
0-7803-7724-9/03/$17.00 © 2003 IEEE 500

Adding 3D Graphics Support to PLX

Xiao Yang and Ruby Lee
Department of Electrical Engineering

Princeton University
{xiaoyang, rblee}@princeton.edu

Abstract�PLX is a compact, fully subword-parallel

instruction set architecture (ISA) for very fast multimedia
processing. This paper adds floating-point instructions to PLX
for 3D graphics processing, which is essential for applications
such as games and digital content creation. Based on an analysis
of the 3D graphics pipeline from an ISA point of view, we show
the operations and data types needed. We present the FP ISA
and demonstrate its use and performance with code examples
from the 3D graphics pipeline.

Keywords�processor architecture, instruction-set architecture
(ISA), floating-point, multimedia, 3D graphics

I. INTRODUCTION
Multimedia information processing is an important part of

the workload for today�s computing platforms, ranging from
high-end desktop workstations to low-end portable devices.
High-performance multimedia processing is one of the key
design goals for contemporary microprocessors. Common
operations for media processing are part of the core ISA of
processors instead of being merely ISA extensions, as in the
past. PLX [1], developed at Princeton University, is a fully
subword-parallel ISA designed specifically for very fast
multimedia processing. The initial release of PLX includes
only integer instructions targeting integer-based media
applications, such as image and video processing. In this
paper, we present the floating-point (FP) part of PLX designed
for fast 3D graphics processing.

3D graphics is dominant in areas such as gaming, digital
content creation, and simulation. Most 3D graphics
applications are built on top of standard 3D graphics libraries,
such as OpenGL [2] and Direct3D [3]. These libraries provide
a set of APIs for the applications to specify the composition of
the scenes and how they are to be rendered. Underlying these
libraries is a 3D graphics processing pipeline, which takes the
scene descriptions from the applications, processes them, and
draws them into 2D images to be displayed on a screen. The
performance of this 3D processing pipeline, which is floating-
point intensive, determines the performance of 3D
applications. The ultimate goal of 3D graphics processing is
to render photo-realistic scenes in real-time. Traditionally, the
operations of the 3D pipeline are handled either by general
purpose processors, with or without ISA extensions for 3D, or
by specialized graphics hardware. Both approaches have their
shortcomings. The general purpose processor approach lacks
high performance, while the specialized graphics hardware
approach is deficient in programmability. By adding 3D

graphics support to PLX, we can achieve higher performance
3D processing than general purpose processors with 3D
extensions. This processor ISA approach could also inform
the design of specialized 3D graphics processors, where
programmability is becoming increasingly important.

In Section 2, we survey past work on ISA for 3D graphics
processing. In Section 3, we investigate the operations of a
3D graphics pipeline and their characteristics. In Section 4,
we present our PLX floating-point ISA for 3D graphics
processing. In Section 5, we show code examples written with
the new instructions. Section 6 concludes the paper.

II. PAST WORK
In the early days of real-time 3D graphics processing, this

capability was only available on high-end systems with
expensive dedicated hardware, such as the SGI Reality Engine
system [4]. These systems employ a fixed function pipeline.
Since mid-1990s, graphics hardware gradually became
available to consumer desktops. However, these hardware
only handle basic drawing functions rather than the full
spectrum of the 3D pipeline. Since then, the development of
3D graphics processing has forked into two directions. One
direction adds basic operations for 3D graphics into general
purpose processor ISAs as extensions, such as SSE-2
extension to Intel x86 [5], AltiVec extension to PowerPC [6],
3DNow! in AMD x86 [7], and MIPS-3D extension to MIPS64
[8]. However, these processors are more targeted for
traditional workloads such as business and scientific
applications. IA-64 [9] is a big step forward in that it includes
instructions useful to 3D graphics from the beginning. The
other direction is to continue using a specialized graphics
processor while improving its functionality and speed. This
approach led to the migration of more of the 3D pipeline
operations from the CPU to the graphics processor, and
finally, to the implementation of the entire 3D processing
pipeline on a graphics processor. The first such product is the
GeFORCE 256 processor by nVIDIA [10]. Up until then, the
pipeline implemented was mostly fixed function with little
programmability restricted to some degree of configurability.
As high-quality, photo-realistic graphics becomes the center of
attention, many new algorithms have been developed, and
programmability becomes a key goal of 3D processor design.
The fixed-function pipeline model is gradually being
abandoned and ISA-like programmability is added. The
programmable shader [3] in Microsoft Direct3D is the latest
attempt. It defines a set of operations that can be used to
implement different algorithms. However, it does not
encompass the entire pipeline, and certain functionalities are This work was supported in part by a research gift from Hewlett-Packard

Laboratories.

501

still implemented by fixed-function hardware. More
operations are being added as more algorithms are devised.
The advantage of the specialized 3D processor approach is
higher performance compared with the general purpose
processor approach; the downside is limited general purpose
applicability. PLX with 3D graphics addresses the
shortcomings on both sides: higher performance than general-
purpose architectures with full programmability.

III. OPERATIONS OF A 3D GRAPHICS PIPELINE AND THEIR
CHARACTERISTICS

A 3D graphics pipeline is divided into two major phases:
geometry processing and rendering. The inputs to the
graphics pipeline are scene descriptions. The top level of
scene descriptions consists of objects, light sources, materials,
and textures. Each object is composed of primitives such as
points, lines, and polygons, where the most commonly used
primitives are triangles. A primitive is represented with a
collection of vertices. Each vertex is associated with a set of
properties, including coordinates (xyzw), normal (xyz),
material index, and multiple sets of texture coordinates (rstq),
most of which are FP quantities. Aside from the vertices, each
object is associated with a set of transform matrices to be
applied onto every vertex in that object. Light sources and
materials are also each associated with a set of properties
represented with FP or fixed point numbers. Textures are
essentially one, two or three dimensional tables referenced by
the texture coordinates. Each entry of the table contains a
color value (which can also be interpreted in other ways)
normally consisting of three (RGB) or four (RGBA) integer
numbers. Managing the scenes and deciding which objects
are to be shown are done by the applications. Processing and
drawing of the scenes are done by the 3D graphics pipeline.

The data flow of a typical 3D pipeline is shown in Figure
1. In the geometry processing phase, the vertices (coordinates
and normals) are first transformed to eye space and lit, then
transformed to clip space and assembled into triangles. The
triangles are clipped against the view frustum, and finally the
clipped triangles are transformed to the screen space. In the
rendering phase, the triangles from the previous stage are
rasterized into groups of pixels. During the rasterization step,
the parameters associated with the vertices of a triangle are
interpolated to obtain the parameters for each pixel in the
triangle. These parameters include screen coordinates, depth,
colors, texture coordinates, etc. The generated pixels then go
though texture mapping, fogging, a series of tests, and alpha
blending on a per-pixel basis. Finally the pixels are written to
the frame buffer and form the final output image.

Nowadays the implementation of the entire 3D pipeline is
being moved to FP, since error accumulation in integer
calculation can produce serious visual artifacts [11]. Single-
precision floating-point data representation is used in the 3D
graphics processing pipeline due to its large dynamic range
compared to fixed-point or integer data with the same number
of bits. In this paper, we do not focus on the algorithmic
aspects of the 3D pipeline, but rather its computational
characteristics and their implications for ISA design.
Therefore, we do not show the exact computations in 3D
graphics, since these can change with different algorithms;

rather we discuss the types of operations which are common
across different algorithms.

Transforms

Frame
Buffer

Coordinates

Normals

Materials

Matrices

Lights

Scene
management

Application

Display

Lighting Clipping

RasterizationTexture
Mapping

Per-pixel
Operations

Textures

Scene
Description

Geometry
Processing

RenderingZ Buffer,
etc.

Texture
Cache

vertex

triangle

pixel

Figure 1 3D processing pipeline

We classify the basic operations in a 3D pipeline into the
following categories. Data-parallel arithmetic operations
perform the same calculation on multiple sets of data in
parallel. Examples are parallel add, subtract, and multiply.
Most operations on coordinates, normals, and colors fall into
this category. A very common operation is the multiplication
of a 4×4 matrix with a 4-element vector. Scalar arithmetic
operations like add, subtract and multiply are used when
computing coefficients in lighting and rasterization.
Advanced math operations like reciprocal, reciprocal square
root, and exponentiation are needed at various precisions. For
example, computation of coordinates needs high precision in
order to avoid visual artifacts, while color calculation requires
lower accuracy. These operations are expensive to implement,
therefore carrying out each of them in full precision is not
necessary if lower precision is sufficient and less costly.
Compare and conditionally executed operations are
important in 3D graphics processing, although not very
common. During the clipping step, vertex coordinates of
vertices are compared to their bounding volume to check
whether clipping is needed. New algorithms also allow
vertices or pixels to be handled differently basing on their
values, where compare and conditional execution is necessary.
Conditional execution may be implemented with predicated
execution, which is available in PLX. Memory access
operations are intensive in the 3D graphics pipeline. They
are used to import data into the pipeline, output processed
triangles to the rendering phase, load textures, read and write
the depth buffer and the frame buffer. The data in these
accesses can be either FP or integer data. Data
rearrangement operations do not alter the values of data, but
rather change the order of data. They are convenient when
reordering of data is needed to facilitate parallel computation.
Data conversion operations are needed because when data
are imported into the pipeline, they are not always in FP
representation. For example, colors and textures are usually
of integer types. The final rendered image is also in integer
format. Therefore, proper data conversions need to be
performed in various places in the 3D processing pipeline to
convert integer to FP and vice versa.

502

IV. PLX FP INSTRUCTIONS FOR 3D GRAPHICS
The FP instructions of PLX are classified as follows:

FMAC instructions, FP compare instructions, FP math
approximation instructions, FP memory access instructions,
FP data rearrangement and data conversion instructions. All
instructions are 32 bits and the subword size is always 4 bytes,
to represent a 32-bit single-precision FP number. There are 32
FP registers. Register F0 is hardwired to 0.0 and register F1 is
hardwired to 1.0. Figure 2 shows the PLX FP datapath. The
FP ISA continues the word size scalability feature of PLX,
where the size of the registers can be 32, 64 or 128 bits,
denoted PLX-32, PLX-64 and PLX-128, respectively. PLX-
32 has no subword-parallelism, PLX-64 has two subwords in
each register, and PLX-128 has four. PLX-128 is the
preferred implementation, because the register size matches
the size of a 4-component FP vector, which is the most
commonly used data type in the 3D graphics pipeline.

FMAC
Math

approx
unit

Data
rearrangement

unit

Register

file

Figure 2 PLX FP datapath with three functional units: FMAC, math
approximation unit, and data rearrangement unit

A. FMAC instructions
The floating-point multiply-accumulate unit (FMAC) is

the basic functional unit in FP processing. It can perform FP
operations such as add, subtract, multiply and multiply-add.
All the instructions in this class generate full-precision results.
Table I shows the instructions and their descriptions. The
mnemonics of subword-parallel instructions start with a �p�.
For most subword-parallel instructions, the same operation is
performed on every corresponding set of subwords in the
registers, with the exception of pfscale instructions, where
the first operands are always the j-th subword in the first
source register. In pfdp instructions, the results are written
to the rightmost subword in the destination register.

There are also scalar versions of these instructions (not
shown), where only the rightmost subwords in each register
are used as operands. These instructions have the same
mnemonics as the subword-parallel instructions but without
the leading �p�. Notice that the scalar versions of pfscale
instructions and pfmul instructions are equivalent. Therefore
we only define fmul instructions for scalar operations. There
are also no scalar versions for pfdp instructions. Less
common instructions such as pfscale and pfdp
instructions are included due to their usefulness in vector
operations. pfscale and pfdp can be used to scale vectors
and to take the dot product of two vectors, respectively, both
of which are common in 3D graphics processing. pfscale
and pfdp can be implemented with slight modifications to
standard FMACs. pfabs instructions are useful in clipping.
pfmin and pfmax instructions are useful in pixel operations,
and are also easy to implement.

TABLE I. FMAC INSTRUCTIONS

Instruction Description Mnemonic
pfadd di=ai+bi pfadd
pfadd negate di=−(ai+bi) pfadd.neg
pfsubtract di=ai−bi pfsub
pfmultiply di=ai×bi pfmul
pfmultiply negate di=−ai×bi pfmul.neg
pfscale di=aj×bi pfscale,j
pfscale negate di=−aj×bi pfscale.neg,j
pfdotproduct d=∑ai×bi pfdp
pfdotproduct w/ satuation d=∑ai×bi, d≥0 pfdp.s
pfdotproduct negate d=−∑ai×bi pfdp.neg
pfdotproduct neg w/ sat d=−∑ai×bi, d≥0 pfdp.neg.s
pfabsolute di=|ai| pfabs
pfabsolute negate di=−|ai| pfabs.neg
pfmax di=max(ai, bi) pfmax
pfmin di=min(ai, bi) pfmin
pfmultiply-add di=ai×bi+ci pfmuladd
pfmultiply-add negate di=−(ai×bi+ci) pfmuladd.neg
pfmultiply-subract di=ai×bi−ci pfmulsub
pfmultiply-subract negate di=−(ai×bi−ci) pfmulsub.neg
pfscale-add di=aj×bi+ci pfscaleadd,j
pfscale-add negate di=−(aj×bi+ci) pfscaladd.neg,j
pfscale-subtract di=aj×bi−ci pfscalesub,j
pfscale-subtract negate di=−(aj×bi−ci) pfscalesub.neg,j

B. Compare instructions
Compare instructions are used to generate conditions for

later conditional executions. Compare instructions (see Table
II) can also be implemented with the FMAC functional unit.
Their definition parallels the integer compare instructions in
PLX. The relation rel in the fcompare instructions can be
any of eq(=), ne(≠), ge(≥), gt(>), le(≤), and lt(<).

TABLE II. FP COMPARE INSTRUCTIONS

Instruction Description Mnemonic
fcompare rel single Pd1=rel(a, b), Pd2=!Pd1 fcmp.rel
fcompare rel single pw1 if rel(a, b) = TRUE,

then Pd1=1, Pd2=0
fcmp.rel.pw1

Both fcompare instructions compare the rightmost
subwords in the two source registers and write complementary
results to a pair of predicate registers. The difference between
the two is that the pw1 version only updates predicates when
rel is true. This enables multiple compares to write to the
same pair of predicates in parallel. The destination predicate
registers should be preset before an fcmp.rel.pw1
instruction is executed.

Conditional execution is implemented with predicated
execution. Instructions guarded with a predicate that is true
will be executed, and nullified otherwise. Conditional
branches that are not eliminated by predicated execution are
done with predicated jump instructions.

C. FP math approximation instructions
Full-precision versions of mathematical functions such as

reciprocal, reciprocal square root, and exponentiation are very
slow and expensive to implement. As full-precision results
are normally not needed in 3D graphics processing,
approximations are used instead. These instructions are
defined in Table III.

503

TABLE III. FP MATH APPROXIMATION INSTRUCTIONS

Instruction Description Mnemonic
freciprocal approx d≈1/a frcpa
freciprocal sqrt approx d≈1/(a1/2) frcpsqrta
flog base 2 approx d≈log2a flog2a
fexp base 2 approx d≈2a fexp2a

These instructions operate on the rightmost subwords in
the source and destination registers. Exponentiation
calculation is decomposed into two instructions, flog2a and
fexp2a, because function ab is not convergent. The
decomposition is based on the equality ab=2b×log2a. All these
instructions generate partial-precision results only. The
accuracy in the results is greater than 8 bits. Higher-precision
to full-precision results can be obtained with the FMAC by
doing successive iterations based on the Newton-Raphson
method [12]. With these instructions, we can control the
accuracy and cost of the program. When lower precision is
sufficient, we use coarser but faster approximation. When
higher accuracy is required, we perform the slower high-
precision calculation.

D. Memory access instructions
Memory access operations include loads and stores. A full

register (or full word) is loaded or stored by each instruction
shown in Table IV.

TABLE IV. FP MEMORY ACCESS INSTRUCTIONS

Instruction Description Mnemonic
fload d=mem[a+im] fload
fload index d=mem[a+b] floadx
fload update d=mem[a+im], a=a+im fload.u
fload index update d=mem[a+b], a=a+b floadx.u
fstore mem[a+im]=d fstore
fstore index mem[a+b]=d fstorex
fstore update mem[a+im]=d, a=a+im fstore.u
fstore index update mem[a+b]=d, a=a+b fstorex.u

There are also scalar versions of these instructions (not
shown), where the data operand d is the rightmost subword in
the respective register. In the table, im stands for immediate
offset, b is register offset. We include both load/store word
instructions and load/store single FP number instructions for
flexibility. Since textures are mostly integer data, access to
textures can be handled with integer loads.

E. Data rearrangement and data conversion instructions
Data rearrangement is useful for changing the order of data

to make subsequent subword-parallel calculation easier. We
define two instructions for data rearrangement. The fmix
instruction is similar to the mix instruction defined in HP
MAX-2 [13] and IA-64 [9], used to rearrange even (or odd)
subwords from two registers into one register. Two variants,
fmix.l (for even) and fmix.r (for odd) are defined. This
instruction is very useful for matrix transposition. The
fpermute instruction is similar to the permute instruction
[13] and the mux instruction [9], used to obtain any
permutations of up to four subwords in one register.

Data conversion is required at several places in a 3D
graphics pipeline. We define six data conversion instructions,

converting from 32-bit floats to 32-bit, 16-bit or 8-bit integers,
and vice versa.

V. CODE EXAMPLES
We use 128-bit registers (PLX-128) in the examples

below, where each register can hold a 4-component vector.

A. 4×4 matrix transform
This operation transforms a 4-component vector V into

another vector V′ by multiplying it with a 4×4 matrix M:

wzywmzmymxmx

w
z
y
x

mmmm
mmmm
mmmm
mmmm

w
z
y
x

′′′+++=′

==

′
′
′
′

=′

 , ,for similarly 03020100

33323130

23222120

13121110

03020100

MVV

This operation forms the basis for coordinate and normal
transform. Assume V is a vertex with four components (xyzw)
stored in memory. The address of V is stored in integer
register R1. The four columns of matrix M are stored in
registers F10-F13. The transformed vertex V′ is stored in
register F3. The above operation can be implemented with the
following code:
 fload.u F2, R1, 16
 pfscale,0 F3, F2, F10
 pfscaleadd,1 F3, F2, F11, F3
 pfscaleadd,2 F3, F2, F12, F3
 pfscaleadd,3 F3, F2, F13, F3

The first instruction loads the vertex V into register F2 and

advances the address R1 to the next vertex, assuming vertices
are stored sequentially in memory in 16-byte chunks. The
next instruction multiplies the first column of matrix M by the
first component of vertex V, which is x, and stores the result
into register F3. The next three instructions multiply the
second, third, and fourth columns of M by y, z, and w
accordingly, and accumulate the results into F3. At the end,
the first subword in F3 contains m00x+m01y+m02z+m03w, which
matches the equation for x′ above. The results for y′, z′, and
w′ are similarly obtained in the other subwords of F3. This
example shows the use of pfscale(add) instructions. The
same routine on IA-64 takes 14 instructions, due to the fact
that the FP datapath in IA-64 is only 64 bits wide and it does
not have a pfscale(add) instruction. Even after factoring
in the datapath width advantage, PLX is still faster (5 versus
14/2=7 instructions).

B. Perspective division
Perspective division is needed for each vertex when a

triangle is rasterized. The first three components of the vertex
coordinates (xyz) are divided by the fourth (w). To get a low-
precision result, we only need to compute the reciprocal
approximation of w and multiply it with x, y, and z. Higher-
precision results can be obtained by progressively refining the
initial approximation. The �dirty method� by Markstein [12]
is one way to achieve sufficient precision for 3D graphics:

504

VVVVVV
VVV

VV

′+′+′=′′+′=′′′

′+′=′′
−=

=′
=

2

0.1

)(

qqq
q

twq
t

wt frcpa

The first two steps can be used to obtain the coarsest
approximation V′ (approximately 8 bits accuracy), and the last
two steps are the progressive refinements. The accuracy of
V ′′′ can satisfy the precision of single-precision FP numbers.
Assume F2 contains V=(xyzw), and V ′′′ is to be placed in F12,
we have:
 frcpa F3, F2
 pfscale,3 F10, F3, F2
 fmulsub.neg F4, F3, F2, F1
 pfscaleadd,3 F11, F4, F10, F10
 pfscaleadd,3 F12, F4, F11, F10

The first two instructions compute V′. If further precision

is required, we then use the third instruction to calculate q.
The last two instructions compute V″ and V ′′′ , accordingly.
This example shows the ability of PLX to make tradeoffs
between precision and cost. By comparison, IA-64 needs 11
instructions to get V ′′′ .

C. Calculation of spotlight factor in lighting
This calculation is needed when there are spotlights in the

scene. The actual computation performed is:

×=•

=
•=≥•

∑
=

3

0
0.0 ,min where

0.0 else
)(,)cos(if

i
ii BA

spot
spota e

BA

BABA

In the above equation, A is the normalized vector from the
light source to the vertex, B is the direction of the spot source,
e is the spotlight exponent, and a is the open angle of the
spotlight, cos(a) is a constant which has already been
calculated. The dot product of A and B is a saturated dot
product, in that no result is less than zero. Assume A, B, e,
and cos(a) are stored in registers F2-F5, accordingly. A and B
occupy whole registers, while e and cos(a) only use the
rightmost subwords. The result spot is to be placed in the
rightmost subword of register F10. Register F6 is used as a
temporary register.
 pfdp.s F6, F2, F3
 fcmp.ge F6, F5, P1, P2
 (P1)flog2a F6, F6
 (P1)fmul F6, F4, F6
 (P1)fexp2a F10, F6
 (P2)fsub F10, F0, F0

The pfdp.s instruction calculates the saturated dot product,
while the fcmp.ge instruction does the comparison and sets
the predicates. The next three instructions perform the
exponentiation operation if the comparison result is true. This
uses the formula ab=2b×log2a described earlier. The last
instruction sets spot to zero when the comparison is false.
Since this code is used in color calculation, we use the

approximation instructions for exponentiation without doing
further iterations to get more precision. This example
demonstrates the use of dot product, fast exponentiation
approximation, compare, and conditional execution. The
same routine on IA-64 would take tens of instructions because
IA-64 does not have flog2a, fexp2a, or pfdp
instructions.

VI. CONCLUSION
We have defined a set of PLX floating-point instructions

targeted for 3D graphics processing by extracting the common
operations in the 3D graphics pipeline. The pfscaleadd
instruction with subword-parallelism is an effective primitive
that allows very fast and efficient implementation of the 4×4
matrix transform, which is a fundamental operation in the 3D
graphics pipeline. The math approximation instructions can
obtain low-precision results with low cost. They can also be
used as the seed operations to get higher precision with
instructions such as fmulsub and pfscaleadd. The
predication mechanism for integer PLX can also be used on
the FP side for conditional execution in 3D graphics. PLX FP
achieves better performance than general purpose processors
with 3D extensions, as indicated by the examples. It also
offers a more flexible solution than the specialized graphics
processor approach since every stage in the 3D graphics
pipeline can be easily rewritten if an algorithm is updated.

VII. REFERENCES
[1] Ruby B. Lee and A. Murat Fiskiran, PLX: A Fully Subword-Parallel

Instruction Set Architecture for Fast Scalable Multimedia Processing,
Proceedings of the 2002 IEEE International Conference on Multimedia
and Expo (ICME 2002), pp. 117-120, August 2002.

[2] Mark Segal and Kurt Akeley, The OpenGL Graphics System: A
Specification (Version 1.4), 2002.

[3] Microsoft Corporation, DirectX 9.0 SDK Documentation,
http://www.microsoft.com/directx.

[4] Kurt Akeley, RealityEngine Graphics, Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques, pp. 109-
116, September 1993.

[5] Intel Corporation, Intel Architecture Software Developer�s manual,
2003.

[6] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, Hunter Scales,
�AltiVec Extension to PowerPC Accelerates Media Processing�, IEEE
Micro, 20(2):85-95, April 2000.

[7] Stuart Obeman, Greg Favor, Fred Weber, �AMD 3Dnow! Technology:
Architecture and Implementations�, IEEE Micro, Vol. 19(2):37-48,
April 1999.

[8] MIPS Technologies Inc., MIPS-3D ASE: 3D Graphics Application
Specific Extension, 2000.

[9] Intel Corporation, IA-64 Application Developer�s Architecture Guide,
May 1999.

[10] NVIDIA Corporation, GeFORCE 256: The World�s First GPU, 1999.
[11] NVIDIA Corporation, High-Precision Graphics: Studio-Quality Color

on the PC, 2002.
[12] Peter Markstein, IA-64 and Elementary Functions: Speed and Precision,

Prentice Hall, 2000.
[13] Ruby B. Lee, Subworld Parallelism with MAX-2, IEEE Micro,

16(4):51-59, August 1996.

