
PLX FP: An Efficient Floating-Point Instruction Set for 3D Graphics

Xiao Yang and Ruby B. Lee
Princeton Architecture Laboratory for Multimedia and Security (PALMS)

Princeton University
{xiaoyang, rblee}@princeton.edu

Abstract

3D graphics is an important component in the

workload of today�s computing platforms. Many ISA
extensions for 3D graphics have been proposed and
implemented. We describe PLX FP, a new floating-point
extension to the PLX architecture, designed to support
very efficiently the essential operations needed for the 3D
graphics pipeline. Very high performance floating-point
3D graphics processing is achieved, using a low-cost PLX
processor.

1. Introduction
The importance of multimedia processing on general-

purpose computing platforms has prompted processor
designers to add multimedia instructions to
microprocessor instruction set architectures (ISAs). These
include MAX-2 for the PA-RISC architecture [1], MMX,
SSE and SSE-2 for the Intel IA-32 architecture [2], and a
superset of these to the Itanium IA-64 architecture [3].
Although these multimedia instructions may be very
effective, they still incur the overhead of their base
microprocessor ISA. PLX [4] is a new ISA designed from
scratch for fast and efficient multimedia processing. Prior
work has demonstrated its effectiveness for integer media
applications [4].

This paper describes the new floating-point ISA for
PLX version 1.3, designed to enable support for very fast
3D graphics. With the proliferation of 3D games, it is
highly desirable to support fast 3D graphics with the same
media processor used for integer media types like images,
video and audio. Although 3D graphics has traditionally
been handled by separate graphics processors and boards,
this is often infeasible for handheld computers. PLX FP
provides a more economical solution for 3D graphics in
such cases.

2. Past work
Figure 1 shows a 3D graphics pipeline used to perform

3D graphics rendering, as defined for example, by the
OpenGL [5] standard. The 3D graphics pipeline is
implemented in many different ways. On some high-end
platforms like the SGI RealityEngine system [6], it is

implemented with specialized graphics rendering boards.
However, such dedicated hardware is expensive and not
flexible because it executes fixed functions. One
alternative is to use pure software running on general-
purpose processors, such as Mesa3D [7]. However, the
performance is very low because the processors are not
optimized for 3D graphics processing. The addition of 3D
graphics ISA extensions, such as SSE and SSE-2 [2], IA-
64 [3], AMD 3DNow! [8], AltiVec in PowerPC [9], and
recently, ARM VFP [10], partially alleviates the problem.
They boost the speed of certain 3D graphics operations
significantly, but the performance still falls short of that
demanded for real-time rendering.

transform lighting clipping triangle
setup

rasterization texture
mapping

per-pixel
operations

frame buffer

Geometry processing

Rendering
Figure 1: A simple 3D graphics pipeline

The common approach for desktop 3D graphics is to
use both software and hardware, where part of the pipeline
is executed in software, and the rest is done with a
dedicated graphics processor or board. Early generations
of the graphics boards only perform simple texture
mapping and drawing in the back-end of the graphics
pipeline, with the majority of the 3D operations performed
in software. The newer graphics processors, such as the
GeForce series by nVIDIA [11] and the Radeon series by
ATI [12], support more geometry processing operations at
the front-end of the 3D graphics pipeline with more FP
capability and increased programmability. This approach
provides good leverage of the host processor and the
graphics processor. However, the graphics processor
cannot be used for other tasks, and having a separate
graphics processor is not economical in constrained
environments like PDAs.

3. PLX FP ISA
PLX FP introduces 32 new FP registers F0-F31, with

register F0 hardwired to the value 0.0. Like the PLX
integer ISA, the PLX FP ISA is also datapath scalable and
fully subword-parallel [4]. Datapath scalability means that
the PLX floating-point registers and functional units can

0-7803-8603-5/04/$20.00 ©2004 IEEE.

be 32, 64 or 128 bits in a given PLX implementation. The
recommended datapath width is 128 bits, corresponding to
a 4-component FP vector, which is the most common data
type in 3D graphics. The FP datapath of PLX is
independently scalable from the integer datapath. For
example, a PLX implementation can have 64-bit integer
registers and 128-bit floating-point registers. Unlike the
integer ISA, PLX FP has only one subword size of 32 bits,
corresponding to a single-precision FP number. The
subwords in a register are numbered from right to left,
with the rightmost subword labeled 0.

There are six classes of floating-point instructions.
Subword-parallel FMAC instructions, shown in Table 1,
can be executed on the basic floating-point multiply-
accumulate (FMAC) functional unit. All these
instructions, except scale-related and pfdp
instructions, also have a scalar version in addition to the
subword-parallel version shown in the table, which
operates on the rightmost subwords of the operands.

Table 2 shows the FP approximation instructions.
These perform the mathematical functions with reduced
precision (8 or more bits) on the rightmost subword in the
source register, which is much faster than computing these
functions with full precision. This is very useful in many
3D graphics applications where speed is more important
than very accurate results. When more accuracy is
required, these instructions can also act as seeds for
iterative refinement methods such as the Newton-Raphson
method as shown in [13] to generate higher-precision
results.

FP data rearrangement instructions are shown in Table
3. fpermute provides a general way to re-order the
subwords within a single register, while fmix,
fextract, and fdeposit can reorganize subwords
from multiple registers.

Table 4 shows the FP compare instructions. The two
fcmp instructions compare the rightmost subwords in the
source operands and update a pair of predicates. The
pcmp instructions compare all pairs of subwords and
write all 1�s or 0�s to the respective subwords in the
destination register, depending on the outcomes of the
comparisons.

PLX FP also has data conversion instructions which
convert FP data to integers of various sizes and vice versa,
and FP load/store instructions which move data between
FP registers and memory. PLX FP also shares the branch
instructions already defined for integer PLX (PLX 1.0 to
1.2), thus eliminating the need for new branch
instructions.

4. Implementing 3D graphics kernels
We now demonstrate a few of the more unusual and

powerful instructions in PLX FP in implementing some of
the most important kernel operations in the 3D graphics

pipeline. Assume a processor with 128-bit FP registers
and single-issue instruction execution.

Table 1: FMAC instructions
Instruction Description Mnemonic

add di=ai+bi Pfadd

add negate di=−(ai+bi) pfadd.neg

subtract di=ai−bi pfsub

multiply di=ai×bi pfmul

multiply negate di=−ai×bi pfmul.neg

scale, j di=aj×bi pfscale,j

scale negate, j di=−aj×bi pfscale.neg,j

dot product d0=∑ai×bi pfdp

dot product w/ sat d0=∑ai×bi,
d≥0

pfdp.s

dot product negate d0=−∑ai×bi pfdp.neg

dot product neg w/ sat d0=−∑ai×bi, d≥0 pfdp.s.neg

absolute di=|ai| pfabs

absolute negate di=−|ai| pfabs.neg

max di=max(ai,bi) pfmax

min di=min(ai,bi) pfmin

multiply-add di=ai×bi+ci pfmuladd

multiply-add negate di=−(ai×bi+ci) pfmuladd.neg

multiply-subract di=ai×bi−ci pfmulsub

multiply-subract negate di=−(ai×bi−ci) pfmulsub.neg

scale-add, j di=aj×bi+ci pfscaleadd,j

scale-add negate, j di=−(aj×bi+ci) pfscaladd.neg,j

scale-subtract, j di=aj×bi−ci pfscalesub,j

scale-subtract negate, j di=−(aj×bi−ci) pfscalesub.neg,j

Table 2: FP math approximation instructions
Instruction Description Mnemonic

reciprocal approx d0≈1/a0 frcpa

reciprocal sqrt approx d0≈1/(a0
1/2) frcpsqrta

log base 2 approx d0≈log2a0 flog2a

exp base 2 approx d0≈2a
0 fexp2a

Table 3: FP data rearrangement instructions
Instruction Description Mnemonic

permute Any ii permutation of the i
subwords in 1 source reg

fpermute

mix {left, right} Interleave {odd, even}
subwords from 2 regs

fmix.l
fmix.r

extract, j do=aj fextract,j

deposit and zero, j dj=a0, di,i≠j=0 fdeposit.z,j

deposit and keep, j dj=a0 fdeposit.k,j

Table 4: FP compare instructions
Instruction Description Mnemonic

compare rel single Pd1=rel(a0,b0),
Pd2=!Pd1

fcmp.rel

compare rel single pw1 If rel(a0,b0)=TRUE,
then Pd1=1, Pd2=0

fcmp.rel.pw1

compare rel parallel if rel(ai,bi)=TRUE,
then ci=1, else ci=0

pfcmp.rel

4.1. 4×4 matrix-vector transform
4×4 matrix-vector transform, shown below, is used for

geometry transforms in the 3D graphics pipeline. This
operation is normally performed multiple times on each
vertex, making it one of the most frequently used
operations in the graphics pipeline:

. , ,for Similarly 03020100

33323130

23222120

13121110

03020100

wzywmzmymxmx

w
z
y
x

mmmm
mmmm
mmmm
mmmm

w
z
y
x

′′′+++=′

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′
′

=′ MVV

 Based on the following observation, the whole
operation can be done with 4 PLX FP instructions:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′
′

33

23

13

03

32

22

12

02

31

21

11

01

30

20

10

00

m
m
m
m

w

m
m
m
m

z

m
m
m
m

y

m
m
m
m

x

w
z
y
x

pfscale,3 F2, F1, F10
pfscaleadd,2 F2, F1, F11, F2
pfscaleadd,1 F2, F1, F12, F2
pfscaleadd,0 F2, F1, F13, F2

F1 contains the source vector, F2 holds the result, and
F10-F13 hold the four columns of the matrix. The
pfscale instruction computes the first term by
multiplying the first column of M by subword 3 in F1,
which is x. Each of the subsequent pfscaleadd
instructions computes one other term and accumulates the
result from the previous instruction. This causes data
dependencies between adjacent instructions. If the
instructions have multi-cycle latencies, then transforming
a vector takes more than four cycles. To solve this
problem, the transformation of several vectors can be
interleaved to achieve a very fast throughput of one vector
every four cycles.
4.2. Vector normalization

Vector normalization is an important operation since
several steps in lighting computations require normalized
direction vectors. This consists of a dot product, a
reciprocal square root and vector scaling, achievable with
just 3 PLX FP instructions:

222/

0

/

0

zyx
z
y
x

z
y
x

++

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′

=′ VVV

pfdot F3, F1, F1
frcpsqrta F3, F3
pfscale,0 F2, F3, F1

The pfdot multiplies corresponding subwords in the
two source registers and adds these, giving the dot
product. The frcpsqrta approximates the reciprocal
square root of the operand to more than 8 bits. This is

sufficient for color calculation where full precision is not
required, and avoids the long latency otherwise needed for
full precision.
4.3. Perspective division

In the 3D graphics pipeline, perspective division is
used to convert clip coordinates to normalized device
coordinates needed for rendering. This operation divides
each of the coordinates by w:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′
′

=′

1
/
/
/

/
wz
wy
wx

w

w
z
y
x

VV

The accuracy required of this operation varies with the
targeted display resolution. The following PLX FP code
demonstrates how the desired precision can be achieved:

frcpa F10, F1
pfscale,0 F2, F10, F1
fmulsub.neg F11, F3, F1, F12
pfscaleadd,0 F3, F11, F2, F2
pfscaleadd,0 F4, F11, F3, F2

This sequence of code implements the following [13]:

VVVVVV
VVV

VV

′+′+′=′′+′=′′′

′+′=′′
−=

=′
=≈

2

0.1

)(/1

qqq
q

twq
t

wwt frcpa

F1 contains the vector V and F12 contains the value
1.0. If low precision is sufficient, we only need the first
two instructions: frcpa gives an 8-bit approximation of
the reciprocal of w in F10, while pfscale,0 multiplies
the vector in F1 with this approximate value, yielding V′
in F2. When more precision is required, the third
instruction computes q and stores it in F11. With the last
two instructions, we can obtain the full-precision result
V″′ in F4. F3 and F4 contain progressive refinements of
the initial result in F2. Thus, a less accurate result is
achieved quickly, and more accurate results with more
cycles.
4.4. Cross-product of 3-component vectors

Cross product of two 3-component direction vectors is
necessary when doing backface culling and texture-space
lighting, etc. The operation is given below:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−
−

=×=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′

=′

00
1221

1221

1221

21 yxyx
xzxz
zyzy

z
y
x

VVV

To implement this, we can first use the fpermute
instruction to rearrange the components of vectors V1 and
V2, and then perform the multiplications and subtraction,
as shown below:

fpermute,2130 F4, F1

fpermute,1320 F5, F1
fpermute,2130 F6, F2
fpermute,1320 F7, F2
pfmul F8, F5, F6
pfmulsub F3, F4, F7, F8

F1 and F2 contain the source vectors (x1y1z10) and
(x2y2z20), respectively. fpermute rearranges the
subwords in the operand register according to the order
described by the subop field: the rightmost subword is
labelled 0 and the leftmost is labelled 3 in a 128-bit
register with four 32-bit subwords. For example, after the
first two fpermute instructions, F4 contains (y1z1x10)
and F5 contains (z1x1y10).
4.5. Exponentiation

Exponentiation d=ab is a key operation for doing
specular lighting and spot lighting. As for many other
operations in lighting, an exact result is not needed.
Normally, exponentiation is a very expensive operation;
we use approximation instructions in PLX FP to obtain an
approximate result quickly, using the equation ab=2blog

2
a.

The rightmost subwords of F1 and F2 have the values a
and b in the following:

flog2a F4, F1
fmul F5, F4, F2
fexp2a F3, F5

4.6. Performance with datapath scalability
Table 5 shows the instruction counts for the above

examples with different FP word sizes.

Table 5: Performance for different word sizes
 xform norm div cross exp
FP128 4 3 2 6 3
FP64 8 6 3 10 3
FP32 16 7 5 6 3
RISC32 28 13 41 9 >10

1. Using four full-precision division instructions taking ~17 cycles each.
RISC32 represents a typical RISC FP ISA with 32-bit

FP registers and no special instructions for 3D graphics
support. We use it as a baseline for comparison. Even our
smallest PLX FP implementation, FP32, offers significant
performance advantage over RISC32. In general, the
performance trend is FP128 > FP64 > FP32. In the
transform case where subword parallelism is the most
abundant, the performance scales linearly. In other cases,
where only one or three subwords are used per vertex, the
performance grows less than linearly. Cross product is an
extreme case: for FP32, neither data rearrangement nor
under-utilization of subword parallelism occurs. For
FP128, data rearrangement is done per register. FP64 is
the most inefficient because data rearrangement needs to
be done across registers.

5. Comparison with other FP extensions
Table 6 briefly summarizes the feature set of PLX FP

and notes whether these features are present in other FP

ISA extensions for 3D graphics (see Section 2). PLX FP
provides advanced features others do not.

Table 6: Feature set of PLX FP
Subword-parallelism All except ARM VFP
Datapath scalability PLX FP
Vector scaling, dot product PLX FP
Approximation instructions PLX FP, AltiVec, 3DNow!, IA-641
Permutation within a register PLX FP, AltiVec, IA642
Predicated execution PLX FP, IA-64
1. 3D Now! and IA-64 have reciprocal and reciprocal square root
approximations only.
2. IA-64 can swap two 32-bit FP subwords in one register.

6. Conclusions
3D graphics is increasingly popular, creating a demand

for floating-point processing with characteristics different
from scientific floating-point processing. Our proposed
PLX FP instruction set addresses the need for economical
yet high-performance 3D graphics. The PLX datapath
scalability feature allows a range of performance and cost
targets. PLX FP�s rich feature set makes it a highly
versatile and effective ISA for 3D graphics.

7. References
[1] R. B. Lee, �Subworld Parallelism with MAX-2�, IEEE

Micro, 16(4):51-59, August 1996.
[2] Intel Corporation, Intel Architecture Software Developer�s

manual, 2003.
[3] Intel Corporation, IA-64 Application Developer�s

Architecture Guide, May 1999.
[4] R. B. Lee and A. M. Fiskiran, �PLX: A Fully Subword-

Parallel Instruction Set Architecture for Fast Scalable
Multimedia Processing�, Proceedings of the 2002 IEEE
International Conference on Multimedia and Expo (ICME
2002), pp. 117-120, August 2002.

[5] M. Segal and K. Akeley, The OpenGL Graphics System: A
Specification (Version 1.4), 2002.

[6] K. Akeley, �RealityEngine Graphics�, Proceedings of the
20th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 109-116, September 1993.

[7] B. Paul, Mesa 3D project, http://www.mesa3d.org.
[8] S. Obeman, G. Favor, and F. Weber, �AMD 3Dnow!

Technology: Architecture and Implementations�, IEEE
Micro, Vol. 19(2):37-48, April 1999.

[9] K. Diefendorff, P. Dubey, R. Hochsprung, H. Scales,
�AltiVec Extension to PowerPC accelerates Media
Processing�, IEEE Micro, 20(2):85-95, April 2000.

[10] D. R. Lutz and C. N. Hinds, �Accelerating Floating-Point
3D graphics for Vector Microprocessors�, Proceedings of
the Asilomar Conference on Signals, Systems, and
Computers, November 2003.

[11] nVIDIA Corporation, GeForce family of graphics
processors, http://www.nvidia.com

[12] ATI Technologies Inc., Radeon family of graphics
processors, http://www.ati.com

[13] P. Markstein, IA-64 and Elementary Functions: Speed and
Precision, Prentice Hall, 2000.

