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ABSTRACT

Many contemporary microprocessor architectures incorporate multimedia extensions to accelerate media-rich appli-
cations using subword arithmetic. While these extensions significantly improve the performance of most multimedia
applications, the lack of subword rearrangement support potentially limits performance gain. Several means of
adding architectural support for subword rearrangement were proposed and implemented but none of them provide
a fully general solution. In this paper, a new class of permutation instructions based on the butterfly interconnection
network is proposed to address the general subword rearrangement problem. It can be used to perform arbitrary
permutation(without repetition) of n subwords within logn cycles regardless of the subword size. The instruction
coding and the low-level implementation for the instructions are quite simple. An algorithm is also given to derive
an instruction sequence for any arbitrary permutation.

1. INTRODUCTION

The rapid growth of multimedia applications places huge demands for computing power on microprocessors. Sev-
eral multimedia extensions were introduced into microprocessor architectures to accelerate multimedia processing.
Examples are HP’s MAX-1! and MAX-2,2 Sun’s VIS,® Intel’s MMX,* AMD’s 3DNow® and recently the AltiVec®
extension to PowerPC. All these extensions take advantage of the fact that most multimedia applications have a
high level of data parallelism and use low-precision data. The idea is to pack several pieces of low-precision data,
called subwords,»? into a single machine word so that they can be processed by one instruction in parallel. The
number of instructions for data processing can be greatly reduced. Although the performance gain from these exten-
sions is significant, the extensions contain mostly parallel versions of conventional instructions. Support for subword
rearrangement is quite limited, which may limit the performance gain achieved by using subword arithmetic.

1.1. Previous Work

A few microprocessor architectures have subword rearrangement instructions. First, HP implemented the mix and
permute instructions in their MAX-2 extension to PA-RISC.2 Later Intel and HP put mix and mux instructions into
the TA-64 architecture,” which are extensions to the mix and permute instructions of MAX-2. Motorola, IBM and
Apple also have the vperm instruction in their AltiVec extension to PowerPC.5

Two approaches are used in the above implementations. One is to design primitives that can do permutations
of fixed patterns. Since the patterns are independent of subword size, the same instructions can be used to do
permutations for all subword sizes. The other approach is to design a single instruction such that it can do all
possible permutations for subwords greater than a certain size. Since larger subwords result in a smaller number of
subwords per register, fewer configuration bits are needed to specify all possible permutations, in an immediate or
in a register. The mix instructions belong to the first category, permute and vperm belong to the second category,
and mux belongs to both categories for different subword sizes. permute and mux use an immediate in the instruction
to specify the permutation to be performed. vperm uses a separate register to specify the permutation, therefore
a load to the configuration register is needed before doing the permutation. In addition, vperm needs three source
registers, two for the data to be permuted and one for the permutation configuration. For architectures that don’t
have support for subword rearrangement, solutions using conventional instructions must be used, which are usually
much slower.

Because instructions based on the mix approach can only do fixed permutations, it is not efficient to do all possible
permutations using these instructions alone. Instructions based on the second approach can not be used to handle
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subword sizes smaller than a fixed size because there are not enough bits to hold the parameters in the instruction or
in a register, which is especially the case for bit permutations. Furthermore, the second approach normally requires
crossbar networks at circuit level, which can be quite costly. Neither of the current approaches can be used to do all
permutations for all subword sizes with reasonable speed and hardware efficiency.

1.2. Our Objective

Our goal is to provide a cost-effective solution that can handle all permutations for all subword sizes fast. For
n elements, there are n! different permutations without repetition. Specifying a particular permutation requires
approximately nlogn bits. Suppose n bits can be specified in one instruction, where n is the number of bits in a
register, at most logn instructions are needed. Based on these observations we desire the following properties for
our instructions.

e The same set of instructions can be used to permute subwords of all possible sizes using the same hardware.
The hardware should be easy to design.

e The number of instructions for any permutation should be at most logn where n is the number of bits in a
register.

e There is a simple algorithm to derive an instruction sequence for any arbitrary permutation.

e No processor state other than register values need to be maintained during the process of permutation.

2. BACKGROUND

Various interconnection networks have been used to solve permutation problems in many areas. These networks
have different properties that fit different applications. We wish to find an appropriate type of network for use in
a microprocessor that is more area-efficient than a full n x n crossbar switch. For instructions based on crossbar
networks, since there are not enough bits in a register to hold the configuration of the network when the subword size is
small and the network does not produce useful results when partially configured, we may have to introduce additional
processor state such as partial crossbar configuration or partial register writeback to permute small subwords. To
avoid these undesirable artifacts of crossbar networks, we turn to more efficient interconnection networks.

2.1. Butterfly Network and Its Properties

Butterfly network and its isomorphic networks have been widely used in communications to solve the non-blocking
switching problem, which is similar in nature to the permutation problem. Detailed discussion of butterfly networks
can be found in the literature,® and thus is not repeated here. A 3-dimensional(8-input) butterfly network is shown
in Figure 1. Butterfly networks have some nice properties that make them attractive for a solution to our subword
permutation problem.

e The network formed by two log n-dimensional butterfly networks connected back-to-back, called a Benes net-
work, can be used to perform any permutation of its n inputs with edge disjoint paths, i.e. no two paths share
the same crosspoint. One example is given in Figure 1(a).

e It can be seen that the butterfly network can be broken into stages. Therefore we can use the network stage
by stage.

e The total number of stages in an m-input butterfly network is logn and the total number of crosspoints is
nlogn, which is significantly fewer than n? in an n-input crossbar network, thus its circuit implementation
should be more area-efficient.

e In each stage of a butterfly network, for every input, there is another input that shares the same two outputs
with it. We call these pairs of inputs conflict inputs, their corresponding pairs of outputs conflict outputs.
These conflict pairs can be configured using one bit.

e The butterfly network has a recursive structure. By removing the top stage of an n-input butterfly network,
we get two identical butterfly networks each having n/2 inputs.
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Figure 1. (a) An n-input Benes network is formed by connecting two n-input butterfly networks back-to-back.
It can be used to do arbitrary permutations of its n inputs. The example shows how to do the permutation
(hgfedcba) — (ghdecbaf). (b) The instruction sequence for this permutation using our cross instructions is shown.
An optimized instruction sequence is also shown.

2.2. Configuring a Benes Network Given a Permutation

Due to the recursive structure of a butterfly network, Benes network also has a recursive structure. Removing the
first and last stages of an n-input Benes network, we get two identical n/2-input Benes networks. This procedure
can be repeated until we have only two stages left. Therefore, if we can consistently direct the input bits and output
bits of an n-input Benes network to the appropriate one of the two n/2-input sub-networks, we can reduce the size of
the configuration problem by half in each step. The Benes network configuration problem can be solved by repeating
this procedure until we reach n = 2, where the configuration is trivial. The key problem then becomes how to find
a consistent mapping from inputs and outputs to the appropriate sub-networks, while maintaining the edge disjoint
property mentioned above. We use the following algorithm to solve the problem.

We see that conflict inputs cannot be sent to the same sub-network. Similarly, conflict outputs cannot come
from the same sub-network. These two constraints must be satisfied. Our algorithm works as follows. “Inputs” and
“outputs” refer to the inputs and outputs of the sub-networks, subl and sub2.

1. Starting from the first input that is not configured, call it current_input, set end_input to be the conflict input
of current_input. If all inputs have already been configured, go to Step 4.

2. a. Connect current_input to the sub-network subl that is on the same side as current_input. Connect the
output that has the same value as current_input, call it output(current_input), to subl too. Set current_output
to the conflict output of output(current_input) and go to Step 3.

b. Connect current_input to the sub-network subl such that subl is not sub2. Connect output(current_input)
to subl too. Set current_output to the conflict output of output(current_input).
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Figure 2. This example demonstrates how the algorithm is used to configure a Benes network. The permutation
from Figure 1 is used and only the configuration for the first and last stage is shown. The number next to each thick
line indicates the order in which these connections are configured.

3. Connect current_output to sub-network sub2 such that sub2 is not subl. Also connect the input that has the
same value as current_output, call it input(current_output), to sub2. If input(current_output) is the same as
end_input, go back to Step 1. Otherwise set current_input to the conflict input of input(current_output) and
go to Step 2b.

4. At this point, all the inputs and outputs have been connected to the two sub-networks. If the configuration of
the two sub-networks is trivial, i.e., n = 2, the configuration is done. Otherwise for each sub-network, we treat
it as a full Benes network and repeat the above procedure from Step 1.

To show that the above algorithm works correctly, we first notice that the algorithm always configures inputs and
outputs in pairs, so no inputs or outputs would be missed. We also notice that we always go along the path input
— output — output — input — ..., A problem that can occur at the output side is that the second output in the
above chain is already configured. This situation cannot happen, however, because it means that an output has two
different conflict outputs in one stage, which is impossible. The same argument applies to the input side. No other
problem can arise in this algorithm, so it works. A detailed verification is beyond the scope of this paper. An example
demonstrating the application of the algorithm is shown in Figure 2 instead. If the Benes network to be configured
has n stages, we first configure the first stage(input) and the n-th stage(output), then the second stage(input) and
the (n — 1)-th stage(output), and so forth until all stages have been configured.

3. ARCHITECTURAL IMPLEMENTATION BASED ON BUTTERFLY NETWORK
3.1. Basic Operation

The basic operation for our proposed permutation methodology corresponds to the single stage operation in a
butterfly network, which is to conditionally exchange pairs of conflict bits based on the given configuration. Because
the distances between bits in a conflict pair are different in different stages, a parameter m is given to our basic
operation to specify the distances between bits in a conflict pair. The distance specified by parameter m is 2™.
Since the decision to exchange a pair of conflict bits can be configured using one bit, the maximum number of
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configuration bits for the basic operation is n/2 for permutations of n bits. A pair of conflict bits are exchanged
when their configuration bit is 1.

3.2. Instruction

The instruction we propose takes a source register, permutes the subwords in it based on the contents of a configura-
tion register, and puts the result into a destination register. From the above discussion, when we permute subwords
in a register, the number of configuration bits for a basic operation can fill at most half of a register. Therefore, we
can pack two basic operations into an instruction to make better use of the configuration register. The instruction
format of our permutation instruction is

cross,ml,m2 rd,rs,rc

rs denotes the source register which contains the subwords to be permuted, rd denotes the destination register where
the permuted subwords will be stored, and rc is the configuration register that holds the configuration bits. m1 and
m2 are the parameters for the distances between a pair of bits for the two basic operations performed. The cross
instruction performs two basic operations on the source register based on the contents of a configuration register and
the values of m1 and m2. For the first operation, m1 is used to specify the distance for a pair of conflict bits so that
the correct butterfly stage for this operation is chosen, and the right half of rc contains the configuration bits. This
operation permutes the source register and produces a temporary result. The second operation is determined by m2
and the left half of rc. It uses the temporary result of the first stage and produces the result for the destination
register. For each operation, the bit pairs in a register are ordered starting from the right side of the register, and
each pair of bits are exchanged if their corresponding configuration bit is 1 and not exchanged otherwise.

An example is shown in Figure 1(b). In the unoptimized instruction sequence, the first instruction, cross,2,1
rl,rl,r2 performs two basic operations. The first basic operation uses the butterfly stage where the distance between
a pair of conflict bits is 22 = 4. The configuration bits come from the right side of r2, and are 1010b. Starting from
the right side of r1, a and e are not exchanged, b and f are exchanged, ¢ and g are not exchanged, d and h are
exchanged. The intermediate result after the first basic operation is dgbehcfa. The second basic operation uses the
butterfly stage where the distance between a pair of conflict bits is 2! = 2. The configuration bits come from the
left side of r2, and are 1000b. Only d and b are exchanged and the other pairs of conflict bits are not. Therefore,
the result in r1 after the first instruction is bgdehcfa. The second and the third cross instructions work the same
way. To derive the optimized instruction sequence from the unoptimized sequence, we only need to notice that for
the second and the third instructions in the unoptimized sequence, the configuration bits for one of the two basic
operations in each instruction are all 0. Since those two basic operations only serve to copy the inputs to outputs,
they can be eliminated.

3.3. Using cross Instruction

We know that all permutations of an n-bit word, including subword permutations for all subword sizes, can be achieved
using an m-input Benes network, which contains two n-input butterfly networks and 2logn stages. Therefore, for
each permutation, we can use the algorithm described in Section 2.2 to obtain the configuration of a Benes network
for the desired permutation. Then we can break the network into pairs of stages, and for each pair of stages, we
assign a cross instruction. Each cross instruction uses the result of the previous cross instruction. The first cross
instruction in the sequence takes the original source and the last cross instruction produces the final result. In this
way, we build a virtual n-input Benes network using our cross instruction. Therefore, we are able to perform any
permutations for an n-bit word with at most logn instructions.

3.4. Permutation for Subword Sizes Greater than a Bit

One important property of a Benes network is that when it is configured for r-bit subword permutations, the middle
2logr stages are configured as pass-throughs if we constrain our configurations to have the property that a pair
of adjacent inputs to a stage in the same subword stay adjacent and in the same order during permutation. This
happens because the middle 2logr stages of a Benes network are used to permute adjacent r bits. One example is
shown in Figure 3. For bypassing connections, we do not need to assign instructions, because all these stages do is
to copy inputs to outputs. Therefore, when permuting r-bit subwords in an n-bit word, the maximum number of
instructions needed is logn — logr =log (n/r) = logn', where n' is the number of subwords.
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Figure 3. This example demonstrates that when a Benes network is used to perform an r-bit subword permutation,

the middle 2logr stages become pass-through connections. Permutation (dadicocibebiasar) — (azaidadibabicacy)
is used.

3.5. Basic Optimization

For many permutations, we will have some stages of the Benes network configured as pass-throughs even if they are
not subword permutations. Because these bypassing connections only serve to copy the inputs to the outputs, we
can remove these stages before we do the instruction assignment. If we can remove 2k stages, we will have k fewer
instructions. An example is shown in Figure 1(b).

4. LOW LEVEL IMPLEMENTATION

In order to implement the cross instruction in hardware, we need to implement a Benes network at the circuit level.
An n-input Benes network has 2nlogn switch points, which is far less than the n? switch points for an n-input
crossbar network. It is both easier to control and more area-efficient than its crossbar counterpart. When executing
a cross,ml,m2 rd,rs,rc instruction, the control logic selects the two stages for the two basic operations based on
the value of m1 and m2. Because a Benes network has two of each butterfly stage, stages can always be selected for
all possible m1 and m2. We then use the right and left half of rc to configure the two stages selected and configure
all the other stages as pass-throughs. Next rs is put through the configured network, and we get the result rd.

5. PERFORMANCE COMPARISON WITH CURRENT METHODS

The number of instructions needed for permutations of a 64-bit word with different subword sizes are measured for
our method and the current methods to compare their performance.

5.1. Permutations of 1-bit, 2-bit and 4-bit Subwords

Our method can do arbitrary bit permutations of a 64-bit word with a maximum of log64 = 6 cross instructions.
For 2-bit subwords, at most log (64/2) = 5 instructions are needed and for 4-bit subwords, at most log (64/4) = 4
instructions are needed. The current implemented subword permutation instructions like mux, permute and vperm
apply to 8-bit and larger subwords. Hence, they are not able to perform permutations on smaller subwords efficiently,
even with the use of conventional shift and rotate instructions.
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5.2. Permutations of 8-bit, 16-bit and 32-bit Subwords

Our method can do arbitrary 8-bit subword permutations of a 64-bit word with at most log (64/8) = 3 cross in-
structions. The average number of instructions needed is 2.37, which is obtained by applying the basic optimization
mentioned in Section 3.5 and averaging over all 8-bit subword permutations. vperm is able to perform these permu-
tations using one instruction. mux can do five common fixed permutations for 8-bit subwords using one instruction,
but needs more than one instruction for arbitrary permutations. However, cross and vperm require an instruction
to load the configuration into a register, but mux does not.

Our method can do arbitrary 16-bit subword permutations of a 64-bit word with at most log (64/16) = 2 cross
instructions. The average number of instructions needed is 1.21. Both permute, mux and vperm are able to do these
permutations in one instruction.

Permuting 32-bit subwords is the trivial case of subword permutation that all methods can handle in one instruc-
tion.

Our use of the cross instruction provides a fast and scalable solution for the subword permutation problem, while
all of the current methods can only deal with a subset of the problem. We notice that for large subwords, our new
method does not perform as well as the current methods. However, this can be improved by using the optimization
that will be mentioned in Section 6.

6. FUTURE RESEARCH

There are several directions for future research. First, our solution only addresses the problem of subword permutation
without repetitions. We are looking to extend this method to handle permutations with repetitions. Second,
our solution requires a full Benes network at the circuit level. We are considering using other more area-efficient
interconnection networks in a separate paper. For permutations of large subwords, we can compress the configuration
bits and put them into one register because the configuration bits are the same for bits in the same subword. With this
in mind, we can perform these permutations using fewer instructions, but with the expense of additional variants of
the cross instructions. We also did not consider the instructions needed to load the configuration bits into registers,
based on the assumption that multiple executions of the same permutation would amortize the cost.

7. CONCLUSIONS

The proposed subword permutation instructions based on butterfly networks offer a satisfactory solution to the
general subword rearrangement problem that has not been solved. It provides a generalized and systematic method
for performing arbitrary subword permutations(without repetition) for all subword sizes. The maximum number of
instructions used in our method for permuting n subwords is logn, or 2logn if we consider loads for the configuration
registers. For existing solutions, although the minimum number of instructions needed for some permutations is 1,
the maximum number for an arbitrary permutation is not bounded by logn. Furthermore, these instructions cannot
be used to perform arbitrary permutations easily. Finally, our cross permutation instructions result in a more
area-efficient implementation than instructions requiring a full n x n crossbar implementation.
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