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Abstract 

 
3D graphics is an important component in the 

workload of today�s computing platforms. Many ISA 
extensions for 3D graphics have been proposed and 
implemented. We describe PLX FP, a new floating-point 
extension to the PLX architecture, designed to support 
very efficiently the essential operations needed for the 3D 
graphics pipeline. Very high performance floating-point 
3D graphics processing is achieved, using a low-cost PLX 
processor. 
 

1. Introduction 
The importance of multimedia processing on general-

purpose computing platforms has prompted processor 
designers to add multimedia instructions to 
microprocessor instruction set architectures (ISAs). These 
include MAX-2 for the PA-RISC architecture [1], MMX, 
SSE and SSE-2 for the Intel IA-32 architecture [2], and a 
superset of these to the Itanium IA-64 architecture [3]. 
Although these multimedia instructions may be very 
effective, they still incur the overhead of their base 
microprocessor ISA. PLX [4] is a new ISA designed from 
scratch for fast and efficient multimedia processing. Prior 
work has demonstrated its effectiveness for integer media 
applications [4].  

This paper describes the new floating-point ISA for 
PLX version 1.3, designed to enable support for very fast 
3D graphics. With the proliferation of 3D games, it is 
highly desirable to support fast 3D graphics with the same 
media processor used for integer media types like images, 
video and audio. Although 3D graphics has traditionally 
been handled by separate graphics processors and boards, 
this is often infeasible for handheld computers. PLX FP 
provides a more economical solution for 3D graphics in 
such cases. 

2. Past work 
Figure 1 shows a 3D graphics pipeline used to perform 

3D graphics rendering, as defined for example, by the 
OpenGL [5] standard. The 3D graphics pipeline is 
implemented in many different ways. On some high-end 
platforms like the SGI RealityEngine system [6], it is 

implemented with specialized graphics rendering boards. 
However, such dedicated hardware is expensive and not 
flexible because it executes fixed functions. One 
alternative is to use pure software running on general-
purpose processors, such as Mesa3D [7]. However, the 
performance is very low because the processors are not 
optimized for 3D graphics processing. The addition of 3D 
graphics ISA extensions, such as SSE and SSE-2 [2], IA-
64 [3], AMD 3DNow! [8], AltiVec in PowerPC [9], and 
recently, ARM VFP [10], partially alleviates the problem. 
They boost the speed of certain 3D graphics operations 
significantly, but the performance still falls short of that 
demanded for real-time rendering.  
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Figure 1: A simple 3D graphics pipeline 

The common approach for desktop 3D graphics is to 
use both software and hardware, where part of the pipeline 
is executed in software, and the rest is done with a 
dedicated graphics processor or board. Early generations 
of the graphics boards only perform simple texture 
mapping and drawing in the back-end of the graphics 
pipeline, with the majority of the 3D operations performed 
in software. The newer graphics processors, such as the 
GeForce series by nVIDIA [11] and the Radeon series by 
ATI [12], support more geometry processing operations at 
the front-end of the 3D graphics pipeline with more FP 
capability and increased programmability. This approach 
provides good leverage of the host processor and the 
graphics processor. However, the graphics processor 
cannot be used for other tasks, and having a separate 
graphics processor is not economical in constrained 
environments like PDAs. 

3. PLX FP ISA 
PLX FP introduces 32 new FP registers F0-F31, with 

register F0 hardwired to the value 0.0. Like the PLX 
integer ISA, the PLX FP ISA is also datapath scalable and 
fully subword-parallel [4]. Datapath scalability means that 
the PLX floating-point registers and functional units can 
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be 32, 64 or 128 bits in a given PLX implementation. The 
recommended datapath width is 128 bits, corresponding to 
a 4-component FP vector, which is the most common data 
type in 3D graphics. The FP datapath of PLX is 
independently scalable from the integer datapath. For 
example, a PLX implementation can have 64-bit integer 
registers and 128-bit floating-point registers. Unlike the 
integer ISA, PLX FP has only one subword size of 32 bits, 
corresponding to a single-precision FP number. The 
subwords in a register are numbered from right to left, 
with the rightmost subword labeled 0. 

There are six classes of floating-point instructions. 
Subword-parallel FMAC instructions, shown in Table 1, 
can be executed on the basic floating-point multiply-
accumulate (FMAC) functional unit. All these 
instructions, except scale-related and pfdp 
instructions, also have a scalar version in addition to the 
subword-parallel version shown in the table, which 
operates on the rightmost subwords of the operands.  

Table 2 shows the FP approximation instructions. 
These perform the mathematical functions with reduced 
precision (8 or more bits) on the rightmost subword in the 
source register, which is much faster than computing these 
functions with full precision. This is very useful in many 
3D graphics applications where speed is more important 
than very accurate results. When more accuracy is 
required, these instructions can also act as seeds for 
iterative refinement methods such as the Newton-Raphson 
method as shown in [13] to generate higher-precision 
results.  

FP data rearrangement instructions are shown in Table 
3. fpermute provides a general way to re-order the 
subwords within a single register, while fmix, 
fextract, and fdeposit can reorganize subwords 
from multiple registers.  

Table 4 shows the FP compare instructions. The two 
fcmp instructions compare the rightmost subwords in the 
source operands and update a pair of predicates. The 
pcmp instructions compare all pairs of subwords and 
write all 1�s or 0�s to the respective subwords in the 
destination register, depending on the outcomes of the 
comparisons. 

PLX FP also has data conversion instructions which 
convert FP data to integers of various sizes and vice versa, 
and FP load/store instructions which move data between 
FP registers and memory. PLX FP also shares the branch 
instructions already defined for integer PLX (PLX 1.0 to 
1.2), thus eliminating the need for new branch 
instructions. 

4. Implementing 3D graphics kernels 
We now demonstrate a few of the more unusual and 

powerful instructions in PLX FP in implementing some of 
the most important kernel operations in the 3D graphics 

pipeline. Assume a processor with 128-bit FP registers 
and single-issue instruction execution. 

Table 1: FMAC instructions 
Instruction Description Mnemonic 

add di=ai+bi Pfadd 

add negate di=−(ai+bi) pfadd.neg 

subtract di=ai−bi pfsub 

multiply  di=ai×bi pfmul 

multiply negate di=−ai×bi pfmul.neg 

scale, j di=aj×bi pfscale,j 

scale negate, j di=−aj×bi pfscale.neg,j 

dot product d0=∑ai×bi pfdp 

dot product w/ sat d0=∑ai×bi, 
d≥0 

pfdp.s 

dot product negate d0=−∑ai×bi pfdp.neg 

dot product neg w/ sat d0=−∑ai×bi, d≥0 pfdp.s.neg 

absolute di=|ai| pfabs 

absolute negate di=−|ai| pfabs.neg 

max di=max(ai,bi) pfmax 

min di=min(ai,bi) pfmin 

multiply-add di=ai×bi+ci pfmuladd 

multiply-add negate di=−(ai×bi+ci) pfmuladd.neg 

multiply-subract di=ai×bi−ci pfmulsub 

multiply-subract negate di=−(ai×bi−ci) pfmulsub.neg 

scale-add, j di=aj×bi+ci pfscaleadd,j 

scale-add negate, j di=−(aj×bi+ci) pfscaladd.neg,j 

scale-subtract, j di=aj×bi−ci  pfscalesub,j 

scale-subtract negate, j di=−(aj×bi−ci) pfscalesub.neg,j 

Table 2: FP math approximation instructions 
Instruction Description Mnemonic 

reciprocal approx d0≈1/a0 frcpa 

reciprocal sqrt approx d0≈1/(a0
1/2) frcpsqrta 

log base 2 approx d0≈log2a0 flog2a 

exp base 2 approx d0≈2a
0 fexp2a 

Table 3: FP data rearrangement instructions 
Instruction Description Mnemonic 

permute Any ii permutation of the i  
subwords in 1 source reg 

fpermute 

mix {left, right} Interleave {odd, even} 
subwords from 2 regs 

fmix.l 
fmix.r 

extract, j do=aj fextract,j 

deposit and zero, j dj=a0, di,i≠j=0 fdeposit.z,j 

deposit and keep, j dj=a0 fdeposit.k,j 

Table 4: FP compare instructions 
Instruction Description Mnemonic 

compare rel single Pd1=rel(a0,b0), 
Pd2=!Pd1 

fcmp.rel 

compare rel single pw1 If rel(a0,b0)=TRUE,  
then Pd1=1, Pd2=0 

fcmp.rel.pw1 

compare rel parallel if rel(ai,bi)=TRUE,  
then ci=1, else ci=0 

pfcmp.rel 



4.1. 4×4 matrix-vector transform 
4×4 matrix-vector transform, shown below, is used for 

geometry transforms in the 3D graphics pipeline. This 
operation is normally performed multiple times on each 
vertex, making it one of the most frequently used 
operations in the graphics pipeline: 
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 Based on the following observation, the whole 
operation can be done with 4 PLX FP instructions: 
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pfscale,3 F2, F1, F10 
pfscaleadd,2 F2, F1, F11, F2 
pfscaleadd,1 F2, F1, F12, F2 
pfscaleadd,0 F2, F1, F13, F2 

F1 contains the source vector, F2 holds the result, and 
F10-F13 hold the four columns of the matrix. The 
pfscale instruction computes the first term by 
multiplying the first column of M by subword 3 in F1, 
which is x. Each of the subsequent pfscaleadd 
instructions computes one other term and accumulates the 
result from the previous instruction. This causes data 
dependencies between adjacent instructions. If the 
instructions have multi-cycle latencies, then transforming 
a vector takes more than four cycles. To solve this 
problem, the transformation of several vectors can be 
interleaved to achieve a very fast throughput of one vector 
every four cycles. 
4.2. Vector normalization 

Vector normalization is an important operation since 
several steps in lighting computations require normalized 
direction vectors. This consists of a dot product, a 
reciprocal square root and vector scaling, achievable with 
just 3 PLX FP instructions: 
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pfdot  F3, F1, F1 
frcpsqrta F3, F3 
pfscale,0 F2, F3, F1 

The pfdot multiplies corresponding subwords in the 
two source registers and adds these, giving the dot 
product. The frcpsqrta approximates the reciprocal 
square root of the operand to more than 8 bits. This is 

sufficient for color calculation where full precision is not 
required, and avoids the long latency otherwise needed for 
full precision.  
4.3. Perspective division 

In the 3D graphics pipeline, perspective division is 
used to convert clip coordinates to normalized device 
coordinates needed for rendering. This operation divides 
each of the coordinates by w: 
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The accuracy required of this operation varies with the 
targeted display resolution. The following PLX FP code 
demonstrates how the desired precision can be achieved: 

frcpa  F10, F1 
pfscale,0 F2, F10, F1 
fmulsub.neg F11, F3, F1, F12 
pfscaleadd,0 F3, F11, F2, F2 
pfscaleadd,0 F4, F11, F3, F2 

This sequence of code implements the following [13]: 
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F1 contains the vector V and F12 contains the value 
1.0. If low precision is sufficient, we only need the first 
two instructions: frcpa gives an 8-bit approximation of 
the reciprocal of w in F10, while pfscale,0 multiplies 
the vector in F1 with this approximate value, yielding V′ 
in F2. When more precision is required, the third 
instruction computes q and stores it in F11. With the last 
two instructions, we can obtain the full-precision result 
V″′ in F4. F3 and F4 contain progressive refinements of 
the initial result in F2. Thus, a less accurate result is 
achieved quickly, and more accurate results with more 
cycles. 
4.4.  Cross-product of 3-component vectors 

Cross product of two 3-component direction vectors is 
necessary when doing backface culling and texture-space 
lighting, etc. The operation is given below: 
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To implement this, we can first use the fpermute 
instruction to rearrange the components of vectors V1 and 
V2, and then perform the multiplications and subtraction, 
as shown below: 

fpermute,2130 F4, F1 



fpermute,1320 F5, F1 
fpermute,2130 F6, F2 
fpermute,1320 F7, F2 
pfmul  F8, F5, F6 
pfmulsub  F3, F4, F7, F8 

F1 and F2 contain the source vectors (x1y1z10) and 
(x2y2z20), respectively. fpermute rearranges the 
subwords in the operand register according to the order 
described by the subop field: the rightmost subword is 
labelled 0 and the leftmost is labelled 3 in a 128-bit 
register with four 32-bit subwords. For example, after the 
first two fpermute instructions, F4 contains (y1z1x10) 
and F5 contains (z1x1y10). 
4.5. Exponentiation 

Exponentiation d=ab is a key operation for doing 
specular lighting and spot lighting. As for many other 
operations in lighting, an exact result is not needed. 
Normally, exponentiation is a very expensive operation; 
we use approximation instructions in PLX FP to obtain an 
approximate result quickly, using the equation ab=2blog

2
a. 

The rightmost subwords of F1 and F2 have the values a 
and b in the following: 

flog2a F4, F1 
fmul F5, F4, F2 
fexp2a F3, F5 

4.6. Performance with datapath scalability 
Table 5 shows the instruction counts for the above 

examples with different FP word sizes. 

Table 5: Performance for different word sizes 
 xform norm div cross exp 
FP128 4 3 2 6 3 
FP64 8 6 3 10 3 
FP32 16 7 5 6 3 
RISC32 28 13 41 9 >10 

1. Using four full-precision division instructions taking ~17 cycles each. 
RISC32 represents a typical RISC FP ISA with 32-bit 

FP registers and no special instructions for 3D graphics 
support. We use it as a baseline for comparison. Even our 
smallest PLX FP implementation, FP32, offers significant 
performance advantage over RISC32. In general, the 
performance trend is FP128 > FP64 > FP32. In the 
transform case where subword parallelism is the most 
abundant, the performance scales linearly. In other cases, 
where only one or three subwords are used per vertex, the 
performance grows less than linearly. Cross product is an 
extreme case: for FP32, neither data rearrangement nor 
under-utilization of subword parallelism occurs. For 
FP128, data rearrangement is done per register. FP64 is 
the most inefficient because data rearrangement needs to 
be done across registers. 

5. Comparison with other FP extensions 
Table 6 briefly summarizes the feature set of PLX FP 

and notes whether these features are present in other FP 

ISA extensions for 3D graphics (see Section 2). PLX FP 
provides advanced features others do not. 

Table 6: Feature set of PLX FP 
Subword-parallelism All except ARM VFP 
Datapath scalability PLX FP 
Vector scaling, dot product PLX FP 
Approximation instructions PLX FP, AltiVec, 3DNow!, IA-641 
Permutation within a register PLX FP, AltiVec, IA642 
Predicated execution PLX FP, IA-64 
1. 3D Now! and IA-64 have reciprocal and reciprocal square root 
approximations only. 
2. IA-64 can swap two 32-bit FP subwords in one register. 

6. Conclusions 
3D graphics is increasingly popular, creating a demand 

for floating-point processing with characteristics different 
from scientific floating-point processing. Our proposed 
PLX FP instruction set addresses the need for economical 
yet high-performance 3D graphics. The PLX datapath 
scalability feature allows a range of performance and cost 
targets. PLX FP�s rich feature set makes it a highly 
versatile and effective ISA for 3D graphics. 
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