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MONITORING AND ATTESTATION OF
VIRTUAL MACHINE SECURITY HEALTH

IN CLOUD COMPUTING
.................................................................................................................................................................................................................

CLOUD CUSTOMERS NEED ASSURANCES REGARDING THE SECURITY OF THEIR VIRTUAL

MACHINES OPERATING WITHIN AN INFRASTRUCTURE-AS-A-SERVICE CLOUD SYSTEM. THIS

ARTICLE PRESENTS AN ARCHITECTURE THAT CAN MONITOR A VIRTUAL MACHINE’S

SECURITY HEALTH AND COMMUNICATE THIS TO THE CUSTOMER IN AN UNFORGEABLE

MANNER. THE AUTHORS DEMONSTRATE A CONCRETE IMPLEMENTATION OF PROPERTY-

BASED ATTESTATION AND A FULL PROTOTYPE BASED ON THE OPENSTACK OPEN SOURCE

CLOUD SOFTWARE.

......In an infrastructure-as-a-service
cloud, a customer can request to launch a vir-
tual machine (VM) in the cloud system. The
cloud provider places the VM in a virtualized
cloud server and allocates a specified amount of
physical resources (for example, processors,
memory, disk, and networking) to this VM.
Previous research has suggested a security-on-
demand service model, in which secure com-
puting platforms are dynamically provisioned
to customers according to their specific security
needs.1 During the VM’s lifetime, the customer
would like to know if the VM has good secur-
ity health. A healthy VM satisfies the security
properties (for example, confidentiality, integ-
rity, availability, or auditability) the customer
requested for his or her leased VM. A VM’s
security health should take into account attacks
from within the VM (such as malware or guest
OS root kits), as well as those from other coresi-
dent VMs on the same server. Past research has

shown that bad neighbor VMs can steal critical
information through side-channel attacks,2,3

thus compromising the VM’s confidentiality
health. Resource contention between different
VMs on the same server motivates malicious
VMs to perform resource-freeing attacks,4 thus
compromising the victim VM’s availability
health. Large cloud management software,
including the hypervisor, will also have bugs5

that can be exploited to compromise a VM’s
security health. Thus, a VM’s security health
depends on not only the activities inside the
VM, but also on the VM’s interactions with its
environment.

Monitoring the VMs’ security health poses
a series of challenges in a cloud system. First,
the customer’s desired security requirements
are expressed in high-level terms for his or her
VM, but the security measurements usually
involve low-level measurements of the physi-
cal server, hypervisor, and other entities related
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to this VM. This creates a semantic gap
between what the customer wants to monitor
and the type of measurements that can be col-
lected. Second, the VMs go through different
life-cycle stages and can migrate to different
host servers. A seamless monitoring mecha-
nism throughout the VMs’ lifetime is there-
fore highly desirable. Third, there are
numerous entities between the customer and
the VM. It is important to collect, filter, and
interpret the measured information securely
to attest—that is, pass on to the customer in
an unforgeable way—only the requested
information.

Traditional binary attestation based on the
Trusted Platform Module (TPM) lets remote
customers verify the start-up integrity of the
attested platform and establish a chain of trust
from the bootloader to applications for meas-
ured boot up.6–8 The VM will then execute
on these verified trusted components. Some
research introduced a privileged trusted party
to perform integrity and configuration attesta-
tion for customers.9,10 However, a VM’s
security health can also be affected by
untrusted components (such as colocated
VMs) outside of the trusted domains at run-
time. The traditional attestation cannot verify
if these colocated VMs will conduct runtime
attacks (such as side-channel, covert-channel,
or denial-of-service attacks) and compromise
the monitored VM’s security health (for exam-
ple, its confidentiality, availability, and integ-
rity). Past work proposed the concept of
property-based attestation to attest different
properties, functions, and behaviors of the sys-
tem.11 However, the specification and imple-
mentation of properties to be measured and
attested remain challenging open problems.

We designed a flexible architecture called
CloudMonatt to monitor the security health
of customers’ VMs within a cloud system.
CloudMonatt is built on the property-based
attestation model, and it provides several
novel features. First, it defines VM security
health for several different security properties
and provides a framework for monitoring
different aspects of security health. Second, it
shows how to interpret and map actual col-
lected measurements to security properties
that can be understood by the customer.
These features bridge the semantic gap
between requested VM properties and the

platform measurements for security health.
Third, to the best of our knowledge, this is
the first concrete realization of property-
based attestation for a VM. Finally, Cloud-
Monatt provides remediation response strat-
egies based on the monitored results.

Architecture
Figure 1a shows an overview of the Cloud-
Monatt architecture, which includes four
entities: the cloud customer, cloud controller,
attestation server, and cloud servers. We
assume that the cloud controller and attesta-
tion server are trusted—that is, they are cor-
rectly implemented, with secure boot up, and
are protected during runtime. These servers
can be redundancy-protected for reliability
and security, and they are only a small per-
cent of all the servers in the cloud’s datacen-
ter. However, the numerous cloud servers
need not be trusted, except for the trust mod-
ule and monitor module in each server.

Cloud Customer
The customer is the system’s initiator and
end-verifier. He or she places a request for
leasing VMs with specific resource and secur-
ity requirements to the cloud controller.
CloudMonatt gives customers two modes of
operation: one-time attestation, in which the
customer can request an attestation at any
time during the VM life cycle, and periodic
attestation, in which the customer can ask for
periodic attestations with a prespecified or
random frequency.

Cloud Controller
The cloud controller acts as the cloud manager
and is responsible for taking VM requests and
servicing them for each customer. The policy
validation module in the controller selects
qualified servers for customers’ requested
VMs. These servers need to both satisfy the
VMs’ demanded physical resources and sup-
port the requested security properties and their
property monitoring services. The deployment
module allocates each VM on the selected
server.

During the VMs’ life cycle, customers can
request the cloud controller to monitor the
security properties associated with their
VMs. The cloud controller will entrust the
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attestation server to collect the monitored
security measurements from the correct VMs
and send a report back to it. It then sends the
attestation results back to the customers to
keep them informed of the VMs’ security
health. When these results reveal potential
vulnerabilities for the VMs, the response
module in the controller carries out appropri-
ate remediation responses.

One such response, for example, is termi-
nation—the cloud controller can shut down
the VM to protect it from attacks. Another
possible response is suspension—the control-
ler can temporarily suspend the VM when it

detects that the platform’s security health
might be questionable. Meanwhile, it can ini-
tiate further checking and also continue to
attest the platform. If the attestation results
show the cloud server has returned to the
desired security health, the controller can
resume the VM from the saved state. And
finally, another response is migration, which
occurs when the current server’s security
health is questionable or the server has been
compromised. In this case, the controller tries
to find another secure cloud server that can
satisfy the VM’s security property require-
ments. The VM is suspended until a suitable
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server is found, then the controller migrates
the VM to that server.

Attestation Server
The attestation server acts as the attestation
requester and appraiser and comprises two
essential modules. The property interpreta-
tion module validates measurements, inter-
prets properties, and makes attestation
decisions. It obtains a list of measurements
that can indicate the security health with
respect to the specified property. It needs a
certificate from a privacy certificate authority
(PCA) to authenticate cloud servers. The
PCA could be a separate trusted server
already used by the cloud provider for stand-
ard certification of public-key certificates that
bind a public key to a given machine. The
second essential module is the property certif-
ication module, which issues an attestation
certificate for the properties monitored.
There can be different attestation servers for
different clusters of cloud servers, enabling
the CloudMonatt architecture’s scalability.

We introduce the attestation server for
security monitoring and attestation, whereas
the cloud controller is responsible for man-
agement. This job split achieves better scal-
ability, because attestation servers can be
added to handle more cloud servers. It con-
solidates property interpretation in the attes-
tation servers, rather than replicating this in
each cloud server or burdening the cloud
controller. This also achieves better separa-
tion-of-duties security, because the cloud
controller needs only to focus on cloud man-
agement while the attestation server focuses
on security. It also improves performance by
preventing a bottleneck at the cloud control-
ler if it had to handle management as well as
myriad attestation requests and security
property interpretations.

Cloud Server
The cloud server is the computer that runs the
VMs in question. It is the system’s attester,
and it provides measurements for different
security properties. Figure 1b shows the struc-
ture of a cloud server with a Type-I hypervisor
(for example, Xen). This has the hypervisor
sitting on bare metal and a privileged VM
called the host VM (or Dom0) running over
the hypervisor. To support CloudMonatt’s

goals, a cloud server must include a monitor
module and a trust module.

The monitor module contains different
types of monitors to provide comprehensive
and rich security measurements. These moni-
tors can be software modules or existing
hardware mechanisms such as a performance
monitor unit or the TPM chip. For example,
the performance monitor unit (present ubiq-
uitously in Intel x86 and ARM processors)
has numerous hardware performance coun-
ters to collect runtime measurements of the
VMs’ activities. An integrity measurement
unit (which could use a TPM chip) can
measure accumulated hashes of the system’s
code and static data configuration. In the
hypervisor, a VM introspection tool can col-
lect the information inside the specified VM,
and the virtual machine monitor (VMM)
profile tool can be used to collect dynamic
information about each VM’s activities.

We define a new hardware trust module
in Figure 1b. This trust module is responsible
for server authentication using its identity
key, crypto operations using the crypto
engine, key generation and random number
generation, and secure measurement storage
using the trust evidence registers. By using
new hardware registers to store the security
health measurements (trust evidence), we do
not need to include the main DRAM mem-
ory in our trusted computing base, although
we also could use trusted RAM instead of
trust evidence registers in the trust module.

Figure 1b also shows the functional steps
taken by the monitor module and the trust
module. The cloud server includes an attesta-
tion client in the host VM that takes requests
from the attestation server to collect a set of
measurements (step 1 in the figure). It
invokes the monitor module to collect the
measurements (step 2) and the trust module
to generate a new attestation key for this
attestation session (step 3). This new attesta-
tion key is signed by the trust module’s pri-
vate identity key. The required measurements
of suspicious events or evidence of trustwor-
thy operation are then collected from the
monitor module (step 4) and stored into new
trust evidence registers (step 5). The trust
module then invokes its crypto engine to sign
these measurements (step 6) and forwards
the data to the attestation client (step 7),
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which sends it to the attestation server (step
8). The trust module contains a key generator
and a random number generator for generat-
ing keys and nonces (that is, random num-
bers that can be used only once).

Monitoring and Attestation Protocols
An adversary who has full control of the net-
work between different servers can eavesdrop
or falsify the attestation messages to make the
customer receive a forged attestation report
without detecting anything suspicious. So,
secure communications are required among
the four entities in Figure 1a. CloudMonatt
expects the cloud controller, attestation
server, and secure cloud servers to have long-
term public–private key pairs for identifica-
tion. Then, the entities in CloudMonatt talk
with each other using SSL protocols. Nonces
are used to prevent replay attacks. Our pre-
vious work offers more details about the
protocols.12

Case Studies
CloudMonatt can support traditional TPM-
based integrity attestation,6 as well as attesta-
tions of various other properties.

Integrity
When customers launch VMs in CloudMo-
natt, they might want to check the integrity
of both the host platform and the VM image.
CloudMonatt will check the VM start-up
integrity in two phases. First, it measures
(that is, hashes) the server’s platform configu-
ration (including its hypervisor, host OS, and
so on) during server boot up, and the respec-
tive hash values are stored securely in the
TPM’s platform configuration registers or in
the trust evidence registers if a TPM is not
used. Second, the VM image is measured
before VM launch. The attestation server can
have full knowledge of the attested software
and have the correct precalculated hash values
of its executable files. It can use these correct
hash values to check the hash measurements
sent back by the cloud server, and it can issue
the integrity property attestation if the hash
values match. Alternatively, the attestation
server can use a trusted appraiser system
(such as the integrity measurement architec-
ture8) to check if the measured hash values

conform to the correct values for a pristine,
malware-free system before sending the start-
up integrity property attestation back to the
customer.

In addition to start-up integrity, Cloud-
Monatt lets customers check if their VMs are
infected with malware during runtime. Dif-
ferent VM introspection (VMI) tools can be
integrated seamlessly as hypervisor-level tools
to monitor the VM from outside the VM
and examine the states of the target VM.

Confidentiality
We give an example of detecting confidential-
ity vulnerabilities via covert channels to show
an interesting use of CloudMonatt’s trust evi-
dence registers. The detection method is
based on detecting probability distributions
characteristic of some covert communica-
tions, similar to the method proposed by Jie
Chen and Guru Venkataramani.13 Our
threat model considers simple attacks. There
are many types of covert channels,13–17 and
this detection method cannot cover all of
them. The real purpose of this example is to
show how CloudMonatt can use trust evi-
dence registers to collect security measure-
ments—for example, to build an empirical
probability distribution for attack detection.
The detection of various attacks is orthogonal
to our work, and new methods can be inte-
grated into CloudMonatt.

Although VMs are isolated from each
other by the hypervisor, it could still be possi-
ble to leak confidential data via a cross-VM
covert channel at VM runtime. A covert chan-
nel exists when a colluding insider (such as a
program inside the victim VM) can use a
medium not normally used for communica-
tions to leak secret information to an unau-
thorized party in another VM. When VMs on
the same server share physical resources, the
contention for these shared resources can be
exploited to encode and transmit information,
for example, in the form of timing features.
Such characteristics can be different cache
operations (hit or miss),2,16 memory bus activ-
ities (locked or unlocked bus),17 or DRAM
controller states (bandwidth saturated or not).
Figure 2a shows the covert channel informa-
tion observed by the receiver VMs, using each
of the last-level cache (LLC), bus, and DRAM
as the covert channel communication
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medium. A fast access time indicates the
sender is sending a 0, whereas a slow access
time indicates a 1. The figure also shows the
receiver’s observations when the sender VM
runs a benign application (apache) with some
noise.

A key idea to detect these covert channels
is that programs involved in covert channel
communications give unique patterns of the
events happening on these hardware.13 If a
customer requests covert channel protection
and periodic attestation as to whether poten-
tial covert communications are being sent
out of his or her VM, CloudMonatt can use
hardware performance counters to monitor
the attested VM’s memory bandwidth at
every time interval (for example, 0.1 ms).
After a certain monitoring period, CloudMo-
natt calculates the frequency distribution his-
togram for the memory bandwidth used.
Specifically, it divides the entire range of
observed bandwidth values into a number of
bins (for example, 20 in our experiment)
with equal size and then counts how many
bandwidth values fall into each bin. Then
CloudMonatt uses 20 trust evidence registers
to store the number of values in each bin to

represent the memory bandwidth distribu-
tion. These 20 values are sent as the security
health measurements for detecting these
LLC, bus, or DRAM covert channels. We
use 20 bins in our experiment, but we could
also use a different number to save space or
increase accuracy.

When the attestation server receives the
20 values, the property interpretation module
calculates the probability distribution (shown
in Figure 2b) of the attested victim VM’s
memory bandwidth. If a covert channel
exists, the distribution graph gives two peaks,
each representing the activity of transmitting
a 0 or a 1. On the contrary, a benign applica-
tion with no covert communications tends to
give multiple smaller peaks. The attestation
server can use machine learning techniques
to conduct pattern recognition of covert
channels. Once the attestation server identi-
fies the existence of attacks, it can perform
further actions (for example, sending warn-
ings to the customers and asking them to
double-check malicious processes) to reduce
false positives. This detection method might
also introduce some false negatives because it
cannot cover all covert-channel attacks. More
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Figure 2. Detection of covert channel attacks. (a) Average access time of the receiver virtual machine (VM) when it keeps
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sophisticated detection methods can be inte-
grated into CloudMonatt to detect other
types of attacks.

Availability
Some denial-of-service attacks can signifi-
cantly change the probability distribution of
the victim VM’s microarchitectural charac-
teristics (for example, instructions executed
per cycle or memory bandwidth). To detect if
a VM is under such attacks, CloudMonatt
can collect the empirical probability distribu-
tion of this VM in the trust evidence registers
using the method described earlier, and then
compare them with the expected typical dis-
tribution (which can be collected when the
VM runs in a dedicated server, so there are
no attacks). A significant difference between
these two distributions indicates this VM’s
availability property is compromised, and
corresponding responses can be triggered (for
example, migrating it to another server).

Implementation
Figure 3 shows the implementation of our
prototype for property-based cloud attesta-
tion on the OpenStack Havana platform.
We integrated the OpenAttestation (OAT)
software for host remote attestation proto-
cols. We integrated the TPM-emulator and
leveraged it to emulate the functions of the
trust module in the hardware. Our evalua-
tion shows that the emulation of the trust
module has little impact on the system
performance.

Cloud Controller
The cloud controller is implemented by the
OpenStack Nova. We modified the Nova API
to extend the VM launch command with the
security properties the customers want for
their VMs and added new commands for cus-
tomers to monitor the VM’s health. We modi-
fied the Nova database to store the customers’
specifications of the security properties
required for their VMs and the monitoring
and attestation capabilities supported by each
server. We modified the Nova scheduler to
implement the policy validation module and
deployment module in Figure 1a. We also
added two new modules (shown in dark gray
in Figure 3): one is the Nova attest service,
which manages the attestation services.
Another one is the Nova response, which pro-
vides some responses if the attestation fails.

Attestation Server
The attestation server and client are realized
by OpenAttestation. We modified the OAT
API to extend the APIs with more parame-
ters, that is, security properties and VM ID.
We added a new module OAT interpreter to
interpret the VM’s security health and make
attestation decisions based on the informa-
tion of the cloud server from the Nova data-
base and the security measurements from the
OAT database.

Cloud Servers
We modified the OAT client, the client side of
OpenAttestation, to receive attestation
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Figure 3. Implementation of attestation architecture. We implemented CloudMonatt on the OpenStack platform with the

OpenAttestation and Trusted Platform Module (TPM) emulator software.
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requests. We modified the TPM emulator to
provide secure storage and crypto functions.
We added two new modules: monitor kernel
can start the security measurements and store
the values in the TPM emulator, and monitor
tools can integrate different software VMI
tools, VMM profile tools, or other logging or
provenance tools into the server to perform
the monitoring and take measurements.

Evaluation
Our testbed includes three Dell PowerEdge
R210II servers, each with a quad-core 3.30-
GHz Intel Xeon processor, 32 Gbytes of
RAM, and an on-board dual gigabit network
adapter with a speed of 1 Gbit per second.
We selected one server as the cloud controller,
equipped with the Nova controller and
OpenAttestation server. We implemented the
other two servers as cloud server nodes.

Performance Evaluation
We consider two performance issues: the
overhead of VM launching due to the new
security requirements, and the overhead of
attestation during runtime. We exploited
the OpenStack Ceilometer for timing
measurements. In the original OpenStack
platform, the VM launch involves four
stages:

1. Scheduling: allocate VMs to appro-
priate servers based on customer
requirements and server workloads.

2. Networking: allocate the networks
for VMs.

3. Block device mapping: set up block
devices for VMs.

4. Spawning: start VMs on the selected
servers.

CloudMonatt involves five steps for VM
launching. At the scheduling stage, the con-
troller needs to check the OAT database to
find qualified servers with security features
that support the customer’s desired security
properties. Steps 2, 3, and 4 are the same as
the previous list. We add a fifth stage, attesta-
tion, which will check if the VM has been
launched securely. Figure 4a shows the time
for each stage of VM launching. We test three
VM images (cirros, fedora, and ubuntu) with
three VM flavors (small, medium, and large).
The overhead of the attestation stage is about
20 percent, which is acceptable for VM
launching. The main overhead of an attesta-
tion is for the message transmission across the
network.

During VM runtime, customers can
monitor the VM at any time, or periodically
at a given frequency. To test the performance
effect of periodic runtime attestation, we ran
different cloud benchmarks in one VM while
the customer issues the periodic runtime
attestation request at different frequencies.
Figure 4b shows the effect of periodic run-
time attestation at frequencies of 1 minute,
10 seconds, and 5 seconds, on an ubuntu-
large VM. This figure indicates that there is
no performance degradation due to the exe-
cution of runtime attestation. This is for
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covert-channel monitoring, in which the
measurements are taken from hardware per-
formance counters. Whether runtime attesta-
tion causes performance degradation to the
VM execution time depends on the measure-
ment collection mechanism. However, if the
periodic attestation frequency is low, then the
performance effect is negligible.

Security Evaluation
The attestation architecture’s trusted entities
include the cloud controller and the attestation
server. It is important that these machines have
secure boot up and are secured for runtime
protection. Traditional approaches can be
taken to protect these servers, such as establish-
ing firewalls, disabling VM launching on these
central servers, and data hashing and encryp-
tion in the database. In addition, the trust
module and monitor module in the cloud serv-
ers also need to be protected against software,
OS, or physical attacks via existing protection
mechanisms such as secure enclaves.18,19

We used ProVerif to verify the crypto-
graphic protocol to ensure the customers can
receive unforgeable attestation reports. For
more information, see our previous work.12

C loudMonatt increases assurance in cloud
systems by enabling secure monitoring

and attestation of security features provided by
a cloud server for the customer’s VMs. It is the
first concrete implementation of property-
based attestation for security properties other
than integrity checking, with examples for
attesting different security health properties.
We hope that CloudMonatt can lay the foun-
dation for future work on investigating more
security properties, how they can be imple-
mented and monitored, and whether they can
be integrated seamlessly into the CloudMo-
natt framework. Hardware and software plat-
form vendors are encouraged to implement
the architectural support identified by Cloud-
Monatt to enable secure trust evidence moni-
toring and attestation in cloud servers. This
can lead to significantly better security health
in cloud computing environments. MICR O
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