Micro-Architecture Issues of Predicated Execution

Zhenghong Wang and Ruby B. Lee
Departinent of Electrical Engineering
Princeton University
(zhenghon, rblee@ee.princeton.edu)

Abstract- Predicated execution appears to be a promising way
to expleit more Instruction Level Paralielism. By eliminating
conditional branches, branch penalties can be reduced and the
size of basic blocks can be increased, further facilitating compiler
optimizations. Past work on predicated execution focused almost
entirely on compiler issues. In this paper, we analyze the impact
of predicated execution on the pipeline control of out-of-order
and in-order superscalar machines. We show problems arising in
implementing predication and propose both conservative and
aggressive solutions.

I. INTRODUCTION

With technology advances, more transistors can be
implemented on a microprocessor chip. To convert these
extra transistors into performance, most modem high
performance processors implement multiple sets of execution
hardware which cnable the paraliel execution of multiple
instructions. However, the performance gain is not
proportional to the hardware cost. Due to the limited amount
of Instruction Level Parallelism (ILP) that the compiler and
micro-architecture can exploit, a considerable portion of
hardware rescurces is not fully utilized. One of the major
impediments to exploiting ILP is the branch instruction: it
causes branch penalties, breaks a program into small basic
blocks making it harder for a compiler to find parallelism, and
becomes the performance bottleneck when branch resources in
the processor are limited. In 1983, Allen[l] proposed a
promising technique for handling conditional branches and
increasing ILP called predicated execution f(also called
conditional execution or guarded execution). In predicated
execution, the predicated instruction may be either executed or
nullified depending on a guard condition called a predicate.
Conditional branches can be removed via a technique called
if-conversion and the codes in different paths may be merged
into a single path. As a result, the reduction of conditional
branch instructions reduces branch penalties, and also leads to
larger basic blocks where more ILP can be found by the
compiler.

Among the large number of publications on predication,
most focused on compilation and instruction-set architecture
issues [2-6], while some papers studied the branch behavior of
predicated code [7-9]. Except for one paper [10), the micro-
architecture issues in implementing predicated execution have
not been covered. In this paper, we analyze the micro-
architecture issues in implementing predicated execution in
modemn out-of-order and in-order superscalar processors. We
identify problems arising in implementing predication and
propose both conservative and aggressive solutions.

Section II defines the generic pipeline models of out-of-
order and in-order machines. Section III discusses the micro-
architecture issues of predicated execution in out-of-order
machines. Section 1V presents our work for in-order machines.
In Section V, we draw our conclusions.

II. GENERIC MACHINE MODELS

In Fig.1 (a) and (b), we define the generic pipeline stages of
out-of-order and in-order processors. In a given design, each
stage of the pipeline may consist of multiple cycles.

l IF I DE
(a) Out-of-order Pipeline Model

[IFIDR

(b} In-order Pipeline Model

RN IRIEXE we

EXE MEM[WB

Fig.1. Generic Pipeline Models

While there are many variations, we use an out-of-order
pipeline model consisting of six generic stages {11]. These
are called the instruction fetch (IF) stage, the instruction
decode (DE) stage, the register rename (RN) stage, the
instruction Issue and register Read (IR) stage, the execute
(EXE) and the register Write Back and instruction retirement
(WB) stage. The functions performed in each stage will be
described in section IIL

In the in-order machine, we use a pipeline model composed
of five generic stages [12]: the instruction fetch (IF) stage, the
instruction Pecode and Register read (DR} stage, the
execution (EXE) stage, the memory access (MEM) and the
register Write Back (WB) stage. Since register renaming is
not required, the register read phase can be done at the same
time as the decode phase.

We assume that the instruction set architecture (ISA)
supports full predication. This is because with partial
predication, only a few special instructions need a predicate,
e.g., the conditional move instruction. These instructions
typically have separate operation codes and can easily be
handled by the hardware. On the other hand, as shown in [4],
partial predication is considerably less effective than full
predication, and modermn advanced ISAs such as 1A-64 [13]
have included the full predication feature. We believe that it is
important to show the impact of full predication on micro-
architecture design, and that this should be carefully
considered in future ISA design.

0-7803-8104-1/03/$17.00 ©2003 IEEE 349

Zhenghong Wang and Ruby B. Lee, "Micro-Architecture Issues of Predicated Execution," Proceedings of the Asi
Conference on Signals, Systems, and Computers, pp.349-354, November 2003.

zhenghon
Zhenghong Wang and Ruby B. Lee, "Micro-Architecture Issues of Predicated Execution," Proceedings of the Asilomar Conference on Signals, Systems, and Computers, pp.349-354, November 2003.

II1. MICRCO-ARCHITECTURE ISSUES IN QUT-OF-QRDER
MACHINES

To dynamically extract ILP from the incoming instruction
stream, many modern high performance processors support
out-of-order execution of instructions. In these processors,
logical registers are typically renamed to physical registers.
WAW (Write after Write) hazards and false dependencies are
removed after this register renaming process. Independent
instructions then can be issued and executed aggressively, not
necessarily in program order,

When introducing predication into an out-of-order machine,
the data dependency aralysis done for a non-predicated
architecture may no longer be cormrect, since instructions can
be dynamically nullified. We give examples below. For
correct execution, the micro-architecture must be redesigned.
After careful analysis, we identified three sources of problems
in the pipeline: register renaming, instruction issue and
instruction retirement.

A. Register Renaming

Register renaming is a popular technique in modern out-of-
order processors. In the register renaming stage, the
destination register (logical register) of each instruction is
assigned to a different physical register. The mapping
relationship is then stored in a structure, e.g., a Register Alias
Table (RAT). The source registers of an instruction are then
renamed by looking up the RAT for the corresponding
physical registers that are defined in previous instructions.

Before Register Renaming After Register Renaming
Id R32 € mem{R30) d Ra € mem(Rx)
add R4 € R5, R3 add R¢ € Rd, Ra
add R3 € R1,R2 add Rb € Re, Rf
sub R6 < R1,R3 sub Rg < Re, Rb

Fig.2. Code example of register renaming

In Fig.2, a false dependence (or Write After Write hazard)
exists between the first and the third instructions: their
destination registers are both R3. Without register renaming, if
the 1d instruction causes a cache miss and out-of-order
execution is allowed, the third instruction may get executed
and write R3 before the 1d instruction. The second instruction
may thus get the wrong operand. To ensure the correctness,
the instructions have to be executed serially. However, by
applying register renaming, the first R3 is renamed to physical
register Ra and the following use of R3 refers to Ra by
looking up the RAT with R3. Then the logical register R3 in
the third instruction is assigned to physical register Rb (and
the corresponding entry for R3 in the RAT is updated with
Rb). The next use of R3 then refers to Rb since the RAT now
maps R3 to Rb. Se, no matter what order the two instructions
that define R3 are executed, the following instructions that use
R3 will always get the correct results.

350

Problems in Register Renaming with Predication

Unlike the traditional execution model, instructions in the
predicated execution model can be dynamically nullified, i.e.,
the mapping of the destination register of the instruction may
be invalid. The following instructions that use this logical
register thus cannot use the mapping until they know whether
the defining instruction is executed nor nuilified, i.e., until the
predicate of the defining instruction is resolved. The following
example shows the problem if the register renaming logic is
not changed.

Before Register Renaming After Register Renaming
POaddi R3 € RO#5 P0addi Ra € RO#5
PO cmp.eq P1,P2 < R1,R2 PO cmp.eq Pa,Pb € Re,Rd
P1 add R3 <€R1,R2 Pa add Rb € RgRd
PO add R5 <€R3,R4 PO add Rf € Rb,Re

Fig.3. Code example of regi ing with predi

In Fig.3, R3 has multiple definitions before its use in the
fourth instruction. In normal register renaming procedure, the
two defining instructions will rename R3 to two different
physical registers, say Ra and Rb, and the fourth instruction
will read Rb for its operand since the latest mapping for R3 in
the RAT is Rb. The second instruction compares R1 and R2
for equality and sets the logical predicate registers P1 and P2
accordingly. (The comesponding physical predicate registers
are Pa and Pb.) If P1 (or physical predicate register Pa) is set
to true, the mapping R3 2 Rb is valid, and this code will run
correctly, However, if P1 (Pa) is evaluated as false, the third
instruction is nullified and the fourth instruction should use Ra
instead of Rb!

Possible Solutions

Conservative Register Renaming. The processor can simply
stall the pipeline whenever an unresolved predicate is met and
keep waiting until the predicate is available (Fig. 4). This
solution, however, may significantly degrade performance.

Poaddi Ra <Re,#S5| IF | DE | RN | IR |EXE | WB | pypassing

PO cmp.eq Pa,Pb<RcRA| IF | DE | RN | IR | EXE yylp7

Paadd Rb <RcRA| IF | DE | -~ | — | - MRN'| IR | EXE|WB

Poadd Rf ¢Ra/RbRe | IF | DE | = | - § -- M| - | IR | EXE ws]
Cycle#t 0 1 2 3 4 5] ? [»

Fig.4. Performance degradation due to conservative register renaming

Due to the conservative register renaming, even with a
comprehensive bypass network, the cmp instruction in the

" above code segment causes a 3-cycle penalty. This is

equivalent to a 3-cycle branch penalty at 100% mispredication
rate. The benefits that predication may bring by eliminating
branches are now all lost. This example shows the need to
reconsider the design of the register renaming unit.

Software Solutions. Before we redesign the micro-
architecture of the register renaming logic, we see whether
there are simple software solutions.

One compiler technique is to schedule the predicate-define
instruction as early as possible, so that useful, independent
instructions can be executed between it and the instruction that
depends on it. This approach, bowever, is not always effective
in ¢liminating all the pipeline stall ¢ycles due to the programs’
inherent flow dependency.

Another compiler techniques is called the Static Single
Assignment {SSA). In SSA, different registers are assigned to
the same variable in different paths. A ¢-function is inserted
afterwards to select the correct result.

x € ¢ (xl,x2) is defined as follows:
P1 mov Rx € Rx1
P2 mov Rx € Rx2

where P1 and P2 are the predicates for the two paths,
and Rx, Rx1 and Rx2 are the logical registers for variables x,
x1 and x2. Fig.5 shows two examples.

(x) S5A: ¢ase 1

(b) S5A: case 2
Fig 5. Static Single Assignment Examples

Since in SSA each register has only one definition, the
register renaming logic can simply do the renaming without
considering the predicates. But at the point where the ¢-
function must select the correct result, the predicates must be
available. Again, this cannot always be achieved without
pipeline stall cycles.

Hence, software techniques cannot completely solve the
tegister renaming problem to prevent stalls in the pipeline.
Furthermore, making the performance of an out-of-order
machine rely heavily on compiling techniques is not desirable
since an out-of-order machine is supposed to perform well
even for less optimized code,

351

Hardware Static Single Assignment. Although software
SSA assigns a different register to each variable in each path
of the control flow, a ¢-function is always needed at the merge
point where the result is written to one register. Unless the
predicates are available before the execution of the ¢-function,
this will still cause one or more pipeline stall cycles. However,
if the hardware can implement the ¢-function such that there
are no multiple writes to a single register, the problem is
solved. Based on this idea, a hardware version of SSA can be
implemented as follows:

Augment the RAT into a multiple-column table, i.e., for
cach logical register, its corresponding entry in RAT has
multiple fields which are used to store multiple possible
sources of this logical register (see Fig. 6). For normal
instructions, i.e., the predicates are known to be true, do the
register renaming and update the RAT entry with the newly
mapped physical register address. The address is put in the
first field of the entry, all other fields are cleared. For nullified
instructions, i.¢., the predicates are known to be false, skip the
register renaming and keep the RAT unchanged.

For an instruction with an unresolved predicate, a new
physical register is assigned to the destination register. This
mapping along with the unresolved predicate is put in the first
unoccupied field of the entry of the RAT.

Whenever an entry of the RAT is full, or there is a use of a
register whose entry shows multiple sources, a special
“internal” instruction, the select instruction, is inserted into the
decoded instruction stream. Indeed, the select instruction plays
the role of the é-function in software SSA. It selects the
correct operand from the possible sources and generates a new
register that will be used by the following instructions that
need this operand. The select instruction is assigned a physical
register which is used to store the selected result. The
corresponding logical register is then mapped to this physical
register, i.e., the first field of the RAT entry of the logical
register is updated with the assigned physical register address,
all other fields in this entry are cleared. This ensures that the
following uses of the logical register will refer to the “output”
of the select instruction which is the correct result.

Logical Physical Reg. togical Physical Reg. Addresses B the
Req.# acﬁilrss Re?.# Contralling Prediate Reg. Addresses
[} Pl i
RO Ra RO |[Pm Ra/Pn Rc |..[Pi Rd
RL| Rb R1L|Pj Rb (- - [..[- =
R31 Rz R21|Ps Rx |-- -- .. Pk Rz
Traditional RAT Extended RAT

Fig.6. Hardware SSA: Extending RAT

In hardware SSA, the select instruction plays the role of
the ¢-function in software SSA. It waits for the results of

unresolved predicates and whenever the correct source can be
determined, it selects the correct results. Since only select
instructions deal with unresolved predicates, a normal
instruction will always use operands from a normally executed
instruction or from the select instruction, and thus can be
renamed without ambiguity. Fig.7 shows the execution of the
same code used in Fig.4. By inserting a select instruction, no
stall is needed at the register renaming stage. In this example,
only data dependencies cause bubbles at cycles 3 and 4: the
select instruction must wait for the new value of Pa and the
last instruction must wait for the result of the select
instruction.

Poaddi Ra ¢RO#5 IF | DE | RN | IR |EXE} WB

POanwpeqPafbecReRd | IF | DE | RN | IR | EXE | WB

Paadd Rb ¢RcRd | IF | DE | RN | IR | EXE | wB
St Rx ¢Ra®b | IF | DE | RN} « | v |ExE|we
P0add Rf €RxRe 1F |[bE | RN | - | IR [EXE wa|

Cycle# © 1 2 3 4 5 & 7

Fig.7. Code Example: Hardware SSA

Although the hardware SSA scheme is a more aggressive
micro-architectural solution for the problem in register
renaming for predicated code and it does not require
significant modification of the traditional pipeline, it has some
drawbacks. First, it requires a larger RAT which may lengihen
cycle time since the RAT access is in the critical path of the
register renaming stage. Second, the inserted instructions
consume extra resources, €.g., reservation station entries, and
thus may ‘degrade overall performance. Third, though
hardware SSA can be easily implemented on some pipelines
such as the Itanium pipeline [12] where the select instruction
can be implemented as a special micro-operation, it may not
be compatible with other pipeline implementations where
micro-operations are not used.

B. Instruction Issue

In a typical out-of-order machine, instructions enter a pool
after they are decoded and register renamed. When all
operands of an instruction in the pool are available, it is ready
to execute. The wakeup/select logic chooses instructions from
the ready ones and sends them to the functional units. Fig.8
shows a possible implementation.

2 TeRUs T
iy [| s ud sm

bypuss knes.

Raservation stations & Issus logic One reservation Station entry

Fig.8. Reservation stations and Issue logic Architecture

352

In this implementation, the instruction pool is made up of
the reservation station entries where the “ready” signal is
asserted as true. Each entry of the reservation station has two
fields that correspond te the two operands. Each field stores
the physical register address it received in the register
renaming stage, and has a ready bit indicating whether the
operand is already available. The execution module broadcasts
the newly generated result along with its corresponding
physical register address, and each reservation station entry
checks this register address with both of its two operand
fields. If there is a match, the ready bit of the corresponding
operand is set. When both ready bits are set, the instruction is
ready to execute.

Problems in instruction issue with Predication

Unlike the traditional execution model, each instruction in
the predicated execution model is not only dependent on the
usual operands, but also dependent on its predicate. This must
be considered in the instruction issue stage because the ready
conditions are different.

Architectures with Predication Support

When considering the predicate, two issue policies can be
adopted.

» Conservative Policy: the predicate is considered as
another operand. The instruction can be issued only if |
‘both its ysual operands and its predicate are ready.

= Aggressive Policy: the instruction can be issued once
its usual operands are ready, regardless of the
predicate. Here we utilize the fact that the correctness
of the result of an instruction is not dependent on the
predicate: if the predicate is true, the result is correct; if
it’s false, the result will be discarded whether or not it
is correct, since the instruction is nullified.

‘To implement the above two issue policies, we need to
modify the original micro-architecture slightly. Fig.9 shows
the reservation entry structure for conservative issue policy.

Predicate registar
addrass & value
. .
T
Y
| tw@mmew
Broadcashed
bypass iines

Fig.9. Reservation Station Entry: Conservative Issue Policy

The predicate is regarded as an extra operand. Thus one
more operand field is added to each reservation station
entry. Similar to the other two fields, it contains a physical
predicate register address and a ready bit. The new ready
signal will be set only when all the three ready bits are set.
In addition, a valid bit is added into the reservation station
entry, which indicates whether this instruction will be
executed or nullified. An instruction can be issued only if it
is both valid and ready (as shown by Ready’ in Fig. 9). The
wakeup/select logic does not need any change since it just
chooses the instructions from the ready ones as before.

Pradicate register
- address & value
o
1
Lo I
.;;_\}_— [D {-—\T’!
| 52 [Re Src2 Roof Pred [Rep v "
L—'g-:{:)*[q——.&-:df
- ; e
Broadcasted) ""{é“
bypass knes

Fig. 10. Reservation Station Entry: Aggressive Issue Policy

The structure of reservation station entry for the aggressive
issue policy is similar in terms of the fields for operands and
the predicate. However, the Ready’ signal generation is
different (see Fig. 10). In the aggressive policy, the two usual
operands being ready indicates that the instruction is possibly
ready. The predicate is checked to see whether the instruction
is nullified. The policy is aggressive in that unless the
instruction is known as nullified, i.e., the predicate is resolved
and is evaluated as false, it is regarded as ready once the usual
operands are ready.

We conclude that the micro-architecture of the instruction
issue stage only needs slight modification in the structure of
reservation station entries. The wakeup/select logic does not
need any change.

C. Writeback and Instruction Retirement

In the writeback and instruction retirement stage, the
processor writes results to the logical destination registers and
releases physical renaming registers. The instructions can
retire either in-order or out-of-order. Although out-of-order
retirement may have better performance, most modem
processors choose in-order retirement. The main reason is that
in-order retirement maintains the precise exception property
and is much simpler in micro-architecture implementation.

For a processor with predication support, instructions can
also retire either in-order or out-of-order. The micro-
architecture of in-order retirement is almost identical to that of

353

the non-predicated processor. The only change may be the
logic that is used to check whether an instruction still has an
unresolved predicate.

Unlike non-predicated code, the precise exception property
can still be maintained even if the instructions do not retire in-
order. Two retire policies are possible: -

o Conservative retire policy: in-order retire, This retire
policy leads to simple micro-architecture as we have
explained above.

* Aggressive retire policy: partial out-of-order retire.
Normal instructions retire in-order, while nullified
instructions can retire as early as possible.

Since nullified instructions do not change machine state,
they can be retired out of program order, without affecting
precise exceptions. This “partial” out-of-order retirement
brings some potential benefits, such as more free physical
registers and more available reservation station entries and
reorder buffer entries. This may reduce pipeline stalls due to
insufficient resources and thus lead to higher performance.

Fig.11 shows an in-order and partial out-of-order retire
policy. For in-order retirement, the logic only needs to check a
fixed number of instructions and add the released physical
registers to the free register list. The partial out-of-order
retirement needs to check more early-retirement instructions

and requires more write ports to the free register list.
In-Crder retirenmnt Partistly 000 retirement

Instructions act auﬁﬁd}nmum‘om
5 4
i A4

yek retired

¥

Free Physical
Register List

Retiring Instructions

v
Retire
Free list needs more write ports

The same a5 non-predicated processor

Fig.11. In-order retire vs. Partial out-of-order retirement

IV. MICRO-ARCHITECTURE ISSUES FOR IN-ORDER
MACHINES

Unlike out-of-order machines, in-order machines do not
need register renaming, reservation stations, wakeup/select
logic and a free register list, and thus do not have the related
problems discussed in Section III, The extra logic needed for
predication support is just piping the predicate bits in pipeline
registers and the predicate bypass network.

A. Bypass Network Analysis

The in-order execution ensures that the predicate-define
instructions always get executed before the predicate-use

instructions. Thus the predicate is always resolved before the
EXE stage of the predicate-use instruction. Fig.12 shows an
example.

Predicate
avaihbrle
POaddi R ¢ro,#s | IF | DR | EXE |MEM{ WB
PO cmp.eq PLPR « R1L,R2 | IF | DR | EXE \MEM WEB
Pladd R RLRZ 1F | or Jexe fmem| we
PO0add RS <RIRS 1F | oR{EXE | meM| wB

Since predicate is available, bypass network
can always forwand corvect result

Fig.12. Code Example: Bypass Network Analysis

In this example, we assume the compiler schedules the
predicate-define instruction (cmp.eq) before the predicate-use
instruction (P1 add). The predicate-define instruction
generates its result at the end of its EXE stage. Due to the in-
order execution, the next predicate-use instruction cannot be
executed in the same cycle as the first one. Thus the predicate
is always available at the beginning the EXE stage of a
predicate-use instruction; if the instruction is nullified, its
result can be discarded correcily.

V. CONCLUSIONS

In this paper, we analyzed the micro-architecture issues in
implementing predicated execution and proposed alternative
solutions. For the out-of-order machine model, we show that
the Register Renaming stage is most impacted by predicated
execution. In a conservative solution, register renaming may
significantly degrade performance due to pipeline stalls.
Otherwise, significant modification to current micro-
architecture may be needed to improve the performance.
Current solutions are not optimal and efficient register
renaming for predicated execution is still an open problem.

The Instruction Issue stage is also impacted. The
complexity of the reservation station circuit is slightly
increased to add the effects of the predication register and
generate a new Ready’ signal, based on either conservative or
aggressive policies. The wakeup/select logic does not need
any changes.

In the Instruction Retirement stage, an aggressive policy of
retiring nullified instructions as soon as possible, in an out-of-
order manner, can be achieved while still maintaining the
precise exception property. Early retirement of nullified

354

instructions may lead to higher performance by freeing up
more physical registers, reservation stations and reorder buffer
entries. However, more write ports of the free register list are
required for this partial out-of-order retirerent.

' For an in-order machine, we found that predicated execution
can be integrated easily into the pipeline, with very few
changes.

REFERENCES

[1] J.R. Allen, K. Kennedy, C. Porterfield, and J. Warren, * Conversion of
control dependence to data depend " in Proceedings of the I0th
ACM Symposium on Principles of Programming Language, pp.171-
189, Jannary 1983

[2]1 S. A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, R.A. Bringmann, and
W.W. Hwu, “Effective compiler support for predicated exccution using
the hyperblock,” in Proceedings of the 25th International Symposium
on Microarchitecture, pp.45-54, December 1992

[3] Nancy). Warter, Daniel M. Lavery and Wen-mei W. Hwu, “The
Benefit of Predicated Execution for Software Pipelining,” Proceedings
of HICSS-26, vol.1, ppA497-506, Januvary 1993

[4}] S.A. Mahlke, R.E. Hauk, JE. McCormick, DI August, and W.W.
Hwu, “A Comparison of Full and Partial Predicated Execution Support
for ILF Processors,” in Proceedings of the 22nd Annual International
Symposium on Computer Architecture ISCA 22, ppy.138-149, May 1995

5] DL August, W.W, Hwu, and S.A. Mahlke, “A Framework for
Balancing Control Flow and Predication”, in Proceedings of the 30th
International Symposium on Micrearchii ¢, November 1997

[6] August, J. Sias, J. Puiatti, 5. Mahlke, D. Connors, K. -Crozier and W.
Hwu, “The Program Decision Logic Approach to Predicated
Execution™, in Proceedings of the 26th International Symposium on
Computer Archifecture, May 1999

{71 D.N. Pnevmatikatos and G.8 Sohi, “Guarded Execution and dynamic
branch prediction in dynamic ILP processors,” in Proceedings of the
21st Annual Inmternational Symposium on C er Architecture,
pp.120-129, April 1994

[8] G.S. Tyson, “The Effects Of Predicated Execution On Branch
Prediction™, in Proceedings of the 27th International Symposiwn on
Microarchitecture, pp.196-206, November 1994

[9] G.S. Tyson and Matthew Farrens, “Evaluating the effects of predicated
execution on branch predication,” International Journal of Parallel
Processing, vol.24, no.2, pp.159-186, 1996

[10] P.H. Wang, H. Wang, RM. Kling, K. Ramakrishnan and J.P. Shen,
“Register Renaming and Scheduling for Dynamic Execution of
Predicated Code,” in Proceedings of the 7th International Symposium
on High-Performance Computer Architecture, pp.15-25, January 2001

[11] Palacharta, S.; Jouppi, N.P; Smith, LE, “Complexity-Effective
Superscalar Precessors,” in Proceedings of the 24th Imternational
Symposium on Computer Architecture, pp.206-218, June 1997

[12] John L. Hennessy and David A. Patterson, “Computer Architecture —

* A Quantitative Approach,” Morgan Kaufimann Publishers, Inc., San
Mateo, CA, second edition, 1995

{13} Intel, “IA-64 Architecture Software Developer's Manual, Vol.3: ISA

Reference,” Rev 1.1, July 2000

W

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

