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ABSTRACT
Information leakage through cache side channels is a seri-
ous threat in computer systems. The leak of secret crypto-
graphic keys voids the protections provided by strong cryp-
tography and software virtualization. Past cache side chan-
nel defenses focused almost entirely on data caches. Re-
cently, instruction cache based side-channel attacks have
been demonstrated to be practical – even in a Cloud Com-
puting environment across two virtual machines. Unlike
data caches, instruction caches leak information through
secret-dependent execution paths. In this paper, we propose
to use a classification matrix to quantitatively characterize
the vulnerability of an instruction cache to software side
channel attacks. We use this quantitative analysis to an-
swer the open question: can randomized mapping proposed
for thwarting data cache side channel attacks secure instruc-
tion caches? We further study the performance impact of the
randomized mapping approach for the instruction cache.

Categories and Subject Descriptors
B.3.2 [Hardware]: Design Styles—Cache memories

General Terms
Security

Keywords
Cache side channel, SVM, randomized mapping

1. INTRODUCTION
Cache side channels are serious threats to computer sys-

tems, from smartphones to multi-tenant cloud computing
servers. They can be exploited by attackers to leak crypto-
graphic keys, nullifying any protection provided by strong
cryptography. Since they attack the underlying hardware
caches, they also void the software memory isolation protec-
tions provided by virtual machines. Many real world attacks
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have been successfully demonstrated on various platforms
[17, 11, 18, 16, 12, 10, 15, 22, 21].

Past work on cache side channels tended to focus on the
data cache (D-cache). D-cache attacks exploit the interac-
tion of secret-dependent data access patterns of a cipher with
the underlying D-cache to leak secret information. The be-
havior of the D-cache enables an attacker to indirectly infer
the memory address of a security-critical access, and in the
case of a cipher, bits of the secret key.

In instruction cache (I-cache) attacks, however, it is the
interaction of secret-dependent execution paths with the un-
derlying I-cache that leaks the secret information [9, 10].
Recently, Zhang et al. successfully applied I-cache based
side-channel attacks to the noisy, multi-tenant Cloud Com-
puting environment, showing that an attacker virtual ma-
chine (VM) can steal the private key used in a victim VM
[22]. This elevates I-cache based side-channel attacks to a
serious practical threat.

Past work on defenses focused on securing the D-cache
against D-cache based side-channel attacks [19, 20]. They
showed that randomizing memory-to-cache mapping is effec-
tive against contention based attacks [19, 20], without per-
formance degradation. In this paper, we explore the open
question: “Are randomized mapping approaches for D-cache
also suitable for securing I-caches from cache side-channel
attacks?”

We first analyze whether and how the contention based
attack techniques for D-cache attacks can be applied to the
I-cache. This is because constructing a side-channel attack
on the I-cache has many challenges beyond that of D-cache
attacks. We find that the access-based attacks that can cap-
ture the execution trace of a program are more of a threat
for the I-cache than timing-based attacks.

A key insight on I-cache attacks is that they rely on dif-
ferentiating the footprints of different execution paths in the
instruction cache. We therefore propose to use a classifica-
tion matrix derived from machine learning classification to
quantitatively characterize the vulnerability of an I-cache to
these side-channel attacks.

We apply our classification matrix to analyze two varia-
tions of randomized mapping with different degrees of ran-
domness: a fully-associative cache with a random replace-
ment algorithm, and the Random-Fixed mapping scheme,
which is the core mechanism in Newcache [20] – the ran-
domized mapping scheme with the best performance. We
find that the fully-associative cache with random replace-
ment algorithm can make the cache footprints of different
branches indistinguishable and the Random-Fixed mapping



can achieve the same indistinguishability as the fully-associative
cache, with much less power consumption and access latency.

Our main contributions are:

• Quantitative characterization of the relative vulnera-
bility of different systems to I-cache side-channel at-
tacks using an SVM classification matrix.

• An analysis of the best defense proposed in past work,
the Newcache secure data cache architecture, to shed
insight into its basic security features, and a compre-
hensive evaluation of its suitability for use as a secure
I-cache to mitigate I-cache side-channel attacks (sec-
tion 4).

• Evaluation of the performance of Random-Fixed map-
ping scheme for instruction caches (section 5).

To the best of our knowledge, our work is the first work
to analyze how to secure the I-cache against side-channel at-
tacks. We discuss D-cache side channel attacks and defenses
in section 2. We introduce I-cache attacks and our classifi-
cation matrix in section 3. We characterize the effectiveness
of randomized mapping schemes in 4, and discuss its impact
on performance and power in section 5.

2. BACKGROUND

2.1 Attacks on Data Caches
The majority of cache side channel attacks are D-cache

attacks. They rely on secret-dependent memory indexing,
which can be found in many cryptographic algorithms. List-
ing 1 shows a code snippet in AES. It first XORs the input
in with the round key rk, and then uses the result to in-
dex the AES tables (Te0,...,Te3). If the attacker can get the
index to the lookup table, he can immediately get the key.

Listing 1: secret-dependent table lookup
s0 = GETU32(in )^ rk[0];
s1 = GETU32(in + 4) ^ rk[1];
s2 = GETU32(in + 8) ^ rk[2];
s3 = GETU32(in + 12) ^ rk[3];
t0 = Te0[s0>>24]^Te1[(s1>>16)&0xff]

^Te2[(s2>>8)&0xff]^Te3[s3&0xff]^rk[4];

In order to infer the index of the victim’s table lookup,
the most common way is to exploit the cache contention
(conflict misses) between the victim and the attacker. If an
attacker discovers which cache set he can access to contend
with the victim’s table lookup, he can easily reverse engineer
the memory address of the table lookup, due to the fixed
memory-to-cache mapping of conventional caches. Prime-
Probe and Evict-Time are two well-known attack techniques
on a D-cache that can recover a secret key.
Prime-Probe Attack: This is an access-based attack

since the attacker can infer the victim’s memory accesses
by measuring how these accesses impact the attacker’s own
data. It works as follows:
Prime: An attacker A fills one or more cache sets with its own
data.

Idle: A waits for a prespecified Prime-Probe interval while the
victim process V gains control of the processor and utilizes the
cache.

Probe: A gains control of the processor again, and measures the
time to access the same cache sets to learn V’s cache activity.

If V uses some cache sets during the Prime-Probe interval,
some of A’s cache lines in these cache sets will be evicted,
which causes a longer load time for those cache sets during
A’s Probe phase. It is straightforward to do “prime” and
“probe” for the D-cache–the attacker only needs to load data
from an array of the same size as the data cache.
Evict-Time Attack: This is a timing-based attack since

the attacker can observe the total execution time of the vic-
tim’s security-critical operation. The attacker A works as
follows:
Evict: A fills one specific cache set with his own data.

Time: A triggers the victim process to perform the security-
critical operation and measures the victim’s total execution time.

If the victim accesses the evicted cache set, his execution
time tends to be statistically higher than when he does not
access the evicted cache set (but may access other data in
the lookup table), due to the victim having a cache miss.

2.2 Defenses for D-cache Attacks
Several hardware solutions have been proposed to secure

the D-cache against side-channel attacks [19, 20]. Compared
with software countermeasures, hardware solutions can tar-
get the root cause of the attacks, and thus are more gen-
eral, without degrading performance. Cache partitioning
and randomizing memory-to-cache mapping are two general
approaches to secure the data cache [19] against the con-
tention based side-channel attacks. In this paper, we focus
on the randomization based approaches since they are re-
ported to have little or no performance degradation [19, 20],
while many partitioning approaches have some performance
degradation due to smaller effective cache sizes. The ran-
domization based approaches allow cache contention, but
the attacker cannot reverse engineer the memory address
from a cache set since any memory address can be randomly
mapped to a cache set. In particular, we are interested in
Newcache [20], which has been shown to have the best per-
formance among various randomization based approaches.
Newcache: We observe that the core mechanism of New-
cache can be denoted a Random-Fixed Mapping. It intro-
duces a level of indirection in the memory-to-cache mapping
using the concept of a Logical Direct Mapped (LDM) cache
(see Figure 1). The LDM cache does not physically exist and
can be larger than the physical cache. Conceptually, a mem-
ory block to cache line mapping first uses part of the memory
address, called index bits, to lookup the LDM cache as for a
direct-mapped cache and then follows the mapping (if this
exists) from the corresponding LDM cache entry to locate
the physical cache line. The main guarantee for security is
that the mapping from the LDM cache to the physical cache
is fully-associative, randomized and can be changed dynam-
ically. We use physical memory address to avoid aliasing
issues.

Can we reuse the same design to secure other caches? This
paper answers the open question: “Is Newcache, proposed
for D-caches, also suitable for securing I-caches from side-
channel attacks targeting the I-cache?”

3. I-CACHE ATTACKS
The answer to this question is by no means obvious be-

cause of the fundamental difference between I-cache and
D-cache attacks. Unlike D-cache attacks which exploit the
secret-dependent memory indexing of load and store instruc-
tions, I-cache attacks exploit the secret-dependent instruc-
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Figure 1: Random-Fixed Mapping in Newcache.

tion paths of instruction execution. Listing 1 illustrates a
code segment with secret-dependent instruction paths. If
the attacker can distinguish which code path is executed,
he can immediately learn the secret. Although the imple-
mentation of the cipher tries to avoid any secret-dependent
instruction paths, this is very hard to achieve, in practice,
since the implementation also has to be optimized for perfor-
mance. Also, secret-dependent instruction paths is not spe-
cific to cryptography, but can also be found in various non-
cryptographic applications that process secrets like pass-
words, credit card information and personally identifying
information.

Listing 2: secret-dependent instruction paths
if (secret==1) { code block 1; }
else { code block 2; }

Before delving into the analysis of the effectiveness of the
randomized mapping against I-cache attacks, we first study
whether the D-cache attack techniques can be applied to
I-cache attacks.

3.1 Prime-Probe Attack
Prime-Probe attacks are the only attacks that have been

shown against the I-cache. However, a Prime-Probe at-
tack for the I-cache is not as easy as that for the D-cache.
First, priming or probing a specific set in the I-cache is more
tricky than just loading data from an attacker’s array. Sec-
ond, derivation of victim cache usage requires distinguish-
ing cache footprints left in the I-cache by different secret-
dependent code paths, rather than just timing how long it
takes to probe a D-cache set. An I-cache footprint consists
of all the cache sets that the memory lines containing the
code block (including all the functions called by it) maps
to. The Prime-Probe attack enables the attacker to deter-
mine which cache sets have been accessed by the victim, and
hence its cache footprint.

First, we show how to prime or probe exactly one set in
the I-cache, as shown in Figure 2. This shows a cache with
a size of S sets·W ways·B bytes, where B is the block size.
Memory addresses that are B ·S bytes apart will be mapped
to the same cache set. To prime one cache set, the attacker
needs to allocate W cache blocks (the shaded blocks in Fig-
ure 2), where each cache block is B · S bytes away from
the previous block. Inside each cache block is the instruc-
tion jmp B · S, a relative jump instruction that jumps to
an instruction that is B · S bytes away, which is the next
block, except for the last block, which has a return(ret) in-
struction. When priming the cache set, the attacker’s main

program jumps to the address of the first block. Then the
W cache blocks will be fetched into the cache set one by one,
and the last block ret returns to the main program. We can
use the same mechanism to prime the remaining S − 1 sets.
The attacker can allocate a contiguous memory chunk that
has the same size as the instruction cache to prime the whole
I-cache. Probing is just like Priming, except that the rdtsc
instruction, placed at the beginning and end of accessing
each I-cache set, is used to measure the time to probe each
I-cache set.

jmp B*S

jmp B*S

jmp B*S

…
…

ret

Instruction CacheMemory Chunk

Set 1
…

Set 2

…
…

Set S

1 2 … W-1 W

Figure 2: Instruction Cache Set Prime and Probe

As a concrete example, we show the Prime-Probe attack
against many public-key algorithms. The private key in a
public-private key-pair is used for longer-term digital iden-
tity, including digital signatures. Leaking the private key to
an attacker can lead to masquerading attacks, fake server
or client authentications, and fake signatures – causing very
serious security breaches.

The main computation in many of these public-key algo-
rithms, like RSA, El-Gamal, etc., is the modular exponenti-
ation operation. To illustrate, we use the implementation of
modular exponentiation in libgcrypt v1.5.3 [3], a widely used
cryptographic library, and also used in the Cloud Comput-
ing I-cache attack[22]. It implements a square-and-multiply
algorithm as shown in Algorithm 1. We label S, R, M to
stand for calls to the functions, Square, ModReduce and
Mult, respectively, inside the algorithm.

Algorithm 1 Square-and-Multiply Algorithm in libgcrypt

procedure SquareMul(base, expo, mod)
Let en, ..., e1 be the bits of expo, and en = 1
for i← n− 1, 1 do

y ← Square(y, base) . (S)
y ← ModReduce(y, mod, base) . (R)
if ei = 1 then

y ← Mult(y, mod, base) . (M)
y ← ModReduce(y, mod, base) . (R)

end if
end for

end procedure

The sequence of function calls in one execution of modular
exponentiation with square-and-multiply can leak informa-
tion about the exponent expo, which is the private key of
many public-key ciphers (ElGamal, RSA etc.). Note that
the most siginificant exponent bit en is always 1, so the
information leaked is from en−1 to e1. For example, the se-
quence (SRMR)(SR) corresponds to expo = 1102 = 610.
SRMR leaks information e2 = 1, and SR gives e1 = 0.

In a real attack on a real machine, the attacker and vic-
tim processes are run alternately via normal preemptive



scheduling. The attack is conducted on our lab testbed
equipped with quad-core Intel Xeon E5-1410 processors and
Linux kernel 3.5.0-43. Xeon E5-1410 has a 32kB, 8-way Set-
Associative (SA) I-cache with 64B block size, thus we have
64 sets for the I-cache. We use a method similar to [15]
to trick the Linux complete fair scheduler (CFS) to get an
attacker Prime-Probe interval of about 2.5µs, so that basi-
cally one victim’s M or S operation can execute during this
interval. The victim just performs modular exponentiation
depicted in Algorithm 1, with an exponent unkown to the
attacker. Each time the attacker performs a Prime-Probe,
he gets a cache footprint, which is a vector of timings, one
timing per cache set. For our test setup, this is a 64-element
vector. After getting the trace of the footprints online, the
attacker can do off-line analysis to classify each footprint as
an S, M or R operation, to infer the exponent key bits. For
our purpose of evaluating the vulnerability of an I-cache to
this attack, we label each S, R or M operation in Algorithm
1.
Cache Footprint Classifier. To quantitatively describe
how well an operation can be correctly classified based on its
cache footprint, we use libsvm[4] to train a multi-label SVM
(Support Vector Machine) classifier. We choose its default
SVM type C -SVC [13, 14] and a linear kernel function. An
SVM is a supervised machine learning tool that, when fed
with enough training samples with different labels, builds
a model that can categorize new testing samples into one
of the labels. For this case, a label is one of S, R and M; a
sample is a cache footprint with feature dimension of 64, and
the ith feature (1 ≤ i ≤ 64) is the probe time for cache set i.
Thus, before an SVM can classify new instances, we need to
train it with a set of sample-label pairs. Similar to [22], we
set the victim’s exponent to be all 1’s, which gives a sequence
of SRMRSRMR... operations. We also choose a training
ratio of 1:1:2 for the operation types S:M:R to bias a little
bit towards R, which avoids too many R misclassificatons.
We collect a trace of the attacker’s Prime-Probe footprints,
and we use the hooking function trick from [22] to label
those footprints. In the experiment, we use 40,000 of these
footprints to train an SVM classifier, and another 12,000
samples to do the testing.

Figure 3 shows 6000 attacker’s Prime-Probe trials col-
lected by the attacker. To give a figure with visually clear
patterns, we choose the first 2000 footprints with a S, M or
R label and pile them together based on their labels. So
trials 1-2000 are all S operations; 2001-4000 are all M oper-
ations and 4001-6000 are all R operations, and we can see
different patterns for these three different operations.

Figure 3: Cache footprint patterns for S, M and R
operations

Table 1 shows the classification matrix for the attack. The
diagonal entries are the correct classifications, and the clas-

sification accuracy is 90.2%. The high classification accu-
racy indicates a high key-bits recovery by subsequent off-line
stages of the attack [22]. This classification matrix is more
accurate than the visual patterns in Figure 3.

Table 1: SVM Classification Matrix for Real Attacks
on Real Machines

Classification Classification
Square Multiply Reduce Accuracy

Op: Square 3479 (0.87) 189 (0.05) 332 (0.08)
90.2%Op: Multiply 375 (0.09) 3587 (0.90) 38(0.01)

Op: Reduce 92(0.02) 148 (0.04) 3760 (0.94)

3.2 Evict-Time Attacks
There are no I-cache attacks exploiting the Evict-Time

technique. Ideally, to apply the Evict-Time technique to the
I-cache, the attacker can evict one specific cache set in one
of the code paths, say, in code block 1. However, since code
block 2 may be much longer, the total execution time is not
necessarily higher even when the victim executes code block
1 and experiences a cache miss. Unlike the D-cache where
each load takes more or less the same time under the same
conditions, two code paths may have different lengths and
thus take different execution times. In fact, one may argue
that if the timing difference between two execution paths
is different, the attacker can directly infer the secret from
the total execution time, without needing the Evict-Time
attack. Furthermore, Evict-Time attacks generally leak less
information than Prime-Probe attacks for the I-cache. If the
secret-dependent branch is within a loop (e.g. Square-and-
Multiply exponentiation as shown in Algorithm 1), a Prime-
Probe attack can capture each execution of the branch. But
for an Evict-Time attack, the evicted line can only impact
the first execution of that code path. After both code paths
are cached, there will be no timing differences due to cache
misses. In summary, access-based attacks (e.g. Prime-Probe
attacks) that can capture the execution trace of a program
are the main threats for the I-cache. Hence, we focus our
analysis on the Prime-Probe attacks.

4. RANDOMIZE MEMORY-TO-CACHE MAP-
PING

The reason why the randomized mapping can defeat the
D-cache attacks is that even though the attacker still has
cache contention with the victim, he cannot infer the mem-
ory address of the victim’s table lookup by observing the
contention. Since I-cache attacks rely on differentiating the
I-cache footprints of different execution paths, it is impor-
tant to characterize whether or not the I-cache footprints
are still distinguishable after randomized memory-to-cache
mapping. We use the SVM classification matrix for this
characterization.

4.1 FA cache with random replacement algo-
rithm

We first analyze the memory-to-cache mapping scheme,
achieved using a fully-associative (FA) cache with a random
replacement algorithm.

We performed the attack using gem5 [7], a cycle-accurate
simulator. gem5 is able to run a full operating system, li-
braries and applications, while modeling new hardware, en-
abling us to simulate our new I-cache hardware design and
test real-world attacks. We use a two-level cache hierarchy



Table 3: Classification Matrices for 8-way SA Cache (LRU and random replacement policy) and FA Cache
Classification (SA, LRU) Classification (SA, random) Classification (FA) Accuracy

Square Multiply Reduce Square Multiply Reduce Square Multiply Reduce LRU random FA

S 3985 (1.00) 0 (0.00) 15 (0.00) 3758 (0.94) 7 (0.00) 235 (0.06) 1058 (0.26) 996 (0.25) 1946 (0.48)
99.7% 93.2% 40.5%M 1 (0.00) 3991 (1.00) 8(0.00) 5 (0.00) 3606 (0.90) 389 (0.10) 1108 (0.27) 1105 (0.28) 1787 (0.45)

R 8(0.00) 6 (0.00) 3986 (1.00) 76 (0.02) 107 (0.03) 3817 (0.95) 705 (0.18) 599 (0.15) 2696 (0.67)

Table 2: Baseline Simulator Configurations
Parameter Value
L1 data cache associativity, and size 8-way SA, 32 KB

L1 instruction cache associativity, and size 8-way SA, 32 KB

L2 cache associativity, and size 8-way SA, 2 MB

Cache line size 64 B

L1 hit latency 1 cycle

L2 hit latency 20 cycles

Memory size, and latency 2 GB, 200 cycles

Figure 4: Cache footprint patterns of modular
exponentiation on gem5 simulator, (a) 8-way SA
cache with LRU replacement policy, (b) 8-way SA
cache with random replacement policy, (c) Fully-
associative (FA) cache with random replacement
policy. Darker point represents longer time.

in our simulation with baseline configurations shown in Ta-
ble 2. Similar to the real attacks we did on real machines,
we set the victim process to repeatedly perform modular ex-
ponentiations. Since gem5 does not support a high precision
timer, it is very hard to achieve fine-grained preemption as
in the real machine. Hence we emulate the Prime-Probe at-
tacks by hacking the simulator to execute dummy memory
accesses for the probe operations at some fixed time interval.
The time interval is chosen so that the victim can only run
for a very short time interval, similar to the real attack.

The figures and SVM classification matrices are obtained
in the same way as in section 3.1. Figure 4 shows the visual
patterns of 6000 footprints, divided into 2000 footprints each
for S, M and R. For comparison, we show results for an SA
cache with LRU replacement (a) and random replacement
(b). We can clearly distinguish the operations from each
other in an SA cache with LRU replacement in Figure 4(a).
In Figure 4(b), although introducing more noise than the
LRU policy, the random replacement policy can only ran-
domize eviction of cache lines within a set, but not over the
entire cache. Hence the fixed, linear mapping between the
memory addresses and cache sets is still maintained. How-
ever, no visual pattern can be found for the fully associative

cache with a random replacement policy (Figure 4(c)).
Similar to section 3.1, we use these footprints as training

and testing inputs to an SVM classifier. Note that instead of
Priming each set in a 32kB 8-way SA cache, we Prime-Probe
each cache line in the FA cache, which gives a feature dimen-
sion of 512 (i.e., SVM input vector of 512 elements). Table 3
gives the classification matrix for these three cache configu-
rations. The numbers in parenthesis are probabilities adding
up to 1 for each row. Random replacement within each set
of an 8-way SA cache only degrades the SVM classification
accuracy from 99.7% to 93.2%, while using randomization
across a FA cache drops the classification accuracy to only
40.5%. According to [23], it would be extremely difficult
for further offline analysis to extract the exponent key bits
correctly under 40.5 % accuracy. Note that ideally, if the S,
M, and R operations are completely indistinguishable, the
classification accuracy should be 33.3% (instead of 0%). Our
results show, both visually and quantitatively, that, the ran-
domized mapping approach (in a fully-associative cache) is
also effective against I-cache attacks. This is because the I-
cache footprints, which are a set of cache sets that are used
by a certain execution path, can contain arbitrary random
cache sets due to the randomized memory-to-cache mapping.

4.2 Random-Fixed Mapping
We now consider the Random-Fixed Mapping scheme used

by Newcache. Basically, Newcache can dynamically random-
ize the cache line eviction over the entire cache (like a FA
cache), while using some static fixed mapping to reduce the
cache access time and power consumption.

If we take a closer look at Figure 1, we can have a better
idea why we denoted this a Random-Fixed Mapping.

Since the LDM cache can be larger than the physical
cache, not every entry has a mapping to a physical cache
line. If a cache access finds that there is no mapping from
the corresponding LDM cache entry to a physical cache line,
the LDM entry can establish a new mapping to any of the
physical cache lines randomly (replacing the old mapping to
this cache line). This is equivalent to randomly replacing a
cache line over the entire cache.

Random-Fixed Mapping still allows the existence of some
deterministic contention due to its fixed memory-to-LDM
linear mapping; two memory addresses may map to the same
LDM cache entry and thus share the same mapping to the
physical cache. Consider the memory lines, a and b, in Fig-
ure 1. If the memory line a is already in the cache and the
memory line b is not, when accessing the memory line b, b
will replace the memory line a in a fixed way, since it will fol-
low the random mapping previously established by a. When
the size of the LDM cache increases, the impact of such fixed
mappings will decrease. Specifically, when the size of the
LDM cache is the same as the entire physical memory, the
Random-Fixed Mapping becomes the fully-associative ran-
dom mapping without any fixed linear mapping.

We perform the same Prime-Probe attack on Random-
Fixed Mapping caches, as we did for the FA cache in Fig-



Table 4: Classification Matrices for Newcache with LDM size equal to 1X, 4X and 16X cachesize
Classification (1X cachesize) Classification (4X cachesize) Classification (16X cachesize) Accuracy

Square Multiply Reduce Square Multiply Reduce Square Multiply Reduce 1X 4X 16X

S 3978 (0.99) 0 (0.00) 22 (0.01) 3840 (0.96) 5 (0.00) 155 (0.04) 1143 (0.29) 940 (0.24) 1917 (0.47)
98.7% 96.4% 41.0%M 1 (0.00) 3983 (1.00) 17 (0.00) 5 (0.00) 3850 (0.96) 145 (0.04) 1154 (0.29) 1098 (0.27) 1748 (0.44)

R 10(0.00) 107 (0.03) 3883 (0.97) 62 (0.02) 61 (0.02) 3877 (0.97) 696 (0.17) 620 (0.16) 2684 (0.67)

Figure 5: Cache footprint patterns of modular expo-
nentiation on gem5 simulator for Newcache with dif-
ferent LDM cache sizes, LDM size equals (a) cache-
size, (b) 4X cachesize, (c) 16X cachesize.

ure 4(c). The simulator configurations are the same as the
baseline configurations in Table 2, except for the associativ-
ity of the L1 instruction cache. We varied the size of the
ephemeral LDM cache to be 1X, 4X or 16X the size of the
physical cache. We collect the Prime-Probe footprints, and
input them as training and testing samples to an SVM classi-
fier. Figure 5 gives the visual patterns of Prime-Probe trials
similar to section 3.1 for these three cache configurations,
and Table 4 gives the classification matrix.

When the size of the LDM cache equals the size of the
physical cache, it is essentially a direct-mapped (DM) cache.
This is why a clear pattern following the S, R, M operations
can be seen in Figure 5(a). In this case, at the steady state,
every entry in the LDM cache will have a mapping to a
physical cache line and the mapping cannot be updated any
more. Therefore, all the following memory accesses will fol-
low the fixed, linear mapping. The amount of fixed, linear
mapping decreases as the size of the LDM cache increases.
When the LDM cache size is increased to 16 times the phys-
ical cache size, no clear pattern for the cache footprints can
be seen (Figure 5(c)). In Table 4, the SVM classification
accuracy decreases from 98.7% to 41.0%, as the size of the
LDM cache increases from 1X to 16X the size of the physi-
cal cache. Comparing Figure5(b) and Table 4, we find that
when the LDM cache = 4X physical cache size, a lot of noise
is introduced into the cache patterns. But if the attacker’s
prime-probe code happens to get even a few index conflicts
with the victim operations’ codes, the fixed linear mapping
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Figure 6: Holistic implementation of Newcache.

will give him a very high classification accuracy. By in-
creasing the LDM cache size, we cannot eliminate the fixed
mapping entirely, but we can reduce the probability of the
index conflicts.

The reason the LDM cache can be larger than the phys-
ical cache is because once we support dynamic randomized
mapping to the physical cache lines, we need to implement
indirect mapping of memory to physical cache lines. This
is shown as Line Number registers (LNregs) in Figure 6.
Once there are LNregs, it is easy to increase the width
of the LNregs, which essentially determines the size of the
ephemeral LDM cache relative to the physical cache. If the
physical cache contains 2n cache lines, the width of LNregs
can be n + k where k is called the number of extra index
bits, which means the LDM cache is 2k larger than the size
of the physical cache. Figure 5(a), (b) and (c) correspond
to Newcache with k = 0, k = 2 and k = 4 extra index bits,
respectively. These k extra cache index bits improve both
security and performance.

5. POWER AND PERFORMANCE EVALU-
ATION

We now study the performance impact of Newcache used
as the I-cache, since it is likely to be different from that of
the D-cache.

5.1 Holistic Hardware Implementation
Although conceptually Newcache introduces a level of in-

direction, we show that with clever, holistic hardware opti-
mization across microarchitecture and circuit layers, it need
not result in a longer cache access latency. Figure 6 shows
the holistic implementation of Newcache. The row decoder
in a Direct Mapped (DM) cache is replaced with a small
content-addressable-memory (CAM) array, similar to the
concept of an inverted page table. Each CAM entry func-
tions as a Line Number register (LNreg), containing the in-
dex to the LDM cache. If there is a match, the correspond-
ing row of the tag array and the data array are accessed
in parallel. The tag array contains the remaining part of
the address and some status bits. Newcache can be much
faster and consume less power than the FA cache because
only a small portion of the address is used for the CAM’s
associative search.



Table 5: Latency and power comparison

8-way SA cache FA cache
Newcache

k=0 k=1 k=2 k=3 k=4 k=5 k=6
Latency (ps) 1020 1190 924 938 938 952 952 966 966
Power (mW) 104 108 92 93 93 94 94 94 94

Power and Latency: We further study the power and la-
tency of Newcache by implementing it in a testchip, using
65nm CMOS process. The cache size is 32 KB. We use post-
layout extraction to obtain net lists of our prototype with
accurate wire capacitances. The post-layout HSPICE simu-
lation results for the access latency and power with different
numbers of extra index bits k are summarized in Table 5.
We also show the results for the 8-way SA cache and the
FA cache. Table 5 shows that we can design a secure in-
struction cache that consumes less power than conventional
SA caches, and in fact is even faster. The 8-way SA cache
is more power-hungry than our secure cache because it has
to read out all the 8 tags, but Newcache only needs to read
out 1 tag, and most of the power of the cache is consumed
by accessing the data and tag arrays. (Both caches read
out only 1 data line.) The CAM power only contributes a
small portion of the total power. Also, we used clever cir-
cuit level optimizations (for both Newcache and FA cache),
e.g.,hierarchical NAND-type CAM, which detects match in-
stead of mismatch, and consumes much less power than con-
ventional NOR-type CAM.

5.2 System Performance

Table 6: Summary of workloads
Workload Description
bzip2 file compression

gcc gcc compiler

povray image rendering

h264ref video compression

xalancbmk XML processing

perlbench perl interpreter

apache [1]
Web server
Client: apache benchmark
Send 1000 https request with concurrency of 10

ffserver [2]

Streaming server
Client: openRTSP [5]
Send 30 different remote connection requests to
the ffserver for media file streaming

tomcat [8]
Java application server
Client: apache benchmark
Send 10 requests each for 11 URLs

We now study the performance impact of Newcache used
as the I-cache using the gem5 simulator. The baseline simu-
lator configurations are the same as Table 2. We picked six
workloads from the SPEC CPU 2006 benchmark suite [6],
and three real-time server workloads for our performance
evaluation (See Table 6).

Most of the SPEC CPU 2006 benchmarks do not have
large instruction working sets – we picked six with relatively
larger instruction working sets. We picked some server work-
loads as well because they usually have larger instruction
working sets. The server workloads are widely used real-
world Cloud Computing workloads.

Figure 7 shows the instruction misses per kilo instruc-
tions (MPKI) for SA caches and Newcache with different
lengths of extra index bits, k. The results are normalized
to the MPKI of the 8-way SA cache with LRU replacement
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Figure 7: Normalized I-cache Misses Per Kilo
Instructions (MPKI) for Newcache with different
lengths of extra index bits, k. Lower is better.
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Figure 8: Normalized Instructions Per Cycle (IPC)
for Newcache with different lengths of extra index
bits, k. Higher is better.

policy – typical of today’s L1 caches. Newcache has about
the same MPKI performance as the conventional 8-way SA
cache. For some benchmarks like bzip2, povray and perl-
bench, Newcache has better performance. On average, the
variation is within 10%. Increasing the length of the index
bits may reduce the miss rate, but the impact is small when
further increasing the number of extra index bits, k, beyond
5. (Compare Figure 5 where k=4 is sufficient for security.)

Figure 8 shows that the impact to overall performance, in
terms of instructions per cycle (IPC), is even smaller than
for the I-cache MPKI. This is because the absolute instruc-
tion misses are very low, and the use of a non-blocking cache
allows instruction fetching during a cache miss, hiding some
miss latency. The largest performance degradation is less
than 2.5% (apache). Some workloads (bzip2, povray,
perlbench) can benefit from the reduced I-cache MPKI and
improve the overall performance by 0.8%. On average, the
performance degradation is less than 0.3% when k is larger
than 3.

6. RELATED WORK
While no hardware defenses have been proposed, some



software defenses for I-cache attacks have been proposed.
Much effort involved writing side-channel resistant crypto-
graphic algorithms without secret-dependent execution paths.
For example, in the modular exponentiation in libgcrypt
v1.5.3, the multiplication is performed regardless of the value
of the exponent bit, if the exponent is stored in the secure
memory (which needs to be explicitly allocated by the ap-
plications). However, this tends to degrade the performance
by at least 20% for a random exponent. In general, writing
side-channel resistant cryptographic algorithms tends to be
ad-hoc, i.e., different for each cryptographic algorithm, and
usually suffers from large performance penalties. Moreover,
the I-cache attacks are also applicable to non-cryptographic
settings where there are few mechanisms for preventing side-
channel information leakage.

A compiler is also able to remove key-dependent instruc-
tion paths either through predicated execution or if-conversion.
The basic idea is to fetch instructions in both code paths
and instructions with predicates equal to zero will be nul-
lified during execution. However, only very few architec-
tures (e.g., Intel IA-64) support full predication, and if-
conversions may cause significant performance degradation.
Furthermore, lack of access to source code typically prevents
recompilation of legacy applications.

7. CONCLUSIONS
We analyzed cache side-channel attacks on the I-cache.

We detailed how to perform the Prime-Probe attack on I-
caches. We analyzed why timing attacks on the I-cache are
not serious threats, whereas access based side-channel at-
tacks are. We proposed to use a classification matrix to
quantitatively characterize the vulnerability of an instruc-
tion cache to the access based side-channel attacks. We then
applied an SVM classification matrix to study whether the
randomized mapping approach, proposed for the D-cache,
can be used to defeat side-channel attacks on the I-cache. In
particular, we analyzed the core mechanism of Newcache –
which we call the Random-Fixed Mapping scheme. We find
that randomized mapping indeed works well for securing an
I-cache against contention-based Prime-Probe attacks, with-
out degrading performance. Hence, a Newcache replacement
for both the I-cache and D-cache in processors will prevent
cache side-channel attacks without degrading either system
performance or cache physical performance.
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