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Abstract

PAX is a cryptographic processor designed by Professor Ruby Lee and students at Princeton University, Department of Electrical Engineering. It is a small, word-size scalable instruction set architecture. The word-size can be scaled to 32, 64, and 128 bits. It features a base instruction set for general purpose processing, as well as special instructions for cryptographic enhancement, including the parallel table lookup (PTLU) instructions, the byte permutation instruction, and the binary finite-field multiplication and squaring acceleration instructions. This report discusses the development of the PAX-32 toolset, which consists of a simulator, assembler, and linker. The PAX simulator is based on the SimpleScalar simulator, and the PAX assembler and linker are based on the GNU toolset. The development method of the PAX toolset discussed in this report can be extended to develop similar toolsets for other new processor ISA. In the end, we used this toolset to write assembly code for one round of the AES-128 encryption algorithm, assemble and link it, and simulate it on the SimpleScalar simulator. Then, we ran a similar program with an ARM toolset. We noticed a 10.84 times speedup in the PAX-32 processor compared to the ARM processor when running the encryption algorithm.
1. Introduction
The suite of cryptographic algorithms in use today can be grouped into the classes: symmetric-key encryption, public-key encryption, digital signature, and hashing [1]. In each class, the number and type of algorithms in use are many and varied. Similarly, there are also numerous types of cryptographic processors that implement the existing algorithms. These processors range from specialized processors that can only support a few security algorithms to generalized processors that include a few added instructions, which provides enhancements for security algorithms. PAX, a cryptographic processor designed by Professor Ruby Lee and students at Princeton University, Department of Electrical Engineering, has the distinguishing feature that it is a small, word-size scalable, built-from-scratch instruction set architecture that has a base instruction set for general purpose applications, as well as several specially designed instructions for cryptographic enhancements [2][3][4][5].

After the ISA of PAX has been designed and encoded, the next step is to develop a toolset consisting of a simulator, compiler, assembler, and linker. There are two approaches to creating the toolset. One approach is to construct the toolset from scratch, and the other approach is to port PAX onto an existing toolset. The advantage of the first approach is that it is often easier to write the toolset from scratch rather than to learn the code structure of an existing toolset. Nevertheless, in an effort to make PAX as portable as possible, we chose to build the PAX toolset based on a popular toolset that has an easily portable code structure. 
The goals of this paper are three-fold. First, we describe the development of the PAX toolset, which is based on the GNU toolset and SimpleScalar Simulator [6] [7]. This paper discusses the development of the simulator, assembler, and linker, but does not discuss the compiler. Second, although the file names and code structures discussed in this paper is specific to PAX, the development technique used may be generalized to write a toolset for any processor ISA. Finally, we examine the performance results that are obtained for PAX from using this toolset. 

The rest of the paper is organized as follows. In Section 2, we discuss the reasons for choosing the GNU toolset and SimpleScalar Simulator as our base platform, and describe how to use the Crosstool script [8] to build a cross-compiler, which is necessarily for developing the PAX processor on different machines. We also describe how to set up the base platform software. In Section 3, we demonstrate how to build a GNU assembler for a processor ISA by using PAX as the example. We discuss the file structure, code structure, and files to change. In Section 4, we demonstrate how to build a SimpleScalar simulator for a processor ISA by using PAX as the example. We discuss the file structure, code structure, and files to change. In Section 5, we discuss ways to extend to toolset such as adding a new instruction, register, or functional unit, or scaling the wordsize of the processor ISA, or adding a new simulation module. In Section 6, we show how to download, setup, run, and test the PAX toolset. In Section 7, we analyze the performance of PAX when it processes one frame of the AES-128 encryption algorithm [1]. We compare this performance to that of an ARM processor [9]. Section 8 is the conclusion. 
2. Methodology of Building a Toolset for a New Processor ISA 
An ISA toolset allows researchers to study the performance of a processor ISA by using only software. The main framework of the toolset is shown in Fig 2.1. Using this toolset, researchers can write c-code or s-code, then produce executable code, and finally run the code on the simulator. There are many variations of simulators, and each one is implemented as a simulation module. Types of simulation modules range from functional simulators, which implement the architecture of the processor, to complex performance simulators that implement the micro-architecture of the processor. By using various types of simulation modules, researchers can study the performance of the processor ISA from many different perspectives. This way, the strengths and weaknesses of the processor may be carefully analyzed before committing the time and money necessary to design and manufacture the hardware version of the processor. In this paper, we do not cover the development of a compiler for a processor ISA, but this is a necessary part of future research. This paper discusses the development of an ISA toolset that allows researchers to write s-code, assemble it, link it, and simulate it on a functional simulator
. The rest of this section discusses the reason for choosing the GNU toolset and the SimpleScalar simulator [6] [7] as the base platform, and how to set up the base platform. 
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Fig 2.1: Structure of toolset for a new processor ISA that is based on GNU toolset and
                   SimpleScalar simulator.

2.1 Base Platform of the Toolset
The reason we chose the GNU toolset as the base platform for the compiler, assembler, and linker is that GNU is a free, open source software
 that is widely used in both academia and industry. Currently, the GNU Compiler toolset (which includes the compiler, assembler, and linker), called GCC, supports a long list of commonly used machines, including ARM, i386, MIPS, PowerPC, etc. The code structure of GCC is designed so that it can be easily ported to different machines. 

Next, the reason we chose the SimpleScalar simulator [6] [7] as a base platform for the simulator is that SimpleScalar is a popular, well-respected simulator used in the academic arena. SimpleScalar was originally written to simulate a sample ISA called PISA, which stands for Portable ISA. PISA is a 64-bit processor that includes a set of commonly used instructions. SimpleScalar is popular for its powerful set of simulation modules, Table 2.1. The code structure of SimpleScalar is designed so that researchers who want to use the simulator can conveniently port their processor ISA to SimpleScalar. Currently, SimpleScalar supports a wide selection of machines ranging from specialized processors designed in universities to popular processors used in industry such as ARM and PowerPC. 

	Simulator
	Function

	Sim-safe
	Functional simulator

	Sim-fast
	Functional simulator. Optimized version of Sim-safe

	Sim-profile
	Generates program profiles, by symbol and by address

	Sim-cache
	Generates one- and two-level cache hierarchy statistics and profiles

	Sim-outorder
	Detailed performance simulator


Table 2.1 SimpleScalar Simulator Suite
In order to port a processor to this base platform, one must first pick an existing processor—supported by the base platform—that is most beneficial to use as the starting point. In the case of PAX, that processor is ARM [9]. Then, in both the GNU toolset and the SimpleScalar simulator, we find the ARM related files, create a copy of them, and change them to fit PAX exactly. See Section 3 and 4. Note that each step of the toolset in Fig 2.1 can be independently designed. One can pick different processors as the starting points for each stage of the toolset. 
One important similarity between ARM and PAX is that they both have 32-bit instructions
. This is important because it allows the two processors to share a similar structure in the assembler, linker, and SimpleScalar loader, which is responsible for loading an executable file into the simulator memory. The ARM assembler converts ARM assembly language to ELF-format object files. If we use ARM as a starting point in writing the PAX assembler, then our major task in porting the PAX assembler is to code the PAX instructions, instead of worrying about the structure and format of the object file. On the contrary, if I based PAX on a 64-bit processor, then I would have to change the assembler such that it generates 32 bit instructions in the object file rather than 64-bit instruction. This is not a trivial task. Further, if PAX and ARM have similar object file formats, then the PAX linker would be the same as the ARM linker. This is a major benefit of using ARM as a starting point. Similarly, if PAX and ARM share the same linker, then the resulting executable file would be very similar, and this in return means that the ARM SimpleScalar loader and the PAX SimpleScalar loader could be the same. 

Moreover, ARM uses the TIS standard ELF file format, which defines the format of the object files. The ELF file format is widely used and has better support in GNU compared to other object file formats such as ECOFF. Since I will have to write a PAX assembler in GNU, it is a good idea to use the well-supported ELF file format. 

Now that we have chosen ARM as the starting point processor, the next step is to build the SimpleScalar ARM simulator and the GNU-ARM toolset. SimpleScalar ARM or other SimpleScalar simulators can be downloaded from the SimpleScalar 4.0 website
. The readme file included in the download fully describes how to install the simulator. 
2.2 Building a Cross-Compiler for Target Processor
Next, building the GNU-ARM toolset requires the construction of a cross-compiler, which allows one to compile software from a target machine on a host machine of a different type. This is because we are running the GNU-ARM toolset on a linux machine, instead of an actual ARM machine. More importantly, GNU-ARM is only the starting point, and we ultimately need to have a GNU-PAX toolset. Since PAX does not yet exist as hardware, we must use a cross-compiler to run it on a host machine. 
Creating a cross-compiler can be a very tricky task. One way to obtain the ARM cross-compiler is to download the version on the SimpleScalar 4.0 website4. Currently, this cross-compiler does not use the newest version of the GNU toolset. Another way is to use the Crosstool script [8] created by Dan Kegel to build the cross-compiler. Users simply specify which machine to target and what version of GNU to use and Crosstool script automatically builds the GNU cross-compiler toolset in a couple of hours. 

The results of Crosstool include executables programs for the GCC compiler, assembler, and linker, as well as the source codes from the GNU toolset. We change the ARM-specific files in the GNU assembler source code to port it to PAX (Section 3). Afterwards, we need to rebuild the GNU assembler. Note that we do not need to rebuild the entire cross-compiler since only the assembler files are changed. Instead of re-running the time-consuming Crosstool script each time that we need to rebuild the assembler, we write a new script that simply rebuilds the assembler in about one minute. We write this script by noting that building a GNU assembler will require the following standard sequence of codes that build the GNU binary utilities: 

${BINUTILS_DIR}/configure $CANADIAN_BUILD --target=$TARGET --host=$GCC_HOST --  
      prefix=$PREFIX --disable-nls   ${BINUTILS_EXTRA_CONFIG}   $BINUTILS_SYSROOT_ARG

make $PARALLELMFLAGS all 

make install
All of the capitalized parameters above are processor- and system-specific variables that are needed to build the binary utilities. The Crosstool script detects and generates the values for these parameters during run-time. We dump these values to a file and use them for our own script to only build the binary utilities, without running the entire Crosstool script. Now that we have built the GNU-ARM toolset and the SimpleScalar ARM simulator for the base platform, we are ready to port the GNU-ARM toolset to PAX. 
3. Building the Assembler
3.1 GNU Assembler File Structure
The Crosstool folder contains the GNU Toolset source codes that were used to build the cross compiler. The file structure of these source codes is show in Fig 3.1. The root directory is subdivided into subfolders such as binutils-2.16.1/ and gcc-4.1.0/. The gcc-4.1.0/ folder contains the source code for the GNU Compiler version 4.1.0. The binutils-2.16.1/ folder contains the source code for the GNU Binary Utility version 2.16.1. The Binary Utility consist of the assembler, linker, files that take care of the object file formats, configuration files, and more. The GNU assembler related files are contained in the gas/ folder of binutils-2.16.1/. Further, all the GAS target machine configuration files, which is used to port a target machine to the GNU assembler, is contained within the config/ folder under gas/. To port the GNU-ARM assembler to PAX, we create another copy of the existing tc-arm.c file, which is the ARM configuration files for GAS; change the file name to tc-pax.c; and edit this file so that it fits the PAX design exactly.  

[image: image2.emf]tc-pax.c

target

configuration file

for PAX processor

other assembler-

specific files

GNU Toolset Source Code Root Directory:

~\crosstool-0.42\build\arm-unknown-linux-gnu\gcc-4.1.0-glibc-2.3.2

binutils-2.16.1/

folder containing source

code for GNU binary

utility

gcc-4.1.0/

folder containing source

code for GCC compiler

other GNU source

codes

gas/

folder containing

GNU assembler

source code

ld/

folder contaning

GNU linker source

code

other binary utility

files

config/

folder containing

target machine

configuration files

tc-arm.c

target

configuration file

for ARM processor

Fig. 3.1: GNU Toolset File Structure


3.2 GNU Assembler Code Structure

Fig 3.2 shows the code structure for the GNU assembler. Although the code is specific to PAX, the code structure can be generalized to any processor ISA. Further, we wish to explain the code structure of the GNU assembler with an emphasis on how to port a processor ISA. This is not a complete discussion of the GAS code structure. 

The main GAS program is contained in as.c. This program contains a main function, which calls the perform_an_assembly_pass function to carry out the actually assembling process. The assembling process can be roughly subdivided into two parts. One part deals with reading in an assembler file, figuring out the object file format of the target processor, and setting up and configuring the output object file accordingly, such as initializing the various object file sections and taking care of symbol relocation. The other part involves actually translating a line of assembly code such as “addi r8, r8, #0” to a sequence of binary code “0x10210000”. Since PAX and ARM share the same object file format, we do not concern ourselves with the first part of the assembling process. 

The perform_an_assembly_pass function calls the md_begin function in tc-pax.c to store the PAX instruction names and the registers into symbol hash tables. The purpose of this will be clear soon. Afterwards, the read_a_source_file function in read.c is called to read in an assembler file and assemble it. Besides configuring the object file format, the read_a_source_file function parses individual lines of the assembler file and sends it as input to the md_assemble function in tc-pax.c, which converts the line of assembler code into binary code. This process is best illustrated with an example. Assume that the md_assemble function takes as input the following PAX instruction:


addi r2, r3, #0x08

This instruction tells the processor to add 8 to the content of r3 and send the result to r2. At this point, the instruction name and register hash table created by the md_begin function becomes useful. The instruction name hash table stores all the PAX instructions with their corresponding opcodes, subopcodes, instruction types, and more. The md_assemble function searches the “addi” instruction from the hash table to assemble the opcode and subopcode for “addi”.  Then, given that the “addi” instruction has the instruction type 2, the do_PAX_Type_2 function is called to assemble the operands. The assembling of the register operands r2 and r3 requires the use of the register hash table. 
As discussed above, the only part of the GAS source code that we need to change is the part that involves translating individual lines of assembly code into binary code. After studying the code structure of GAS, it seems like we only need change tc-arm.c to tc-pax.c by replacing the ARM-specific configurations with PAX-specific configurations. This is illustrated in detail below. 
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3.3 Assembler File Changes
The approach to changing the tc-arm.c file into tc-pax.c is to maintain the existing code structure, and only add in the new PAX processor type and related functions. There are six major steps to this change. We examine the important segments of the source code below. 
Step 1: 

A processor ISA may come in different versions, and each version may have a slightly different instruction set or data structure. The different versions are distinguished by macro definitions. For instance, tc-arm.c gives 9 macro definitions for the various versions of ARM: 
#define ARM_1

ARM_ARCH_V1

#define ARM_2

ARM_ARCH_V2

#define ARM_3

ARM_ARCH_V2S

#define ARM_250
ARM_ARCH_V2S

#define ARM_6

ARM_ARCH_V3

#define ARM_7

ARM_ARCH_V3

#define ARM_8

ARM_ARCH_V4
#define ARM_9

ARM_ARCH_V4T

#define ARM_STRONG
ARM_ARCH_V4

Currently, there is only one version of PAX, and so we add the following macro definition in tc-pax.c:

#define PAX_1

0x01000000

The value is chosen so that it does not conflict with the ARM macro definitions above. Further, we do not delete the ARM macro definitions from the file since this may affect other functions that use these definitions. Remember that we do not want to change the code structure of tc-arm.c. This macro definition is first used in the md_begin function. One of the tasks of this function is to determine which version of the processor is currently in use. For ARM, this is a rather lengthy process, but for PAX, it simply requires the line: 


cpu_variant = PAX_1;

In this way, whenever the variable cpu_variant is encountered, the program will know that PAX is currently in use. Effectively, this shuts off all of the code that is related to the ARM processors and only considers the PAX-related code. 
Step 2: 


The instruction set is stored in a symbol hash table. Before being inserted into the hash table, the components of the hash table are defined in the array: 



struct asm_opcode insns[];
Each component is a struct that associates an instruction with information that is needed to assemble the instruction. More specifically, the struct is given below, followed by an example using the “addw” instruction: 
struct asm_opcode

{

  /* Basic string to match.  */

  const char * template;

  /* Basic instruction code.  */

  unsigned long value;

  /* Offset into the template where the condition code (if any) will be.

     If zero, then the instruction is never conditional.  */

  unsigned cond_offset;

  /* Which architecture variant provides this instruction.  */

  unsigned long variant;

  /* Function to call to parse args.  */

  void (* parms) (char *);

};
{"addw",  0x1c000000, 0,      PAX_1,      do_PAX_Type_3a}

The template variable is a string that holds the name of the instruction. The value variable is a 32-bit integer that holds the partially assembled instruction containing the opcode and subopcode value. The cond_offset variable is always zero for PAX since PAX does not have conditional instructions. The variant variable determines which processor type this instruction corresponds to, and for PAX, this would always be PAX_1. Finally, the last variable, parms, is a function pointer that points to a function that assembles the rest of the instruction. Different instructions are assembled with different functions; see step 4. In tc-pax.c, we delete the ARM instructions in the insn array and add in the PAX instructions. 

These instructions in the insn array are inserted into the hash table in the md_begin function with the function:


hash_insert (arm_ops_hsh, insn->template, (PTR) insn);

Then, in the md_assemble function, an assembler instruction from an input file is matched with an instruction in the hash table to determine how to assemble it: 
opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, str);

By keeping the code structure unaltered, we do not have to change the hash_insert or hash_find functions. Instead, we only have to add in the PAX instructions and delete the ARM instructions. 

Step 3: 


The registers are also stored in a symbol hash table. Before being inserted into the hash table, the components of the hash table are defined in the array: 

struct reg_entry rn_table[];

Each component is a struct that associates a register with information that is needed to assemble it. More specifically, the struct is given below, followed by an example using the “r2” register: 

struct reg_entry

{

  const char * name;

  int          number;

  bfd_boolean  builtin;

};

{"r2",  2, TRUE}
The name variable is a variable that holds the name of the register, as it appears on an assembler file. The number variable is an integer that keeps count of the registers. Finally, the builtin variable plays a role in the object file format. Since the ARM registers all set to TRUE for this variable, we do the same thing in PAX. In tc-pax.c, we delete the ARM registers in the rn_table array and add in the PAX registers. 

Next, ARM has many types of registers with the register in the rn_table array being only one of the types. The different types of registers are defined in the array: 

struct reg_map all_reg_maps[] =

{

/* {rn_table,        15, NULL, N_("ARM register expected")}, */
  /* pax registers*/

  {rn_table,        31, NULL, N_("PAX register expected")}, 

  {cp_table,        15, NULL, N_("bad or missing co-processor number")},

  {cn_table,        15, NULL, N_("co-processor register expected")},

  {fn_table,         7, NULL, N_("FPA register expected")},

  {sn_table,
    31, NULL, N_("VFP single precision register expected")},

  {dn_table,
    15, NULL, N_("VFP double precision register expected")},

  {mav_mvf_table,   15, NULL, N_("Maverick MVF register expected")},

  {mav_mvd_table,   15, NULL, N_("Maverick MVD register expected")},

  {mav_mvfx_table,  15, NULL, N_("Maverick MVFX register expected")},

  {mav_mvdx_table,  15, NULL, N_("Maverick MVDX register expected")},

  {mav_mvax_table,   3, NULL, N_("Maverick MVAX register expected")},

  {mav_dspsc_table,  0, NULL, N_("Maverick DSPSC register expected")},

  {iwmmxt_table,    23, NULL, N_("Intel Wireless MMX technology register expected")},

};
As shown by the gray-shaded code, we replace the ARM rn_table array with the PAX rn_table array. The major difference is that ARM has 15 registers in the array, while PAX has 32 registers. We do not use the other register types, and we do not have to delete them. 

All of the register types are inserted into the hash table in the md_begin function with the function:



  for (i = (int) REG_TYPE_FIRST; i < (int) REG_TYPE_MAX; i++)

    


build_reg_hsh (all_reg_maps + i);
Then, when a register name, such as “r2”, is parsed from an input assembler file, the register name is matched with a register in the hash table to determine how to assemble it. This assembling is completed in the function: 
static int reg_required_here (char ** str, int shift);

By keeping the code structure unaltered, we do not have to change the build_reg_hsh  function or the reg_required_here function. Instead, we only have to add in the PAX registers and delete the ARM registers in the rn_table array. 

Step 4: 


As described in Step 2, each instruction in the instruction hash table is associated with a function pointer to a function that assembles the rest of the instruction, which includes the register and immediate field operands. PAX has eight major instruction types
, as shown in Fig 3.3, and roughly each type requires a different assembling function, as shown in Table 3.1. 
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Fig 3.3: PAX major instruction types
	PAX instruction type
	Function in tc-pax.c

	0
	do_PAX_Type_0

	1a
	do_PAX_Type_1a

	2
	do_PAX_Type_2

	3a
	do_PAX_Type_3a

	3b
	do_PAX_Type_3b

	3c
	do_PAX_Type_3c

	3d
	do_PAX_Type_3d

	“ret” instruction
	do_PAX_Type_ret

	“trap” instruction
	do_PAX_Type_trap


Table 3.1: PAX instruction types and corresponding assembling function in tc-pax.c
The organizations of these functions are quite similar. We examine the do_PAX_Type_2 function in detail as an example: 

static void

do_PAX_Type_2 (str)

     char *        str;

{

  skip_whitespace (str);

  if (reg_required_here (&str, 18) == FAIL

      || skip_past_comma (&str) == FAIL

      || reg_required_here (&str, 13) == FAIL

      || skip_past_comma (&str) == FAIL

      || imm_required_here (&str, 13, 3) == FAIL)

    {

      if (!inst.error)


inst.error = BAD_ARGS;

      return;

    }

  end_of_line (str);

  return;

}
The “addi” instruction has the type 2 format: 


addi r1, r2, #0x08

The do_PAX_Type_2 function takes as input the string “r1, r2, #0x08”. It calls the skip_whitespace function to skip past any space that is present at the beginning of the string. Then, it parses the string to check if the string has the format of a register, followed by a comma, followed by another register, followed by a comma, and followed by an immediate field. During this process, the two registers and immediate operands are assembled into the instruction. The reg_required_here function requires as input the current string
 and the least significant bit of the location of the register bits. Since PAX has 32 registers, it requires 5 bits to save them. Hence, the code for the do_PAX_Type_2 function agrees with Fig 3.3. For example, the two registers r1 and r2 in the “addi” instruction are assembled into bits 22:18 and 17:13, respectively. The reg_required_here function is one of the original functions in tc-arm.c. 
However, we have to write our own imm_required_here function in order to assemble the immediate operand. Note in Fig 3.3 that the immediate operands are broken up into two segments. The right segment is concatenated with the left segment to create the complement immediate operand. Hence, the imm_required_here function takes as input the current string, as well as the length of these two segments. For example, instruction type 2 requires that the rightmost 13 bits of the instruction and the left most 3 bits of the instruction must be concatenated to form the immediate operand. 
Step 5: 


The md_assemble function 
void md_assemble (char * str);
takes as input a single line of assembler code and directs the assembling process. This function logically connects everything in Steps 1-4. Since this is a very important function, we discuss its main structure in this step. In step 6, we discuss the changes that we have made to it. This function is best demonstrated with an example. Suppose that the input line of assembler code is: 



addw r1, r2, r3
This instruction adds the contents of register r2 and r3 and stores the result in register r1. The md_assemble function parses this line of code to isolate the string “addw”, and searches this string in the instruction hash table: 
opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, str);

If a match is found, the data type is stored in the opcode variable, which contains the “addw” instruction and information that is needed to assemble it. Next, the processor type that supports this instruction is compared with the processor type that is currently in use: 

 if ((opcode->variant & cpu_variant) == 0)


    {


      as_bad (_("selected processor does not support `%s'"), str);


      return;


    }
This instruction will only be assembled if the processor types match up. Remember from step 1 that we set cpu_variant equal to PAX_1, which effectively turns off all ARM-related code. Then, the opcode and subopcode bits of the “addi” instruction are assembled, as shown below:
inst.instruction = opcode->value;
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Finally, the md_assemble function calls a parms function that is associated with every instruction in the hash table in order to assemble the rest of the bits:
opcode->parms(p);

For our example, the do_PAX_type_3a function is called since the “addw” instruction has the type 3a format. The register operands would be 00001, 00010, and 00011 for r1, r2, r3, respectively, as shown below in the completely assembled instruction: 
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Step 6: 


PAX has a special instruction for cryptographic enhancement called “ptr”, which requires special treatment in the md_assemble function. This instruction comes in two different formats, as shown below: 
ptr.x.ctrl 
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These two formats share the same opcode and differ only in the supopcode at bit 30. The ctrl is a 5-bit value that is actually a subopcode controlled by the bits labeled “s”. Using the method described in the steps above, every variation of an instruction that requires a different subopcode need a separate entry in the instruction hash table. If we follow this method for the ptr instruction, we would have to create too many entries. Instead, we opt for a cleaner method that requires only two entries in the hash table: “ptr.x” and “ptr.s”. Then, in the md_assemble function, we parse the 5-bit ctrl string and assemble these bits into the correct location of a blank 32-bit variable called ptrControl. Later, we merge this variable with the partially assembled instruction to complete the assembling process: 


inst.instruction |= ptrControl;

At this point, the GNU assembler and linker are ported to the PAX processor. We can write *.s file and produce ELF format executable files. Next, we port PAX to the SimpleScalar simulator. 

4. Building the Simulator
4.1 SimpleScalar File Structure
The root directory of the SimpleScalar simulator is ~/simplesim-pax/
, as shown in Fig 4.1. Directly under this root directory, there is a program called main.c, which is the starting point for the simulator. There is also a separate program for each of the simulation modules that SimpleScalar supports, Table 4.1.

	Simulator
	Function

	Sim-safe
	Functional simulator

	Sim-fast
	Functional simulator. Optimized version of Sim-safe

	Sim-profile
	Generates program profiles, by symbol and by address

	Sim-cache
	Generates one- and two-level cache hierarchy statistics and profiles

	Sim-outorder
	Detailed performance simulator


Table 4.1 SimpleScalar Simulation Modules
 
Further, there is a sub-directory for each target processor that SimpleScalar supports. These sub-directories contain a standard set of files that should be changed or written to port the target to SimpleScalar. For example, the target-arm/ directory contain the ARM-specific configuration files, and the target-pax/ directory contain the PAX-specific configuration files. The file pax.h is the header file for the target processor that defines the data structure of the processor, including the register structure, the functional units, and different instruction bit fields. These definitions in the header file are used by pax.c and pax.def, as well as the simulator files. The file pax.def contains a list of macro functions and definitions that define the PAX instruction set, the instruction format, and the implementation functions (decoder). The file pax.c contains a set of utility functions that is related to the instructions, registers and disassembler. In addition, the files loader.c loads an executable program into the simulator memory, and the files elf.c and symbol.c take care of the object file format of the target processor.  

In order to port PAX to SimpleScalar, we need to use the target-arm/ directory as a starting point for the target-pax/ directory. We modify the arm.h, arm.c, and arm.def files by adding in PAX-specific code to create the pax.h, pax.c, and pax.def files. Since PAX and ARM share the same object file format, we do not need to edit the loader.c, elf.c, and symbol.c files. Finally, we make some minor changes in the simulation module files. 
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makefile:

build multiple SimpleScalar simulation modes.
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4.2 SimpleScalar Code Structure
Fig 4.2 shows the code structure for the main.c file, which is the starting point of the simulator. First, main.c initializes register statistics, which include a set of variables that record run-time data about the register. Also, each simulation module may require various command line options, and so the main.c file initializes these options. Further, a decode table, which is used in decoding input instructions, is generated using the pax.c, pax.h, and pax.def files. Next, a particular simulation module is initialized. This involves creating the register memory of the processor. Note that the main.c file is compiled separately for each simulation module. Then, the executable program is loaded into memory. Finally, main.c initializes more simulation statistics, sets the simulator start time, runs the simulation by calling a simulation module, and prints out the log data.  
The simulation modules differ in the way they analyze the run-time information, but the code structure is similar. We examine the code structure for the functional simulator sim-safe.c, as shown in Fig 4.3. Many of the initialization functions called in main.c actually belong in the simulation module file (main.c calls functions in these files). After initializations are complete, sim-safe.c enters a while loop that fetches an instruction from memory, decodes it, updates the simulator and register statistics, and fetches another instruction. Other more complicated simulation modules analyze the data in more detail, but this while loop is always needed. 
The main.c and sim-safe.c code structure presents a good overview of how the SimpleScalar simulator is organized. As we have seen, all the processor-specific information resides in pax.c, pax.h, and pax.def. We modify these files and a few other files in detail below. 
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     switch (op)

{

   #define DEFINST(OP, MSK, NAME...) case OP:  \

                SYMCAT(OP, IMPL); break;

   #include "machine.def"

}

log data and output to file

 

    myfprintf(); md_print_insn();dlite_main();
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      regs.regs_NPC += sizeof(md_inst_t);
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4.3 SimpleScalar File Change
The purpose of the SimpleScalar file change is to use the existing code structure and add the PAX-specific code into it. In the pax.h file, we create a new macro definition called TARGET_PAX, which is used to enable the PAX-specific functions and disable the ARM-related functions in the entire SimpleScalar program. The SimpleScalar file change is broken into eight segments, as detailed below. 
Define PAX register structure

PAX has 32 general purpose integer registers labeled r0 to r31. Further, r29 is also the frame pointer register (FPR); r30 is also the stack pointer register (SPR); and r31 is also the link register (LR). The program counter (PC) is stored in another 32-bit register that we label as MD_REG_PC. All of the registers are enumerated with descriptive names in the pax.h file: 
enum md_reg_names {

    /* PAX general purpose registers */

  MD_REG_R0 = 0,
/* zero register */

  MD_REG_R1 = 1,

.

.


     MD_REG_R29 = 29,



     MD_REG_R30 = 30,
     MD_REG_R31 = 31,

    /* PAX special registers */

    MD_REG_FP = 29,
/* frame pointer */

    MD_REG_SP = 30,
/* stack pointer */

    MD_REG_LR = 31,
/* link register */

    MD_REG_PC = 32,
/* Program Counter */

}

These names are used to reference the registers in the decoder. Note that since registers 29, 30, and 31 are both general purpose registers and special registers, they are given two different enumerations. Further, in the pax.c file, the registers are inserted into the array

struct md_reg_names_t md_reg_names[];

Each element of the array has the struct data type, as shown below, followed by a few examples:

struct md_reg_names_t {

  char *str;

/* register name */

  enum md_reg_type file;
/* register file */

  int reg;


/* register index */

};


Examples:

{ "$r0",
rt_gpr,

0 },

  { "$fp",
rt_gpr,

29 },
/* frame pointer */

  { "$sp",
rt_gpr,

30 },
/* stack pointer */

  { "$lr",
rt_gpr,

31 },
/* link register */

  { "$pc",
rt_PC,

32 },
/* program counter */ 

This array is used by the register utility functions in pax.c to manage the register input/output options and run-time statistics. The str variable holds the name of the register to be associated with each register index, which is stored in the reg variable. The md_reg_type variable specifies the type of the register, as shown below:
/* register bank specifier */

enum md_reg_type {

  rt_gpr,

/* general purpose register */

  rt_lpr,


/* integer-precision floating pointer register */

  rt_fpr,

/* single-precision floating pointer register */

  rt_dpr,

/* double-precision floating pointer register */

  rt_ctrl,

/* control register */

  rt_PC,

/* program counter */

  rt_NPC,

/* next program counter */

  rt_NUM

};
PAX has 32 rt_gpr type registers and one rt_PC type register. 

Define PAX functional units and instruction flags
For any processor, different instructions may require different functional units to perform the specified calculations. The PAX functional units are defined in the enumeration shown below:

enum md_fu_class {

  FUClamd_NA = 0,
/* inst does not use a functional unit */

  IntALU,

/* integer ALU */

  IntSPU,

/* shift-permute unit */

  IntBFM,

/* binary-field multiplier */

  IntPTLU,             
/* parallel table lookup */

  RdPort,


 /*memory read port */

  WrPort,

/* memory write port */

  NUM_FU_CLASSES
/* total functional unit classes */

};

In the main decoder program, pax.def, each instruction is associated with a particular functional unit. Then, in certain simulation modules, this information is used to create more precise models of functional units and to analyze their performance. Currently, the sim-outorder module, a detailed performance simulator, analyze the functional unit performance of the processor. 

Moreover, the instruction set may be further organized into different categories as defined by the marcos below:

/* instruction flags */

#define F_ICOMP
0x00000001
/* integer computation */

#define F_FCOMP
0x00000002
/* FP computation */

#define F_CTRL

0x00000004
/* control inst */

#define F_UNCOND
0x00000008
/* unconditional change */

#define F_COND

0x00000010
/* conditional change */

#define F_MEM

0x00000020
/* memory access inst */

#define F_LOAD

0x00000040
/* load inst */

#define F_STORE
0x00000080
/* store inst */

#define F_DISP

0x00000100
/* displaced (R+C) addr mode */

#define F_RR

0x00000200
/* R+R addr mode */

#define F_DIRECT
0x00000400
/* direct addressing mode */

#define F_TRAP

0x00000800
/* traping inst */

#define F_LONGLAT
0x00001000
/* long latency inst (for sched) */

#define F_DIRJMP
0x00002000
/* direct jump */

#define F_INDIRJMP
0x00004000
/* indirect jump */

#define F_CALL

0x00008000
/* function call */

#define F_FPCOND
0x00010000
/* FP conditional branch */

#define F_IMM

0x00020000
/* instruction has immediate operand */

#define F_CISC

0x00040000
/* CISC instruction */

#define F_AGEN

0x00080000
/* AGEN micro-instruction */

Obviously, PAX instruction may only be organized into a subset of the categories given above. In the main decoder program, pax.def, we have a chance to associate each instruction with a category. Hence, any category that is not specified in the decoder program will simply be ignored. These categories are used in the sim-profile module to profile all of the instructions in an executable program. 
Define PAX operand fields

As shown previously in Fig 3.3, the PAX instructions come in eight major formats. For each format, the location of the register and immediate fields are different. The decoder program, pax.def, needs the location of these operands fields in order to decode the instruction. To that end, we define the following macro definitions:

/* integer register specifiers */

#define RD

((inst >> 18) & 0x1f)
/* register position 1: bit 22-18 */

#define RS1

((inst >> 13) & 0x1f)
/* register position 2: bit 17-13 */

#define RS2

((inst >>  8) & 0x1f)
/* register position 3: RS2 12-8  */

/* immediate data */

#define Imm3_t
((inst >> 29) & 0x07)

#define Imm8_t
(inst & 0xff)

#define Imm13_t
(inst & 0x1fff)

#define Imm16_t
(inst & 0xffff)

#define Imm18_t
(inst & 0x3ffff)

#define Imm23_t
(inst & 0x7fffff)

#define Imm3
Imm3_t

#define Imm11
((Imm8_t  << 3) + Imm3)

#define Imm16
((Imm13_t << 3) + Imm3)

#define Imm19
((Imm16_t << 3) + Imm3)

#define Imm21
((Imm18_t << 3) + Imm3)

#define Imm26
((Imm23_t << 3) + Imm3)

Define PAX opcode field

As show in Fig 3.3, the PAX instruction has a 6-bit opcode field (bits 28:23), regardless of the instruction type. This opcode field is defined by the macro below:

#define MD_TOP_OP(INST)
(((INST) >> 24) & 0x0f)

This macro is used by the each simulation module to obtain the opcode of an input instruction. Afterwards, the simulation module derives the subopcode value of the instruction and searches for this value from the decoder program, pax.def, to decode the instruction. 

Further, note that some processors do not have a fixed opcode field. In other words, different instruction formats may require different opcode field locations. In this case, SimpleScalar still requires a MD_TOP_OP macro that defines a fixed top level opcode field. Then, fields that are not covered by the top level opcode field will be treated as a subopcode field.  

Write PAX instruction decoder 

The pax.def file contains decoder programs for the entire PAX instruction set. Each instruction decoder is defined by a <enum>_IMP macro and a DEFINST macro as shown below, followed by an example with the “addi” instruction:
#define <enum>_IMP

{


\

<expr>

\
}

   DEFINST(  

            <enum>,


<opcode>,

 
     <opname>,


<operands>,

 
     <fu_req>,


<iflags>,

 
     <output deps...>,

<input deps...>

 
)

Example: addi instruction 

#define ADDI_IMPL


\

  {






\


SET_GPR(RD, GPR(RS1) + Imm16);
\

  }

DEFINST (ADDI,     

             0x20,



                  "addi",   

             "%d,%a,%k",


           IntALU,   

             F_ICOMP,



                  DGPR(RD),DNA, DNA,     DGPR(RS1),DNA,DNA,DNA)

The <enum>_IMP macro defines a C expression that implements the instruction being defined. Hence, in the case of “addi”, the content of RS1 is added to Imm16, and the result is stored into RD. The SET_GPR(register-index, value) and GPR(register-index) macros are defined in the simulations modules to write and read data for the registers, respectively. The reason why these macros are written in the simulation module, instead of the pax.def file, is because pax.def does not create the register memory; instead, memory is created during the start of the simulation process in the simulation modules. Further, each simulation module may treat the read and written process slightly different. 

The DEFINST macro contains a set of parameters for the instruction defined above. The <enum> parameter is an enumerator that keeps count of the entire instruction set. The <opcode> parameter can be either the opcode or sub-opcode field of an instruction. The <opname> parameter is the name of this instruction as a string, used by the disassembler. The <operands> parameter specifies the instruction operand fields. These fields are used by the disassembler and are defined below:
    %d - RD

    %a - RS1

    %b - RS2

    %c - PTR_CONTROL

    %i - imm3

    %j - imm11

    %k - imm16

    %m - imm19

    %n - imm21

    %p - imm26

    %q - imm8_t

    %r - imm16_t

Next, the <fu_req> parameter defines the functional unit used by this instruction. The <iflags> parameter defines the instruction flags for this instruction. The <output deps...> is a list of up to three output dependency designators (registers). The <input deps...> is a list of up to four input dependency designators (registers). These dependencies are used by certain simulation modules to analyze the register-use performance of the processors. 
The pax.def file organizes all of the instruction decoder macros into the form of a decoder tree. The top level of this tree represents the top opcode field. The second level represents the subopcode field. If an instruction set requires more than one layer of subopcodes, then a third, fourth, etc, level of the decode tree is required. Part of the pax.def code is shown below, followed by Fig 4.1, which graphs the bi-level tree structure of the pax.def file. 
DEFLINK(OPCODE_0X04_LINK, 0x04, "opcode_0x04_link", 16, 0x03)

DEFLINK(OPCODE_0X05_LINK, 0x05, "opcode_0x05_link", 16, 0x03)
... ...

/* ---------------- instructions without subop ------------------------------*/

/* call instruction */

#define CALL_IMPL


\

  {






\


word_t oldPC;


\








\


oldPC = GPR(MD_REG_PC);




\


SET_GPR(MD_REG_LR, GPR(MD_REG_PC) + 4);
\


SET_GPR(MD_REG_PC, Imm26); \

  }

DEFINST (CALL,     



0x01,



         
     "call",   



"%p",


     IntALU,   



F_ICOMP,



         
     DGPR(MD_REG_LR),DNA, DNA,     
DNA,DNA,DNA,DNA)

... ...
/* --------- subop instructions for opcode 0x04: loadi.z.pos ----------------*/

CONNECT(OPCODE_0X04_LINK)       /* Process opcode 0x04 */

/* loadi.z.0 instruction */

#define LOADIZ0_IMPL


\

{






\


  
SET_GPR(RD, Imm16_t);
\

}

DEFINST (LOADIZ0,    


 0x00,

        
     "loadi.z.0",  


 "%d,%r",


     IntALU,   


F_ICOMP,

         
     DGPR(RD), DNA, DNA,    
 DNA, DNA, DNA, DNA)

/* loadi.z.1 instruction */

#define LOADIZ1_IMPL


\

{






\


  
SET_GPR(RD, Imm16_t << 16);
\

}

DEFINST (LOADIZ1,    


 0x01,

       
     "loadi.z.1",   


"%d,%r",


     IntALU,   


F_ICOMP,

                   DGPR(RD), DNA, DNA,     
DNA, DNA, DNA, DNA)

... ...
/* --------- subop instructions for opcode 0x05: loadi.k.pos ----------------*/

CONNECT(OPCODE_0X05_LINK)       /* Process opcode 0x05 */

/* loadi.z.0 instruction */

#define LOADIK0_IMPL


\

{






\


  
SET_GPR(RD, 0xffff0000 & GPR(RD));
\

  
SET_GPR(RD, Imm16_t | GPR(RD));
\

}

DEFINST (LOADIK0,    


 0x00,

        
    "loadi.k.0",  


 "%d,%r",


     IntALU,   


F_ICOMP,

        
     DGPR(RD), DNA, DNA,    
 DNA, DNA, DNA, DNA)
... ...
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Fig 4.1: Decode Tree structure for a bi-level tree (pax.def)
As shown by the code and graph above, an example DEFLINK macro is defined as: 

DEFLINK(OPCODE_0X04_LINK, 0x04, "opcode_0x04_link", 16, 0x03)

The first parameter is the enumerator of the link, and the second parameter is the opcode of the link node. The third parameter is a descriptive string used for debugging the decode tree. The final two fields indicate where the subsequent subopcode field is located. The fourth field is the number of bits to shift the instruction right, after which it is AND'ed with the value in the fifth field to produce the subopcode for further decoding. In this example, if the top opcode is 0x04, then the instruction word is right shifted by 16 bits, and then AND’ed with the lowest 3 bits, which is the sub-opcode field for the “loadi.z.0” and “loadi.z.1” instructions. 

Further, as the graph shows, the CONNECT macro link the DEFLINK macro to its corresponding DEFINST macros. Each CONNECT is a node of the decode tree, and can have multiple DEFINST macro defined after it. 
Write PAX disassembler

So far, we have demonstrated how the SimpleScalar simulator takes an executable program, decodes it, and generates run-time statistics for the processor. Moreover, SimpleScalar always supports a disassembler function that can translate a 32-bit binary instruction word into assembly code. This function resides in the pax.c file as shown below:
void md_print_insn (md_inst_t inst,     md_addr_t pc,      FILE *stream);



After checking for the valid PAX instruction, the function above calls the md_print_insn function to perform the actual disassembling:
void md_print_ifmt (char *fmt,      md_inst_t inst,
      md_addr_t pc,      FILE *stream);
The main goal of this function is convert instruction name and operand fields from the DEFINST macro in the decoder back into assembly syntax. This is accomplished with the switch statement, partially reproduced below:

  switch (*s)


    {


    case 'a':


      fprintf(stream, "r%d", RS1);


      break;


    case 'b':


      fprintf(stream, "r%d", RS2);


      break;


    case 'd':


      fprintf(stream, "r%d", RD);


      break;



       …



      }

Note that these case conditions match up with the operand fields of DEFINST. For instance, %a is RS1, %b is RS2, and %d is RD. 
Build PAX “ptlu” special instruction 

The PAX instruction set contains special instructions that require a new functional unit called the parallel table look-up (ptlu) module. This module requires a special table memory outside of the existing register structure. More specifically, PAX-32 requires four tables, each of which has 256 entries, and each entry is 32 bits long. This requires 1024 words of new memory in total. We define this new ptlu data type in the pax.h file as shown below:
/* ptlu table memory */

#define MD_NUM_PTLU


1024

typedef word_t md_ptlu_t[MD_NUM_PTLU];

Next, to create the memory for this module, we add the table memory as a new type of memory within the reg_t data structure in the regs.h file:

struct regs_t {

  md_gpr_t regs_R;

/* (signed) integer register file */

  md_fpr_t regs_F;

/* floating point register file */

  md_ctrl_t regs_C;

/* control register file */

  md_addr_t regs_PC;

/* program counter */

  md_addr_t regs_NPC;
/
* next-cycle program counter */

  md_ptlu_t
ptlu;

/* PAX: parallel table lookup module */


};

The regs.c file contains utility functions to create and destroy memory for all the data types listed in the struct above. Finally, we define a set of macro in the simulation modules to read and write data for the ptlu table memory as shown below:
/* read from ptlu tables */
#define PTLU_T0(N)


(regs.ptlu[N & 0xff])

#define PTLU_T1(N)


(regs.ptlu[256 + (N & 0xff)])

#define PTLU_T2(N)


(regs.ptlu[512 + (N & 0xff)])

#define PTLU_T3(N)


(regs.ptlu[768 + (N & 0xff)])

/* write to ptlu tables */
#define SET_PTLU_T0(N, EXPR)
(regs.ptlu[N & 0xff] = EXPR)

#define SET_PTLU_T1(N, EXPR)
(regs.ptlu[256 + (N & 0xff)] = EXPR)

#define SET_PTLU_T2(N, EXPR)
(regs.ptlu[512 + (N & 0xff)] = EXPR)

#define SET_PTLU_T3(N, EXPR)
(regs.ptlu[768 + (N & 0xff)] = EXPR)
Similar to the GPR( ) and SET_GPR( ) macros defined in the simulation modules, these ptlu macros are used in the pax.def file. They help to decode the ptlu instructions. 

5. Extending the Toolset
In Sections 3 and 4, we have demonstrated how to build a GNU assembler, GNU linker, and SimpleScalar simulator for a new processor ISA. Although we ported the PAX processor by using the ARM processor as the starting point, the methodology can be generalized to build a toolset for other processors. Using the steps described above, we can further extend upon the existing toolset to add new instructions, define new register memory, and create new functional units and instruction flags. 

Moreover, many processors come in different word-sizes, and so, an interesting task is to extend the existing toolset to different word-sizes. For example, the current toolset supports PAX-32. Since this processor is designed as word-size scalable among PAX-32, PAX-64, and PAX-128, we would eventually like to have toolsets for PAX-64 and PAX-128. The major work necessary to achieve this is to change the data structure definitions from the existing word_t (32-bit integer) to 64-bit or 128-bit integers. Further, all instructions that manipulate these data structures—such as the ALU instructions—must be changed accordingly.

Finally, as shown in Section 4, the SimpleScalar simulator makes it very convenient to add new simulation modules. To thoroughly analyze PAX, we will need to write new modules in the future. 
6. Results
The entire PAX toolset can be found at the website: www.princeton.edu/~mswang under file pax_toolset_v1.0.tar. The included readme file describes how to install, setup, and run the toolset. It also includes two test files to generate some initial results.  
The first test file called pax_isa.s is an assembly file that tests all PAX instructions. The simulation output file, called pax_isa.txt, contains the results of the assembly file after being executed using the sim-safe module. We have added debugging messages in the sim-safe module so that all of the instructions are disassembled, and all of the operand contents are displayed. Further, we also print out the memory content and PTLU table content that correspond to a particular instruction. Examining the contents of the file verifies that the toolset correctly assembles a PAX instruction, loads it into the simulator, and simulates it. 

The second test file called pax_aes1r.s is an assembly file for one round of the AES-128 encryption algorithm. Each round of this algorithm takes an input 128-bit value W and encodes it using a round-key to generate W’. This encoding process involves a series of byte permutations, table look-ups, and XOR operations, which all can be implemented efficiently using the PAX processor. To use PAX-32 to deal with a 128-bit encryption algorithm, we first use the byte_perm and shrp instructions to move the 128-bit input value into four 32-bit groups. Then, we apply the ptr.x instruction on each group to generate four separate bytes of output. The code below describes this one round operation. It is not the complete pax_aes1r.s file, which also includes codes that initializes the PTLU table memory.  
               @ PAX-32 assembly code for AES-128 round


@ =============== AES one round operation ============================


@ round input 4 words are stored in r19, r18, r17, r16


@ convet state bytes from: r19-r16 = b15 b14 b13 b12 | b11 b10 b9  b8 | b7  b6  b5  b4 | b3  b2  b1  b0


@ to the new order of:     r24-r21 = b11  b6  b1 b12 | b7  b2  b13 b8 | b3  b14 b9  b4 | b15 b10 b5  b0


  byte_perm r20, r16, r5

@ r20 = b3 b0 b2 b1 - temp


  shrp r25, r20, r17, #16

@ r25 = b2 b1 b7 b6 - temp


  shrp r26, r17, r20, #16

@ r26 = b5 b4 b3 b0 - temp


  byte_perm r20, r18, r5

@ r20 = b11 b8 b10 b9 - temp


  shrp r27, r20, r19, #16

@ r27 = b10 b9 b15 b14 - temp


  shrp r28, r19, r20, #16

@ r28 = b13 b12 b11 b8 - temp


  byte_perm r25, r25, r6

@ r25 = b6  b1 b7  b2 - temp


  byte_perm r26, r26, r7

@ r26 = b5  b0 b3  b4 - temp


  byte_perm r27, r27, r6

@ r27 = b14 b9 b15 b10 - temp


  byte_perm r28, r28, r7

@ r28 = b13 b8 b11 b12 - temp


  shrp r21, r27, r26, #16

@ r21 = b15 b10 b5  b0 - r21 final for W0


  shrp r22, r26, r27, #16

@ r22 = b3  b4  b14 b9 - temp


  byte_perm r22, r22, r8

@ r22 = b3  b14 b9  b4 - 22 final for W1


  shrp r23, r25, r28, #16

@ r23 = b7  b2  b13 b8 - r23 final for W2


  shrp r24, r28, r25, #16

@ r24 = b11 b12 b6  b1 - temp


  byte_perm r24, r24, r8

@ r24 = b11 b6  b1  b12- r24 final for W3


@ parallel table lookup to generate round output for each word


  load.4 r20, r3, #0

@ load one word subkey k[4i+0] from mem[0x00000100]
  


  ptr.x.11111 r25, r21, r20

@ lookup 4 tables, XOR the results with round subkey;


                               

@ store the round output W0 into r25 


  load.4 r20, r3, #4

@ load one word subkey k[4i+1] from mem[0x00000104]
  


  ptr.x.11111 r26, r22, r20

@ lookup 4 tables, XOR the results with round subkey;


                                                          @ store the round output W1 into r26 


  load.4 r20, r3, #8

@ load one word subkey k[4i+2] from mem[0x00000108]
  


  ptr.x.11111 r27, r23, r20

@ lookup 4 tables, XOR the results with round subkey;


                                                          @ store the round output W2 into r27 


  load.4 r20, r3, #12

@ load one word subkey k[4i+3] from mem[0x0000010c]
  


  ptr.x.11111 r28, r24, r20

@ lookup 4 tables, XOR the results with round subkey;


                                                          @ store the round output W3 into r28


@ round output 4 words are stored in r24, r23, r22, r21                                


@ ======================= end of AES one round operation =============

Moreover, we also write a C-code for the exact same algorithm. We compile and simulate this code using the ARM toolset. Both the C-code and the PAX assembly code generate the same output. 
7. PAX Performance Study
After running one round of AES-128 on both ARM and PAX-32, we have the following results: 

	# of ARM-32 instructions
	# of PAX-32 instructions
	Speed-up with PAX-32 (%)

	271
	25
	10.84


Note that these instruction counts do not include the initialization of the PTLU tables and round-key generation. 
8. Conclusion
We described a method to build a SimpleScalar simulator, GNU Assembler, and GNU Linker for the PAX cryptographic processor by using the ARM processor as the staring point. This method may be extended to build a toolset for other processors. We used the toolset to write a program for one round of the AES-128 encryption algorithm and showed that the PAX-32 greatly speeds up this algorithm due to its special instructions. 
In the future work, we would like to extend the toolset to support PAX-64 and PAX-128 processors. We would also like to build more simulation modules for PAX. Some useful modules include those that analyze the performance of the important PTLU module and modules that analyze the efficiency of cryptographic algorithms. Further, we would like to build the PAX C compiler, which will complete the toolset. 
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� This paper does not emphasize the design of different simulation modules, but instead focuses on the design of the overall structure of a software toolset for a processor ISA. 


� http://www.gnu.org/


� Note that although PAX is wordsize scalable to 32, 64, and 128 bits, the instruction size is always 32 bits.


� http://www.simplescalar.com/v4test.html


� Note that instruction type 1b is currently not used by PAX. PAX was encoded with the goal of combining the encoding with PLX, another processor designed by Ruby Lee and students at Princeton University, Department of Electrical Engineering. Instruction type 1b is currently used by PLX [10].


� Note that &str updates itself after passing through the req_required_here and imm_required_here functions. For example, when “r1, r2, #0x08” is passed through the first reg_required_here function, the &str updates to 


“, r2, #0x08”. 


� I added the “pax” in the directory name to signify that this is the version of SimpleScalar that is ported to PAX. 
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