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Abstract 
 

We present Bastion, a new hardware-software 
architecture for protecting security-critical software 
modules in an untrusted software stack. Our 
architecture is composed of enhanced microprocessor 
hardware and enhanced hypervisor software. Each 
trusted software module is provided with a secure, 
fine-grained memory compartment and its own secure 
persistent storage area. Bastion is the first architecture 
to provide direct hardware protection of the 
hypervisor from both software and physical attacks, 
before employing the hypervisor to provide the same 
protection to security-critical OS and application 
modules. Our implementation demonstrates the 
feasibility of bypassing an untrusted commodity OS to 
provide application security and shows better security 
with higher performance when compared to the 
Trusted Platform Module (TPM), the current industry 
state-of-the-art security chip. We provide a proof-of-
concept implementation on the OpenSPARC platform. 
 
1. Introduction 
 

Many applications are involved in handling 
sensitive or secret information, e.g., in financial or 
medical transactions. Often, only certain parts of a 
large application require extra protection, which we 
call security-critical tasks encapsulated in trusted 
software modules. While an application writer is 
highly motivated to ensure the security of these trusted 
software modules, any application-level protection 
today can be undermined if the underlying operating 
system is compromised. Unfortunately, this is typically 
a commodity operating system (OS) over which the 
writer of a trusted application has no control. The OS 
is not only all-powerful over applications, but also 
large, complex, dynamically extendible and frequently 

updated, making it very hard to verify and highly 
vulnerable to attacks.  Can the hardware provide direct 
alternative support for an application’s trusted software 
modules, even in the presence of a compromised OS? 

To add to the challenge, hardware or physical 
attacks are a serious new threat. Since client computers 
are increasingly mobile, and mobile computing devices 
are easily lost or stolen, attackers can get physical 
access to the device and launch physical attacks. Most 
security solutions in use today consider only software 
attacks in their threat model. For example, the 
computer industry’s state-of-the-art Trusted Platform 
Module (TPM) chip [34] added to protect Personal 
Computers (PCs) assumes only software attacks in its 
threat model, and hence is vulnerable to physical 
attacks such as probing physical memory [17].  

Many approaches have been suggested to increase 
protection of sensitive software execution in a 
commodity software stack, but they often exhibit 
shortcomings in security, scalability or functionality. 
Most software techniques are vulnerable to 
compromised OS (privileged) code and to hardware 
attacks. Some approaches (including AEGIS [33]) 
build security into the OS, which is highly desirable. 
However, it is not something that can be done by 
application writers, or hardware microprocessor 
vendors, who have to live with a commodity OS. 

Some software solutions use hypervisors or virtual 
machine monitors (VMMs), e.g., VMware [32] or Xen 
[6], to create isolated Virtual Machines. An untrusted 
application is run on an untrusted commodity OS in 
one Virtual Machine, while a trusted application is 
executed on a new trusted OS in another Virtual 
Machine.  However, VMM solutions provide coarse-
grained Virtual Machine compartments while we 
provide fine-grained compartments (within a Virtual 
Machine). Our compartments are created within the 
VM hosting the commodity OS to avoid the high cost 
of a world switch between VMs [27, 3] when invoking 



trusted software. Furthermore, the VMM itself is 
vulnerable to hardware attacks. We leverage 
virtualization techniques to override the OS where 
necessary for security. Unlike other architectures using 
hypervisors, we also propose new hardware features 
specifically to protect our hypervisor from hardware or 
physical attacks as well as software attacks. 

Existing hardware techniques have limited 
scalability due to finite hardware resources, and 
constrained functionality due to the lack of visibility 
into the software context. In addition, they (e.g., TPM 
[34]) are usually still susceptible to hardware attacks. 
While a few proposed hardware solutions, e.g., XOM 
[23] and the Secret Protection (SP) architecture [22, 
12] do protect against hardware attacks, they both are 
still susceptible to memory replay attacks. SP also 
allows only one trusted software module at a time, or 
multiple concurrent trusted software modules which 
belong to the same trust domain, i.e., they can all 
access the same set of protected information. In this 
paper, we allow scalability to an arbitrary number of 
trusted software modules, in different trust domains. 
Modules can be in the application space or in the OS 
space (e.g., loadable kernel modules). Each module 
has its own secure persistent storage, that is not 
accessible by other modules, nor even by the OS. Past 
work is further compared to our solution in Section 6. 

Our main contributions are: 
- Low-overhead architectural support for an arbitrary 

number of trusted software modules within an 
unmodified commodity software stack.  
- New hardware protection for a hypervisor that is 

resistant to physical attacks as well as software attacks. 
- New architectural mechanisms for secure module 

launch, protected virtual-to-physical memory mapping, 
secure module storage and inter-module control flow. 
- Proof-of-concept FPGA implementation of our 

security architecture, with a modified microprocessor 
and a modified hypervisor running unmodified 
versions of Sun OpenSolaris and Ubuntu Linux. 

The rest of this paper is organized as follows. 
Section 2 discusses our threat model. Section 3 gives 
an overview of the Bastion architecture while Section 
4 describes its concepts and mechanisms in detail. 
Section 5 presents our implementation using the 
OpenSPARC platform. Section 6 compares Bastion to 
past work and Section 7 concludes. 
 
2. Threat Model 
 

We consider hardware or physical attacks in 
addition to software attacks. Unlike TPM which 
considers the whole computer box secure from 

physical attacks, we reduce our hardware security 
perimeter to just the microprocessor chip, as in [23, 33, 
22, 12]. All other hardware like memory, buses and 
disks are considered vulnerable to physical attacks. 
Because of highly layered manufacturing technology, 
successful probing of complex microprocessors 
without destroying their functionality is extremely 
difficult, and hence signals within the microprocessor 
chip are considered secure from physical attacks. We 
assume the microprocessor does not contain design or 
implementation flaws, hardware Trojans or viruses.  

Software attacks can be carried out by malicious OS 
or application code snooping on or corrupting security-
critical software state in disks, memory, caches or 
registers. An adversary with physical access to the 
platform can also intercept its signals and tamper with 
its hardware (except for the microprocessor). For 
example, an attacker could use hardware probes to 
snoop on, or corrupt, values on the memory bus. 

We consider both passive and active attacks on 
confidentiality and integrity. Adversaries can easily 
carry out a passive attack on data confidentiality, i.e., 
observe bus, memory or disk data. Similarly, attackers 
can affect data integrity using active attacks such as 
spoofing (illegitimate modification of data), splicing 
(illegitimate relocation of data), and replay 
(substituting stale data) attacks. We consider 
operational attacks, not developmental attacks.  We do 
not consider covert or side channel attacks in this 
paper, nor denial of service attacks. 
 
3. Bastion Overview 
 

The goal of Bastion is to protect the execution and 
storage of trusted software modules within untrusted 
commodity software stacks. First, the Bastion 
microprocessor protects the storage and runtime 
memory state of our enhanced hypervisor against both 
software and hardware attacks. Then, the hypervisor 
uses its hardware-protected environment to protect an 
arbitrary number of trusted software modules. Each of 
these modules is provided with a secure execution 
environment and its own secure storage area, both 
protected against software and hardware attacks. The 
hypervisor also protects the invocation of trusted 
modules and their preemption on interrupts to ensure 
all control flow in and out of trusted modules is secure. 
Figure 1 depicts an example application of Bastion, 
where three OS and application modules (A, B, C) run 
on or within commodity operating systems. Each 
module is associated with its own secure storage area 
on the untrusted disk. 



We assume that the baseline CPU has virtualization 
support (as in [18, 2]).  Conceptually, this means it has 
at least three hierarchical privilege levels, or protection 
rings. In addition to the usual user (PL=3) and 
supervisor (PL=0) privilege levels, the hardware also 
provides new hypervisor or Virtual Machine Monitor 
(VMM) privilege level(s). The hardware ensures that 
software at other privilege levels cannot access code or 
data at the hypervisor privilege level (sometimes called 
ring -1). The hypervisor gives its Virtual Machines 
(VMs) the illusion they each have unrestricted access 
to all hardware resources, while retaining ultimate 
control on how the resources are used. 

The platform supports virtualized software stacks, 
where guest operating systems run in separate VMs, 
monitored by a hypervisor. We use the term machine 
memory space to denote the actual physical memory 
available in the hardware. The hypervisor virtualizes 
the machine memory space to create guest physical 
memory spaces for the guest operating systems it hosts.  

When an OS builds a page table for an application, 
it maps virtual pages to page frames in its guest 
physical memory space. To map guest virtual memory 
to machine memory, hypervisors use either shadow 
page tables [1] or nested paging [3], the two main 
techniques for memory virtualization. Mainstream 
virtualization-enabled microprocessors support both 
techniques [18, 2]. In the former, the hypervisor 
maintains for each application a shadow page table 
translating virtual addresses to machine addresses. In 
the latter, the hypervisor only keeps track of guest-
physical-to-machine memory translations in nested 
page tables. Virtual-to-machine address translations 
are provided to the processor on Translation Lookaside 
Buffer (TLB) misses, either by a hardware page table 
walker or by the hypervisor itself. On a miss, shadow 
page tables already contain up-to-date versions of 
these translations. Nested page tables must be looked 
up in parallel with guest page tables to construct the 

missing translation on-the-fly. In both approaches, the 
hypervisor, not the guest OS, retains ultimate control 
on translations inserted in the TLB. 

We also assume there are two levels of on-chip 
cache (L1 and L2), as is the case in many general-
purpose processors. More than two levels of on-chip 
caches can be supported—we just use L1 to refer to 
that closest to the processor and L2 to refer to the last 
level of on-chip cache. For simplicity, this paper only 
considers the case of a uniprocessor. Applying Bastion 
to multi-threaded, multi-core and multi-chip processor 
systems is future work. 
 Figure 1. Application of Bastion for three 

trusted software modules A, B and C 3.1. Protecting the Hypervisor 
 

New Bastion hardware features in the processor 
directly protect our security-enhanced hypervisor. We 
describe the secure launch of the hypervisor (without 
needing a TPM chip), and its secure storage.  Secure 
runtime memory is provided to the hypervisor and 
trusted software modules via a common mechanism 
described in Section 4.3. 

 
3.1.1. Secure Launch. The boot sequence of a Bastion 
platform is similar to that of a regular computing 
platform. The reset vector of the Bastion processor 
points to untrusted BIOS code, like for a traditional 
processor. This code sets up a basic execution 
environment and then relinquishes CPU control to an 
untrusted hypervisor loader. The loader fetches the 
hypervisor binary image from persistent storage (e.g., 
disk), loads it into memory and jumps to the 
hypervisor’s initialization routines. The Bastion secure 
hypervisor must then invoke a new secure_launch 
instruction for the Bastion processor to begin runtime 
protection of hypervisor memory and activate 
hypervisor secure storage capability.  

The secure_launch instruction transfers control 
to an internal routine that executes out of an on-chip 
memory mapped to a reserved segment of machine 
address space. This software routine computes a 
cryptographic hash over the state of the hypervisor and 
stores the resulting hash value in a new Bastion 
register (hypervisor_hash). This value is the identity of 
the loaded hypervisor, to be used in binding a 
hypervisor to its secure storage area. 

Security Analysis. If the untrusted loader skips 
secure_launch or loads a corrupted hypervisor, 
the hypervisor_hash value will be different, or will not 
get computed at all. The hypervisor’s secure storage 
area then remains locked, since it is tied to the good 
hypervisor_hash value. This ensures that no other 
software can read or modify the information in the 



hypervisor’s secure storage. Secure storage is further 
discussed in Section 4.5. 

The secure_launch routine also generates a 
new key for each power-on event, used to protect 
hypervisor memory during runtime from hardware and 
software attacks. Any hypervisor data is automatically 
encrypted by a dedicated on-chip crypto engine 
whenever it gets evicted from on-chip caches back to 
main memory. Hypervisor cache lines are also hashed 
before being evicted to memory, as part of a memory 
integrity tree mechanism (described in Section 4.3). 

Figure 2. Security Segment 

 
3.2. Protecting Trusted Software Modules 
 

Once the hypervisor is up and running within its 
protected memory space, it can spawn any number of 
Virtual Machines (VMs). For each VM, it allocates a 
chunk of memory and other resources.  It copies or 
maps boot code (e.g. OpenBoot or BIOS code) into the 
partition’s memory space and then jumps to that boot 
code. The boot code initializes the VM and eventually 
loads an operating system, which in turn loads any 
number of applications. At any point during runtime, a 
security-critical OS or application module may invoke 
a new SECURE_LAUNCH hypercall to request a secure 
execution compartment from the hypervisor. This 
invocation is slightly different from the secure 
hypervisor launch done with the secure_launch 
instruction. A module’s SECURE_LAUNCH hypercall has 
an argument pointing to a new security segment data 
structure (Figure 2). This defines the module’s private 
code and data pages, authorized entry points and 
authorized shared memory interfaces. The hypervisor’s 
SECURE_LAUNCH routine parses this definition to set up 
our new Shadow Access Control mechanism (Section 
4.2), which creates a memory compartment for the 
module’s memory pages and enforces strict separation 
of this compartment from the rest of the software stack 

during runtime. The SECURE_LAUNCH hypercall also 
activates runtime memory protection for all module 
pages and computes the module identity, a hash of the 
module’s initial state and its security segment. 
 
4. Bastion Architecture 
 
We describe key components in the Bastion 
architecture below.  New registers, state, routines and 
mechanisms introduced are summarized in Figure 3. 
 
4.1. Security Segment, Module State Table and 
Module Identity 
 

Each trusted software module has a security 
segment (Figure 2). This must be made available to the 
software module before it invokes SECURE_LAUNCH. It 
can be compiled into the data space of the application 
or OS containing the module, or it can be read from a 
separate data file. Its internal structure is fixed and 
known to the Bastion hypervisor. The module 
definition contained in the security segment is derived 
from instructions given by the programmer, e.g., via 
code annotations. The main part of this definition is a 
set of Shadow Access Control rules, each formed by 
the following triple: 1) a module hash identifying a 
module, computed over the module’s initial code and 
data, 2) the virtual address of a page associated with 

Figure 3. New Bastion Features in Microprocessor and Hypervisor 



the identified module, and 3) the Read/Write/eXecute 
(RWX) access rights given to this module for that 
page. The Module Pages section describes the pages 
belonging specifically to the module being defined in 
this security segment. The Shadow Access Control 
rules it lists thus have an implicit module hash. Shared 
memory interfaces are defined in the Shared Pages 
section of the segment, where Shadow Access Control 
rules identify sharing modules explicitly. An 
Authorized Entry Points section lists the virtual 
addresses of authorized entry points into module code. 
Finally, Module Stack Pointer specifies the top of the 
module’s private stack. Memory for this stack is 
reserved within the pages listed in Module Pages. 

SECURE_LAUNCH parses a security segment to 
extract Shadow Access Control rules and then checks 
their compatibility with rules requested by modules 
processed in previous invocations of SECURE_LAUNCH. 
The hypervisor checks that: 1) there is no aliasing 
between modules’ private virtual pages, nor between 
the corresponding machine pages, and 2) all modules 
sharing a memory page agree on one another’s 
identity. Validated rules are added to a hypervisor data 
structure called the Module State Table. To speed up 
verification of aliasing between machine pages, the 
Module State Table also contains a table mapping each 
machine page to the set of modules allowed access to 
the page. These mappings are also updated as validated 
rules are committed to the Module State Table. Within 
these data structures, the hypervisor identifies modules 
using their module_id, a shorthand for their full 
identity hash. The module_id is a unique identifier 
assigned to each module by SECURE_LAUNCH and valid 
until the next platform reset. It is used in hypervisor 
software and in hardware tags, so its bit width must be 
much smaller than that of a full hash (which is 
typically 128 or 160 bits), but also large enough to 
accommodate a large number of concurrent modules; 
between 8 and 20 bits should be sufficient. 

Bastion supports arbitrary module sizes, defined at 
page granularity. For example, a module could be 
composed of the few pages containing the code and 
private data of a security-critical function, or the code 
and data space of a library, or an OS loadable module, 
or an entire trusted application or even the whole 
memory space of a trusted OS. Ideally, a module 
should encapsulate only the code and data necessary to 
fulfill its security objectives, making it small and easy 
to verify for correctness, possibly using formal 
methods. However, it may not always be possible to 
perform such fine-grain partitioning of an application 
or OS, especially in legacy software. Hence Bastion 
also supports large modules to provide monolithic 
pieces of software with physical attack protection and 

secure storage. Methodologies for partitioning 
software systems into trusted and untrusted 
components are studied elsewhere, e.g. [10]. 
 
4.2. Enforcing Virtual Memory Compartments 
 

At runtime, the compartments defined by Shadow 
Access Control rules are enforced by the processor 
hardware. Rules are available in the instruction and 
data Translation Lookaside Buffers (TLBs) and 
enforcement is done during the TLB lookup preceding 
every memory access. Infringement is signaled by a 
new type of TLB miss causing the hypervisor to 
intervene. To express Shadow Access Control rules, 
TLB entries are extended with a module_id tag 
identifying a module allowed access to the page. To 
enable enforcement, a new current_module_id register 
specifies the module_id of the module currently 
executing. Memory accesses are allowed to go forward 
only if the TLB module_id of the page accessed is 
equal to the one in current_module_id. All software 
that is not in a Bastion compartment is considered part 
of a generic module zero, with pages tagged using the 
reserved module_id 0. Therefore, modules 
(including the untrusted module zero) can only access 
instructions and data tagged with their module_id. 

The method for getting the right module_id to a 
TLB entry on a TLB miss is hypervisor-specific: it 
depends on the technique used for virtualizing machine 
memory. When shadow page tables are used, the 
hypervisor extends shadow page table entries with the 
module_id. The transfer of a shadow page table 
entry from hypervisor memory to the TLB thus 
automatically transfers the module_id. To handle 
shared virtual pages, the hypervisor must replicate 
shadow page table entries for these pages and assign 

Figure 4. Shadow Access Control with 
Shadow Page Tables 



each entry the module_id of a module sharing the 
page. The hypervisor checks that replicated entries 
map to the same machine page to ensure the 
correctness of this form of aliasing. Hardware page-
table-walkers, if used, must be modified to handle 
shared virtual pages. Figure 4 depicts module a and b 
sharing machine page 2 within virtual address space 1 
and module b and c share machine page 3 across 
virtual address spaces 1 and 2. It also shows each 
module’s entry may have different access rights, e.g., a 
producer-consumer buffer between the two modules. 

Hypervisors using nested paging rather than 
shadow page tables only track guest-physical-to-
machine memory mappings; they do not maintain 
copies of all virtual-to-machine memory mappings as 
is done in shadow page tables. In this case, missing 
TLB entries—the virtual-to-machine address 
translations with access rights—must be constructed 
on-the-fly by the hypervisor or a hardware nested page 
table walker instead of simply fetched from a shadow 
page table. To add the module_id to these TLB 
entries, we add an extra step to the TLB miss handling 
procedure: once the entry is constructed, the 
hypervisor checks that the entry respects the rules in 
the Module State Table, adds the appropriate 
module_id and writes the extended entry to the 
TLB. When a hardware nested page table walker is 
used, a new hypervisor trap is triggered at the end of a 
table walk. Hypervisor software then inspects and 
extends the new TLB entry.  

When the hypervisor determines a memory access 
request violates Shadow Access Control rules, it either 
restricts or denies the request, depending on the 
requestor. A guest OS is given access to an encrypted 
and tamper-evident version of the cache line, while an 
application is simply denied access. Restricted access 
is given to guest operating systems to ensure they can 
perform paging or relocate pages in physical memory. 
Encryption and tamper-evidence is provided by the 
Secure Physical Memory mechanisms described next. 
 
4.3. Secure Physical Memory 
 

Bastion protects hypervisor and module memory 
state against hardware adversaries that might snoop on 
or corrupt data on buses and memory chips. Such 
memory confidentiality and integrity is provided by 
two new hardware cryptographic engines located 
between the L2 cache and main memory. One engine 
encrypts and decrypts protected cache lines while the 
other verifies their integrity using a hash tree. Using 
the on-chip RNG, the memory encryption key is 
generated anew by the on-chip secure_launch 

routine upon every platform reset to thwart (known-
ciphertext) attacks that could leak information across 
reboots if the same key was reused. 

The integrity hash tree detects memory corruption 
attacks by checking that what is read from main 
memory at a given address is what the processor last 
wrote at that address. This is based on the Merkle tree 
[28], adopted in [33]. The Merkle tree technique 
recursively computes cryptographic hashes on the 
protected memory blocks until a single hash of the 
entire memory space, the tree root, is obtained. The 
tree root is kept on-chip in the microprocessor, while 
the rest of the tree can be stored off-chip. 
Authenticating a block read from main memory 
requires fetching and verifying the integrity of all 
hashes on the tree branch starting at the block of 
interest and ending with the root. Similarly, a 
legitimate update to a block triggers updates to hashes 
on the block’s branch, including the root. Tree nodes 
can be cached [16] to speed up tree operations and the 
simple hashing primitive can be substituted for one 
with better performance characteristics [30]. 

During platform boot-up, the on-chip 
secure_launch routine initializes the tree to 
fingerprint the loaded hypervisor. Two new L2 cache 
tag bits (i_bit and c_bit) identify cache lines 
requiring encryption or hashing. The values of these 
bits come from the TLB, where each entry is also 
extended with an i_bit and a c_bit. Bastion 
runtime memory protection mechanisms operate at a 
page granularity: all L2 cache lines in a page are 
tagged with the i_bit and c_bit read from that 
page’s TLB entry. The bits in this entry are set by the 
hypervisor on a TLB miss.  

To protect trusted module memory, the 
SECURE_LAUNCH hypercall encrypts the pages of each 
module being launched, and adds its pages to the tree’s 
coverage. During runtime, the hypervisor sets the TLB 
i_bit and c_bit for module pages. Our tree also 
protects module pages swapped from memory to an 
on-disk page file and back, similarly to [30].  

Bastion’s hash tree is slightly different from 
traditional Merkle hash trees. We selectively cover 
only hypervisor and trusted module pages, while they 
cover the entire physical memory space. We cover 
pages swapped out to disk (as in [30]), while they do 
not cover data outside the physical memory space.  

To efficiently support its functionality, our integrity 
tree is formed of two parts: a top cone and several 
page trees. A page tree is a Merkle hash tree computed 
over a page of data or code, with a root called the page 
root. The top cone is a Merkle hash tree rooted in a 
register of the hashing engine (hash_tree_root_reg in 



Figure 3) and computed over the page roots, to protect 
their integrity. Our tree is shown in Figure 5. Upon 
platform reset, there are no pages to protect so the top 
cone is initialized on a set of null page roots. When a 
page is added to the tree, its page tree is computed and 
its page root replaces a null page root.  

For simplicity, we assume the components of the 
tree are stored in dedicated machine memory regions 
and that the initial top cone covers enough null page 
roots to satisfy the memory needs of the software 
stack. Dynamic expansion and shrinkage of integrity 
tree coverage is an orthogonal research problem; it can 
be addressed using techniques such as in [8]. 

Through its monitoring of (shadow or nested) page 
table changes, the hypervisor can detect a guest OS is 
sending a page out to disk. If the remapping respects 
Shadow Access Control rules, the hypervisor moves 
the page’s tree so it becomes rooted by one of the page 
roots reserved for disk pages. As a result, the tree root 
fingerprints module pages in main memory and on the 
disk. When the guest OS moves a page from the disk 
back to physical memory (or simply relocates a page in 
physical memory), the hypervisor moves the page tree 
to reflect the page’s new position. If the OS or a 
physical attacker corrupts the page while it resides on 
the disk, the integrity checking engine detects 
tampering as soon as the affected cache lines are 
accessed by the module. Therefore, critical module 
pages remain tamper-evident and confidential as they 
are moved by the guest OS between memory and disk. 
 
4.4. Secure Inter-Module Control Flow 
 

Entering and leaving protected modules securely is 
essential for security-critical software. Bastion 
addresses this need for secure control flow with 
mechanisms enabling secure invocation and 
preemption of modules.  

 
4.4.1. Module Invocation. VM software always starts 
executing in the unprotected module zero, where the 
bootstrap procedure takes place. The hypervisor thus 
starts a VM with the current_module_id register set to 

zero. It remains set to zero until a protected software 
module is called via the new CALL_MODULE hypercall. 
This hypercall takes as parameters the module hash of 
the callee and the virtual address of the desired entry 
point. The hypervisor services CALL_MODULE by first 
checking the validity of this entry point against the list 
of authorized entry points provided upon 
SECURE_LAUNCH for the callee. When the entry point 
is valid, the hypervisor registers the desired transition 
in the Module State Table and returns from the 
hypercall, but it does not change the value in the 
current_module_id register yet.  

Figure 5. The Bastion Integrity Tree 

Fetching the first callee instruction triggers a TLB 
miss due to a module_id mismatch—the instruction 
is tagged with the callee’s module_id while the 
current_module_id register still contains the caller’s 
module_id. This TLB miss is handled by the 
hypervisor. It checks whether the transition that just 
occurred was legitimate and previously registered in 
the Module State Table. If so, it allows the transition 
by setting current_module_id to the callee’s 
module_id. It also saves the address of the call site 
so that it can later enforce a correct return into caller’s 
code. Execution of the callee module then resumes.  

Callee modules can only return to their callers via 
the RETURN_MODULE hypercall. As for CALL_MODULE, 
this hypercall registers the requested transition, but it 
does not modify the value in the current_module_id 
register. This means that when the callee executes the 
return instruction to jump back to the caller’s code, an 
instruction TLB miss occurs due to a module_id 
mismatch. The hypervisor intervenes to first check that 
this transition was previously requested. It also checks 
that the return address into the caller’s code 
corresponds to the instruction following the caller’s 
call site, previously saved by the hypervisor. When all 
checks pass, the hypervisor allows the return transition 
back into the caller by setting the current_module_id 
register to the caller’s module_id. 

 
4.4.2. Module Preemption. When a protected module 
gets preempted by the guest OS (e.g. to service a timer 
or device interrupt), the hypervisor first intervenes to 
save the module’s register state in the Module State 
Table. It also wipes out any remaining register state so 
that malicious OS code is unable to observe or modify 
critical module state via its registers. When the OS 
resumes module execution, the hypervisor intervenes 
again to restore the register state of the preempted 
module, including the program counter. Hypervisor 
intervention upon module preemption or resumption is 
triggered by a module_id mismatch between module 
code and OS interrupt handler code. 



4.5. Scalable Secure Persistent Storage 
 
4.5.1. Hypervisor Secure Storage. The hypervisor 
secure storage is a non-volatile area, located in a flash 
memory chip or disk, where the hypervisor stores 
long-lived secrets and other persistent sensitive data. 
Its protection is rooted in new Bastion hardware 
registers. The hypervisor creating such an area protects 
its confidentiality and integrity by encrypting it with a 
symmetric encryption key and fingerprinting it with a 
cryptographic hash, both stored in dedicated 
microprocessor registers (secure_storage_key and 
secure_storage_hash). The values in these non-volatile 
registers exist across reboots and are only accessible to 
the hypervisor that created the storage area, identified 
by the hash value contained in the new non-volatile 
storage_owner_hash register. When the values in 
storage_owner_hash and hypervisor_hash match, the 
secure_launch routine “unlocks” the existing 
secure storage area by giving the hypervisor access to 
the secure_storage_hash and secure_storage_key 
registers. The contents of these registers allow the 
loaded hypervisor to decrypt and hash verify the secure 
storage area it fetches from disk or flash, which may 
have been tampered with by a physical attacker since 
the last power down. When the values in 
storage_owner_hash and hypervisor_hash do not 
match, the secure_launch routine wipes out the 
contents of the secure_storage_hash and 
secure_storage_key registers before they become 
accessible to the loaded hypervisor. This prevents 
different hypervisors from accessing one another’s 
secure storage areas and locks corrupted hypervisors 
out of a good hypervisor’s secure storage.  

Figure 6. Scalable Secure Storage 

 Mechanisms for backup and migration of 
hypervisor secure storage should also be devised to 
avoid loosing stored data upon deployment of a new 
hypervisor or following the load of a corrupted 
hypervisor. Similarly to TPM [34], we suggest using 
trusted authorities from which the hypervisor can 
request migration and backup services. The hypervisor 
can establish a secure communication channel to such 
an authority by authenticating the authority using a 
public key embedded in its data space. 
 
4.5.2. Module Secure Storage. The hypervisor 
leverages its hardware-rooted secure storage to provide 
trusted software modules with their own secure storage 
in a scalable way. The secure storage area of a module 
is kept confidential with a symmetric encryption key 
and made tamper-evident with a cryptographic hash 
computed over its contents. The hypervisor labels this 
(key, hash) pair with the identity of the module and 

stores the labeled pair in the hypervisor’s secure 
storage area, protected by the dedicated hardware 
registers. This method, depicted in Figure 6, can scale 
up to an arbitrary number of module storage areas. 
Hence, only two hardware registers (to protect the 
hypervisor’s storage) are needed to protect any amount 
of data (for any number of trusted modules). 

Modules access and manage their secure storage 
areas via new hypercalls. To create a new area, a 
protected module 1) generates a key, 2) encrypts the 
data to be stored in the area with the key, 3) computes 
a hash over the contents of the encrypted data and 4) 
stores the encrypted data to disk or flash memory. 
Because it is encrypted and hashed, this data can safely 
exit the module’s compartment to be written to disk via 
an untrusted file system manager using an untrusted 
disk device driver. To enable subsequent access to the 
data across platform reboots, the module invokes the 
WRITE_STORAGE_KEY and WRITE_STORAGE_HASH 
hypercalls with, respectively, the encryption key and 
the computed hash as arguments. These hypercalls 
bind the module’s identity to the key and hash pair 
protecting the new storage area, and store the resulting 
(key, hash, identity) tuple in the hypervisor’s secure 
storage area. To recover this key and hash following a 
platform reboot, the module invokes the 
READ_STORAGE_KEY and READ_STORAGE_HASH 
hypercalls. The hypervisor services these calls by 
returning the key and hash only if the identity of the 
invoking module (computed during a SECURE_LAUNCH 
invocation) is identical to the identity of the module 
that created the secure storage area. When a module 
modifies the contents of an existing area, it invokes the 
WRITE_STORAGE_HASH to commit the updated state to 
the hypervisor’s secure storage. Modules can detect the 
malicious replay of an old version of their storage 
since the hypervisor always returns the hash reflecting 
the latest update. Our approach is similar to that in the 
SP architecture [12], except that we provide secure 
storage to multiple modules from different trust 
domains rather than a single one.  



5. Implementation 
 
5.1. Baseline Architecture 
 

We implemented Bastion by modifying the Sun 
Microsystems UltraSPARC T1 (codename Niagara) 
microprocessor [21] and the UltraSPARC hypervisor. 
The Verilog description of the microprocessor and the 
source code of the hypervisor are both publicly 
available as part of the OpenSPARC project [29]. 
OpenSPARC also provides developers with a full-
system implementation, in a Xilinx Embedded 
Developer’s Kit (EDK) project, of the T1 chip—i.e. 
the UltraSPARC core, crossbar, L2 cache (emulated by 
a Xilinx MicroBlaze processor running firmware), 
UART and on-chip Ethernet and memory controllers. 
This implementation can be synthesized for a Xilinx 
Virtex 5 Field-Programmable Gate Array (FPGA) and 
executed on the Xilinx ML505 development board. 
This board includes a Virtex 5 FPGA chip, a 256MB 
DRAM DIMM, a Flash memory card controller, a 
Network Interface Card and other I/O peripherals.  

As a proof-of-concept implementation, we modified 
the single-thread UltraSPARC microprocessor with 
new Bastion hardware, and modified the hypervisor 
with new Bastion features. The resulting FPGA board 
successfully hosted our modified Bastion hypervisor, 
protecting trusted software modules in an application 
running on an unmodified commodity OpenSolaris 
operating system. All the functionality discussed in 
this paper was implemented either in hardware, 
firmware or software, except for the Random Number 
Generator, restricted OS access to protected pages and 
shadow page table logic (the hypervisor uses nested 
paging). We also implemented hypervisor and module 
attestation capabilities, not discussed in this paper for 
lack of space. While we present results for 
OpenSolaris, we also compiled and ran our application 
on an unmodified Linux Ubuntu OS, without changing 
a single line of code in our Bastion hypervisor. 
 
5.2. Implementation Strategy 
 
5.2.1. Microprocessor Core. To add the new Bastion 
registers (Figure 3) to the T1 microprocessor, we wrote 
a top-level Verilog unit containing storage flip-flops 
and address decoders for 32 new 64-bit registers. 
These 2048 bits of register storage hold the hypervisor 
hash, the secure storage key, hash and owner hash, and 
a private attestation key not discussed in this paper. 
We could not make any of these registers non-volatile 
since the Virtex 5 does not provide on-chip non-
volatile storage capabilities.  

Instruction and data TLBs were extended with a 5-
bit module_id in each entry and a 5-bit 
current_module_id register was added. The TLB 
lookup logic was also enhanced to raise a TLB miss on 
a mismatch between the module_id tagging a 
“matching” TLB entry and the value in the 
current_module_id register. Although we designed 
Bastion to support much more than 32 modules, 5 bits 
was a convenient width for this implementation since it 
corresponds to an unused part of existing TLB lines.  

Finally, we implemented internal microprocessor 
routines (hypervisor secure launch and attestation) as 
compiled SPARC code executing from a reserved 
range in machine address space. Due to a shortage in 
FPGA RAM blocks, this range currently gets mapped 
to off-chip rather than on-chip memory. The routine 
code is responsible for identifying the hypervisor so it 
cannot rely on the hypervisor. We developed it as a 
self-contained software stack with a tiny, statically-
linked C library as runtime support for the secure 
routines. To invoke an internal microprocessor routine, 
the hypervisor simply jumps to its entry point within 
the reserved range of machine address space.  

 
5.2.2. Firmware and Crypto Hardware. Unfortu-
nately, the EDK project does not implement L2 cache 
arrays and controllers in hardware. MicroBlaze 
firmware emulates the L2 cache without allocating 
actual L2 storage. We implemented our cache-related 
mechanisms in the MicroBlaze firmware, adding a 
hardware AES encryption-decryption engine as a Fast 
Simplex Link (FSL) MicroBlaze peripheral. Our 
extended firmware checks whether the c_bit of each 
cache line accessed by the core is set and if so, sends 
the line to the hardware AES engine to be decrypted or 
encrypted on, respectively, a read from or write to 
external memory. Similarly, the firmware checks the 
i_bit and uses the AES engine as a CBC-MAC 
(Cipher Block Chaining - Message Authentication 
Code) hash function to perform integrity hash tree 
verifications or updates. Finally, our extended 
firmware detects and routes accesses to the machine 
memory range reserved for secure on-chip routines. 
 
5.2.3. Hypervisor Software. To add Bastion mecha-
nisms to the UltraSPARC hypervisor, we modified the 
instruction and data TLB miss handlers and added new 
hypercall handlers. To speed up implementation, many 
of the functions added to the hypervisor were coded in 
C rather than the SPARC assembly used throughout 
the existing hypervisor (except for initialization 
routines written in C). This required providing the 
hypervisor with its own stack and with routines to 



make enough register windows available to the C 
routines. Using C code during runtime in a thin 
hypervisor layer is clearly sub-optimal, but still 
provides us with a proof-of-concept implementation 
that can boot a full commodity operating system and 
its applications in an acceptable amount of time. 

Table 1. Hardware Complexity 

 
5.2.4. Trusted Module Software. The application 
modules we implemented have their own private data 
and code space, and they share a single page as a 
memory interface. To support dynamic memory 
allocation, a set of pages is assigned to each module to 
be used as their private heaps and stacks. The 
hypervisor routines for secure module control flow are 
responsible for switching stacks upon entering or 
leaving a module. To support functions such as heap 
memory allocation, each module is assigned a separate 
copy of a statically-linked, minimalist C library. 
 
5.3. Complexity Costs 
 

Tables 1 and 2 show, respectively, the hardware and 
software complexity of the Bastion mechanisms. Table 
1 shows that our modifications to the microprocessor 
core increase resource usage by less than 10%. Table 2 
shows increases in the size of the hypervisor and 
firmware code base are between 6 and 8%. The new 
AES crypto core causes the biggest increase in 
resource consumption. We note that these numbers 
could be significantly reduced if the Bastion logic was 
implemented and optimized by experienced engineers. 

 
5.4. Performance Impact 
 

In Table 3, we provide preliminary evidence that 
the performance overheads caused by Bastion 
protection are reasonable given the high throughput of 
modern microprocessors. We present instruction 
counts rather than cycle counts since the absence of an 
L2 cache, combined with our rudimentary memory 
crypto engine (single engine for both encryption and 
hashing, clocked at less than a quarter of the memory 
frequency, with no caching of tree nodes) currently 

causes extremely high load latencies. Our next step in 
developing this prototype is to provide it with memory 
crypto engines that can match memory bandwidth and 
cache frequently accessed metadata, as suggested in 
the literature on the subject [16, 30]. 

The table shows the number of instructions that 
need to be executed to handle our various hypercalls 
and to enter or leave modules (depicted as “module 
call/return” and “module preempt/resume”). The 
SECURE_LAUNCH creating our compartments requires 
less than 15K instructions, which compares 
advantageously to the 468K instructions required to 
initialize an UltraSPARC virtual machine on the same 
platform. Our module transition mechanisms can enter 
and leave Bastion compartments in less than 2,000 
instructions. With an operating system giving our 
modules 10ms quanta of CPU time, these overheads 
correspond to a performance hit of less than one tenth 
of a percent. On a 2GHz CPU with enough L2 cache 
storage to support a throughput of 0.5 instruction per 
cycle, secure storage hypercalls execute in under 1µs, 
several orders of magnitude faster than the sealed 
storage operations on a TPM chip, reported to require 
hundreds of milliseconds to complete [26]. 

Table 3. Performance overhead of Bastion operations 

Table 2. Software Complexity (lines of code) 



6. Related Work 
 
We distinguish between three approaches for 

protecting critical software in a commodity stack: 1) 
add security features to the OS, 2) measure and verify 
an unmodified OS or 3) bypass the OS altogether. 

Security mechanisms built into an operating system 
benefit from significant visibility into the software they 
are protecting since OS code has access to memory and 
I/O mapping information. Such mechanisms can 
mediate system calls, I/O requests and even memory 
accesses to provide security-critical tasks with isolated 
execution or some form of secured I/O, e.g. [24, 35, 
33, 36, 7]. However, secure operating systems are 
either custom built and hence are unlikely to replace 
well-established commodity operating systems, or they 
are based on a mainstream OS and are exposed to 
software vulnerabilities in the large privileged code 
base they are built upon. Modifications to the 
microprocessor have been suggested to limit the 
privileges of vulnerable OS code [7] but only to enable 
detection of tampering with static code and data, not 
dynamic data (e.g. stack, heap). In most cases, these 
are software-only approaches that remain vulnerable to 
attackers with physical access to the device. Bastion, 
however, provides protection from physical attacks. 

Rather than add security to an OS, other approaches 
measure and verify unmodified operating systems prior 
to providing the security-critical tasks they run with 
sensitive data to process [31, 25, 37]. These techniques 
compute a cryptographic hash to fingerprint the initial 
data and code state of the OS; the hash is then used as 
an identity in an attestation report sent to a remote 
party. The party is expected to determine whether the 
identified OS is trustworthy, and if so, reply with 
sensitive data sealed to the identity. These secure 
storage and attestation capabilities are provided by a 
hardware Trusted Platform Module (TPM) [34] chip. 
Although TPM keys can be used to protect disk data 
while the device is powered off, TPM-based systems 
remain vulnerable to physical attacks during runtime 
[19, 17]. Even without physical attacks, these 
approaches are likely to remain vulnerable to software-
based runtime attacks since remote parties are typically 
unable to correctly assess the trustworthiness of a large 
commodity software stack [7]. 

Finally, some architectures bypass the commodity 
operating system altogether to protect a security-
critical application module using either an enhanced 
microprocessor or a trusted hypervisor. These tend to 
focus on memory compartmentalization, so most do 
not offer secure storage capabilities as Bastion does. 
When they do, these services are either restricted to a 

single trust domain as in SP [12], or they require the 
use of a slow TPM chip [15, 14, 26] or an expensive 
PCI-based coprocessor peripheral [13]. There are two 
broad categories of techniques for bypassing a 
commodity OS: 1) move security-critical tasks to a 
trusted OS running concurrently to the commodity OS, 
within a separate execution environment [15, 5, 20, 4, 
26] or 2) isolate security-critical tasks running on the 
commodity OS [23, 22, 12, 9, 11].  

By provisioning additional execution environments, 
typically extra virtual machines, the techniques in the 
first category can enforce strict isolation between 
security-critical tasks and the commodity software 
stack. For such standalone environments, however, the 
cost of initializing, context switching and interfacing 
with the commodity software stack can be high [27] 
and prevent scalability. In the second category, 
software techniques [9, 11] secure critical tasks within 
the commodity software stack without creating new 
environments, but cannot protect against attackers with 
physical presence. While providing better security 
against physical attackers, the hardware-based 
techniques [23, 22, 12] remain vulnerable to memory 
replay attacks on dynamic data and are restricted in 
their scalability by limited hardware resources. They 
focus on achieving security objectives such as secure 
storage or confidential and tamper-evident execution 
despite a potentially compromised OS. 

The Bastion architecture adopts the strategy of 
bypassing the commodity OS to provide to security-
critical tasks isolated execution compartments with 
secure storage. It differs from past work in that it can 
maintain an arbitrary number of compartments, either 
in the operating system or application layer, and can 
defend against hardware attacks, including memory or 
persistent storage replay attacks. It is also the first 
security solution to provide strong protection of the 
virtualization layer’s execution and storage. 
 
7. Conclusion 
 

This paper introduced the Bastion architecture, 
formed of processor hardware and a thin hypervisor, 
both enhanced to provide scalable secure execution 
and storage to critical modules within an untrusted 
commodity software stack. Mechanisms in the 
processor hardware securely launch the hypervisor and 
provide runtime cryptographic protection of the 
hypervisor memory state against physical attacks. 
Extended memory management mechanisms in 
hardware and software allow the Bastion hypervisor to 
define and protect an arbitrary number of low-
overhead execution compartments for trusted software 



modules. Each module is provided with its own secure 
storage area, rooted in hypervisor secure storage. Our 
implementation demonstrates the feasibility of 
skipping an unmodified commodity OS to provide 
application-level security and shows an acceptable 
complexity overhead. As opposed to past approaches 
where the operating system must be trusted, Bastion 
only needs to trust and protect a thin layer of 
hypervisor software which can be two orders of 
magnitude smaller than a commodity OS. Protection 
mechanisms against hardware attacks provide more 
security than TPM-based platforms, which cannot 
defend against probing attacks on buses and memories. 
Integration of our security mechanisms in the 
processor hardware also ensures Bastion is much faster 
than platforms using a slow TPM chip.  
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