Jeffrey S. Dwoskin, Mahadevan Gomathisankaran, David Champagne, and Ruby B. Lee.

SP Reference Manual Addendum -- Secure Stacks for TSMs and Emulation of SP Interrupt Protection.
Princeton University Department of Electrical Engineering Technical Report CE-1.2009-006,

August 2009.

SP Reference Manual Addendum -

Secure Stacks for TSMs and Emulation of SP Interrupt Protection

Jeffrey Dwoskin, Mahadevan Gomathisankaran, David Champagne, Ruby Lee
Princeton University

Version 0.1, 8/7/2009

Princeton University Department of Electrical Engineering Technical Report CE-L2009-006

1. Introduction
Recent work on the SP architecture has involved implementations of authority-mode SP [3] on the
VMware virtualization platform [1,2] and the design and implementation of a testing framework for
security architectures [1], with an emphasis on testing attacks on TSMs that run on the emulated SP
platform. This technical report addresses two architectural issues that have arisen during the
implementation of SP on the virtualization platform.

Secure Stacks

First, we have known that a TSM must use SP’s secure memory to protect its stack. The new Secure Area
mechanism for secure memory simplifies the process of designing secure TSM code, at least for the
emulation implementation of SP, by eliminating the need to modify the compiler and other build tools
to support the use of secure memory. Instead of using special instructions for each access to secure
memory, a secure area region of memory is defined which is always accessed as secure memory when in
CEM. Secure Areas also simplify the architectural changes needed on a CISC architecture, such as the
x86 platform used in VMware, by eliminating the need to duplicate all instructions that access memory.

Using secure areas, we have implemented macros that can be inserted into a TSM immediately after
Begin_CEM and immediately before End_CEM which change the stack pointer to use a secure area as
the stack for a TSM. However, x86 introduces another complication in that on an interrupt, the
hardware directly uses the stack pointer to push an exception frame onto the application’s stack. The OS
then reads this frame to handle the interrupt and later resume the application. This works fine for
normal code, however for a TSM with its stack as part of a secure area, this overwrites part of the secure
area region. Since the region is encrypted and hash checked as the first step in the interrupt (before the
exception frame is written), any modifications, even to parts of the stack that are unused, will cause
verification to fail when the TSM is resumed.

To solve this problem, we have added new instructions, defined below, which make the SP hardware
aware of the secure stack. When an interrupt occurs during CEM, it can then swap back the unprotected
stack pointer, which the hardware can safely use to write the exception frame. The secure stack is then
swapped back in when the TSM resumes.

Emulations of SP Interrupt Protection in VMware
For the VMware implementation of the SP architecture, we implement the new SP instructions and new
SP hardware behavior inside VMware’s VMM. Since the VMM uses a combination of direct execution of


jdwoskin
Typewritten Text
Jeffrey S. Dwoskin, Mahadevan Gomathisankaran, David Champagne, and Ruby B. Lee. 
SP Reference Manual Addendum -- Secure Stacks for TSMs and Emulation of SP Interrupt Protection. 
Princeton University Department of Electrical Engineering Technical Report CE-L2009-006, 
August 2009.


guest VM code and binary translation of code, it is sometimes complicated to implement certain new
features. To implement SP interrupt protection, we must detect and intercede upon any interrupt
(hardware IRQ, software interrupt, or fault/ exception) that occurs while in CEM, and we must detect
when the guest OS reschedules the TSM process to resume CEM.

Detecting interrupts is fairly simple, since all cause a trap to an interrupt handler in the kernel, which is
automatically directed first to the VMM before being forwarded to the guest OS kernel. We insert a call
to the SP Suspend_CEM routine in the VMM and are able to ensure that the TSM’s general registers are
encrypted and hashed, that all secure areas are encrypted and hashed, and that the CEM state is
transitioned to suspended.

Detecting the return from interrupt is more difficult in the VMM. There are a number of ways that the
guest OS kernel switches privilege levels and returns to a user process. Real SP hardware can watch the
resulting instruction pointer address of all return/jump instructions that return to user code to trigger
the Resume_CEM process when the target is the suspended CEM thread. As far as we can tell thus far,
the VMM does not intercede in all of these cases, permitting us to insert our emulated Resume_CEM
routine.

In most cases, all guest OS kernel code should be executed using binary translation in the VMM.
Therefore it might be possible to instrument a check in the translated code for each instruction that
might return to user code, checking addresses and other parameters (e.g., process ID) against the SP
interrupt registers. At a minimum, this would require significant effort to find all such instructions and
instrument them individually. If any return paths use direct execution, we would run into difficulty.

Instead, we borrow a technique from Overshadow [4], creating a piece of jump code outside of the TSM,
which the VMM can use to detect all returns. A small piece of code is statically compiled into the TSM, at
a known address, which contains at a minimum code for a hypercall to the SP emulation module in the
VMM. The address of this code block is provided to the emulation module as part of any Begin_CEM call,
and will be saved in the VMM. During the interrupt suspend process, the real return address in the TSM
will be saved in the emulation module and replaced with the address of the jump code in the exception
frame returned to the guest OS. When the guest OS returns, it will return to the jump code instead of
the real TSM. The jump code then triggers the hypercall, so the VMM knows to intercede and trigger the
Resume_CEM operation. Resume_CEM will then redirect the processor’s instruction pointer to the real
TSM return address while restoring the registers and secure areas and resume active CEM.

2. Architecture

Secure Stacks

Hardware SP | SP Emulation Description

Instruction Instruction/Hypercall

N/A CEM_SetSecureStackPtr (void Saves the current Stack Pointer register to the
*addr) CEM_StackPtr register and sets the Stack Pointer

register to the value in addr.

In practice the memory pointed to by secure_sp
should be inside a Secure Area region, with sufficient




space in the region to hold all data the TSM will push
onto the stack. The hardware does not verify that
the address is within a secure area.

If a Suspend_CEM operation occurs due to an
interrupt during CEM, the SP hardware will swap the
current Stack Pointer register (containing the secure
stack location) with the value in the CEM_StackPtr
register (containing the original app’s unprotected
stack pointer). The CEM_StackPtr register now
contains the pointer to the secure stack, and the
hardware interrupt handling will use the
unprotected stack to write the exception frame.
(This is true on x86. Other architectures may not use
the stack pointer in hardware.)

When a Resume_CEM operation occurs, to re-enter
CEM after an interrupt, the current Stack Pointer
register and the CEM_StackPtr register will be
swapped back before returning control to the guest
code, which should be signed TSM code.

If the CEM_StackPtr register has the value zero, no
swapping will occur. Swapping only occurs when
suspending during active CEM with a non-zero
CEM_StackPtr value, and when resuming to active
CEM with a non-zero CEM_StackPtr value (and when
other checks, such as the return interrupt address,
match).

Available to TSM only.

N/A

CEM_RestoreStackPtr()

If the CEM_StackPtr register contains a non-zero
value, overwrites the current Stack Pointer register
with the value stored in CEM_StackPtr and zeroes
the CEM_StackPtr register.

Note: If the TSM wishes to use the old SP address, it
should save a copy of the SP before calling

CEM_RestoreStackPtr().

Available to TSM only.

Interrupt Protection

Hardware SP
Instruction

SP Emulation
Instruction/Hypercall

Description




Begin_CEM

Begin_CEM (void *return_ptr)

Same function as original Begin_CEM() but also
copies the value of return_ptr to the
CEM_InterruptResumePtr register.

When an interrupt occurs during active CEM, in
addition to copying the return address to the
CEM_InterruptAddress register, the SP hardware will
now also replace the return address given to the OS
with the value in the CEM_InterruptResumePtr
register if it is non-zero.

The SP emulation module will also implement a
hypercall to trigger the Resume_CEM routine to
return to active CEM from interrupt. Instead of
checking the CEM_InterruptAddress value against
the new instruction pointer, SP hardware will instead
jump to the value in the CEM_InterruptResumePtr
register, if non-zero, and then complete the
Resume_CEM process as usual.

Note: Any other checks performed by Resume_CEM
(e.g., checking process ID or compartment ID, if
implemented) will still be done before triggering the
jump and resume to active CEM.

End_CEM

End_CEM()

Same function as original End_CEM() but also clears
the value of the CEM_InterruptResumePtr register.

Available to TSM only.

Note that the CEM_InterruptResumePtr must be set atomically with the Begin_CEM instruction. Each
block of TSM code, or more importantly TSM code in each user process/application, will have its own
code block for the jump-to-resume-hypercall routine. Therefore, if application code sets the register
before calling Begin_CEM, it may be interrupted in between the two operations. Then another
application may execute, overwrite the register with its own value, and return control to the first
application; this would cause the first application’s TSM to execute using an invalid resume pointer in its

address space.

As the Begin_CEM instruction is not CIC checked in SP, the Interrupt Resume Pointer is set by untrusted
code. Also, the jump-to-resume-hypercall routine itself will be untrusted, unsigned code. This can allow
denial of service attacks on the TSM. By making the pointer or routine invalid, or preventing the routine
from triggering the resume hypercall to the VMM, untrusted code can prevent the resume CEM
operation. However, it cannot cause a breach of confidentiality or integrity of CEM data, nor can it
change the return address into the TSM.

If a resume hypercall is triggered at an incorrect time, the VMM will attempt to return to active CEM. It
will decrypt the registers and secure areas and enter CEM for the next instruction. If there is a
suspended CEM thread, there is no Interrupt Resume Pointer set, and the CEM Interrupt Return Address
is correct, it will execute the next instruction in CEM with CIC checking. As in the existing SP model, if




this location does not contain correct, signed TSM code, CIC checking will fail before any instructions are
executed in CEM, causing an exception that will re-protect the CEM data. If there is an Interrupt Resume
Pointer set and a suspended CEM thread, the processor will attempt to jump to that address as it
resumes CEM. If in the correct process context, this will actually resume the TSM, regardless of whether
or not it was intended to be scheduled. If not in the correct process context, CIC checking will again fail
and exit CEM.

New SP Registers

To implement the above new features, two additional SP registers are added to the SP CPU registers:
e CEM_StackPtr
O 64-bits (or same size as the processor word size used for the existing stack pointer)
0 Available only to SP hardware only
0 Set/cleared through the CEM_SetSecureStackPtr and CEM_RestoreStackPtr instructions
and during suspend/resume SP hardware operations for interrupt handling.
e CEM_InterruptResumePtr

O 64-bits (or same size as the processor word size used for the existing instruction pointer)
O Available to SP hardware only
0 Currently only used or planned for implementation in SP emulation and not for real
hardware.
O Set as a parameter to Begin_CEM and cleared on End_CEM.
References

[1] Jeffrey Dwoskin, Mahadevan Gomathisankaran, Ruby Lee. “Framework for Design Validation of
Security Architectures,” Princeton University Department of Electrical Engineering Technical Report CE-
L2008-013, November 2008.

[2] Jeffrey Dwoskin, Ganesha Bhaskara, Thuy D. Nguyen, Ruby Lee, “SecureCore Prototype/Demo
Manual,” Version 1.0. Princeton University Department of Electrical Engineering Technical Report CE-
L2008-009, 8/11/2008.

[3] Jeffrey Dwoskin and Ruby B. Lee, “SP Processor Architecture Reference Manual,” Princeton
University Department of Electrical Engineering Technical Report CE-L2008-008, 8/11/2008. (Previous
version: CE-L2007-009. Version 0.7, 11/21/2007)

[4] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh, J. Dwoskin, D. R. K.
Ports, “Overshadow: A Virtualization-Based Approach to Retrofitting Protection in Commodity Operating
Systems,” Proc. of the Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), March 2008.





