for interrupts
0x08, 0x0A, - 0x0E, and 0x10,
all other interrupts have 0 in this field */
unsigned int int_num; /* the interrupt number */
unsigned int eax; /* the EAX register */
unsigned int ecx; /* the ECX register */
unsigned int edx; /* the EDX register */
unsigned int ebx; /* the EBX register */
unsigned int esp; /* the ESP register */
unsigned int ebp; /* the EBP register */
unsigned int esi; /* the ESI register */
unsigned int edi; /* the EDI register */
unsigned int sspl0; /* the SS register in the interrupt handler */
unsigned int cspl0; /* the CS register in the interrupt handler */
unsigned int ds; /* the DS register */
unsigned int es; /* the ES register */
unsigned int fs; /* the FS register */
unsigned int gs;

}registers_struct;

 16

V. SP Emulation Module API

The SecureCore demo will provide a software emulation of Authority-mode SP hardware.

SP Emulation Function summary:

Table 3: SP Emulation Module API

 Instr.

Class

SP

Instruction

SP Emulation API Exported Description

A
ut

ho
ri

ty
-m

od
e

C
E

M

Initialize drk.set.sel SPHW_DeviceRootKey_Set User Code Set the DRK register.

drk.lock SPHW_DeviceRootKey_Lock User Code Set the DRK_Lock register, preventing

DeviceRootKey_Set() until next

PowerOn().

Master

Secrets /

CEM

Register

Access

drk.derive SPHW_DeviceRootKey_Derive User Code Generate a derived key using the DRK

into the CEM Buffer.

srh.get SPHW_StorageRootHash_Get User Code Copy the SRH into the CEM Buffer.

srh.set SPHW_StorageRootHash_Set User Code Copy the CEM Buffer into the SRH.

gr.set.sel SPHW_GR_Set User Code Set a general register from one word of

the CEM Buffer.

gr.get.sel SPHW_GR_Get User Code Set two words of the CEM Buffer from

general registers.

CEM begin_cem.a SPHW_BeginCEM_auth User Code Enter active Authority CEM. CIC

checking is not emulated.

end_cem SPHW_EndCEM_auth User Code Exit the currently active Authority

CEM task.

Secure

Memory

secure_load (see below)

User Code For emulation, explicit secure access to

memory is not made on each load and

store instruction. Instead secure

memory areas are defined by address

range and are protected when not in

active CEM.

secure_store (see below)

User Code

N/A SPHW_SecureArea_Add User Code Setup a new secure memory region.

Secure region will be protected on

interrupts and across CEM invocations.

N/A SPHW_SecureArea_Remove User Code Remove an existing secure memory

region.

 17

N/A SPHW_SecureArea_Store User Code Immediately protect an active secure

memory region. Future accesses in

CEM will be to ciphertext.

N/A SPHW_SecureArea_Load User Code Immediately restore an active protected

region. Future accesses in CEM will be

to plaintext.

H
ar

dw
ar

e
O

pe
ra

tio
ns

Power N/A SPHW_PowerOn TML

Only

Initialize SP persistent state and

emulation data structures.

N/A SPHW_PowerOff TML

Only

Save SP persistent state.

Interrupt

Handling

N/A SPHW_CEMInterrupt_Suspend TML

Only

Emulate CEM operations for an

interrupt.

N/A SPHW_CEMInterrupt_Resume TML

Only

Emulate CEM operations for resuming

from interrupt.

Faults N/A SPHW_CheckFault TML

Only**

Check the result of an emulated SP

instruction to determine if a hardware

fault was generated.

 18

 SP Emulation Function Header:

sp_emu.h:

/* general parameters */
#define INIT_SIZE 4096 // size of data blob used to save SP hardware state

/* define register word size */
#define WORD_SIZE 4 // word size of registers in bytes
typedef unsigned int gpreg_t;

/* define fault types – private – do not check directly */
typedef int SPFault;

/* secure memory areas */
typedef struct {
 void *addr;
 size_t size;
 unsigned int state; /* 0 == plaintext, 1 == ciphertext */
 gpreg_t hash[4];
 gpreg_t iv[2]

} SPHW_SecureArea_t;

#define SPArea_DESTROY 1
#define SPArea_RELEASE 2

 19

SPFault SPHW_DeviceRootKey_Set (unsigned int sel, const gpreg_t rs1, const gpreg_t rs2);
SPFault SPHW_DeviceRootKey_Lock(void);
SPFault SPHW_DeviceRootKey_Derive(void);
SPFault SPHW_StorageRootHash_Get(void);
SPFault SPHW_StorageRootHash_Set(void);
SPFault SPHW_GR_Set (unsigned int sel, gpreg_t *rd);
SPFault SPHW_GR_Get (unsigned int sel, const gpreg_t rs1, const gpreg_t rs2);
SPFault SPHW_BeginCEM_auth (void);
SPFault SPHW_EndCEM_auth (void);
SPFault SPHW_SecureArea_Add (void *addr, size_t size);
SPFault SPHW_SecureArea_Remove (const unsigned int opts, void *addr);
SPFault SPHW_SecureArea_Store (void *addr);
SPFault SPHW_SecureArea_Load (void *addr);

int SPHW_PowerOn (void *initdata);
int SPHW_PowerOff (void *initdata);
SPFault SPHW_CEMInterrupt_Suspend (void *regs, size_t regslen, void *returnip, const unsigned int

compartmentid, const unsigned int processid);
SPFault SPHW_CEMInterrupt_Resume (void *regs, size_t regslen, void *returnip, const unsigned int

compartmentid, const unsigned int processid);
int SPHW_CheckFault (SPFault fault);

 20

SP Emulation Module requirements of the TML:
(updated with comments from Thuy, Paul, and Ganesha – To be updated with further discussion)

 Retrieve SP persistent data for PowerOn

o On bootup, the TML will call SPHW_PowerOn(), followed by
SPHW_DeviceRootKey_Lock(), as specified in Section VI.

o For the initial implementation, the persistent data will be compiled-in statically, until the
ability to read this data from a file is available.

 Store SP persistent data for PowerOff
o Prefer data to be persistent, but could assign static data and not demonstrate policy/keychain

changes across reboots. For the initial implementation, this persistent data will not be saved
at PowerOff, until the ability to write files is available.

 Call CEMInterrupt_Suspend/Resume at the right times
o Any time the TML gets an interrupt and will execute Supervisor/User code.

 Initially, only test with one specific interrupt type for debugging/testing, then later
enable for all interrupts.

o Secure areas
 Memory addressing. The SP emulation module will be able to read and write to user

application memory.
o Registers

 Location and layout of registers is provided by TML. A pointer to the registers will be
passed to these functions for modification by the emulation module.

 Get an interrupt frame on stack. The TML saves them on interrupt entry point.
 Check SPFaults after each SP instruction is called

o Pass to SCOS which handles fault in some way. Can crash the app or restart the app.
o For the demonstration, SPFault return values will generally be exported to the user

application, as is the CheckFault function. The application will check the result and handle
the fault, allowing the demo application to test and respond to attacks. Only the TML-only
functions have their SPFault return values checked and handled by the TML.

 Allocate secure TML memory for the SP Emulation Module to use
o Declare statically in the Emulation module code with a constant limit of the number of areas

at compile time.
 Debugging output

o For the purposes of debugging, messages may be printed to an appropriate I/O device by the
SP emulation module and by the TSM and demo application.

o There should be some mechanism to capture the normal and debugging output of the
program to a file, to allow for documentation and archiving of the SecureCore demonstration,
as well as to assist further development and debugging efforts.

o For the initial implementation, capturing of output to a file will not be provided, but instead a
screen-capture can be used for the demo running inside a virtual machine.

 21

SP Emulation Function Details:

SP Device Initialization: Exported

NAME
 DeviceRootKey_Set

DeviceRootKey_Lock

SYNOPSIS

SPFault SPHW_DeviceRootKey_Set (unsigned int sel, const gpreg_t rs1, const gpreg_t rs2);
SPFault SPHW_DeviceRootKey_Lock(void);

DESCRIPTION

SPHW_DeviceRootKey_Set() is used for device initialization to configure a new DRK in a
device. SPHW_DeviceRootKey_Lock() is used on bootup to prevent modification of the DRK
on a device which has already been initialized.

SPHW_DeviceRootKey_Set() sets two words of the DRK register, by concatenating rs1|rs2. The
sel parameter selects which portion of the DRK register to set: sel == 0, 2 for 32-bit word-size,
selecting either the low 64-bits or high 64-bits respectively; sel == 0 for a 64-bit word-size,
always setting the entire 128-bit register.

RETURN VALUE
 SPFault (see SPHW_CheckFault() below)

 22

CEM Operations: Exported

NAME

DeviceRootKey_Derive

SYNOPSIS
SPFault SPHW_DeviceRootKey_Derive (void);

DESCRIPTION
 SPHW_DeviceRootKey_Derive generates a new derived key within the SP Emulation Module,
using the DRK combined with the 128-bit nonce taken from the low-order bits of the CEM_Buffer
register. The same derived key can be regenerated at a later time by specifying the same nonce, as long
as the DRK remains unchanged.

RETURN VALUE
 SPFault (see SPHW_CheckFault() below)

 23

CEM Operations: Exported

NAME
 StorageRootHash_Get

StorageRootHash_Set

SYNOPSIS

SPFault SPHW_StorageRootHash_Get (void);
SPFault SPHW_StorageRootHash_Set (void);

DESCRIPTION
 SPHW_StorageRootHash_Get() and SPHW_StorageRootHash_Set() copy the entire SRH
register to and from the CEM Buffer register, respectively. For SPHW_StorageRootHash_Set(), the data
is copied atomically and the entire operation will either succeed or the SRH will remain unchanged.

RETURN VALUE
 SPFault (see SPHW_CheckFault() below)

 24

 CEM Operations: Exported

NAME
 GR_Get

GR_Set

SYNOPSIS

SPFault SPHW_GR_Get (unsigned int sel, const gpreg_t rs1, const gpreg_t rs2);
SPFault SPHW_GR_Set (unsigned int sel, gpreg_t *rd);

DESCRIPTION

SPHW_GR_Get() and SPHW_GR_Set() are used in CEM to access the CEM Buffer register.

SPHW_GR_Get() retrieves two words from general registers (rs1, rs2), concatenates them, and
writes to a region of the CEM Buffer register. The sel parameter selects which portion (a pair of
words) of the register to set: sel == 0, 2, 4, or 6 for 32-bit word-size, where 0 is the lowest 64-
bits and 6 is the high 64-bits; sel == 0 or 2 for a 64-bit word-size.

SPHW_GR_Set() retrieves one word from the CEM Buffer register and sets a general register
(rd). The sel parameter selects which word to get: sel == 0..7 for 32-bit word size; sel=0..3 for
64-bit word size.

Note: The CEM_Buffer is an intermediate register used for setting the DRK, reading and writing
the SRH in one atomic operation, and creating and accessing derived keys.

RETURN VALUE
 SPFault (see SPHW_CheckFault() below)

 25

CEM Operations: Exported

NAME
 BeginCEM_auth

EndCEM_auth

SYNOPSIS

SPFault SPHW_BeginCEM_auth (void);
SPFault SPHW_EndCEM_auth (void);

DESCRIPTION

SPHW_BeginCEM_auth() indicates the start of TSM code and switches the emulated processor
into Active CEM mode (sets CEM_Mode = 01). Currently for the demo, no code integrity
checking is done, but future prototypes may permit BeginCEM to take parameters indicating the
location and size of the TSM code and hashes.

SPHW_EndCEM_auth() indicates the end of TSM code and switches the emulated processor out
of CEM mode (sets CEM_Mode = 00).

RETURN VALUE
 SPFault (see SPHW_CheckFault() below)

 26

CEM Operations: Exported

NAME
 SecureArea_Add

SecureArea_Remove
SecureArea_Store
SecureArea_Load

SYNOPSIS

SPFault SPHW_SecureArea_Add (void *addr, size_t size);
SPFault SPHW_SecureArea_Remove (const unsigned int opts, void *addr);

SPFault SPHW_SecureArea_Store (void *addr);
SPFault SPHW_SecureArea_Load (void *addr);

DESCRIPTION

SPHW_SecureArea_Add() and SPHW_SecureArea_Remove() manage secure storage memory
regions for CEM execution. A secure memory region is defined by its starting address and size.
All secure memory regions will be encrypted and hashed on an interrupt by the SP Emulation
Module, before passing control to the OS or other applications. On resumption of CEM, the areas
will be decrypted and integrity checked. Since secure areas are located in volatile memory, their
contents is not persistent across reboots of the machine. Metadata is maintained inside the
emulation module.

New areas are created using SPHW_SecureArea_Add(). Areas that are no longer used during the
current TSM session can be removed using SPHW_SecureArea_Remove(). They can then either
be destroyed (contents zeroed) or released in unencrypted form, as specified by the options.

opts for SPHW_SecureArea_Remove():

SPArea_DESTROY: zero the contents of the memory area
SPArea_RELEASE: keep the memory area decrypted and release contents

SPHW_SecureArea_Store() forces a secure memory region to be encrypted immediately. Future
accesses, even in CEM, will access the ciphertext.

SPHW_SecureArea_Load() decrypts a previously stored region to resume plaintext access in
CEM.

RETURN VALUE
 SPFault (see SPHW_CheckFault() below)

 27

Emulation Initialization: TML only

NAME
 PowerOn

PowerOff

SYNOPSIS
int SPHW_PowerOn (void *initdata);
int SPHW_PowerOff (void *initdata);

DESCRIPTION

Emulation-specific initialization and shutdown routines. SPHW_PowerOn() initializes internal
data structures and simulates hardware reset of device state. It reloads all non-volatile device
state from initdata. SPHW_PowerOff() cleans up any internal data structures and saves the non-
volatile state to initdata.

initdata should be NULL at SPHW_PowerOn() for a new/clean device with no state (i.e. no
saved DRK or SRH – clean from the factory). Otherwise, initdata should be saved on
SPHW_PowerOff() and provided unchanged on the next SPHW_PowerOn(). All non-volatile
data will be saved between power cycles in this data blob of size INIT_SIZE.

RETURN VALUE

returns -1 on error or 0 for success.

 28

SP Hardware Emulation: TML Only

NAME

CEMInterrupt_Suspend
CEMInterrupt_Resume

SYNOPSIS
SPFault SPHW_CEMInterrupt_Suspend (void *regs, size_t regslen, void *returnip, const

unsigned int compartmentid, const unsigned int processid);
SPFault SPHW_CEMInterrupt_Resume (void *regs, size_t regslen, void *returnip, const

unsigned int compartmentid, const unsigned int processid);

DESCRIPTION

SPHW_CEMInterrupt_Suspend() is called by the TML after any interrupt/exception/fault occurs,
before turning control over to OS. It assumes registers have already been moved to a location in
memory specified by regs with length regslen bytes. The return instruction pointer for the
interrupt is specified in returnip, as well as the current compartment ID and process ID if known
or NULL otherwise.

SPHW_CEMInterrupt_Suspend() causes CEM mode to be suspended if active, entering the
Interrupted CEM state, and triggers the encryption of all general purpose registers and secure
memory regions. If CEM mode was not active, it has no effect.

SPHW_CEMInterrupt_Resume() is called by the TML immediately before returning from any
interrupt/exception/fault. If it detects a return to the previously suspended CEM thread, it will
decrypt the register contents and secure memory regions, performing an integrity check. Then
Active CEM mode is resumed. If not returning to the suspended CEM thread, it has no effect.

RETURN VALUE
 SPFault (see SPHW_CheckFault() below)*

* Note: Since these functions are not exported to user code, even for the demonstration, the TML must
check the return value with SPHW_CheckFault() and in turn crash the application or halt if a fault
occurs.

 29

SPFault Functions: TML Only**

NAME
 CheckFault

SYNOPSIS

int SPHW_CheckFault (SPFault fault);

DESCRIPTION

SPHW_CheckFault() checks the result of an SPFault variable returned by an SP Emulation
function to determine if the emulated instruction generated a hardware fault.

RETURN VALUE
 Returns 0 on success (no fault occurred) or a positive value indicating the fault type (refer to SP
Architecture Manual [SPArch] – SP Exceptions/Faults Section).

** Note: By design, SPHW_CheckFault() need not be exported to user code. Instead the TML should
check the result of each emulated SP instruction and trigger an actual fault/exception to the OS & user
application, or crash the user application, as needed. However, due to practical considerations for the
demonstration, this function and the return value of each instruction emulation function will be exported
to user code, and the return value will be checked by the calling application. The application will in turn
handle the fault or halt when an error occurs. This allows the demo application to attempt attacks,
detect the resulting fault, and continue with the rest of the demo.

 30

VI. Demonstration Details

This section provides additional technical details of the demonstration procedure, including a step-by-
step initialization procedure and more information about the implementation of each step of the
demonstration. It also provides a list of data elements used in the demonstration. For the sequence of
key-management operations in the demonstration, refer to the overview in Section II.

Important data elements of key management application:

 Keychains & Keys (Initial Secure Storage plus those added during operation)

o KC01 (Authority Master Keychain)
 K02 (3P-A access keys)
 K03 (3P-A access keys)
 K04 (3P-B access keys)

o KC02 (3P-A existing)
 K01 “3P-A-KeyA” (User_*, Enc)
 K02 “3P-A-KeyB” (User_*, Dec)
 K03 “3P-A-KeyC” (User_*, Enc/Re-encrypt)

o KC03 (3P-A new)
 K01 “3P-A-Key1-User_X” (User_X, Enc/Dec)
 K02 “3P-A-Key2-User_Y” (User_Y, Enc/Dec)

o KC04 (3P-B new)
 K01 “3P-B-Key1-User_*” (User_*, Enc)
 K02 “3P-B-Key2-User_*” (User_*, Dec)

 Auth/3P* key-management commands (Source/signature, Keychain, Keys, Command)
o (Auth, KC03, 3P-A access keys, ‘Keychain_Create’)

 Also a corrupted version
o (Auth, KC04, 3P-B access keys, ‘Keychain_Create’)
o (3P-A, KC05, 3P-A access keys, ‘Keychain_Create’)
o (3P-A, KC03, 3P-A-Key1-User_X, ‘Key_Add’)
o (3P-A, KC03, 3P-A-Key2-User_Y, ‘Key_Add’)
o (3P-A, KC02, K02, ‘Key_Delete’)
o (3P-B, KC04, 3P-B-Key1-User_*, ‘Key_Add’)

 Also a corrupted version
o (3P-B, KC04, 3P-B-Key2-User_*, ‘Key_Add’)
o (3P-A, KC01, Fake-Key1, ‘Key_Add’)
o (3P-B, KC03, K01 “3P-A-Key1”, ‘Key_Delete’)
o (3P-A, KC03, encrypted copy of 3P-B-Key1. ‘Key_Add’)

 Secure storage
o SecureStorage-current
o SecureStorage-original

 Secure areas
o SecureArea

 31

Additional implementation and technical details for the demonstration of the TSM and SP emulation
functions:

 Step 1: Initialization

o Boot and initialization sequence
 As a part of the boot-up initialization routine, the TML must initialize SP HW

emulation using the SPHW_PowerOn() function. After the successful execution of
the SPHW_PowerOn() instruction, the SP emulated HW must be in a state from
which CEM state can be entered.

 After boot-up/PowerOn, the TML should call SPHW_DeviceRootKey_Lock() to
prevent the SCOS or user applications from resetting the DRK.

 This call can be made from either user-mode or kernel-mode code, and for the
demo may instead be performed by the SCOS during its initialization, or from
the key-management application on startup. However in a full implementation
this should be done by trusted software or a secure BIOS during bootup,
before executing any untrusted code.

o Initialization of key-management application and TSM (including)
 The demo application, keyManagementApp.bin, is invoked manually. The application

contains a TSM which is used for all access to and use of protected keys. Each time
the TSM is invoked by the application through one of the SPSLib_* interfaces,
SPHW_BeginCEM_auth() is called to enter CEM mode, followed by
SPHW_EndCEM_auth() to exit CEM mode after the TSM operation is complete.

 As a part of the initialization of the TSM, SPHW_SecureArea_Add() is called to
register the memory regions that the TSM will use for storing sensitive intermediate
data.

 The TSM will use statically allocated memory and will not call any
TML/SCOS interfaces to allocate memory. This function call will register the
memory location and size with the SP emulation module so that encryption
and decryption of the SecureArea can be performed on interrupts.

o The memory location and size is with respect to user space, and the
kernel code (SP emulation module) must be able to touch and operate
on this space when an interrupt occurs or CEM mode is changed.

 Generally the following operations on SecureAreas are performed when CEM is
invoked, interrupted, resumed, or ended

 SPHW_BeginCEM_auth(): If any SecureAreas are registered with the SP
emulation module, then this instruction will atomically check the integrity of
the SecureAreas and decrypt them, while entering CEM mode.

 SPHW_CEMInterrupt_Pause(): In addition to handling the other CEM
interrupt related data, this instruction should encrypt the SecureAreas and
store their hashes in the data structure in the emulation module.

 SPHW_CEMInterrupt_Resume(): In addition to handling the other CEM
interrupt related data, this instruction should atomically check the integrity of
the SecureAreas and decrypt them.

 SPHW_EndCEM_auth(): This instruction should encrypt any SecureAreas
and store their hashes in the data structure in the emulation module before
exiting CEM mode.

 32

o Load Secure Storage (SecureStorage-current), containing keys and their policies, into the
TSM by the application using the function SPSLib_Load_SecureStorage(). The application
pre-loads the Secure Storage into memory and then specifies the location and size to the
TSM.
 If a filesystem is supported, the SecureStorage file on disk is used as a parameter

while invoking the keyManagementApp.bin executable. If file systems are not
supported, the SecureStorage is compiled in statically with the key-management
application.

 The TSM moves the entire Secure Storage into a SecureArea after it is loaded. It then
generates a derived key using SPHW_DeviceRootKey_Derive() and uses it to decrypt
the structure. It also checks the integrity against the SRH, which is fetched using
SPHW_StorageRootHash_Get(). The storage structure remains protected in the
SecureArea across future calls to the TSM functions, so this initial processing only
needs to be done once during initialization.

 Accessing the generated derived keys and setting/getting the SRH also
requires the SPHW_GR_Set() and SPHW_GR_Get() functions to access the
intermediate hardware buffer register.

 The TSM will continue to read and modify the copy of Secure Storage stored in the
SecureArea in memory, rather than the copy on disk, as TSM operations are
performed. For the demo, the copy on disk will only be updated when the key-
management application requests that it be stored to disk, at which time the SRH
register will also be updated.

 Step 2: Manage keychains
o The authority is the only entity that can create/delete keychains. This is enforced by the

TSM. The authority sends cryptographically verifiable messages to the device to manage
keychains. For the demo, these messages are pre-computed, signed, and stored in the key-
management application.

o The key-management applications uses the SPSLib_Process_ExternMsg() interface to push
the received/saved messages into the TSM. If a message is found to be authentic, the
command embedded in the message is executed, as defined in Table 2.

o Selection of keys to decrypt data and verify hashes in the message is done using internal
interfaces of the TSM. Messages from the authority are verified using derived keys from the
DRK.

o Management of keychains includes commands to create/delete keychains for the authority
and third parties, resulting in modifications to the Master Keychain.

 Step 3: Manage keys in a keychain
o The authority or third party can send messages to add or delete keys their respective

keychains. These messages are encrypted and signed using the keys on the Master Keychain
corresponding to each regular keychain, which are shared with the third party owner of that
keychain.
 These messages are also pre-computed for the demo, and are passed into the TSM

using the SPSLib_Process_ExternMsg() interface.
o Since all messages are cryptographically verified, any attempt to modify keys in keychains

not owned by the sender of the message is detected by the TSM. For the demo, we use
corrupted messages to demonstrate resilience against attacks in which 3P-A or 3P-B attempt
to modify the keys in the key chains that belongs to each other or the authority.

o Since the key material in the messages is encrypted using keys specific to each keychain,
encrypted key material intended for one keychain cannot be copied into a message for
another keychain and be correctly decrypted and accepted by the TSM.

 33

 Step 4: Use of keys in a keychain on behalf of a user
o The key-management application uses the scos_login() interface to authenticate users of the

device. It then passes credentials via an authorization token to the TSM when making calls to
use keys.
 These credentials are supplied by the SCOS. For the demo, they will consist of the

output from scos_who(). In a full-scale implementation, they would also include a
signature from the SCOS using a key it shares with the TSM. Alternatively, the TSM
could directly and securely query the SCOS to determine the currently authenticated
user.

o The key-management application requests the use of keys in a keychain on behalf of a user.
 The key-management application calls the SPSLib_KeyOp_* interfaces to make use

of keys. It specifies a particular keychain and key. The stored policy determines if
access is permitted.

 If the policy for the requested action is allowed and specifies a valid “Remaining
Uses” policy, then the action will be denied if Remaining Uses <= 0. If valid and
allowed, the Remaining Uses is decremented upon completion of the action.

 The caller specifies the user (via authorization token) for enforcement of the OS’s
access control policies by the TSM. If OS cannot be trusted or the credentials cannot
be verified, all accesses are made as if by “Other users” and the remaining policies
are enforced by the TSM.

 Step 5: Store updated Secure Storage to disk
o Save modified keychains in Secure Storage and update SRH

 Determine the space required to save the modified Secure Storage using
SPSLib_getSize_SecureStorage(). Verify that this does not exceed the amount of
storage allocated or available on disk and in memory for storing the encrypted
structure.

 Request that the TSM write the updated encrypted contents of Secure Storage to
unprotected application memory, using the function SPSLib_Store_SecureStorage().

 The TSM will generate new derived keys to encrypt and MAC the contents of
the Secure Storage structure, and may also reuse some existing derived keys
for this purpose for parts of the structure that did not change.

 During this process, the TSM will also update the SRH register using
SPHW_StorageRootHash_Set().

 The encrypted blob is copied out of SecureArea to a memory location
specified in the arguments. The SecureArea is then deleted, and will no longer
be protected by the SP emulation module.

 The application flushes the new Secure Storage blob to disk (SecureStorage-current),
if flushing is implemented in the TML and SCOS.

o Reload the original version of Secure Storage (SecureStorage-original) and demonstrate a
Secure Storage replay attack
 The application maintains two copies of Secure Storage (-current and -original).

 Initially, before the demo, the two copies are identical. SecureStorage-current
is then used for the demo, modified, and saved back to disk/memory.
SecureStorage-original is then used to demonstrate this attack.

 After the above demo, load SecureStorage-original using
SPSLib_Load_SecureStorage().

 The hash check should fail when comparing the old Secure Storage structure
to the updated SRH, resulting in the TSM reporting an error.

 34

 Step 6: Secure memory attacks
o Real SP hardware allows the TSM to tag memory as ‘secure’ when accessing them in CEM

mode, on a per-cache-line basis. It then automatically encrypts and MACs these tagged
cache-lines as they are later evicted to main memory. This feature is emulated in the demo in
software using SecureAreas. A SecureArea is a region of memory dedicated to the TSM,
available in plaintext during CEM mode and then encrypted and hashed by the emulation
module when CEM ends or is interrupted. The hash is stored internally in the emulation
module, safe from attack by non-kernel software, and is checked when CEM is resumed. The
SecureArea is then decrypted if the hash is successfully verified.

o The key-management application attempts attacks on encrypted SecureArea data in-between
calls to the TSM
 The application attempts to read data stored in the SecureArea to show that only

ciphertext is available. The attack can be re-run with the SecureArea protection
manually removed by the TSM to show that sensitive data would otherwise be
revealed.

 The application modifies ciphertext, which is detected by the emulation module on
the next TSM operation.

 The application saves a region of valid SecureArea ciphertext, calls a TSM operation
which changes that region, replays the old ciphertext, and calls another TSM
operation, which causes the emulation module to detect the change.

o The above attacks are also demonstrated during an interrupt of CEM
 A software interrupt is triggered by the TSM with a special interrupt type. This in turn

triggers SPHW_CEMInterrupt_Pause(), which upon detecting the interrupt type,
performs the attacks, which are detected on return to CEM in the
SPHW_CEMInterrupt_Resume() function.

 In addition, attacks are performed during interrupt on the saved and protected general
registers from CEM.

 Step 7: Attacks on SP hardware registers
o The key-management application, outside of the TSM, will attempt to set the DRK, and to

access CEM-only instructions (emulated functions). These will each trigger an appropriate
SPFault.

 35

VII. References

[SCDemo] “SecureCore Proof of Concept Demonstration”. SecureCore working note. Sept. 9, 2007.

[SPArch] Jeffrey Dwoskin, Ruby Lee. “SP Processor Architecture Reference Manual”. Princeton

University Department of Electrical Engineering Technical Report CE-L2007-008. Draft
version 0.7, November 21, 2007.

[SCOSspec] Paul C. Clark, Cynthia E. Irvine, Thuy D. Nguyen, Timothy E. Levin, Timothy M. Vidas,

David Shifflett. “SecureCore Software Architecture: SecureCore Operating System
(SCOS) Functional Specification”. SecureCore Technical Report NPS-CS-08-006,
November 30, 2007.

[TMLspec] David J. Shifflett, Paul C. Clark, Cynthia E. Irvine, Thuy D. Nguyen, Timothy M. Vidas,

Timothy E. Levin. “SecureCore Software Architecture: Trusted Management Layer
(TML) Kernel Extension Module Interface Specification”. SecureCore Technical Report
NPS-CS-07-021, December 20, 2007.

[TMLguide] David J. Shifflett, Paul C. Clark, Cynthia E. Irvine, Thuy D. Nguyen, Timothy M. Vidas,

Timothy E. Levin. “SecureCore Software Architecture: Trusted Management Layer
(TML) Kernel Extension Module Integration Guide”. SecureCore Technical Report NPS-
CS-07-022, December 20, 2007.

