
Scalable Architectural Support for Trusted Software1

David Champagne and Ruby B. Lee
Princeton University

{dav, rblee}@princeton.edu

1 Nominated for Best Paper Award. The 16th IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Bangalore, India - January 9-14, 2010.

Abstract

We present Bastion, a new hardware-software
architecture for protecting security-critical software
modules in an untrusted software stack. Our
architecture is composed of enhanced microprocessor
hardware and enhanced hypervisor software. Each
trusted software module is provided with a secure,
fine-grained memory compartment and its own secure
persistent storage area. Bastion is the first architecture
to provide direct hardware protection of the
hypervisor from both software and physical attacks,
before employing the hypervisor to provide the same
protection to security-critical OS and application
modules. Our implementation demonstrates the
feasibility of bypassing an untrusted commodity OS to
provide application security and shows better security
with higher performance when compared to the
Trusted Platform Module (TPM), the current industry
state-of-the-art security chip. We provide a proof-of-
concept implementation on the OpenSPARC platform.

1. Introduction

Many applications are involved in handling
sensitive or secret information, e.g., in financial or
medical transactions. Often, only certain parts of a
large application require extra protection, which we
call security-critical tasks encapsulated in trusted
software modules. While an application writer is
highly motivated to ensure the security of these trusted
software modules, any application-level protection
today can be undermined if the underlying operating
system is compromised. Unfortunately, this is typically
a commodity operating system (OS) over which the
writer of a trusted application has no control. The OS
is not only all-powerful over applications, but also
large, complex, dynamically extendible and frequently

updated, making it very hard to verify and highly
vulnerable to attacks. Can the hardware provide direct
alternative support for an application’s trusted software
modules, even in the presence of a compromised OS?

To add to the challenge, hardware or physical
attacks are a serious new threat. Since client computers
are increasingly mobile, and mobile computing devices
are easily lost or stolen, attackers can get physical
access to the device and launch physical attacks. Most
security solutions in use today consider only software
attacks in their threat model. For example, the
computer industry’s state-of-the-art Trusted Platform
Module (TPM) chip [34] added to protect Personal
Computers (PCs) assumes only software attacks in its
threat model, and hence is vulnerable to physical
attacks such as probing physical memory [17].

Many approaches have been suggested to increase
protection of sensitive software execution in a
commodity software stack, but they often exhibit
shortcomings in security, scalability or functionality.
Most software techniques are vulnerable to
compromised OS (privileged) code and to hardware
attacks. Some approaches (including AEGIS [33])
build security into the OS, which is highly desirable.
However, it is not something that can be done by
application writers, or hardware microprocessor
vendors, who have to live with a commodity OS.

Some software solutions use hypervisors or virtual
machine monitors (VMMs), e.g., VMware [32] or Xen
[6], to create isolated Virtual Machines. An untrusted
application is run on an untrusted commodity OS in
one Virtual Machine, while a trusted application is
executed on a new trusted OS in another Virtual
Machine. However, VMM solutions provide coarse-
grained Virtual Machine compartments while we
provide fine-grained compartments (within a Virtual
Machine). Our compartments are created within the
VM hosting the commodity OS to avoid the high cost
of a world switch between VMs [27, 3] when invoking

trusted software. Furthermore, the VMM itself is
vulnerable to hardware attacks. We leverage
virtualization techniques to override the OS where
necessary for security. Unlike other architectures using
hypervisors, we also propose new hardware features
specifically to protect our hypervisor from hardware or
physical attacks as well as software attacks.

Existing hardware techniques have limited
scalability due to finite hardware resources, and
constrained functionality due to the lack of visibility
into the software context. In addition, they (e.g., TPM
[34]) are usually still susceptible to hardware attacks.
While a few proposed hardware solutions, e.g., XOM
[23] and the Secret Protection (SP) architecture [22,
12] do protect against hardware attacks, they both are
still susceptible to memory replay attacks. SP also
allows only one trusted software module at a time, or
multiple concurrent trusted software modules which
belong to the same trust domain, i.e., they can all
access the same set of protected information. In this
paper, we allow scalability to an arbitrary number of
trusted software modules, in different trust domains.
Modules can be in the application space or in the OS
space (e.g., loadable kernel modules). Each module
has its own secure persistent storage, that is not
accessible by other modules, nor even by the OS. Past
work is further compared to our solution in Section 6.

Our main contributions are:
- Low-overhead architectural support for an arbitrary

number of trusted software modules within an
unmodified commodity software stack.
- New hardware protection for a hypervisor that is

resistant to physical attacks as well as software attacks.
- New architectural mechanisms for secure module

launch, protected virtual-to-physical memory mapping,
secure module storage and inter-module control flow.
- Proof-of-concept FPGA implementation of our

security architecture, with a modified microprocessor
and a modified hypervisor running unmodified
versions of Sun OpenSolaris and Ubuntu Linux.

The rest of this paper is organized as follows.
Section 2 discusses our threat model. Section 3 gives
an overview of the Bastion architecture while Section
4 describes its concepts and mechanisms in detail.
Section 5 presents our implementation using the
OpenSPARC platform. Section 6 compares Bastion to
past work and Section 7 concludes.

2. Threat Model

We consider hardware or physical attacks in
addition to software attacks. Unlike TPM which
considers the whole computer box secure from

physical attacks, we reduce our hardware security
perimeter to just the microprocessor chip, as in [23, 33,
22, 12]. All other hardware like memory, buses and
disks are considered vulnerable to physical attacks.
Because of highly layered manufacturing technology,
successful probing of complex microprocessors
without destroying their functionality is extremely
difficult, and hence signals within the microprocessor
chip are considered secure from physical attacks. We
assume the microprocessor does not contain design or
implementation flaws, hardware Trojans or viruses.

Software attacks can be carried out by malicious OS
or application code snooping on or corrupting security-
critical software state in disks, memory, caches or
registers. An adversary with physical access to the
platform can also intercept its signals and tamper with
its hardware (except for the microprocessor). For
example, an attacker could use hardware probes to
snoop on, or corrupt, values on the memory bus.

We consider both passive and active attacks on
confidentiality and integrity. Adversaries can easily
carry out a passive attack on data confidentiality, i.e.,
observe bus, memory or disk data. Similarly, attackers
can affect data integrity using active attacks such as
spoofing (illegitimate modification of data), splicing
(illegitimate relocation of data), and replay
(substituting stale data) attacks. We consider
operational attacks, not developmental attacks. We do
not consider covert or side channel attacks in this
paper, nor denial of service attacks.

3. Bastion Overview

The goal of Bastion is to protect the execution and
storage of trusted software modules within untrusted
commodity software stacks. First, the Bastion
microprocessor protects the storage and runtime
memory state of our enhanced hypervisor against both
software and hardware attacks. Then, the hypervisor
uses its hardware-protected environment to protect an
arbitrary number of trusted software modules. Each of
these modules is provided with a secure execution
environment and its own secure storage area, both
protected against software and hardware attacks. The
hypervisor also protects the invocation of trusted
modules and their preemption on interrupts to ensure
all control flow in and out of trusted modules is secure.
Figure 1 depicts an example application of Bastion,
where three OS and application modules (A, B, C) run
on or within commodity operating systems. Each
module is associated with its own secure storage area
on the untrusted disk.

We assume that the baseline CPU has virtualization
support (as in [18, 2]). Conceptually, this means it has
at least three hierarchical privilege levels, or protection
rings. In addition to the usual user (PL=3) and
supervisor (PL=0) privilege levels, the hardware also
provides new hypervisor or Virtual Machine Monitor
(VMM) privilege level(s). The hardware ensures that
software at other privilege levels cannot access code or
data at the hypervisor privilege level (sometimes called
ring -1). The hypervisor gives its Virtual Machines
(VMs) the illusion they each have unrestricted access
to all hardware resources, while retaining ultimate
control on how the resources are used.

The platform supports virtualized software stacks,
where guest operating systems run in separate VMs,
monitored by a hypervisor. We use the term machine
memory space to denote the actual physical memory
available in the hardware. The hypervisor virtualizes
the machine memory space to create guest physical
memory spaces for the guest operating systems it hosts.

When an OS builds a page table for an application,
it maps virtual pages to page frames in its guest
physical memory space. To map guest virtual memory
to machine memory, hypervisors use either shadow
page tables [1] or nested paging [3], the two main
techniques for memory virtualization. Mainstream
virtualization-enabled microprocessors support both
techniques [18, 2]. In the former, the hypervisor
maintains for each application a shadow page table
translating virtual addresses to machine addresses. In
the latter, the hypervisor only keeps track of guest-
physical-to-machine memory translations in nested
page tables. Virtual-to-machine address translations
are provided to the processor on Translation Lookaside
Buffer (TLB) misses, either by a hardware page table
walker or by the hypervisor itself. On a miss, shadow
page tables already contain up-to-date versions of
these translations. Nested page tables must be looked
up in parallel with guest page tables to construct the

missing translation on-the-fly. In both approaches, the
hypervisor, not the guest OS, retains ultimate control
on translations inserted in the TLB.

We also assume there are two levels of on-chip
cache (L1 and L2), as is the case in many general-
purpose processors. More than two levels of on-chip
caches can be supported—we just use L1 to refer to
that closest to the processor and L2 to refer to the last
level of on-chip cache. For simplicity, this paper only
considers the case of a uniprocessor. Applying Bastion
to multi-threaded, multi-core and multi-chip processor
systems is future work.
 Figure 1. Application of Bastion for three

trusted software modules A, B and C 3.1. Protecting the Hypervisor

New Bastion hardware features in the processor
directly protect our security-enhanced hypervisor. We
describe the secure launch of the hypervisor (without
needing a TPM chip), and its secure storage. Secure
runtime memory is provided to the hypervisor and
trusted software modules via a common mechanism
described in Section 4.3.

3.1.1. Secure Launch. The boot sequence of a Bastion
platform is similar to that of a regular computing
platform. The reset vector of the Bastion processor
points to untrusted BIOS code, like for a traditional
processor. This code sets up a basic execution
environment and then relinquishes CPU control to an
untrusted hypervisor loader. The loader fetches the
hypervisor binary image from persistent storage (e.g.,
disk), loads it into memory and jumps to the
hypervisor’s initialization routines. The Bastion secure
hypervisor must then invoke a new secure_launch
instruction for the Bastion processor to begin runtime
protection of hypervisor memory and activate
hypervisor secure storage capability.

The secure_launch instruction transfers control
to an internal routine that executes out of an on-chip
memory mapped to a reserved segment of machine
address space. This software routine computes a
cryptographic hash over the state of the hypervisor and
stores the resulting hash value in a new Bastion
register (hypervisor_hash). This value is the identity of
the loaded hypervisor, to be used in binding a
hypervisor to its secure storage area.

Security Analysis. If the untrusted loader skips
secure_launch or loads a corrupted hypervisor,
the hypervisor_hash value will be different, or will not
get computed at all. The hypervisor’s secure storage
area then remains locked, since it is tied to the good
hypervisor_hash value. This ensures that no other
software can read or modify the information in the

hypervisor’s secure storage. Secure storage is further
discussed in Section 4.5.

The secure_launch routine also generates a
new key for each power-on event, used to protect
hypervisor memory during runtime from hardware and
software attacks. Any hypervisor data is automatically
encrypted by a dedicated on-chip crypto engine
whenever it gets evicted from on-chip caches back to
main memory. Hypervisor cache lines are also hashed
before being evicted to memory, as part of a memory
integrity tree mechanism (described in Section 4.3).

Figure 2. Security Segment

3.2. Protecting Trusted Software Modules

Once the hypervisor is up and running within its
protected memory space, it can spawn any number of
Virtual Machines (VMs). For each VM, it allocates a
chunk of memory and other resources. It copies or
maps boot code (e.g. OpenBoot or BIOS code) into the
partition’s memory space and then jumps to that boot
code. The boot code initializes the VM and eventually
loads an operating system, which in turn loads any
number of applications. At any point during runtime, a
security-critical OS or application module may invoke
a new SECURE_LAUNCH hypercall to request a secure
execution compartment from the hypervisor. This
invocation is slightly different from the secure
hypervisor launch done with the secure_launch
instruction. A module’s SECURE_LAUNCH hypercall has
an argument pointing to a new security segment data
structure (Figure 2). This defines the module’s private
code and data pages, authorized entry points and
authorized shared memory interfaces. The hypervisor’s
SECURE_LAUNCH routine parses this definition to set up
our new Shadow Access Control mechanism (Section
4.2), which creates a memory compartment for the
module’s memory pages and enforces strict separation
of this compartment from the rest of the software stack

during runtime. The SECURE_LAUNCH hypercall also
activates runtime memory protection for all module
pages and computes the module identity, a hash of the
module’s initial state and its security segment.

4. Bastion Architecture

We describe key components in the Bastion
architecture below. New registers, state, routines and
mechanisms introduced are summarized in Figure 3.

4.1. Security Segment, Module State Table and
Module Identity

Each trusted software module has a security
segment (Figure 2). This must be made available to the
software module before it invokes SECURE_LAUNCH. It
can be compiled into the data space of the application
or OS containing the module, or it can be read from a
separate data file. Its internal structure is fixed and
known to the Bastion hypervisor. The module
definition contained in the security segment is derived
from instructions given by the programmer, e.g., via
code annotations. The main part of this definition is a
set of Shadow Access Control rules, each formed by
the following triple: 1) a module hash identifying a
module, computed over the module’s initial code and
data, 2) the virtual address of a page associated with

Figure 3. New Bastion Features in Microprocessor and Hypervisor

the identified module, and 3) the Read/Write/eXecute
(RWX) access rights given to this module for that
page. The Module Pages section describes the pages
belonging specifically to the module being defined in
this security segment. The Shadow Access Control
rules it lists thus have an implicit module hash. Shared
memory interfaces are defined in the Shared Pages
section of the segment, where Shadow Access Control
rules identify sharing modules explicitly. An
Authorized Entry Points section lists the virtual
addresses of authorized entry points into module code.
Finally, Module Stack Pointer specifies the top of the
module’s private stack. Memory for this stack is
reserved within the pages listed in Module Pages.

SECURE_LAUNCH parses a security segment to
extract Shadow Access Control rules and then checks
their compatibility with rules requested by modules
processed in previous invocations of SECURE_LAUNCH.
The hypervisor checks that: 1) there is no aliasing
between modules’ private virtual pages, nor between
the corresponding machine pages, and 2) all modules
sharing a memory page agree on one another’s
identity. Validated rules are added to a hypervisor data
structure called the Module State Table. To speed up
verification of aliasing between machine pages, the
Module State Table also contains a table mapping each
machine page to the set of modules allowed access to
the page. These mappings are also updated as validated
rules are committed to the Module State Table. Within
these data structures, the hypervisor identifies modules
using their module_id, a shorthand for their full
identity hash. The module_id is a unique identifier
assigned to each module by SECURE_LAUNCH and valid
until the next platform reset. It is used in hypervisor
software and in hardware tags, so its bit width must be
much smaller than that of a full hash (which is
typically 128 or 160 bits), but also large enough to
accommodate a large number of concurrent modules;
between 8 and 20 bits should be sufficient.

Bastion supports arbitrary module sizes, defined at
page granularity. For example, a module could be
composed of the few pages containing the code and
private data of a security-critical function, or the code
and data space of a library, or an OS loadable module,
or an entire trusted application or even the whole
memory space of a trusted OS. Ideally, a module
should encapsulate only the code and data necessary to
fulfill its security objectives, making it small and easy
to verify for correctness, possibly using formal
methods. However, it may not always be possible to
perform such fine-grain partitioning of an application
or OS, especially in legacy software. Hence Bastion
also supports large modules to provide monolithic
pieces of software with physical attack protection and

secure storage. Methodologies for partitioning
software systems into trusted and untrusted
components are studied elsewhere, e.g. [10].

4.2. Enforcing Virtual Memory Compartments

At runtime, the compartments defined by Shadow
Access Control rules are enforced by the processor
hardware. Rules are available in the instruction and
data Translation Lookaside Buffers (TLBs) and
enforcement is done during the TLB lookup preceding
every memory access. Infringement is signaled by a
new type of TLB miss causing the hypervisor to
intervene. To express Shadow Access Control rules,
TLB entries are extended with a module_id tag
identifying a module allowed access to the page. To
enable enforcement, a new current_module_id register
specifies the module_id of the module currently
executing. Memory accesses are allowed to go forward
only if the TLB module_id of the page accessed is
equal to the one in current_module_id. All software
that is not in a Bastion compartment is considered part
of a generic module zero, with pages tagged using the
reserved module_id 0. Therefore, modules
(including the untrusted module zero) can only access
instructions and data tagged with their module_id.

The method for getting the right module_id to a
TLB entry on a TLB miss is hypervisor-specific: it
depends on the technique used for virtualizing machine
memory. When shadow page tables are used, the
hypervisor extends shadow page table entries with the
module_id. The transfer of a shadow page table
entry from hypervisor memory to the TLB thus
automatically transfers the module_id. To handle
shared virtual pages, the hypervisor must replicate
shadow page table entries for these pages and assign

Figure 4. Shadow Access Control with
Shadow Page Tables

each entry the module_id of a module sharing the
page. The hypervisor checks that replicated entries
map to the same machine page to ensure the
correctness of this form of aliasing. Hardware page-
table-walkers, if used, must be modified to handle
shared virtual pages. Figure 4 depicts module a and b
sharing machine page 2 within virtual address space 1
and module b and c share machine page 3 across
virtual address spaces 1 and 2. It also shows each
module’s entry may have different access rights, e.g., a
producer-consumer buffer between the two modules.

Hypervisors using nested paging rather than
shadow page tables only track guest-physical-to-
machine memory mappings; they do not maintain
copies of all virtual-to-machine memory mappings as
is done in shadow page tables. In this case, missing
TLB entries—the virtual-to-machine address
translations with access rights—must be constructed
on-the-fly by the hypervisor or a hardware nested page
table walker instead of simply fetched from a shadow
page table. To add the module_id to these TLB
entries, we add an extra step to the TLB miss handling
procedure: once the entry is constructed, the
hypervisor checks that the entry respects the rules in
the Module State Table, adds the appropriate
module_id and writes the extended entry to the
TLB. When a hardware nested page table walker is
used, a new hypervisor trap is triggered at the end of a
table walk. Hypervisor software then inspects and
extends the new TLB entry.

When the hypervisor determines a memory access
request violates Shadow Access Control rules, it either
restricts or denies the request, depending on the
requestor. A guest OS is given access to an encrypted
and tamper-evident version of the cache line, while an
application is simply denied access. Restricted access
is given to guest operating systems to ensure they can
perform paging or relocate pages in physical memory.
Encryption and tamper-evidence is provided by the
Secure Physical Memory mechanisms described next.

4.3. Secure Physical Memory

Bastion protects hypervisor and module memory
state against hardware adversaries that might snoop on
or corrupt data on buses and memory chips. Such
memory confidentiality and integrity is provided by
two new hardware cryptographic engines located
between the L2 cache and main memory. One engine
encrypts and decrypts protected cache lines while the
other verifies their integrity using a hash tree. Using
the on-chip RNG, the memory encryption key is
generated anew by the on-chip secure_launch

routine upon every platform reset to thwart (known-
ciphertext) attacks that could leak information across
reboots if the same key was reused.

The integrity hash tree detects memory corruption
attacks by checking that what is read from main
memory at a given address is what the processor last
wrote at that address. This is based on the Merkle tree
[28], adopted in [33]. The Merkle tree technique
recursively computes cryptographic hashes on the
protected memory blocks until a single hash of the
entire memory space, the tree root, is obtained. The
tree root is kept on-chip in the microprocessor, while
the rest of the tree can be stored off-chip.
Authenticating a block read from main memory
requires fetching and verifying the integrity of all
hashes on the tree branch starting at the block of
interest and ending with the root. Similarly, a
legitimate update to a block triggers updates to hashes
on the block’s branch, including the root. Tree nodes
can be cached [16] to speed up tree operations and the
simple hashing primitive can be substituted for one
with better performance characteristics [30].

During platform boot-up, the on-chip
secure_launch routine initializes the tree to
fingerprint the loaded hypervisor. Two new L2 cache
tag bits (i_bit and c_bit) identify cache lines
requiring encryption or hashing. The values of these
bits come from the TLB, where each entry is also
extended with an i_bit and a c_bit. Bastion
runtime memory protection mechanisms operate at a
page granularity: all L2 cache lines in a page are
tagged with the i_bit and c_bit read from that
page’s TLB entry. The bits in this entry are set by the
hypervisor on a TLB miss.

To protect trusted module memory, the
SECURE_LAUNCH hypercall encrypts the pages of each
module being launched, and adds its pages to the tree’s
coverage. During runtime, the hypervisor sets the TLB
i_bit and c_bit for module pages. Our tree also
protects module pages swapped from memory to an
on-disk page file and back, similarly to [30].

Bastion’s hash tree is slightly different from
traditional Merkle hash trees. We selectively cover
only hypervisor and trusted module pages, while they
cover the entire physical memory space. We cover
pages swapped out to disk (as in [30]), while they do
not cover data outside the physical memory space.

To efficiently support its functionality, our integrity
tree is formed of two parts: a top cone and several
page trees. A page tree is a Merkle hash tree computed
over a page of data or code, with a root called the page
root. The top cone is a Merkle hash tree rooted in a
register of the hashing engine (hash_tree_root_reg in

Figure 3) and computed over the page roots, to protect
their integrity. Our tree is shown in Figure 5. Upon
platform reset, there are no pages to protect so the top
cone is initialized on a set of null page roots. When a
page is added to the tree, its page tree is computed and
its page root replaces a null page root.

For simplicity, we assume the components of the
tree are stored in dedicated machine memory regions
and that the initial top cone covers enough null page
roots to satisfy the memory needs of the software
stack. Dynamic expansion and shrinkage of integrity
tree coverage is an orthogonal research problem; it can
be addressed using techniques such as in [8].

Through its monitoring of (shadow or nested) page
table changes, the hypervisor can detect a guest OS is
sending a page out to disk. If the remapping respects
Shadow Access Control rules, the hypervisor moves
the page’s tree so it becomes rooted by one of the page
roots reserved for disk pages. As a result, the tree root
fingerprints module pages in main memory and on the
disk. When the guest OS moves a page from the disk
back to physical memory (or simply relocates a page in
physical memory), the hypervisor moves the page tree
to reflect the page’s new position. If the OS or a
physical attacker corrupts the page while it resides on
the disk, the integrity checking engine detects
tampering as soon as the affected cache lines are
accessed by the module. Therefore, critical module
pages remain tamper-evident and confidential as they
are moved by the guest OS between memory and disk.

4.4. Secure Inter-Module Control Flow

Entering and leaving protected modules securely is
essential for security-critical software. Bastion
addresses this need for secure control flow with
mechanisms enabling secure invocation and
preemption of modules.

4.4.1. Module Invocation. VM software always starts
executing in the unprotected module zero, where the
bootstrap procedure takes place. The hypervisor thus
starts a VM with the current_module_id register set to

zero. It remains set to zero until a protected software
module is called via the new CALL_MODULE hypercall.
This hypercall takes as parameters the module hash of
the callee and the virtual address of the desired entry
point. The hypervisor services CALL_MODULE by first
checking the validity of this entry point against the list
of authorized entry points provided upon
SECURE_LAUNCH for the callee. When the entry point
is valid, the hypervisor registers the desired transition
in the Module State Table and returns from the
hypercall, but it does not change the value in the
current_module_id register yet.

Figure 5. The Bastion Integrity Tree

Fetching the first callee instruction triggers a TLB
miss due to a module_id mismatch—the instruction
is tagged with the callee’s module_id while the
current_module_id register still contains the caller’s
module_id. This TLB miss is handled by the
hypervisor. It checks whether the transition that just
occurred was legitimate and previously registered in
the Module State Table. If so, it allows the transition
by setting current_module_id to the callee’s
module_id. It also saves the address of the call site
so that it can later enforce a correct return into caller’s
code. Execution of the callee module then resumes.

Callee modules can only return to their callers via
the RETURN_MODULE hypercall. As for CALL_MODULE,
this hypercall registers the requested transition, but it
does not modify the value in the current_module_id
register. This means that when the callee executes the
return instruction to jump back to the caller’s code, an
instruction TLB miss occurs due to a module_id
mismatch. The hypervisor intervenes to first check that
this transition was previously requested. It also checks
that the return address into the caller’s code
corresponds to the instruction following the caller’s
call site, previously saved by the hypervisor. When all
checks pass, the hypervisor allows the return transition
back into the caller by setting the current_module_id
register to the caller’s module_id.

4.4.2. Module Preemption. When a protected module
gets preempted by the guest OS (e.g. to service a timer
or device interrupt), the hypervisor first intervenes to
save the module’s register state in the Module State
Table. It also wipes out any remaining register state so
that malicious OS code is unable to observe or modify
critical module state via its registers. When the OS
resumes module execution, the hypervisor intervenes
again to restore the register state of the preempted
module, including the program counter. Hypervisor
intervention upon module preemption or resumption is
triggered by a module_id mismatch between module
code and OS interrupt handler code.

4.5. Scalable Secure Persistent Storage

4.5.1. Hypervisor Secure Storage. The hypervisor
secure storage is a non-volatile area, located in a flash
memory chip or disk, where the hypervisor stores
long-lived secrets and other persistent sensitive data.
Its protection is rooted in new Bastion hardware
registers. The hypervisor creating such an area protects
its confidentiality and integrity by encrypting it with a
symmetric encryption key and fingerprinting it with a
cryptographic hash, both stored in dedicated
microprocessor registers (secure_storage_key and
secure_storage_hash). The values in these non-volatile
registers exist across reboots and are only accessible to
the hypervisor that created the storage area, identified
by the hash value contained in the new non-volatile
storage_owner_hash register. When the values in
storage_owner_hash and hypervisor_hash match, the
secure_launch routine “unlocks” the existing
secure storage area by giving the hypervisor access to
the secure_storage_hash and secure_storage_key
registers. The contents of these registers allow the
loaded hypervisor to decrypt and hash verify the secure
storage area it fetches from disk or flash, which may
have been tampered with by a physical attacker since
the last power down. When the values in
storage_owner_hash and hypervisor_hash do not
match, the secure_launch routine wipes out the
contents of the secure_storage_hash and
secure_storage_key registers before they become
accessible to the loaded hypervisor. This prevents
different hypervisors from accessing one another’s
secure storage areas and locks corrupted hypervisors
out of a good hypervisor’s secure storage.

Figure 6. Scalable Secure Storage

 Mechanisms for backup and migration of
hypervisor secure storage should also be devised to
avoid loosing stored data upon deployment of a new
hypervisor or following the load of a corrupted
hypervisor. Similarly to TPM [34], we suggest using
trusted authorities from which the hypervisor can
request migration and backup services. The hypervisor
can establish a secure communication channel to such
an authority by authenticating the authority using a
public key embedded in its data space.

4.5.2. Module Secure Storage. The hypervisor
leverages its hardware-rooted secure storage to provide
trusted software modules with their own secure storage
in a scalable way. The secure storage area of a module
is kept confidential with a symmetric encryption key
and made tamper-evident with a cryptographic hash
computed over its contents. The hypervisor labels this
(key, hash) pair with the identity of the module and

stores the labeled pair in the hypervisor’s secure
storage area, protected by the dedicated hardware
registers. This method, depicted in Figure 6, can scale
up to an arbitrary number of module storage areas.
Hence, only two hardware registers (to protect the
hypervisor’s storage) are needed to protect any amount
of data (for any number of trusted modules).

Modules access and manage their secure storage
areas via new hypercalls. To create a new area, a
protected module 1) generates a key, 2) encrypts the
data to be stored in the area with the key, 3) computes
a hash over the contents of the encrypted data and 4)
stores the encrypted data to disk or flash memory.
Because it is encrypted and hashed, this data can safely
exit the module’s compartment to be written to disk via
an untrusted file system manager using an untrusted
disk device driver. To enable subsequent access to the
data across platform reboots, the module invokes the
WRITE_STORAGE_KEY and WRITE_STORAGE_HASH
hypercalls with, respectively, the encryption key and
the computed hash as arguments. These hypercalls
bind the module’s identity to the key and hash pair
protecting the new storage area, and store the resulting
(key, hash, identity) tuple in the hypervisor’s secure
storage area. To recover this key and hash following a
platform reboot, the module invokes the
READ_STORAGE_KEY and READ_STORAGE_HASH
hypercalls. The hypervisor services these calls by
returning the key and hash only if the identity of the
invoking module (computed during a SECURE_LAUNCH
invocation) is identical to the identity of the module
that created the secure storage area. When a module
modifies the contents of an existing area, it invokes the
WRITE_STORAGE_HASH to commit the updated state to
the hypervisor’s secure storage. Modules can detect the
malicious replay of an old version of their storage
since the hypervisor always returns the hash reflecting
the latest update. Our approach is similar to that in the
SP architecture [12], except that we provide secure
storage to multiple modules from different trust
domains rather than a single one.

5. Implementation

5.1. Baseline Architecture

We implemented Bastion by modifying the Sun
Microsystems UltraSPARC T1 (codename Niagara)
microprocessor [21] and the UltraSPARC hypervisor.
The Verilog description of the microprocessor and the
source code of the hypervisor are both publicly
available as part of the OpenSPARC project [29].
OpenSPARC also provides developers with a full-
system implementation, in a Xilinx Embedded
Developer’s Kit (EDK) project, of the T1 chip—i.e.
the UltraSPARC core, crossbar, L2 cache (emulated by
a Xilinx MicroBlaze processor running firmware),
UART and on-chip Ethernet and memory controllers.
This implementation can be synthesized for a Xilinx
Virtex 5 Field-Programmable Gate Array (FPGA) and
executed on the Xilinx ML505 development board.
This board includes a Virtex 5 FPGA chip, a 256MB
DRAM DIMM, a Flash memory card controller, a
Network Interface Card and other I/O peripherals.

As a proof-of-concept implementation, we modified
the single-thread UltraSPARC microprocessor with
new Bastion hardware, and modified the hypervisor
with new Bastion features. The resulting FPGA board
successfully hosted our modified Bastion hypervisor,
protecting trusted software modules in an application
running on an unmodified commodity OpenSolaris
operating system. All the functionality discussed in
this paper was implemented either in hardware,
firmware or software, except for the Random Number
Generator, restricted OS access to protected pages and
shadow page table logic (the hypervisor uses nested
paging). We also implemented hypervisor and module
attestation capabilities, not discussed in this paper for
lack of space. While we present results for
OpenSolaris, we also compiled and ran our application
on an unmodified Linux Ubuntu OS, without changing
a single line of code in our Bastion hypervisor.

5.2. Implementation Strategy

5.2.1. Microprocessor Core. To add the new Bastion
registers (Figure 3) to the T1 microprocessor, we wrote
a top-level Verilog unit containing storage flip-flops
and address decoders for 32 new 64-bit registers.
These 2048 bits of register storage hold the hypervisor
hash, the secure storage key, hash and owner hash, and
a private attestation key not discussed in this paper.
We could not make any of these registers non-volatile
since the Virtex 5 does not provide on-chip non-
volatile storage capabilities.

Instruction and data TLBs were extended with a 5-
bit module_id in each entry and a 5-bit
current_module_id register was added. The TLB
lookup logic was also enhanced to raise a TLB miss on
a mismatch between the module_id tagging a
“matching” TLB entry and the value in the
current_module_id register. Although we designed
Bastion to support much more than 32 modules, 5 bits
was a convenient width for this implementation since it
corresponds to an unused part of existing TLB lines.

Finally, we implemented internal microprocessor
routines (hypervisor secure launch and attestation) as
compiled SPARC code executing from a reserved
range in machine address space. Due to a shortage in
FPGA RAM blocks, this range currently gets mapped
to off-chip rather than on-chip memory. The routine
code is responsible for identifying the hypervisor so it
cannot rely on the hypervisor. We developed it as a
self-contained software stack with a tiny, statically-
linked C library as runtime support for the secure
routines. To invoke an internal microprocessor routine,
the hypervisor simply jumps to its entry point within
the reserved range of machine address space.

5.2.2. Firmware and Crypto Hardware. Unfortu-
nately, the EDK project does not implement L2 cache
arrays and controllers in hardware. MicroBlaze
firmware emulates the L2 cache without allocating
actual L2 storage. We implemented our cache-related
mechanisms in the MicroBlaze firmware, adding a
hardware AES encryption-decryption engine as a Fast
Simplex Link (FSL) MicroBlaze peripheral. Our
extended firmware checks whether the c_bit of each
cache line accessed by the core is set and if so, sends
the line to the hardware AES engine to be decrypted or
encrypted on, respectively, a read from or write to
external memory. Similarly, the firmware checks the
i_bit and uses the AES engine as a CBC-MAC
(Cipher Block Chaining - Message Authentication
Code) hash function to perform integrity hash tree
verifications or updates. Finally, our extended
firmware detects and routes accesses to the machine
memory range reserved for secure on-chip routines.

5.2.3. Hypervisor Software. To add Bastion mecha-
nisms to the UltraSPARC hypervisor, we modified the
instruction and data TLB miss handlers and added new
hypercall handlers. To speed up implementation, many
of the functions added to the hypervisor were coded in
C rather than the SPARC assembly used throughout
the existing hypervisor (except for initialization
routines written in C). This required providing the
hypervisor with its own stack and with routines to

make enough register windows available to the C
routines. Using C code during runtime in a thin
hypervisor layer is clearly sub-optimal, but still
provides us with a proof-of-concept implementation
that can boot a full commodity operating system and
its applications in an acceptable amount of time.

Table 1. Hardware Complexity

5.2.4. Trusted Module Software. The application
modules we implemented have their own private data
and code space, and they share a single page as a
memory interface. To support dynamic memory
allocation, a set of pages is assigned to each module to
be used as their private heaps and stacks. The
hypervisor routines for secure module control flow are
responsible for switching stacks upon entering or
leaving a module. To support functions such as heap
memory allocation, each module is assigned a separate
copy of a statically-linked, minimalist C library.

5.3. Complexity Costs

Tables 1 and 2 show, respectively, the hardware and
software complexity of the Bastion mechanisms. Table
1 shows that our modifications to the microprocessor
core increase resource usage by less than 10%. Table 2
shows increases in the size of the hypervisor and
firmware code base are between 6 and 8%. The new
AES crypto core causes the biggest increase in
resource consumption. We note that these numbers
could be significantly reduced if the Bastion logic was
implemented and optimized by experienced engineers.

5.4. Performance Impact

In Table 3, we provide preliminary evidence that
the performance overheads caused by Bastion
protection are reasonable given the high throughput of
modern microprocessors. We present instruction
counts rather than cycle counts since the absence of an
L2 cache, combined with our rudimentary memory
crypto engine (single engine for both encryption and
hashing, clocked at less than a quarter of the memory
frequency, with no caching of tree nodes) currently

causes extremely high load latencies. Our next step in
developing this prototype is to provide it with memory
crypto engines that can match memory bandwidth and
cache frequently accessed metadata, as suggested in
the literature on the subject [16, 30].

The table shows the number of instructions that
need to be executed to handle our various hypercalls
and to enter or leave modules (depicted as “module
call/return” and “module preempt/resume”). The
SECURE_LAUNCH creating our compartments requires
less than 15K instructions, which compares
advantageously to the 468K instructions required to
initialize an UltraSPARC virtual machine on the same
platform. Our module transition mechanisms can enter
and leave Bastion compartments in less than 2,000
instructions. With an operating system giving our
modules 10ms quanta of CPU time, these overheads
correspond to a performance hit of less than one tenth
of a percent. On a 2GHz CPU with enough L2 cache
storage to support a throughput of 0.5 instruction per
cycle, secure storage hypercalls execute in under 1µs,
several orders of magnitude faster than the sealed
storage operations on a TPM chip, reported to require
hundreds of milliseconds to complete [26].

Table 3. Performance overhead of Bastion operations

Table 2. Software Complexity (lines of code)

6. Related Work

We distinguish between three approaches for

protecting critical software in a commodity stack: 1)
add security features to the OS, 2) measure and verify
an unmodified OS or 3) bypass the OS altogether.

Security mechanisms built into an operating system
benefit from significant visibility into the software they
are protecting since OS code has access to memory and
I/O mapping information. Such mechanisms can
mediate system calls, I/O requests and even memory
accesses to provide security-critical tasks with isolated
execution or some form of secured I/O, e.g. [24, 35,
33, 36, 7]. However, secure operating systems are
either custom built and hence are unlikely to replace
well-established commodity operating systems, or they
are based on a mainstream OS and are exposed to
software vulnerabilities in the large privileged code
base they are built upon. Modifications to the
microprocessor have been suggested to limit the
privileges of vulnerable OS code [7] but only to enable
detection of tampering with static code and data, not
dynamic data (e.g. stack, heap). In most cases, these
are software-only approaches that remain vulnerable to
attackers with physical access to the device. Bastion,
however, provides protection from physical attacks.

Rather than add security to an OS, other approaches
measure and verify unmodified operating systems prior
to providing the security-critical tasks they run with
sensitive data to process [31, 25, 37]. These techniques
compute a cryptographic hash to fingerprint the initial
data and code state of the OS; the hash is then used as
an identity in an attestation report sent to a remote
party. The party is expected to determine whether the
identified OS is trustworthy, and if so, reply with
sensitive data sealed to the identity. These secure
storage and attestation capabilities are provided by a
hardware Trusted Platform Module (TPM) [34] chip.
Although TPM keys can be used to protect disk data
while the device is powered off, TPM-based systems
remain vulnerable to physical attacks during runtime
[19, 17]. Even without physical attacks, these
approaches are likely to remain vulnerable to software-
based runtime attacks since remote parties are typically
unable to correctly assess the trustworthiness of a large
commodity software stack [7].

Finally, some architectures bypass the commodity
operating system altogether to protect a security-
critical application module using either an enhanced
microprocessor or a trusted hypervisor. These tend to
focus on memory compartmentalization, so most do
not offer secure storage capabilities as Bastion does.
When they do, these services are either restricted to a

single trust domain as in SP [12], or they require the
use of a slow TPM chip [15, 14, 26] or an expensive
PCI-based coprocessor peripheral [13]. There are two
broad categories of techniques for bypassing a
commodity OS: 1) move security-critical tasks to a
trusted OS running concurrently to the commodity OS,
within a separate execution environment [15, 5, 20, 4,
26] or 2) isolate security-critical tasks running on the
commodity OS [23, 22, 12, 9, 11].

By provisioning additional execution environments,
typically extra virtual machines, the techniques in the
first category can enforce strict isolation between
security-critical tasks and the commodity software
stack. For such standalone environments, however, the
cost of initializing, context switching and interfacing
with the commodity software stack can be high [27]
and prevent scalability. In the second category,
software techniques [9, 11] secure critical tasks within
the commodity software stack without creating new
environments, but cannot protect against attackers with
physical presence. While providing better security
against physical attackers, the hardware-based
techniques [23, 22, 12] remain vulnerable to memory
replay attacks on dynamic data and are restricted in
their scalability by limited hardware resources. They
focus on achieving security objectives such as secure
storage or confidential and tamper-evident execution
despite a potentially compromised OS.

The Bastion architecture adopts the strategy of
bypassing the commodity OS to provide to security-
critical tasks isolated execution compartments with
secure storage. It differs from past work in that it can
maintain an arbitrary number of compartments, either
in the operating system or application layer, and can
defend against hardware attacks, including memory or
persistent storage replay attacks. It is also the first
security solution to provide strong protection of the
virtualization layer’s execution and storage.

7. Conclusion

This paper introduced the Bastion architecture,
formed of processor hardware and a thin hypervisor,
both enhanced to provide scalable secure execution
and storage to critical modules within an untrusted
commodity software stack. Mechanisms in the
processor hardware securely launch the hypervisor and
provide runtime cryptographic protection of the
hypervisor memory state against physical attacks.
Extended memory management mechanisms in
hardware and software allow the Bastion hypervisor to
define and protect an arbitrary number of low-
overhead execution compartments for trusted software

modules. Each module is provided with its own secure
storage area, rooted in hypervisor secure storage. Our
implementation demonstrates the feasibility of
skipping an unmodified commodity OS to provide
application-level security and shows an acceptable
complexity overhead. As opposed to past approaches
where the operating system must be trusted, Bastion
only needs to trust and protect a thin layer of
hypervisor software which can be two orders of
magnitude smaller than a commodity OS. Protection
mechanisms against hardware attacks provide more
security than TPM-based platforms, which cannot
defend against probing attacks on buses and memories.
Integration of our security mechanisms in the
processor hardware also ensures Bastion is much faster
than platforms using a slow TPM chip.

8. References

[1] K. Adams et al. A comparison of software and hardware
techniques for x86 virtualization, in Proc. of ASPLOS06,
Oct. 2006.
[2] AMD, Industry Leading Virtualization Platform
Efficiency. www.amd.com/virtualization, 2008.
[3] AMD, AMD-V Nested Paging. AMD Whitepaper
Revision 1.0, July 2008.
[4] M.J. Anderson et al. Towards Trustworthy Virtualisation
Environments. Technical Report HPL-2007-69, Hewlett-
Packard Development Company, L.P., April 2007.
[5] T. Alves et al. Trustzone: Integrated hardware and
software security. ARM white paper, July 2004.
[6] P. Barham et al., Xen and the Art of Virtualization, In
Proc. of Symposium on OS Principles (SOSP), Oct 2003.
[7] S. Bratus et al. TOCTOU, Traps, and Trusted Computing.
In Proc. of the TRUST 2008 Conference, March 2008.
[8] D. Champagne et al., The Reduced Address Space (RAS)
for Application Memory Authentication, In Proc. of the 11th
ISC’08, Sept. 2008.
[9] X. Chen et al. Overshadow: A Virtualization-Based
Approach to Retrofitting Protection in Commodity Operating
Systems, In Proc. of ASPLOS08, March 2008.
[10] Y. Chen and R.B. Lee, Hardware-Assisted Application-
Level Access Control, In Proc. of Information Security
Conference, Sep. 2009.
[11] P. Dewan et al. A Hypervisor-Based System for
Protecting Software Runtime Memory and Persistent
Storage, SSSS'08, April 2008.
[12] J. Dwoskin and R.B. Lee. Hardware-rooted Trust for
Secure Key Management and Transient Trust, Proc. of ACM
CCS’07, Oct. 2007.
[13] J.G. Dyer et al. Building the IBM 4758 Secure
Coprocessor, Computer, v.34 n.10, p.57-66, October 2001.
[14] P. England et al. A Trusted Open Platform, Computer,
v.36 n.7, p.55-62, July 2003
[15] T. Garfinkel et al., Terra: A virtual machine-based
platform for trusted computing, in Proc. of SOSP, Oct. 2003.

[16] B. Gassend et al., Caches and Merkle Trees for Efficient
Memory Authentication, Proc. of HPCA 2003, Feb. 2003.
[17] J. A. Halderman et al. Lest We Remember: Cold Boot
Attacks on Encryption Keys. In Proc. of USENIX Security,
July/August 2008.
[18] Intel, Intel Virtualization Technology: Hardware
Support for Efficient Virtualization, Intel Technology
Journal, Aug. 2006.
[19] B. Kauer, OSLO: Improving the Security of Trusted
Computing, in Proc. of USENIX Security, Aug. 2007.
[20] P. Kwan et al. Vault: Practical Uses of Virtual Machines
for Protection of Sensitive User Data. In Proc. of ISPEC
2007, May 2007.
[21] J. Laudon. UltraSPARC T1: Architecture and Physical
Design of a 32-threaded General Purpose CPU, In Proc. of
IEEE ISSCC, Feb. 2006.
[22] R. B. Lee et al. “Architecture for Protecting Critical
Secrets in Microprocessors,” Proc. of ISCA 2005, June 2005.
[23] D. Lie et al. Architectural Support for Copy and Tamper
Resistant Software, Proc. of ASPLOS IX, 2000.
[24] P. Loscocco et al. Integrating Flexible Support for
Security Policies into the Linux Operating System,
Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, June 2001.
[25] J. Marchesini et al., Open-Source Applications of TCPA
Hardware, Proc. of ACSAC'04, December 2004
[26] J.M. McCune et al., Flicker: An Execution
Infrastructure for TCB Minimization, In Proc. of
EuroSys2008, March 2008.
[27] A. Menon et al., Diagnosing performance overheads in
the Xen virtual machine environment. Proc. of the 1st
ACM/USENIX international conference on Virtual execution
environments, June 11-12, 2005.
[28] R.C. Merkle, “Protocols for Public Key Cryptosystems,”
IEEE Symposium on Security and Privacy, 1980.
[29] Sun Microsystems, http://www.opensparc.net, 2008.
[30] B. Rogers et al., Using Address Independent Seed
Encryption and Bonsai Merkle Trees to Make Secure
Processors OS- and Performance-Friendly, In Proc. of Int’l
Symp. on Microarchitecture (MICRO2007), Dec. 2007.
[31] R. Sailer et al., Design and implementation of a TCG-
based integrity measurement architecture, In Proc. of
USENIX Security, 2004.
[32] J. Sugerman et al. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor In Proc. of
2002 USENIX Annual Technical Conference, June 2001.
[33] G. E. Suh. AEGIS: A Single-Chip Secure Processor.
PhD thesis, Massachusetts Institute of Technology, 2005.
[34] Trusted Computing Group, “Trusted Platform Module
(TPM) Main – Part 1 Design Principles,” Spec. v1.2,
Revision 94, March 2006.
[35] C. Wright et al. Linux Security Modules: General
Security Support for the Linux Kernel, Proc. of USENIX
Security, August 2002
[36] N. Zeldovich. Making information flow explicit in
HiStar, Proceedings of Operating systems design and
implementation, Nov. 2006
[37] J. Cihula, Trusted Boot: Trusted Boot: Verifying the
Xen Launch, Xen Summit 07 Fall.

	1. Introduction
	2. Threat Model
	3. Bastion Overview
	3.1. Protecting the Hypervisor
	3.2. Protecting Trusted Software Modules

	4. Bastion Architecture
	4.1. Security Segment, Module State Table and Module Identity
	4.2. Enforcing Virtual Memory Compartments
	4.3. Secure Physical Memory
	4.4. Secure Inter-Module Control Flow
	4.5. Scalable Secure Persistent Storage

	5. Implementation
	5.1. Baseline Architecture
	5.2. Implementation Strategy
	5.3. Complexity Costs
	5.4. Performance Impact

	6. Related Work
	7. Conclusion
	8. References

