
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

1



Abstract--Cryptographic algorithms are important components in secure systems. We propose PAX, a tiny processor for

both symmetric-key and public-key ciphers. PAX’s goal is to provide the flexibility of software implementations, with

performance comparable to hardware implementations for important ciphers. Based on workload characterization studies,

we propose a few powerful instructions that provide huge speedups for critical operations found in many symmetric-key

and public-key ciphers. A novel Parallel Table Lookup instruction enables multiple tables to be accessed in parallel by a

single instruction; it also combines these parallel table results in a unique combinatorial tree. We achieve a software

implementation of AES-128 in just 22 cycles using PAX-128. PAX also has bit and byte permutations, and binary-field

arithmetic. Elliptic-Curve Cryptography speedup up to 25x is achieved.

A distinctive feature of PAX is wordsize scalability, where the same instruction set can be synthesized into processors

with different word-sizes. This is a new dimension in the processor design space, orthogonal to more traditional multi-issue

techniques in superscalar or VLIW processors. We show that wordsize scaling provides speedups that are significantly

higher with lower implementation complexity, for cryptographic processing. Wordsize scaling can be combined with

multi-issue or multi-core scaling for even higher performance.

Index Terms— processor, crypto acceleration, AES, Elliptic Curve Cryptography, parallelism, table lookup, scalability,

permutation, Instruction Set Architecture (ISA), ASIP, binary field multiplier

I. INTRODUCTION

HIS paper describes the architecture and implementation of PAX, a small processor with a few

special instructions for accelerating both symmetric-key and public-key cryptography algorithms.

A significant advantage of a programmable processor like PAX over hardware ASIC

(Application Specific Integrated Circuit) implementations of ciphers, is that a single chip can

implement any number of ciphers. Our goal is to achieve cryptographic processing with the

flexibility of software implementations but at a performance comparable to hardware

implementations for the most important ciphers, e.g, AES [5]. In addition, while we target

mobile devices, we want PAX to be a scalable architecture, for less resource-constrained devices

Manuscript received October 31, 2007. This work was supported in part by the National Science Foundation under Grants 0326372 and

0430487. All authors are with the Princeton Architecture Laboratory for Multimedia and Security (PALMS), Department of Electrical

Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail: rblee@princeton,edu)

PAX: A Cryptographic Processor with Parallel

Table Lookup and Wordsize Scalability

Ruby B. LEE, Fellow, IEEE, Murat FISKIRAN, Michael WANG,

Yedidya HILEWITZ, Student Member, IEEE, and Yu-Yuan CHEN

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

2

which desire higher performance.

Symmetric-key ciphers can be used to encrypt information sent across the public Internet or

wireless networks, to protect against eavesdropping or observation attacks [1][2]. They are also

useful for encrypting data or programs stored in memory, disks or on-line storage, to provide

confidentiality. In symmetric-key ciphers, a plaintext message P is encrypted with a secret key K.

The encrypted data (ciphertext) can then be transmitted or stored. It can only be decrypted using

the same cipher and secret key. Symmetric-key ciphers are very efficient in encrypting large

amounts of data, hence they are preferred for bulk encryption [2]. Examples of widely-used

symmetric-key ciphers are 3DES [4] and AES [5].

Public-key cryptography, used with the appropriate security protocols, can provide essential

security features such as authentication and digital signatures. This can thwart masquerading

attacks [1]. Public-key ciphers use two keys for each party: a private-key, which is always kept

secret, and a public-key, which can be posted publicly [2][3]. A plaintext message encrypted with

a public key can only be decrypted with the corresponding private key. In the reverse direction, a

message encrypted (or signed) by a private key can be decrypted (or verified) by anyone with the

corresponding public key. Because public-key ciphers are up to three orders of magnitude slower

than symmetric-key ciphers, they are not used for bulk encryption [2]. Instead they are used for

user and device authentication, digital signatures, and for setting up symmetric-keys for bulk

encryption. Examples of important public-key ciphers are RSA [2] and DSA [6].

Cryptography processing on mobile wireless devices is particularly challenging. The wireless

communication medium cannot be physically secured, necessitating continuous use of crypto-

processing to protect against eavesdropping attacks. In addition, cryptography is very compute-

intensive, whereas mobile devices are typically very resource-constrained. Severe negative

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

3

impacts of crypto-processing on the performance and power consumption of mobile devices have

been documented [7] [8]. Furthermore, wireless link speeds keep increasing: emerging wireless

technologies such as 4G and Ultra Wide Band (UWB) promise data rates as high as 100

megabits/second (Mbps) [9]. To fully utilize such high link speeds, the cryptographic

performance of mobile devices must be increased while maintaining low energy consumption.

This paper gives a full architectural description of PAX, a general-purpose, tiny, scalable

processor for high-performance, low-cost crypto-processing in resource-constrained devices. The

PAX instruction set architecture (ISA) is derived by extending a minimalist RISC-like instruction

set with a few carefully designed instructions that provide huge speedups in the performance-

critical operations used in symmetric-key and public-key ciphers. This includes novel parallel

table lookup instructions to accelerate symmetric-key ciphers. For public-key ciphers, PAX

includes binary-field arithmetic and bit-level permutation instructions. A distinctive feature of

PAX is wordsize scalability, which refers to the property that the same instruction set can be

synthesized into processors with different wordsizes (e.g. 32-bit, 64-bit, or 128-bit). This is a

new dimension in the processor design space that is orthogonal to the more traditional techniques

like multiple-issue execution used in superscalar or Very Long Instruction Word (VLIW)

processors. Our results indicate that wordsize scaling is very effective for improving the

performance of both symmetric-key and public-key ciphers.

The rest of this paper is organized as follows. Section 2 provides an overview of the PAX

instruction set. Section 3 analyzes the workload characteristics of important symmetric-key

ciphers, while Section 4 describes the PAX features to accelerate these. Section 5 discusses

workload characteristics of public-key ciphers, while Section 6 describes the PAX instructions

that accelerate these. Section 7 describes our implementation of PAX, with area, latency and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

4

cycle time analysis. Section 8 presents the performance of PAX processors, showing the benefits

of new instructions, wordsize scaling, multiple-issue execution, and combinations of these

techniques. Section 9 reviews related past work and Section 10 concludes the paper.

II. OVERVIEW OF THE PAX ARCHITECTURE

The datapath of a PAX processor is shown in Figure 1. The register file contains 32 architected

registers, R0 through R31, where R0 is hardwired to zero. Instructions are 32 bits long and are

executed by different functional units: the arithmetic-logic unit (ALU), the shift-permute unit

(SPU), the binary-field multiplier and the Parallel Table Lookup (PTLU) module. The PTLU

and the binary field multiplier are optional units for the smallest implementations. The PTLU

module is an on-chip scratchpad memory used for fast parallel table lookups, while the binary

field multiplier does GF(2) multiplications..

A novel feature of the PAX Instruction-Set Architecture (ISA) is that it is word-size scalable.

i.e., the same instruction set can be synthesized into processors with different wordsizes. The

wordsize of a processor is the size of its registers and datapaths. A PAX processor can be

implemented with a wordsize of 32 bits, 64 bits or 128-bits, called PAX-32, PAX-64 or PAX-

128, respectively. Scaling up from 64-bit words (which is the default) to 128-bit words may be

desired to improve performance, or scaling down from 64-bit to 32-bit words may be preferred to

limit cost and power.

Like other processors, multiple instruction issue techniques can be used in an implementation

of PAX to improve performance. We use the term IPC scaling to refer to architectural methods

where more than one instruction is issued per cycle. This includes superscalar or VLIW (Very

Long Instruction Word) architectures. We show a novel alternative to IPC scaling in the wordsize

scaling feature of PAX, which provides much better performance at a lower cost. Because

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

5

wordsize scaling and IPC scaling are orthogonal dimensions in the processor design space, it is

possible to use both methods simultaneously for even higher performance.

Binary Field
Multiplier

ALU

SPU

64

64

64

Register File
(32 registers) T

7

T
6

T
5

T
4

T
3

T
2

T
1

T
0

Combinational Logic

F
ro

m
 M

e
m

o
ry

PTLU

Module

Figure 1: Single-issue PAX-64 processor

The PAX instruction set is shown in Table 1. The section labeled Base ISA includes the

arithmetic, logical, shift, load, store, and branch instructions that are typical of a basic RISC

instruction set. The section labeled PAX Extensions includes the PAX-specific PTLU, binary

field multiply, and permutation instructions. Each of these novel instructions will be fully

described in a subsequent section. We select a representative suite of cryptography algorithms

and analyze their workload characteristics to identify performance-critical operations which then

guide us in the design of PAX instructions for very fast software cryptographic processing.

III. WORKLOAD CHARACTERIZATION OF SYMMETRIC-KEY CIPHERS

Table 2 shows the symmetric-key ciphers we selected for this study. For each cipher, we show

the block size, typical key size, and the number of rounds. Block size is the amount of data that

the cipher can encrypt at a time, and key size relates to the strength of the cipher against

cryptanalytic attacks [2],[3]. A round is a sequence of operations on the plaintext block that is

repeated to compute the ciphertext. The input of a round consists of the output of the previous

round and one or more subkeys, which are derived from the secret key. Common operations used

in the rounds are table lookups, addition and subtraction, logical operations, shifts and rotates,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

6

multiplication, and permutations [2][10].

Table 1: PAX instruction set

Instructio

n Class
Mnemonic Operation Explanation

B
as

e
IS

A

ALU

add Rd  Rs1 + Rs2 Add
These instructions support both

signed and unsigned operands.

addi Rd Rs + imm Add 16-bit immediate

sub Rd  Rs1 – Rs2 Subtract

subi Rd  Rs – imm Subtract 16-bit immediate

and Rd  Rs1 & Rs2 Bitwise AND

andi Rd  Rs & imm Bitwise AND with 16-bit immediate

or Rd  Rs1 | Rs2 Bitwise OR

ori Rd  Rs | imm Bitwise OR with 16-bit immediate

xor Rd Rs1 ^ Rs2 Bitwise XOR

xori Rd  Rs ^ imm Bitwise XOR with 16-bit immediate

not Rd  !Rs 1‟s complement

loadi.z.sel Rd  imm
Load 16-bit immediate to an aligned 16-bit field of Rd, selected via the 3-bit

sub-op sel, while clearing all remaining bits of Rd to zero.

loadi.k.sel Rd  imm
Load 16-bit immediate to an aligned 16-bit field of Rd, selected via the 3-bit

sub-op sel, while keeping all remaining bits of Rd unchanged.

Shift

sra Rd  Rs1 >> Rs2 Shift right arithmetic by rightmost log2(w) bits of Rs2

srai Rd  Rs1 >> imm Shift right arithmetic immediate; imm is log2(w) bits

srl Rd  Rs1 >> Rs2 Shift right logical by rightmost log2(w) bits of Rs2

srli Rd  Rs1 >> imm Shift right logical immediate; imm is log2(w) bits

sll Rd  Rs1 << Rs2 Shift left logical by rightmost l log2(w) bits of Rs2

slli Rd  Rs1 << imm Shift left logical immediate; imm is log2(w) bits

shrp Rd  (Rs1 || Rs2) >> imm
Concatenate Rs1 and Rs2, and shift right logical by imm bits. Rd receives the

right word of the shifted result; imm is log2(w) bits

Memory
load.sel Rd  MEM[Rs + imm] Load (store) an aligned word from (to) memory using

base+displacement addressing. The sel field selects data size,

which can be 4, 8, 16 bytes (but at most equal to w). store.sel Rs  MEM[Rs + imm]

Branch

beq PC  PC + imm if Rs1 = Rs2 Branch to PC+displacement if Rs1 is equal to Rs2

bne PC  PC + imm if Rs1 ≠ Rs2 Branch to PC+displacement if Rs1 is not equal to Rs2

bg PC  PC + imm if Rs1 > Rs2 Branch to PC+displacement if Rs1 is greater than Rs2

bge PC  PC + imm if Rs1 ≥ Rs2 Branch to PC+displacement if Rs1 is greater than or equal to Rs2

call R31  PC + 4, PC  PC + imm
Call subroutine by saving PC+4 to R31,

then changing PC to PC+displacement

return PC  R31 Return from subroutine by changing PC to R31

trap Halt execution / transfer to operating system

P
A

X
 E

x
te

n
si

o
n

s

PTLU

ptr.x.n, ptr,s.n
Read w/8 tables in parallel and combine them according to the subop

specified (Section 4.1)

ptrm.x.n, ptrm.s.n
Read w/8 tables in parallel, mask the results then combine them according to

the subop specified (Section 4.1)

ptw.n Write a different 32-bit entry in every 4th table (Section 4.2)

pti Write a 32-bit entry in all tables (Section 4.2)

Permute

byteperm Permute bytes in Rs1 using indices in Rs2 (Section 4.3)

rev Reverse the order of bits in Rs1 (Section 6.2)

shuffle.lo, shuffle.hi Shuffle bits in Rs1 and Rs2 (Section 6.3)

Binary

Field

Multiply

bfmul.lo Rd  Rs1  Rs2
Multiply binary polynomials in Rs1 and Rs2, and

write the left word of the product to Rd (Section 6.1).

bfmul.hi Rd  Rs1  Rs2
Multiply binary polynomials in Rs1 and Rs2, and

write the right word of the product to Rd (Section 6.1).

w  {32, 64, 128} is the wordsize. Rd is the destination register; Rs1, Rs2 are source registers. Imm is the immediate field supplied in the

instruction. PC is program counter. MEM is memory.

The ciphers in Table 2 are chosen from widely-used network security protocols. Data Encryption

Standard (DES) and its variant 3DES [2] were the NIST standards for block encryption from

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

7

1976 to 2001. They are used, for example, in the IPSec, TLS, and WTLS standards [1][11]. RC4

is a popular stream cipher developed in 1987 by Rivest [2]. It is used in the IEEE 802.11 wireless

LAN standard [12]. Blowfish [2] was designed in 1994 by Schneier and is used in numerous

protocols and commercial applications, for example GPG, SSH, SSLeay, JAVA cryptography

extensions, and TiVo digital video recorders [13]. Advanced Encryption Standard (AES) [5] is

the current NIST standard for block encryption. It was selected in 2001 at the end of a three-year

AES development effort [14]. Key size of AES can be 128, 192, or 256 bits. We denote these

AES-128, AES-192, and AES-256 respectively. Twofish [15] and MARS [16] are two of the five

finalist ciphers in the AES effort [14]. Together with AES, these relatively new ciphers can be

said to represent trends in symmetric-key cipher design.

TABLE 2: SYMMETRIC-KEY CIPHER SUITE

Cipher
Block Size

(bits)

Key Size

(bits)

Number of

Rounds

Number of

Tables

Table

Structure
Number of Lookups

DES 64 56 16 8 26 × 32 128

3DES 64 112 48 8 26 × 32 384

RC4 8 128 1* 1 28 × 8 3 reads, 2 writes

Blowfish 64 128 16 4 28 × 32 64

AES-128 128 128 10 4 28 × 32 160

AES-192 128 192 12 4 28 × 32 192

AES-256 128 256 14 4 28 × 32 224

Twofish 128 128 16 4 28 × 32 128

MARS 128 128 32 2 28 × 32 80

* RC4 does not have an iterated round structure, hence we show the number of rounds as 1.

A. AES and DES rounds

AES-128 is an iteration of 10 rounds after a first XOR operation between the plaintext block

and the secret key. A round is made of four operations [5]: SubBytes, ShiftRows, MixColumns

and AddRoundKey, except the last round of the data path which does not include the

MixColumns transformation. To illustrate how a round operation of AES is typically optimized

and implemented in software, we show the AES implementation using table lookups [17] in

Figure 2. The input to the ith round is a 128-bit block composed of four 32-bit words, labeled

W3
i
-W0

i
. The bytes in these words are indexed b0 to b15. TA-TD represent four 2

8
×32 tables.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

8

We use the notation 2
a
×b to denote a table with 2

a
 entries, where each entry is b-bits wide.

During the round, the rightmost byte of each word is used as index into TA; the next byte is used

as index into TB; and so on, until all tables are accessed four times. Finally, the four table lookup

results (for each input word) are rotated and exclusive-or‟ed (XORed) together and also XORed

with a round subkey. This rotation is seen in Figure 2 as selection from four different columns of

the table lookup results for the XOR function of each result word.

For DES (Figure 3), the round input is a 64-bit block, split into its left (WL) and right (WR)

halves. TA-TH denote eight 2
6
×32 tables. After WR is expanded into eight bytes, the leftmost six

bits in each byte are used as an index into one of the tables, for a total of eight lookups.

The other ciphers in Table 2 also use table lookups. Blowfish, MARS, and Twofish are similar

to AES in using multiple 2
8
×32 tables, whereas RC4 uses a single 2

8
×8 table. The last three

columns of Table 2 show the number and structure of the lookup tables used by each cipher.

XOR

W0i

W1i

W2i

W3i

128 bits

16 Table
Lookups

b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

TA

TB

TC

TD

TA[b12]

TB[b13]

TC[b14]

TD[b15]

k[4i + 3]

XOR

TA

TB

TC

TD

TA[b8]

TB[b9]

TC[b10]

TD[b11]

k[4i + 2]

XOR

TA

TB

TC

TD

TA[b4]

TB[b5]

TC[b6]

TD[b7]

k[4i + 1]

XOR

TA

TB

TC

TD

TA[b0]

TB[b1]

TC[b2]

TD[b3]

k[4i + 0]

W0i+1

W1i+1

W2i+1

W3i+1

128-bit temporary
variables

containing TLU
results

:Y0

:Y1

:Y2

:Y3

Load 4 subkeys
(k[] denotes the array

containing the subkeys)

Rotate Y0-Y3 right by 0, 32,
64, 96 bits respectively;

XOR Y’s with subkeys

Figure 2: AES round

ROL 4

WRi

WLi

WRi+1

WLi+1

64 bits

Split state
into Right &
Left halves

Rotate left 4 bits

XOR subkeys

8 Table
Lookups

Swap left, right
halves of state

XOR

XOR

k[2i+1]

k[2i]

6 most
significant

bits of each
byte

TB

TC

TA

TD

XOR

TF

TG

TE

TH

XOR
results

Figure 3: DES round

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

9

B. Execution time analysis

For baseline performance data, we implement and optimize the ciphers using the Base ISA in

Table 1, which excludes the PAX-specific instructions. We use the PLX toolset [18][19] to

simulate and profile each cipher. The simulator is configured to model a 64-bit single-issue

processor similar to Figure 1 but excluding the binary field multiplier and the PTLU module. We

assume that all instructions (including loads and stores) execute in a single cycle. Table 3 shows

the simulation results, which includes: (a) the execution cycles used per block of encryption, (b)

the round operations in each cipher, and (c) the fraction of the execution time consumed by these.

Our data presented so far enable us to make the following observations:

 Table lookups consume the greatest fraction of the execution time for all ciphers, varying

from 34% for MARS to 72% for AES (Table 3). Tables are few (at most eight) and have

constant size (Table 2). Except for RC4, all table accesses are reads. Number of entries

per table is small (at most 256) and the data read is either 8 or 32 bits (Table 2).

 The round structures of the ciphers generally permit the table lookups to be parallelized.

For example, all 16 lookups in an AES round (Figure 2) or all 8 lookups in a DES round

(Figure 3) can be performed in parallel, constrained only by hardware resources.

Table 3: Analysis of symmetric-key cipher execution time

 DES 3DES RC4 Blowfish AES-128 AES-192 AES-256 Twofish MARS

 Block size (bits) 64 64 8 64 128 128 128 128 128

Cycles per block

of encryption
1147 3384 18 408 870 1056 1272 1753 1677

%
 E

x
ec

u
ti

o
n

 C
y

cl
es

S
p

en
t

in
 …

Table Lookups 38 44 54 36 72 72 72 43 34

Arithmetic - - 14 26 - - - 15 10

Logical 21 24 26 34 24 24 24 32 18

Multiply - - - - - - - - 19

Fixed shift/rotate 8 9 - - - - - 4 5

Variable rotate - - - - - - - - 8

Bit permutation 26 15 - - - - - - -

Other 7 8 6 4 4 4 4 6 6

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

10

IV. PARALLEL TABLE LOOKUP (PTLU) MODULE

We propose a Parallel Table Look-Up (PTLU) module to accelerate the table lookups

commonly used in symmetric key ciphers. The PTLU module consists of w/8 small blocks of

memory that can be read in parallel, where w is the wordsize of the processor. A PTLU

instruction reads two source registers and writes one result register, using the register datapaths

already present for the other functional units (Figure 1). Hence, it looks like a functional unit

rather than a memory module.

Figure 4 shows the details of the PTLU-64 module in PAX-64. There are eight tables with 256

entries each, where each entry is at most w bits wide. For PAX, we implement each entry as 32

bits, since this is the widest table entry needed in the cipher suite.
1
 During a read, each table is

accessed by an 8-bit index from the first source register Rs1. The rightmost byte of Rs1 accesses

T0; the next byte accesses T1; and so on. All eight tables can be read in parallel.

The eight 32-bit lookup results, one from each table, are then routed through a combinatorial

tree of XOR-Multiplexers (XMUXs) to produce a single result to be written to the destination

register Rd. We describe one definition of this XMUX tree for PAX in Table 4 – many other

useful definitions are possible.

For a parallel table read (ptr) instruction, the first two layers of XMUXs, labeled A_XMUX

and B_XMUX, each allow selection of the Left (L) or Right (R) input, or an XOR of two inputs,

based on the values of two control bits (C1,C0) as shown in the first two rows of Table 4. In

addition, the A_XMUXs allow masking with one or two masks, M0 and M1, to be performed

first on its two inputs, for the parallel table read masked (ptrm) instruction, as shown in the

third row of Table 4. The final XMUX, labeled XMUX_64 is only a 2:1 MUX, enabling either

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

11

an XOR of its two inputs or their concatenation, as shown in the last row of Table 4.

Although parallel table lookup requires only one operand to supply indices into the 8 parallel

tables, the datapath of most processors allow two source register operands (Figure 1). We use

this second source register, Rs2, as an extra input to be combined with the other table results in

the XMUX tree (shown as the final XOR in Figure 4), or as an extra input to supply mask bits for

the table lookup results, before they are combined in the XMUX tree. This allows only part of a

table entry to be selected, and combined with parts of other table entries.

B7 B6 B5 B4 B3 B2 B1 B0

Rs1

A_XMUX3 A_XMUX2 A_XMUX1 A_XMUX0

B_XMUX1 B_XMUX0

XOR

64

Rd

PTLU

module

P
T

L
U

 co
n

tro
l

O
p

co
d

e &
 S

u
b

o
p

 fro
m

in
stru

ctio
n

 w
o

rd64

1

2

2

32

8

256

entries

X_MUX64

Rs2

64

Figure 4: Reading the PTLU-64 module

TABLE 4: OPERATION PERFORMED BY THE XMUXS

 (C0, C1) Value

 (0, 0) (0, 1) (1,0) (1, 1)

 B_XMUX ptr L L XOR R 0 R

A_XMUX
ptr L L XOR R 0 R

ptrm L & M1 (L & M1) XOR (R & M0) 0 R&M1

XMUX_64 L || R L || R 0 || L XOR R 0 || L XOR R

1 In co-designed embedded systems, the number and/or the width of the tables can be scaled down to limit cost and power.

Similarly, wider tables may be implemented for higher performance.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

12

By using this XMUX tree, it is possible to realize many common operations that the

symmetric-key ciphers perform on table data. For example, any one of the eight lookup results

can be selected and written to Rd after being optionally XORed with another value supplied via

Rs2. Another possibility is to XOR all eight lookup results. This is very useful for ciphers that

XOR the results of multiple table lookups, such as AES (Figure 2) and DES (Figure 3).By

allowing concatenation of two 32-bit values (at XMUX_64), we can also achieve two 2
8
×32

table lookups in parallel. Below, we present instructions that we defined for PTLU; however the

flexibility of the XMUX tree control allows for a larger set of instructions.

A. Instructions for reading the PTLU module

We define two ptr (parallel table read) instructions to read the PTLU module:

ptr.x.n Rd, Rs1, Rs2

ptr.s.n Rd, Rs1, Rs2

In each case, Rd is the destination register; Rs1 is the first source register, which supplies the

byte-sized table indices; and Rs2 is the second source register, which is fed to the XOR gate

which terminates the XOR tree (Figure 4). This last XOR operation with Rs2 can be easily

discarded, by setting Rs2 to R0 (hardwired to zero).

In the first ptr.x.n instruction, the „x‟ is a subop signifying „XOR‟ -- this instruction is used

to XOR multiple table lookup results. The „n‟ in the mnemonic signifies the number of

consecutive table look-up outputs which are XORed together; n can take three different values: 4,

8 and 16. For PAX-32, there are at most 4 parallel tables, so the only allowed value of n is 4. For

PAX-64, there are at most 8 parallel tables, and n can take the values 4 or 8. For PAX-128, there

are at most 16 parallel tables, and n can takes the values of 4, 8 or 16.

In the second ptr.s.n instruction, the subop „s‟ signifies „select‟ because this instruction

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

13

can select and write one of the table lookup results to Rd, after optionally XORing it with Rs2.

The sub-opcode „n‟ specifies the table result to be written to register Rd.

In this paper, we also define for the first time, two novel ptrm (parallel table read masked)

instructions, which are identical to the above, except that masking of the table lookup results is

performed in the first stage of the XMUX tree:

ptrm.x.n Rd, Rs1, Rs2

ptrm.s.n Rd, Rs1, Rs2

Two masks, M0 and M1, are generated from Rs2, where each bit of Rs2 is expanded into 8

bits to mask a byte of table result. Note that PTLU-w will have at most w/8 tables with 4-byte

entries, hence a mask is (w/8)*4 = w/2 bits long. Since Rs2 is w bits, it can supply two masks,

M0 and M1, which are used by the A_XMUXs in the ptrm instructions.

These masked versions are useful in many ciphers where some rounds differ from others. For

example, in AES, the last round does not implement the MixColumns operation. This results in

selecting a byte (instead of all four bytes) in each look-up table output. The masking we have

defined is general-purpose and is also useful in other applications, not just for AES.

Concurrent processing of different algorithms which use the parallel lookup tables, without the

need for re-loading tables, can be facilitated by using multiple sets of tables [20]. This is

accomplished via an additional sub-opcode that specifies which set of tables the ptr instructions

address. The tradeoff for this performance is the extra area required for each extra set of tables.

B. Instructions for writing the PTLU module

To write the tables in the PTLU module, we define the ptw (parallel table write) instruction:

ptw.n Rs1, Rs2

The current implementation of PAX considers tables with 32-bit entries, thus a 64-bit register

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

14

can bring two table entries. Figure 5 depicts how the ptw instruction works in PAX-64. The 2-

bit sub-op field, n, specifies which PTLU tables are written. If n=i, the two tables identified by i

and i+4 are written, for i=0, 1, 2 or 3, using the index given by the rightmost byte of Rs1.

Hence, T0 and T4 are written together, T1 and T5 are written together, and so forth. Rs2

supplies the value to be written to the selected entry of the two tables.

The time taken to write the tables does not degrade cipher performance since writing tables is

not needed during encryption or decryption (except for RC4 which uses a single table). However,

fast parallel writes may be desired for rapid initialization of tables at setup time. For this, a

parallel table initializes instruction, pti, can read an entire cache line from memory and write it

to a common row of all eight PTLU tables in parallel. All entries of the PTLU module can be

written using 256 such pti instructions.

Figure 5: the ptw instruction

C. Instructions for rearranging index bytes

In the ptr instruction, the position of the index byte in Rs1 selects the table that is read. For

example, the rightmost byte of Rs1 reads an entry from T0, the next byte reads an entry from T1,

and so on. While this reduces the number of bits required to encode the instruction, it also

restricts the types of table lookups that can be performed. For example, ptr cannot be used if the

bytes in Rs1 need to access T0-T7 in a different order. To overcome this, we enable ptr to

B 0

Rs 1 Rs 2

rightmos
t 1 st 32 bit

s

rightmos
t 2 n
d

32 bit
s

pt

w
. 1

R

s

T
6

1

R

s
2

T
0

T
1
[B

0
]

T
2

T
3

T
4

T
5
[B

0
]

T
7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

15

perform a much wider variety of table lookups by also defining a byte permutation instruction

that can perform any permutation of the bytes in a source register:

byteperm Rd, Rs, Rc

Here, Rs supplies the eight bytes to be permuted and Rc contains the bits that specify the

permutation. Figure 6(a) shows an example. The bytes in Rs are indexed from 0 to 7, the

rightmost being byte 0. The 32 right-aligned bits in Rc specify the order in which the source

bytes are written to Rd; the rightmost nibble in Rc selects the source byte to be written to the

rightmost byte of Rd, and so on. The leftmost 32 bits of Rc are unused. (Since there are only 8

bytes in Rs, the most significant bit of each 4-bit nibble is always “0” for PAX-64.) This is

similar to the permute instruction in MAX-2 [21] and the pperm instruction in [22].

 72443251

7 6 5 4 3 2 1 0

Rc:

Rs:

Rd:

7 2 4 4 3 2 5 1

(a) byteperm Rd, Rs, Rc

Source byte

indices

32 bits

 23 bits

Rs1 Rs2

 41 bits

 Rd:

(b) shrp Rd, Rs1, Rs2, 23

Figure 6: Examples of byteperm and shrp

To permute bytes in more than one register, byteperm can be used together with the shift

right pair (shrp) instruction, which is shown in Figure 6(b). For example, any arbitrary

permutation of sixteen bytes packed in two 64-bit registers can be performed using at most four

byteperm and two shrp instructions. An example of this is given in the next section.

Byteperm can be implemented in hardware using eight 8-to-1 multiplexers (each 8-bit-wide).

In PAX, we implement byteperm in a modified shifter.

D. Optimized AES

Using PTLU-128, an AES-128 block encryption can be done in just 22 cycles in software.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

16

Figure 7(a) shows that a round, for the first 9 rounds, takes just 2 instructions each, using

byteperm followed by ptr. The last round takes 3 instructions: byteperm, ptrm and XOR.

Using PTLU-64, each round takes 10 cycles as shown in Figure 7(b) and illustrated in Figure 8.

The 128-bit AES state is supplied in two 64-bit registers (R16, R17). The first six instructions

permute (R16, R17) such that R21 and R22 each contain eight indices into tables whose results

can be directly XOR‟ed together. The load.8 instruction loads the first half of the round subkey

into R15. The following ptr.x.4 instruction performs eight lookups using the bytes in R21.

These results are XORed in pairs by A_XMUXs and B_XMUXs. XMUX_64 concatenates the

outputs of B_XMUX0 and B_XMUX1, and XORs the result with the round subkey contained in

R20. The destination register R16 then contains (W1
i+1

,W0
i+1

). Similarly, the next ptr.x.4

instruction computes (W3
i+1

,W2
i+1

).

The last AES round is 12 instructions: the ptr.x.4 instructions are replaced by ptrm.x.4

instructions, followed by two XORs with the round sub-key. Hence, the total for AES using

PTLU-64 is 2+90+12= 104 instructions.

V. WORKLOAD CHARACTERIZATION OF PUBLIC-KEY CRYPTOGRAPHY

Public-key ciphers derive their cryptographic strength from hard mathematical problems such as the

discrete logarithm problem (DLP), the factoring problem (FP), and the elliptic-curve discrete logarithm

problem (ECDLP) [2][3][23][24]. Diffie-Hellman (DH) and the Digital Signature Algorithm (DSA) are

DLP-based ciphers, while RSA is a FP-based cipher [2][3][6]. The Elliptic Curve Discrete Logarithm

Problem, proposed for cryptographic use by Koblitz [23] and Miller [24] independently in 1985, is

significantly harder than the discrete logarithm and factoring problems. Hence, ECDLP-based ciphers

can use shorter keys while providing the same security as DLP or FP-based ciphers. The ciphers based on

ECDLP are collectively called Elliptic Curve Cryptography (ECC).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

17

 ; --------------- AES round operation using PTLU-128 ---------------------

 ; round input 1 word is stored in r17

 ; convert state bytes from: r17 = b15 b14 b13 b12 | b11 b10 b9 b8 | b7 b6 b5 b4 | b3 b2 b1 b0

 ; to the new order of: r17 = b15 b10 b5 b0 | b11 b6 b1 b12 | b7 b2 b13 b8 | b3 b14 b9 b4

 byteperm r17, r17, r6 ; permute bytes in r17 with the ordering of indices specified in r6

 ptr.x.4 r17, r17, r2x ; lookup 16 tables, XOR the results with round subkey (key for round x stored in register r2x);

 ; store the round output W0 into r17

 ; round output 1 word is stored in r17, new AES state

(a)

 ; --------------- AES round operation using PTLU-64 ----------------------

 ; round input 2 words are stored in r17, r16

 ; ordering of indices for byte permutation stored in r5 and r6

 ; convert state bytes from: r17 = b15 b14 b13 b12 | b11 b10 b9 b8 |

 ; r16 = b7 b6 b5 b4 | b3 b2 b1 b0 |

 ; to the new order of: r22 = b15 b10 b5 b0 | b11 b6 b1 b12 |

 ; r21 = b7 b2 b13 b8 | b3 b14 b9 b4 |

 byteperm r23, r16, r5 ; r23 = b6 b5 b1 b0 b7 b4 b3 b2 - group bytes for shrp

 byteperm r24, r17, r5 ; r24 = b14 b13 b9 b8 b15 b12 b11 b10 - group bytes for shrp

 shrp r21, r23, r24, #32 ; r21 = b7 b4 b3 b2 b14 b13 b9 b8 - collect bytes in one reg.

 shrp r22, r24, r23, #32 ; r22 = b15 b12 b11 b10 b6 b5 b1 b0 - collect bytes in one reg.

 byteperm r21, r21, r6 ; r21 = b7 b2 b13 b8 b3 b14 b9 b4 - permute bytes in one reg.

 byteperm r22, r22, r6 ; r22 = b15 b10 b5 b0 b11 b6 b1 b12 - permute bytes in one reg.

 ; parallel table lookup to generate round output for each word

 load r20, r15, #2 ; load W0 of round subkey from memory - not enough registers to keep subkeys between rounds

 ptr.x.4 r16, r21, r20 ; lookup 8 tables, XOR the results with round subkey;

 ; store the round output W0 into r16

 load r20, r15, #3 ; load W1 of round subkey from memory

 ptr.x.4 r17, r22, r20 ; lookup 8 tables, XOR the results with round subkey;

 ; store the round output W1 into r17

 ; round output 2 words are stored in r17, r16, new AES state

(b)

Figure 7: Optimized AES round with ptr.x.4 using (a) PAX-128, (b) PAX-64

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

18

k[4i + 1] k[4i + 0]

TA[b4]

R16:

R17:

b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

T0

b3

b14

b9

b4

b7

b2

b13

b8

T1

T2

T3

T4

T5

T6

T7

TB[b9]

TC[b14]

TD[b3]

TA[b8]

TB[b13]

TC[b2]

TD[b7]

R21:

XOR

W1i+1

W0i+1

Initial AES
state

R14 after first six
instructions

ptr.x.4
instruction

R20

(supplied via Rs2 of ptr.x.4)

R16: Result of
ptr.x.4

A
_
X

M
U

X
0

(X
O

R
)

B
_
X

M
U

X
0

(X
O

R
)

A
_
X

M
U

X
2

(X
O

R
)

A
_
X

M
U

X
3

(X
O

R
)

B
_
X

M
U

X
1

(X
O

R
)

Concatenated result

XMUX_64 (concatenate)

A
_
X

M
U

X
1

(X
O

R
)

Figure 8: Illustrating the data flow in an AES round (first 8 lookups) using PTLU-64

Table 5 shows that ECC with 160-bit keys offers security equivalent to 1024-bit RSA or DSA [26],

which is a 6.4× reduction in key size. This differential continues to widen in favor of ECC as the key size

increases. The smaller parameters in ECC translate into savings in computation time, processing power,

storage space, bandwidth, and power consumption [27][28]. This makes ECC particularly suitable for

resource-constrained mobile devices. ECC has been adopted by major security standards such as ANSI

X9.62 [29], FIPS 186-2 [6], IEEE P1363 [30], and ISO 14888-3 [31].

TABLE 5: EQUIVALENT CIPHER STRENGTHS

DLP or FP-based

Public-Key Cipher (e.g.

DSA, RSA)

ECDLP-based Public-Key

Cipher (ECC)

(e.g. eDSA)

Reduction in Key

Size with ECC

1024 160 6.4

2048 224 9.1

3072 256 12.0

7680 384 20.0

15360 512 30.0

Since PAX is targeted for mobile devices, we optimize it for ciphers most likely to be used in

constrained environments, such as ECC. Our cipher suite therefore consists of three representative ECC

algorithms: Elliptic Curve Diffie-Hellman (eDH), Elliptic Curve ElGamal (eElGamal), and Elliptic Curve

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

19

Digital Signature Algorithm (eDSA). These are used in mamy security protocols and standards such as

SSL/TLS, WTLS, SSH, and DSS [1][6][11]

A. ECC operations

ECC uses an operation called point multiplication, where a point P = (x0, y0) on an elliptic curve is

multiplied by a scalar k [27]. The result of this operation is Q, which is another point on the elliptic curve:

k × P = Q = (x1, y1). Due to the ECDLP, it is computationally infeasible to compute k given only P and Q

[23][24]. This one-way property provides the security of ECC.

On word-oriented programmable processors, ECC can be most efficiently implemented using binary

finite fields, denoted GF(2
m
) [28][32]. The elements of GF(2

m
) can be represented as binary polynomials

of degree at most m-1 and with coefficients from {0, 1}. For example 163-bit ECC can be defined over

GF(2
163

) [6], where the coordinates of the curve points will be binary polynomials of the form:

a(x) = a162x
162

 + … + a2x
2
 + a1x + a0, where ai  {0, 1} for i = 0, 1, …, 162.

The point multiplication operation is then realized by multiple arithmetic operations on these

polynomials [33]. This includes polynomial addition, multiplication, reduction, squaring, and inversion.

Since the operations on polynomial coefficients are performed modulo 2, polynomial addition can be

simply performed by XORing the operands. For the remaining polynomial operations, there is a wide

variety of optimized algorithms that can be used; Hankerson et al. [32] give a comprehensive survey. In

our simulations, we use the fastest methods from this study. These are: comb method for polynomial

multiplication, table-lookup method for polynomial squaring, word-based method for polynomial

reduction, and the modified almost inverse algorithm for polynomial inversion [34].

B. Execution Time Analysis

We implement ECC ciphers with 163-bit, 233-bit, and 283-bit keys specified in FIPS 186-2 [6]. This

provides security comparable to DLP-based ciphers with 1024-bit to 3072-bit keys (Table 5), considered

by NIST to be adequate until at least the year 2016 [26]. The ciphers are implemented in C and simulated

with the Simplescalar toolset configured for the PISA instruction set [35]. The architectural parameters

of the baseline processor are given in Table 6.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

20

TABLE 6: BASELINE PROCESSOR

Architectural Parameter Value

Issue-width In-order single-issue

Number of load/store pipes 1

L1 I-Cache 64 kB, 2-way, 32 B lines

L1 D-Cache 64 kB, 2-way, 32 B lines

L2 Cache (unified) 1 MB, 4-way, 64 B lines

L1 latency 1 cycles

L2 latency 10 cycle

Memory latency 100 cycle

Table 7 indicates that point multiplication is the dominant operation in ECC. Its fraction of the

execution time for 163-bit ECC ranges from 94.1% for eDSA to 99.1% for eDH. Because point

multiplication constitutes the bulk of the execution cycles for all ciphers, it is generally used as a proxy

to measure overall ECC performance [32][33].

TABLE 7: EXECUTION CYCLES FOR ECC CIPHERS

Key Size

(bits)
Cipher Cycles (×106)

% Cycles Consumed by Point

Multiplication

163

eDH 20.342 99.1

eElGamal encrypt 30.629 98.0

eElGamal decrypt 20.277 97.4

eDSA sign 10.813 94.1

eDSA verify 21.590 97.2

233

eDH 43.125 99.2

eElGamal encrypt 65.427 98.1

eElGamal decrypt 44.197 97.6

eDSA sign 23.583 94.5

eDSA verify 46.314 97.6

283

eDH 65.867 99.4

eElGamal encrypt 98.457 98.2

eElGamal decrypt 65.332 97.7

eDSA sign 34.839 95.0

eDSA verify 71.063 98.1

TABLE 8: POLYNOMIAL OPERATIONS IN POINT MULTIPLICATION

 Per Point Multiplication

Key Size

(bits)
Polynomial Operation Number of Calls Cycles (×106)

% of Total

Cycles

163

Multiplication 975.95 9.064 87.25

Squaring 807.96 0.657 6.33

Inversion 1.00 0.157 1.51

Other N/A 0.511 4.91

233

Multiplication 1408.35 18.999 88.62

Squaring 1172.48 1.296 6.05

Inversion 1.00 0.281 1.31

Other N/A 0.864 4.02

283

Multiplication 1703.38 29.896 90.22

Squaring 1424.65 1.754 5.29

Inversion 1.00 0.362 1.09

Other N/A 1.124 3.39

Table 8 shows that point multiplication consists of three major polynomial operations: multiplication,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

21

squaring, and inversion. Polynomial multiplication is the dominant operation, which consumes 87.25% of

the point multiplication time for 163-bit ECC. This is followed by polynomial squaring (6.33%) and

polynomial inversion (1.51%).

For the polynomial operations, addition is the simplest, followed by squaring, multiplication, and

inversion (Table 9). Inversion is the most costly, with a complexity of 15 to 20 times multiplication.

Hence, ECC execution time is dominated by polynomial arithmetic. Table 7 and Table 8 show that

more than 90% of the execution time of 163-bit ECC is consumed by two polynomial operations:

multiplication and squaring.

TABLE 9: EXECUTION CYCLES FOR POLYNOMIAL OPERATIONS

 Polynomial Size (= ECC key size, bits)

Operation 163 233 283

Addition 7 9 11

Reduction 476 644 707

Squaring excl. reduction 287 426 527

Squaring incl. reduction 791 1098 1228

Multiplication excl. reduction 8667 12971 16932

Multiplication incl. reduction 9199 13498 17512

Inversion 149836 270477 359102

VI. PAX FEATURES FOR FAST ARITHMETIC ON GF(2
M
)

A. Polynomial multiplication

Polynomial multiplication in ECC constitutes up to 90% of the execution cycles (Table 8). This is

primarily because a standard integer multiplier cannot be used to multiply two binary polynomials.

Instead, ALU and shift instructions are used, which require thousands of execution cycles to compute the

product.

With minor changes, a standard integer multiplier can be converted into a dual-field multiplier to also

multiply binary polynomials [36][37]. However, this is a large, multi-cycle functional unit. A binary-field

multiplier is much smaller and faster than a dual-field multiplier. Omitting the integer multiplier is not

likely to hurt cryptographic performance since neither symmetric-key ciphers (Section III) nor ECC

requires integer multiplication.

A binary-field multiplier can be implemented as an array of AND gates followed by an XOR-tree

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

22

(Figure 9). Unlike an integer multiplier, the partial products are exclusive-or‟ed (XORed) instead of added.

Because XOR is much faster than integer addition, binary field multiplication can be completed in a

single cycle. PAX includes two instructions to use the binary field multiplier: bfmul.lo and

bfmul.hi, which are shown in Figure 10. In bfmul.hi, the binary polynomials supplied in two

source registers are multiplied and the left word of the product is written to Rd. In bfmul.lo, the right

word of the product is written to Rd.

Rs1:

Rs2:

XOR tree

Product:

AND

Figure 9: Binary field multiplier

Rs1:

Rs2:

Rd:

bfmul.hi Rd, Rs1, Rs2

Rs1:

Rs2:

Rd:

bfmul.lo Rd, Rs1, Rs2

Figure 10: Binary field multiply instructions

A polynomial multiplication for ECC on PAX-128 requires multiple instructions to complete. The

software splits each 163-bit operand into two 128-bit words, with zero extension to the higher unused bits.

It performs 4 bfmul.lo, 4 bfmul.hi and 4 xor instructions, for a total of 12 instructions, to

complete the multiplication of two 163-bit operands. The same 163-bit multiplication takes 22

instructions on PAX-64 and 97 instructions on PAX-32.

B. Area saving for polynomial multiplication

The left and right halves of a binary-field multiplier are nearly symmetric (Figure 9). In [38], we have

shown that it is possible to compute the left word of the product by using only the right half of the

multiplier, thereby allowing the circuit size to be reduced by about half. A bfmul.hi instruction can be

realized by: (1) reversing the order of bits in the operands, (2) multiplying the reversed operands using

bfmul.lo, (3) shifting the product left by one bit, and (4) reversing the order of bits of the result.

C. Shuffle instructions for polynomial squaring

Polynomial squaring involves multiplying a binary polynomial with itself. This can be implemented

using a multiplication algorithm, such as the comb method in [32], or it could be optimized by exploiting

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

23

the linearity of the squaring operation on binary fields. For example, let a(x) be a binary polynomial used

with 163-bit ECC [6]. If we represent a(x) as  

162

0i

i
i xa

, where ai  {0, 1}, then the square of a(x) is

 


162

0

22)(
i

i
i xaxa

. The result contains no cross product terms since these appear in pairs and vanish

when the coefficients are added modulo 2. Hence, the square of a binary polynomial contains the same

coefficients as the input, but these appear in front of x terms with twice the original degrees. This

corresponds to interleaving the bits of the input polynomial with zeros. For example, if a(x) = x
3
 + x + 1,

then a
2
(x) = x

6
 + x

2
 + 1. In vector representation: a = (1011) and a

2
 = (1000101).

PAX includes bit shuffle instructions to accelerate this computation. As shown in Figure 11, a shuffle

instruction reads bits alternating between two source registers, and writes these to a destination register.

Because Rd can accommodate only half of the bits in Rs1 and Rs2, two versions of the instruction are

defined to shuffle either the left or the right halves of the source registers, called shuffle.hi and

shuffle.lo respectively. The implementation cost is low, involving only routing of the source bits.

a63

a62

a61

a2

a1

a0 …

Rs1:

b31

a31

b1

a1

b0

a0 …

Rd:

(b) shuffle.lo Rd, Rs1, Rs2

bits

b63

b62

b61

b2

b1

b0 …

Rs2:

…

a63

a62

a61

a2

a1

a0 …

Rs1:

b63

a63

b62

a62

b32

a32 …

Rd:

(a) shuffle.hi Rd, Rs1, Rs2

b63

b62

b61

b2

b1

b0 …

Rs2:

…

Figure 11: 64-bit shuffle instruction

VII. PAX IMPLEMENTATION: AREA, LATENCY AND CYCLE TIME ANALYSIS

A. PAX hardware implementation

We implemented PAX in VHDL with a classic 5-stage pipeline: Instruction Fetch (IF), Decode (D),

EXecute (EX), Memory (M) and Write Back (WB), with hazard detection and forwarding. Table 10

shows how the basic PAX instructions are implemented in the pipeline. The implementation is wordsize-

scalable. The wordsize (ws) indicates register size and data-path width and can be 32, 64 or 128 bits. The

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

24

choice of ws is made by the designer before synthesis. RTL simulation of the design using the Mentor

Graphics Modelsim toolset was done for PAX-32, PAX-64 and PAX-128. Simulation results confirm that

the 10 rounds of AES-128 can be done in 22, 104 and 248 cycles for PAX-32, PAX-64 and PAX-128

processors, respectively.

 TABLE 10: INSTRUCTION EXECUTION IN PAX PIPELINE

ALU, Shift IF | D | EX | - | WB

Load IF | D | EX | M | WB

Store IF | D | EX | M | -

Branch IF | D | EX | - | -

PTLU (ptr, ptrm, ptw) IF | D | EX | - | WB

Byte-perm IF | D | EX | - | WB

B. Wordsize scaling and subword-parallelism

Some PAX instructions (Table 1) are independent of wordsize. These include logical instructions

(AND, OR, XOR, etc.) which operate on pairs of bits, regardless of the word size, and control flow

instructions.

Shift, multiply, and permute instructions operate on full words, hence their operand size changes with

the wordsize. The binary-field multiplier multiplies two wordsize operands. Byteperm is slightly

different since it always permutes byte-sized data, but the number of source bytes changes with wordsize,

from 4 in PAX-32 to 16 in PAX-128.

For the PTLU module, the number of tables is limited by the number of bytes in a word used to index

different tables. Hence, we implement 4 tables in PAX-32, 8 tables in PAX-64, and 16 tables in PAX-128

(although fewer tables can be implemented to limit cost and power). We keep the width of the tables at

32 bits regardless of wordsize. While the architecture permits implementing wider tables, this is not

generally needed for the block ciphers.

For add and subtract instructions, it is sufficient to support only 32-bit operations for crypto-

processing. PAX-64 can perform two parallel 32-bit adds in a cycle and PAX-128 can perform four

parallel 32-bit adds in PAX-128. This is called subword parallelism and was introduced by Lee [40] for

multimedia acceleration. Since the carry-lookahead logic is the critical path in an ALU, using smaller

adders reduces latency. Subword parallelism for other instructions is not needed since this provides no

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

25

performance benefits for crypto-processing [41].

C. Area, Delay and Cycle Time

For area and delay estimates, we performed gate-level synthesis of the functional units using Synopsys

tools with a TSMC 90nm technology library. For the PTLU module, we used CACTI 5.0, a tool for

estimating the access time, area, and aspect ratio of memory components [39]. Table 11 summarizes our

results. For each functional unit, we report absolute area in square-microns and relative area normalized

to the ALU (shown in parenthesis). Delay is given as absolute delay in nanoseconds and relative delay

normalized to the ALU (shown in parenthesis). Separate functional unit information is given for 32-bit,

64-bit, and 128-bit processors.

Table 11 shows that implementing byte_perm and shuffle instructions in the modified PAX

shifter (the shift-permute unit, SPU) does not increase the shifter latency.

The access time of the PTLU tables is greater than the ALU delay. However, the XMUX tree can

always be synthesized so that the total delay through the PTLU module is no longer than twice the ALU

latency. If the cycle time is equal to the ALU delay, the ptr instructions would have 2-cycle latency.

However, the cycle time is more often equal to twice the ALU latency, due to other critical paths in the

processor-cache subsystem, including bringing the cache access time down to 1 or 2 cycles (rather than

3-4 cycles from the numbers in Table 11). Hence, a PAX processor that includes a PTLU module would

typically set the cycle time to that of the ptr instructions, so that all instructions are single-cycle

instructions.

The PTLU tables comprise most of area (96-98%) of the PTLU module. While the PTLU module is

large relative to the other functional units, it is small compared to the 32 kB to 256 kB caches typical in

today‟s high-end embedded processors, e.g., Marvell PXA320 [42]. Compared to these, the size of the

PTLU module is small; about 45% of the 32 kB cache and 5% of the 256 kB cache (PAX-64). Since the

PTLU tables at most 8 KB with 8 parallel reads for PAX-64, we may also want to compare this to an 8

kB cache with eight read ports. PTLU has only 8% of the area of such a cache, and is much faster. Hence,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

26

the PTLU module provides much greater performance than these caches, and also saves significant area

since a PAX processor may not need to implement data caches, or only much smaller ones.

TABLE 11: AREA AND DELAY OF BASELINE AND PAX FUNCTIONAL UNITS

PAX-32 PAX-64 PAX-128

Functional Unit / Component Area (µ2) Delay (ns) Area (µ2) Delay (ns) Area (µ2) Delay (ns)

ALU 4629 (1) 0.5 (1) 9635 (1) 0.55 (1) 20520 (1) 0.6 (1)

Standard barrel shifter 4850 (1.0) 0.5 (1) 12754 (1.3) 0.55 (1) 30603 (1.5) 0.6 (1)

PAX shifter (SPU) 6432 (1.4) 0.5 (1) 19130 (2.0) 0.55 (1) 49827 (2.4) 0.6 (1)

PAX binary field multiplier 10041 (2.2) 0.5 (1) 40020 (4.2) 0.55 (1) 163642 (8.0) 0.6 (1)

PTLU: Tables only 130814 (28.3) 0.66 261627 (27.2) 0.66 523254 (25.5) 0.66

PTLU total 134661 (29.1) 0.98 (1.96) 270641 (28.1) 1.05 (1.91) 542271 (26.4) 1.18 (1.97)

32 kB 2-way cache

w/ 64-byte blocks

Same 

599104 (62.2) 1.20 (2.18)

 Same
256 kB 2-way cache

w/ 64-byte blocks
5224494 (542.2) 1.82 (3.31)

8 kB direct-mapped cache w/ 64-byte

blocks and 8 read ports
3255712 (337.9) 1.62 (2.95)

The PAX multipliers are always single cycle units. This shows the advantage of using just binary-field

multipliers rather than ones that also do integer multiplication, since the latter typically have at least a 3-

cycle latency.

VIII. PERFORMANCE

A. Impact of new instructions

Table 12 shows the symmetric-key cipher speedups obtained with a PAX-64 processor that has the PTLU

and byteperm instructions. The speedups are relative to the execution cycles needed per block of

encryption with a 64-bit baseline processor, i.e., a single-issue processor that implements the Base ISA in

Table 1. While all ciphers benefit from PTLU and byteperm instructions, some show huge

performance gains. The average speedup for DES/3DES and AES are 5.4× and 8.1× respectively. The

other ciphers have speedups varying from 1.2× for MARS to 2.8× for Twofish.

Table 13 shows the speedups obtained with the bfmul instructions for polynomial multiplication. The

speedups are relative to multiplication using the comb method, which is identified in [32] as the fastest

algorithm among the ones surveyed. When a full (word-sized) binary-field multiplier is used, the average

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

27

speedup obtained for the three ECC key sizes [6] is 25.13×. When a half-sized multiplier is used with

rev (reverse) instructions, the speedup averages 18.03×.

Table 12: Symmetric-key cipher speedup with PAX

Cipher
Block size

(bits)

Execution Cycles with Base

ISA (64-bit processor)

Speedup with PAX-64

(ptr + byte_perm)

DES 64 1147 5.41 ×

3DES 64 3384 5.32

RC4 8 18 2.00

Blowfish 64 408 1.66

AES-128 128 870 7.84

AES-192 128 1056 8.06

AES-256 128 1272 8.42

Twofish 128 1753 2.81

MARS 128 1677 1.23

Table 14 shows the speedups obtained with the shuffle instructions in polynomial squaring, which are

relative to the table lookup method described in [32]. The average speedup is 3.86×.

TABLE 13: POLYNOMIAL MULTIPLICATION SPEEDUP WITH PAX

 Cycles Speedup

Polynomial size

(=ECC key size) (bits)
Comb method Comb method

PAX-32

bfmul.hi + bfmul.lo

PAX-32

bfmul.lo + rev

163 8667 ×1.00× 24.85× 17.87×

233 12971 1.00 25.16 18.03

283 16932 1.00 25.38 18.18

TABLE 14: POLYNOMIAL SQUARING SPEEDUP WITH PAX

 Cycles Speedup

Polynomial size

(=ECC key size) (bits)
Table lookup method Table lookup method

PAX-32

shuffle.lo + shuffle.hi

163 287 ×1.00× 3.78×

233 426 1.00 3.86

283 527 1.00 3.95

TABLE 15: ECC POINT MULTIPLICATION SPEEDUP WITH PAX

 Speedup

ECC Key

Size (bits)

Baseline

Execution

Cycles (×106)

Baseline

bfmul.lo

+

bfmul.hi

bfmul.lo

+

rev

shuffle.lo

+

shuffle.hi

PAX-32

bfmul.lo + bfmul.hi +

shuffle.lo + shuffle.hi

PAX-32

bfmul.lo + rev +

shuffle.lo + shuffle.hi

163 10.389 ×1.00× ×6.06× ×5.59× ×1.05× ×20.25× ×16.01×

233 21.439 1.00 6.44 5.91 1.05 20.63 16.20

283 33.137 1.00 7.38 6.68 1.04 21.46 16.66

Average speedup 1.00 6.63 6.06 1.05 20.78 16.29

Table 15 shows the speedups in ECC point multiplication obtained with various combinations of

bfmul, shuffle, and rev instructions. A full multiplier that implements both bfmul.lo and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

28

bfmul.hi instructions provides the highest speedups, averaging 6.63×. To save area and power, a half

multiplier can be used that only implements the bfmul.lo instruction. This reduces the average speedup to

6.06×. We implement the full multiplier in our PAX implementation.

Using only the shuffle instructions provides insignificant performance improvement (5%) because the

fraction of ECC execution time consumed by polynomial squaring is only 6%, whereas polynomial

multiplication consumes up to 90% of the baseline execution cycles (Table 8). However, the usefulness

of shuffle increases significantly when used together with bfmul. Once polynomial multiplication is

accelerated by up to 25.38× with a binary field multiplier (Table 13), squaring becomes the new

dominant operation in ECC. Accelerating squaring at this point using shuffle instructions increases the

cumulative ECC speedups to an average of 20.78×.

B. Wordsize scaling versus Superscalar execution

We now show the performance benefits of the wordsize scalability feature in PAX, and compare this

to ILP scaling used in superscalar processors. Since the two scaling techniques are orthogonal, they can

be combined to achieve a specific performance-cost target.

For 3DES, AES-128, and ECC point multiplication, Table 16 shows the speedups obtained using

Simplescalar with superscalar execution on processors with issue widths from 1 to 8. Speedups are

relative to the single-issue 32-bit baseline processor. For DES and ECC, we observe that 2-way and 4-

way superscalar execution with a single memory port provides significant speedups for all ciphers (up to

2.06×). Further increasing the issue width to 8 provides only minor additional performance (up to 2.18×).

For AES, on the other hand, 8-way superscalar execution provides significant speedup (up to 4.00×).

Adding a second memory port increases performance significantly at larger issue widths due to the

memory-intensive round structures.

For the same ciphers, Table 17 shows the speedups obtained with the much simpler single-issue 32-bit,

64-bit, and 128-bit PAX processors. In PAX-32, we obtain speedups of 3.4×, 3.3×, 7.7× for 3DES, AES,

ECC respectively. This should be compared with the single-issue 1/1 machine. For 3DES and ECC, they

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

29

are even higher than the speedups obtained on an 8-way superscalar processor with two memory ports

(Table 16).

In PAX-64, the AES speedup increases to 7.8×. This should be compared to the 1.97× speedup of the

2-way 32-bit processor since both have equivalent degrees of operand parallelism. Similarly, the 34.8×

speedup of PAX-128 can be compared to the 3.8× speedup of the 4-way 32-bit processor. These results

clearly indicate that wordsize scaling with PAX is far more effective for improving performance than

IPC scaling in superscalar processors. Compared to a multi-issue processor, a wider single-issue

processor saves on register ports, data buses, bypass paths, and instruction dispatch logic [40].

TABLE 16: BASE ISA PERFORMANCE WITH SUPERSCALAR IMPLEMENTATION

Speedup with Superscalar Implementation

(# issue width / # memory ports)

Cipher 1/1 2/1 2/2 4/1 4/2 8/1 8/2

3DES 1.00× 1.62× 1.85× 1.78× 2.32× 1.88× 2.73×

AES-128 1.00× 1.97× 1.97× 3.49× 3.80× 4.00× 6.33×

ECC Point Multiplication 1.00× 1.64× 1.76× 2.06× 2.24× 2.18× 2.59×

Note: In the notation a/b, a is the issue width and b is the number of memory ports.

TABLE 17: PAX PERFORMANCE WITH WORDSIZE SCALING

 Single-issue Base ISA

(32-bit)

Speedup with Single-issue PAX

(ptr + byte_perm + bfmu.lo + bfmul.hi + shuffle.lo + shuffle.hi)

Cipher PAX-32 PAX-64 PAX-128

3DES 1.00× 3.41× 5.32× 5.32×

AES-128 1.00× 3.33× 7.84× 34.8×

ECC Point Multiplication 1.00× 7.68× 16.58 × 24.88 ×

C. Mobile wireless devices and servers

Network security protocols usually initiate a secure session by using public-key ciphers and

then encrypt any subsequent data using symmetric-key ciphers. For example, the WTLS protocol

[11] has a handshake phase for authentication (public-key) and a record phase for bulk

encryption (symmetric-key). PAX improves the performance in both WTLS phases.

In, Figure 12 we show the processor clock rate required to complete a client-side WTLS

handshake (which includes a digital signature verification and other public-key operations)

within a given latency. Assuming a 1 second authentication delay, the target clock rate reduces

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

30

from 131 MHz for the baseline processor, to 22 MHz for PAX-32. Wordsize scaling to PAX-128

further decreases this to 4 MHz.

As 3G wireless multimedia phones and appliances start to proliferate [9], it is interesting to see

what it takes to do cryptographic processing of bulk data at link speeds. Figure 13 shows the

clock rates required to achieve a desired AES-128 throughput with different PAX processors. On

the horizontal axis, we show the data rates of a few important wireless technologies [9]. To

achieve 3G link speeds (2.4 Mbps), we only need a 5 MHz PAX-32 processor, a 2 MHz PAX-64

processor, or a .5 MHz PAX-128 processor. A basic RISC processor would need to run at 18

MHz, consuming much more power. To saturate an IEEE 802.11g connection, which has a 54

Mbps maximum data rate, the clock rate of the base processor needs to be 385 MHz, while PAX-

32 only needs a 116 MHz clock, and PAX-128 only needs a 11 MHz clock. The clock rate of

PAX-32 is approximately one seventh of the ~800 MHz rate used in today‟s high-end embedded

processors [42]. This significantly reduces the energy consumption and area, conserving the

battery and cost of resource-constrained wireless devices.

0

20

40

60

80

100

120

140

160

250 ms 500 ms 750 ms 1 s 1.25 s 1.5 s 1.75 s 2 s

Target Handshake Latency

R
e
q

u
ir

e
d

 C
lo

c
k
 R

a
te

 (
M

H
z
)

Base ISA-32 PAX-32 PAX-64 PAX-128

Figure 12: Required clock rate for given WTLS handshake latency

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

31

3G
cellular Wi-Fi

4G
cellular

802.11g

Figure 13: Required clock rate for given AES-128 throughput

The PAX-specific instructions, such as ptr, bfmul, and shuffle, can also be added to the

instruction sets of general-purpose microprocessors to accelerate server-side crypto-processing.

Table 18 shows how many server-side WTLS handshakes can be performed by a 1 GHz server

within a given time period, with and without PAX extensions. (We show 1 GHz to allow easier

extrapolation to other GHz rates.) To obtain these results, we used SimpleScalar to simulate a 32-

bit. 8-way superscalar, out-of-order processor with 256kB/1MB L1/L2 caches. Our results

indicate that a server can increase its authentication throughput by 3.83× by adding a few low-

cost instructions to its instruction set.

TABLE 18: SERVER PERFORMANCE WITH PAX EXTENSIONS
 WTLS handshakes in 1 second Times improvement

Baseline 173 1.00×

With PAX extensions 662 3.83×

IX. PAST WORK

Architectural enhancements to accelerate table lookups in symmetric-key ciphers have been

proposed previously, e.g., the sbox instruction in [43] which performs fast lookups of tables in

main memory by accelerating the effective address computations. The CryptoManiac processor

[44] uses a similar sbox instruction to quickly access four 1 kB on-chip caches. However, unlike

our PTLU module, both of these approaches read only a single table with each sbox instruction.

To read two or more tables simultaneously, multiple-issue techniques are needed, such as the 4-

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

32

way VLIW used in CryptoManiac. In contrast, our PTLU module allows multiple tables to be

read in parallel on a single-issue PAX processor using a single ptr instruction.

None of the previous work has proposed an XMUX tree, which is a distinctive feature of our

PTLU module. This low-cost combinational logic, performing simple operations on the table

output, is a key contributor to the huge speedups obtained. While the XMUX units we presented

in this paper XOR‟s or selects table data, they can be adapted for other applications.

While multimedia instructions in IA-64 [45] and PLX [18][19] include instructions like

shuffle for byte-sized and larger data, these instructions operate on individual bits in PAX. A

bit-level shuffle instruction is also used in the TI C64x DSP [46] but this is a 2-cycle instruction

that can only shuffle two halves of the same 32-bit source register. Our work is also new in its

application and evaluation of bit-level permutation instructions in public-key cryptography.

Using modified functional units to support binary field arithmetic was first alluded to by

Nahum in 1995 [47] but no specifics were given regarding hardware or instruction design. Later,

binary-field multiplication instructions were added in [36] to a single-issue 16-bit RISC

processor core. Our work differs from these studies in that: (i) we consider dedicated binary field

multipliers, which are smaller and faster than dual-field multipliers, (ii) we describe how a half

multiplier can be used without much performance degradation but significant area savings, (iii)

we consider the performance of binary-field multipliers in combination with other architectural

techniques such as IPC scaling and wordsize scaling .

CryptoManiac [44] and Cryptonite [48] are two crypto-processors similar in design goals to

PAX, but these have only considered symmetric-key cryptography. [44] was also proposed before

AES became a NIST standard [5][14]. Because public-key ciphers are an inevitable component

of secure processing, we designed PAX for high-performance processing of both public-key and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

33

symmetric-key ciphers. Also, PAX provides support for Elliptic Curve Cryptography, a relatively

newer class of public-key ciphers suitable for resource-constrained mobile devices.

X. CONCLUSIONS

We presented the architecture and implementation of PAX, a small, scalable processor with

very fast crypto-processing. The PAX instruction set is derived by extending a minimalist RISC

instruction set with a few PAX-specific instructions that provide huge speedups for important

operations in symmetric-key and public-key ciphers. PAX includes a PTLU module for fast

parallel table lookups in symmetric-key ciphers, and polynomial multiplication, squaring and bit

permutation instructions for Elliptic-Curve Cryptography on binary fields. These instructions are

also useful in many other applications that use binary finite fields, such as random number

generators, combinatorics, and coding theory [49].

PAX has a concise instruction set, suitable for providing low-cost yet high-performance

cryptography processing in resource-constrained environments such as mobile wireless devices.

We showed how PAX-based processors can be used to perform public-key authentication within

a given latency at a low processor clock rate, hence reducing energy consumption, area, and cost,

while preserving performance and security. We also showed how PAX processors can be scaled

to provide encryption throughputs that can saturate the link speeds of existing and emerging

network technologies such as 3G and 4G wireless at low clock rates.

A major contribution is the demonstration of a software AES-128 implementation at 22 cycles

per block encryption using PAX-128. This is equivalent to a rate of 1.38 cycles/byte, rivaling

hardware ASIC implementations. This allows a processor with a very low MHz rate to achieve

link speed encryption. Furthermore, the PAX processor can also implement other ciphers,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

34

including public-key ciphers, unlike a dedicated AES ASIC chip.

The security of the implementation of some of these ciphers is improved as well with the

PTLU module. Cache side-channel timing attacks have recently been shown to be viable against

cryptographic algorithms like AES [50] that use lookup tables stored in cache. Using the PTLU

module of PAX to perform the table lookups precludes these timing attacks from taking place, as

the tables do not reside in cache. Table access time is always a constant for all tables in the PTLU

module. Consequently, the use of PTLU for AES not only provides tremendous performance

improvements but also increases the security of the implementation of AES and other ciphers

that use table lookup.

Another major contribution of this paper is the demonstration of the effectiveness of wordsize

scaling as a technique for significantly improving performance for both symmetric-key and

public-key cryptographic processing. For algorithms like AES and ECC, we showed that the

speedup obtained with wordsize scaling is higher than increasing the number of instructions

executed per cycle (IPC scaling) in superscalar or VLIW execution, with lower implementation

complexity. Furthermore, wordsize scaling can be combined with ISA improvements, IPC

scaling, and multicore processors for even higher performance.

REFERENCES

[1] W. Stallings, Network Security Essentials, 2nd Edition, Prentice Hall, Nov. 2002.

[2] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John Wiley and Sons, 1996.

[3] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Oct. 1996.

[4] National Institute of Standards and Technology, Data Encryption Standard (DES), FIPS Publication 46-3, Oct. 1999. Available at

<http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf>.

[5] National Institute of Standards and Technology, Advanced Encryption Standard (AES), FIPS Publication 197, Nov. 2001. Available at

<http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>.

[6] National Institute of Standards and Technology, Digital Signature Standard (DSS), FIPS Publication 186-2, Jan. 2000. Available at

<http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf>.

[7] D. Boneh and N. Daswani, “Experimenting with Electronic Commerce on the PalmPilot”, Proc. Financial Cryptography, Feb. 1999, pp. 1-

16.

[8] S. Ravi, A. Raghunathan, and N. Potlapally, “Securing Wireless Data: System Architecture Challenges”, Proc. Int. Sym. System Synthesis

(ISSS), Oct. 2002, pp. 195-200.

[9] T.S. Rappaport et al., “Wireless Communications: Past Events and A Future Perspective”, IEEE Communications Magazine, vol. 40, no. 5,

May 2002, pp. 148-161.

[10] Z. Shi, X. Yang, and R.B. Lee, “Arbitrary Bit Permutations in One or Two Cycles”, Proc. IEEE Int. Conf. Application-Specific Systems,

Architectures and Processors (ASAP), Jun. 2003, pp. 237-247.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO

EDIT) <

35

[11] Open Mobile Alliance, Wireless Transport Layer Security Specification WAP-261-WTLS-20010406-a, Apr. 2001. Available at

<http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf>.

[12] IEEE, IEEE 802.11 Wireless LAN Standards, <http://grouper.ieee.org/groups/802/11/>.

[13] B. Schneier, The Blowfish Encryption Algorithm, <http://www.schneier.com/blowfish.html>.

[14] National Institute of Standards and Technology, Advanced Encryption Standard (AES) Development Effort, Jan. 1997-Nov. 2001,

<http://csrc.nist.gov/CryptoToolkit/aes/index2.html>.

[15] B. Schneier et al., “Twofish: A 128-bit Block Cipher”, Jun. 1998, <http://www.schneier.com/twofish.html>.

[16] C. Burwick et al., “MARS – A Candidate Cipher for AES”, Sep. 1999, <http://www.research.ibm.com/security/mars.pdf>.

[17] B. Gladman, AES Second Round Implementation Experience, source code for AES finalists available at

<http://fp.gladman.plus.com/cryptography_technology/aesr2>.

[18] Princeton Architecture Laboratory for Multimedia and Security, PLX Project, <http://palms.ee.princeton.edu/PLX>.

[19] R.B. Lee and A.M. Fiskiran, “PLX: An Instruction Set Architecture and Testbed For Multimedia Information Processing”, Journal of VLSI

Signal Processing, vol. 40, 2005, pp. 85-108.

[20] W. Josephson, R. Lee, and K. Li, “ISA Support for Fingerprinting and Erasure Codes, Proceedings of the IEEE International Conference on

Application-Specific Systems, Architectures and Processors (ASAP),” July 2007.

[21] R.B. Lee, “Subword Parallelism with MAX-2”, IEEE Micro, vol. 16, no. 4, Aug. 1996, pp. 51-59.

[22] R.B. Lee, Z. Shi, and X. Yang, “Efficient Permutation Instructions for Fast Software Cryptography”, IEEE Micro, vol. 21, Dec. 2001, no. 6,

pp. 56-69.

[23] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation, vol. 48, no. 177, 1987, pp. 203-209.

[24] V.S. Miller, “Use of Elliptic Curves in Cryptography”, Lecture Notes in Computer Science, vol. 218, Springer-Verlag, 1986, pp. 417-426.

[25] A.K. Lenstra and E.R. Verheul, “Selecting Cryptographic Key Sizes”, Journal of Cryptology, vol. 14, no. 4, Dec. 2001, pp. 255-293.

[26] National Institute of Standards and Technology, “Key Management Guideline”, 2nd Key Management Workshop, Nov. 2001. Available at

<http://csrc.nist.gov/CryptoToolkit/kms/key-management-guideline-(workshop).pdf>.

[27] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.

[28] M. Rosing, Implementing Elliptic Curve Cryptography, Manning, 1998.

[29] ANSI, ANSI X9.62 - Public Key Cryptography for Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),

1999.

[30] IEEE, IEEE P1363 Standard Specifications for Public-Key Cryptography, <http://grouper.ieee.org/groups/1363>.

[31] ISO/IEC 14888-3, Information Technology – Security Techniques – Digital Signatures – Part 3: Certificate-Based Mechanisms, 1998.

[32] D. Hankerson, J.L. Hernandez, and A. Menezes, “Software Implementation of Elliptic Curve Cryptography Over Binary Fields”, Lecture

Notes in Computer Science, vol. 1965, Jan. 2000, pp. 1-24.

[33] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curves over GF(2m) without Precomputation”, Lecture Notes in Computer Science,

vol. 1717, 1999, pp. 316-327.

[34] R. Schroeppel et al., “Fast Key Exchange with Elliptic Curve Systems”, Lecture Notes in Computer Science, vol. 963, 1995, pp. 43-56.

[35] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0”, Computer Architecture News, Jun. 1997, pp. 13-25.

[36] J. Großschädl and G.-A. Kamendje, “Instruction Set Extension for Fast Elliptic Curve Cryptography Over Binary Finite Fields GF(2m)”,

Proc. IEEE Int. Conf. Application-Specific Systems, Architectures, and Processors (ASAP), Jun. 2003, pp. 455-468.

[37] E. Savas, A.F. Tenca, and C.K. Koc, “A Scalable and Unified Multiplier Architecture for Finite Fields GF(p) and GF(2m)”, Lecture Notes

in Computer Science, vol. 1965, Jan. 2000, pp. 277-292.

[38] A.M. Fiskiran and R.B. Lee, “Evaluating Instruction Set Extensions for Fast Arithmetic on Binary Finite Fields”, Proc. IEEE Int. Conf.

Application-Specific Systems, Architectures, and Processors (ASAP), Sep. 2004, pp. 125-136.

[39] HP Labs, CACTI, < http://www.hpl.hp.com/personal/Norman_Jouppi/cacti4.html>.

[40] R.B. Lee and A.M. Fiskiran, “Multimedia Instructions in Microprocessors for Native Signal Processing”, Programmable Digital Signal

Processors, Yu Hen Hu, ed., Marcel Dekker, Dec. 2001, pp. 91-145.

[41] A.M. Fiskiran and R.B. Lee, “Fast Parallel Table Lookups to Accelerate Symmetric-Key Cryptography”, Proceedings of the International

Conference on Information Technology Coding and Computing, Embedded Cryptographic Systems Track, April 2005, pp. 526-531.

[42] Marvell PXA320 Processor Series, Marvell, Document ID PXA320-001, available at <http://www.marvell.com/files

/products/cellular/application/PXA320_PB_R4.pdf>.

[43] J. Burke, J. McDonald, and T. Austin, “Architectural Support for Fast Symmetric-Key Cryptography”, Proc. Int. Conf. Architectural

Support for Programming Languages and Operating Systems (ASPLOS), Nov. 2000, pp. 178-189.

[44] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: A Fast Flexible Architecture for Secure Communication”, Proc. Annual Int. Symposium

on Computer Architecture (ISCA), Jun. 2001, pp. 110-119.

[45] R.B. Lee, A.M. Fiskiran, and A. Bubshait, “Multimedia Instructions in IA-64”, Proc. IEEE Int. Conf. Multimedia and Expo (ICME), Aug.

2001, pp. 281-284.

[46] Texas Instruments, “TMS320C6000 CPU and Instruction Set Reference Guide”, doc. SPRU189F, Oct. 2000, available at

<http://www.ti.com>.

[47] E.M. Nahum et al., “Towards High-Performance Cryptographic Software”, Proc. IEEE Workshop Architecture and Implementation of

High-Performance Communication Subsystems (HPCS), 1995, pp. 69-72.

[48] D. Oliva, R. Buchty, and N. Heintze, “AES and the Cryptonite Crypto Processor”, Proc. Int. Conf. Compiler, Architectures, and Synthesis

for Embedded Systems, Oct. 2003, pp. 198-209.

[49] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, 1986.

[50] D.A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures: the Case of AES,” Cryptology ePrint Archive, Report

2005/271, 2005.

