
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 

EDIT) < 

 

1 

 

Abstract--Cryptographic algorithms are important components in secure systems. We propose PAX, a tiny processor for 

both symmetric-key and public-key ciphers.  PAX’s goal is to provide the flexibility of software implementations, with 

performance comparable to hardware implementations for important ciphers. Based on workload characterization studies, 

we propose a few powerful instructions that provide huge speedups for critical operations found in many symmetric-key 

and public-key ciphers. A novel Parallel Table Lookup instruction enables multiple tables to be accessed in parallel by a 

single instruction; it also combines these parallel table results in a unique combinatorial tree. We achieve a software 

implementation of AES-128 in just 22 cycles using PAX-128. PAX also has bit and byte permutations, and binary-field 

arithmetic.  Elliptic-Curve Cryptography speedup up to 25x is achieved. 

A distinctive feature of PAX is wordsize scalability, where the same instruction set can be synthesized into processors 

with different word-sizes. This is a new dimension in the processor design space, orthogonal to more traditional multi-issue 

techniques in superscalar or VLIW processors. We show that wordsize scaling provides speedups that are significantly 

higher with lower implementation complexity, for cryptographic processing. Wordsize scaling can be combined with 

multi-issue or multi-core scaling for even higher performance. 

 
Index Terms— processor, crypto acceleration, AES, Elliptic Curve Cryptography, parallelism, table lookup, scalability, 

permutation, Instruction Set Architecture (ISA), ASIP, binary field multiplier 

I. INTRODUCTION 

HIS paper describes the architecture and implementation of PAX, a small processor with a few 

special instructions for accelerating both symmetric-key and public-key cryptography algorithms.  

A significant advantage of a programmable processor like PAX over hardware ASIC 

(Application Specific Integrated Circuit) implementations of ciphers, is that a single chip can 

implement any number of ciphers. Our goal is to achieve cryptographic processing with the 

flexibility of software implementations but at a performance comparable to hardware 

implementations for the most important ciphers, e.g, AES [5]. In addition, while we target 

mobile devices, we want PAX to be a scalable architecture, for less resource-constrained devices 
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which desire higher performance.    

Symmetric-key ciphers can be used to encrypt information sent across the public Internet or 

wireless networks, to protect against eavesdropping or observation attacks [1][2]. They are also 

useful for encrypting data or programs stored in memory, disks or on-line storage, to provide 

confidentiality. In symmetric-key ciphers, a plaintext message P is encrypted with a secret key K. 

The encrypted data (ciphertext) can then be transmitted or stored.  It can only be decrypted using 

the same cipher and secret key. Symmetric-key ciphers are very efficient in encrypting large 

amounts of data, hence they are preferred for bulk encryption [2]. Examples of widely-used 

symmetric-key ciphers are 3DES [4] and AES [5]. 

Public-key cryptography, used with the appropriate security protocols, can provide essential 

security features such as authentication and digital signatures. This can thwart masquerading 

attacks [1]. Public-key ciphers use two keys for each party: a private-key, which is always kept 

secret, and a public-key, which can be posted publicly [2][3]. A plaintext message encrypted with 

a public key can only be decrypted with the corresponding private key. In the reverse direction, a 

message encrypted (or signed) by a private key can be decrypted (or verified) by anyone with the 

corresponding public key. Because public-key ciphers are up to three orders of magnitude slower 

than symmetric-key ciphers, they are not used for bulk encryption [2]. Instead they are used for 

user and device authentication, digital signatures, and for setting up symmetric-keys for bulk 

encryption. Examples of important public-key ciphers are RSA [2] and DSA [6]. 

Cryptography processing on mobile wireless devices is particularly challenging. The wireless 

communication medium cannot be physically secured, necessitating continuous use of crypto-

processing to protect against eavesdropping attacks. In addition, cryptography is very compute-

intensive, whereas mobile devices are typically very resource-constrained. Severe negative 
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impacts of crypto-processing on the performance and power consumption of mobile devices have 

been documented [7] [8]. Furthermore, wireless link speeds keep increasing: emerging wireless 

technologies such as 4G and Ultra Wide Band (UWB) promise data rates as high as 100 

megabits/second (Mbps) [9]. To fully utilize such high link speeds, the cryptographic 

performance of mobile devices must be increased while maintaining low energy consumption. 

This paper gives a full architectural description of PAX, a general-purpose, tiny, scalable 

processor for high-performance, low-cost crypto-processing in resource-constrained devices. The 

PAX instruction set architecture (ISA) is derived by extending a minimalist RISC-like instruction 

set with a few carefully designed instructions that provide huge speedups in the performance-

critical operations used in symmetric-key and public-key ciphers. This includes novel parallel 

table lookup instructions to accelerate symmetric-key ciphers. For public-key ciphers, PAX 

includes binary-field arithmetic and bit-level permutation instructions. A distinctive feature of 

PAX is wordsize scalability, which refers to the property that the same instruction set can be 

synthesized into processors with different wordsizes (e.g. 32-bit, 64-bit, or 128-bit). This is a 

new dimension in the processor design space that is orthogonal to the more traditional techniques 

like multiple-issue execution used in superscalar or Very Long Instruction Word (VLIW) 

processors. Our results indicate that wordsize scaling is very effective for improving the 

performance of both symmetric-key and public-key ciphers.  

The rest of this paper is organized as follows. Section 2 provides an overview of the PAX 

instruction set. Section 3 analyzes the workload characteristics of important symmetric-key 

ciphers, while Section 4 describes the PAX features to accelerate these. Section 5 discusses 

workload characteristics of public-key ciphers, while Section 6 describes the PAX instructions 

that accelerate these. Section 7 describes our implementation of PAX, with area, latency and 
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cycle time analysis.  Section 8 presents the performance of PAX processors, showing the benefits 

of new instructions, wordsize scaling, multiple-issue execution, and combinations of these 

techniques. Section 9 reviews related past work and Section 10 concludes the paper.  

II. OVERVIEW OF THE PAX ARCHITECTURE 

The datapath of a PAX processor is shown in Figure 1. The register file contains 32 architected 

registers, R0 through R31, where R0 is hardwired to zero. Instructions are 32 bits long and are 

executed by different functional units: the arithmetic-logic unit (ALU), the shift-permute unit 

(SPU), the binary-field multiplier and the Parallel Table Lookup (PTLU) module.  The PTLU 

and the binary field multiplier are optional units for the smallest implementations.  The PTLU 

module is an on-chip scratchpad memory used for fast parallel table lookups, while the binary 

field multiplier does GF(2) multiplications..  

A novel feature of the PAX Instruction-Set Architecture (ISA) is that it is word-size scalable.  

i.e., the same instruction set can be synthesized into processors with different wordsizes. The 

wordsize of a processor is the size of its registers and datapaths.  A PAX processor can be 

implemented with a wordsize of 32 bits, 64 bits or 128-bits, called PAX-32, PAX-64 or PAX-

128, respectively. Scaling up from 64-bit words (which is the default) to 128-bit words may be 

desired to improve performance, or scaling down from 64-bit to 32-bit words may be preferred to 

limit cost and power.  

Like other processors, multiple instruction issue techniques can be used in an implementation 

of PAX to improve performance. We use the term IPC scaling to refer to architectural methods 

where more than one instruction is issued per cycle. This includes superscalar or VLIW (Very 

Long Instruction Word) architectures. We show a novel alternative to IPC scaling in the wordsize 

scaling feature of PAX, which provides much better performance at a lower cost. Because 
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wordsize scaling and IPC scaling are orthogonal dimensions in the processor design space, it is 

possible to use both methods simultaneously for even higher performance.  
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Figure 1: Single-issue PAX-64 processor 

The PAX instruction set is shown in Table 1. The section labeled Base ISA includes the 

arithmetic, logical, shift, load, store, and branch instructions that are typical of a basic RISC 

instruction set. The section labeled PAX Extensions includes the PAX-specific PTLU, binary 

field multiply, and permutation instructions. Each of these novel instructions will be fully 

described in a subsequent section. We select a representative suite of cryptography algorithms 

and analyze their workload characteristics to identify performance-critical operations which then 

guide us in the design of PAX instructions for very fast software cryptographic processing.  

III. WORKLOAD CHARACTERIZATION OF  SYMMETRIC-KEY CIPHERS 

Table 2 shows the symmetric-key ciphers we selected for this study. For each cipher, we show 

the block size, typical key size, and the number of rounds. Block size is the amount of data that 

the cipher can encrypt at a time, and key size relates to the strength of the cipher against 

cryptanalytic attacks [2],[3]. A round is a sequence of operations on the plaintext block that is 

repeated to compute the ciphertext. The input of a round consists of the output of the previous 

round and one or more subkeys, which are derived from the secret key. Common operations used 

in the rounds are table lookups, addition and subtraction, logical operations, shifts and rotates, 
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multiplication, and permutations [2][10]. 

Table 1: PAX instruction set  

 
Instructio

n Class 
Mnemonic Operation Explanation 

     

B
as

e 
IS

A
 

ALU 

add Rd  Rs1 + Rs2 Add 
These instructions support both 

signed and unsigned operands. 

 

addi Rd Rs + imm Add 16-bit immediate 

sub Rd  Rs1 – Rs2 Subtract 

subi Rd  Rs – imm Subtract 16-bit immediate 

and Rd  Rs1 & Rs2 Bitwise AND 

andi Rd  Rs & imm Bitwise AND with 16-bit immediate 

or Rd  Rs1 | Rs2 Bitwise OR 

ori Rd  Rs | imm Bitwise OR with 16-bit immediate 

xor Rd Rs1 ^ Rs2 Bitwise XOR 

xori Rd  Rs ^ imm Bitwise XOR with 16-bit immediate 

not Rd  !Rs 1‟s complement 

loadi.z.sel Rd  imm 
Load 16-bit immediate to an aligned 16-bit field of Rd, selected via the 3-bit 

sub-op sel, while clearing all remaining bits of Rd to zero. 

loadi.k.sel Rd  imm 
Load 16-bit immediate to an aligned 16-bit field of Rd, selected via the 3-bit 

sub-op sel, while keeping all remaining bits of Rd unchanged. 

Shift 

sra Rd  Rs1 >> Rs2 Shift right arithmetic by rightmost log2(w) bits of Rs2 

srai Rd  Rs1 >> imm Shift right arithmetic immediate; imm is log2(w) bits 

srl Rd  Rs1 >> Rs2 Shift right logical by rightmost log2(w) bits of Rs2 

srli Rd  Rs1 >> imm Shift right logical immediate; imm is log2(w) bits  

sll Rd  Rs1 << Rs2 Shift left logical by rightmost l log2(w) bits of Rs2 

slli Rd  Rs1 << imm Shift left logical immediate; imm is log2(w) bits  

shrp Rd  (Rs1 || Rs2) >> imm 
Concatenate Rs1 and Rs2, and shift right logical by imm bits. Rd receives the 

right word of the shifted result; imm is log2(w) bits  

Memory 
load.sel Rd  MEM[Rs + imm] Load (store) an aligned word from (to) memory using  

base+displacement addressing. The sel field selects data size,  

which can be 4, 8, 16 bytes (but at most equal to w). store.sel Rs  MEM[Rs + imm] 

Branch 

beq PC  PC + imm if Rs1 = Rs2 Branch to PC+displacement if Rs1 is equal to Rs2 

bne PC  PC + imm if Rs1 ≠ Rs2 Branch to PC+displacement if Rs1 is not equal to Rs2 

bg PC  PC + imm if Rs1 > Rs2 Branch to PC+displacement if Rs1 is greater than Rs2 

bge PC  PC + imm if Rs1 ≥ Rs2 Branch to PC+displacement if Rs1 is greater than or equal to Rs2 

call R31  PC + 4, PC  PC + imm 
Call subroutine by saving PC+4 to R31,  

then changing PC to PC+displacement 

return PC  R31 Return from subroutine by changing PC to R31 

trap Halt execution / transfer to operating system 
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PTLU 

ptr.x.n, ptr,s.n  
Read w/8 tables in parallel and combine them according to the subop 

specified (Section 4.1) 

ptrm.x.n, ptrm.s.n 
Read w/8 tables in parallel, mask the results then combine them according to 

the subop specified (Section 4.1) 

ptw.n Write a different 32-bit entry in every 4th table (Section 4.2) 

pti Write a 32-bit entry in all tables (Section 4.2) 

Permute 

byteperm   Permute bytes in Rs1 using indices in Rs2 (Section 4.3) 

rev Reverse the order of bits in Rs1 (Section 6.2) 

shuffle.lo, shuffle.hi Shuffle bits in Rs1 and Rs2 (Section 6.3) 

Binary 

Field 

Multiply 

bfmul.lo Rd  Rs1   Rs2 
Multiply binary polynomials in Rs1 and Rs2, and  

write the left word of the product to Rd (Section 6.1). 

bfmul.hi Rd  Rs1   Rs2 
Multiply binary polynomials in Rs1 and Rs2, and  

write the right word of the product to Rd (Section 6.1). 

w   {32, 64, 128} is the wordsize. Rd is the destination register; Rs1, Rs2 are source registers. Imm is the immediate field supplied in the 

instruction. PC is program counter. MEM is memory. 

 

The ciphers in Table 2 are chosen from widely-used network security protocols. Data Encryption 

Standard (DES) and its variant 3DES [2] were the NIST standards for block encryption from 
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1976 to 2001. They are used, for example, in the IPSec, TLS, and WTLS standards [1][11]. RC4 

is a popular stream cipher developed in 1987 by Rivest [2]. It is used in the IEEE 802.11 wireless 

LAN standard [12]. Blowfish [2] was designed in 1994 by Schneier and is used in numerous 

protocols and commercial applications, for example GPG, SSH, SSLeay, JAVA cryptography 

extensions, and TiVo digital video recorders [13]. Advanced Encryption Standard (AES) [5] is 

the current NIST standard for block encryption. It was selected in 2001 at the end of a three-year 

AES development effort [14]. Key size of AES can be 128, 192, or 256 bits. We denote these 

AES-128, AES-192, and AES-256 respectively. Twofish [15] and MARS [16] are two of the five 

finalist ciphers in the AES effort [14]. Together with AES, these relatively new ciphers can be 

said to represent trends in symmetric-key cipher design. 

TABLE 2: SYMMETRIC-KEY CIPHER SUITE 

Cipher 
Block Size 

(bits) 

Key Size 

(bits) 

Number of 

Rounds 
 
Number of 

Tables 

Table 

Structure 
Number of Lookups 

DES 64 56 16  8 26 × 32 128 

3DES 64 112 48  8 26 × 32 384 

RC4 8 128 1*  1 28 × 8 3 reads, 2 writes 

Blowfish 64 128 16  4 28 × 32 64 

AES-128 128 128 10  4 28 × 32 160 

AES-192 128 192 12  4 28 × 32 192 

AES-256 128 256 14  4 28 × 32 224 

Twofish 128 128 16  4 28 × 32 128 

MARS 128 128 32  2 28 × 32 80 

* RC4 does not have an iterated round structure, hence we show the number of rounds as 1. 

A. AES and DES rounds 

AES-128 is an iteration of 10 rounds after a first XOR operation between the plaintext block 

and the secret key. A round is made of four operations [5]: SubBytes, ShiftRows, MixColumns 

and AddRoundKey, except the last round of the data path which does not include the 

MixColumns transformation. To illustrate how a round operation of AES is typically optimized 

and implemented in software, we show the AES implementation using table lookups [17] in 

Figure 2. The input to the ith round is a 128-bit block composed of four 32-bit words, labeled 

W3
i
-W0

i
. The bytes in these words are indexed b0 to b15. TA-TD represent four 2

8
×32 tables. 
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We use the notation 2
a
×b to denote a table with 2

a
 entries, where each entry is b-bits wide. 

During the round, the rightmost byte of each word is used as index into TA; the next byte is used 

as index into TB; and so on, until all tables are accessed four times. Finally, the four table lookup 

results (for each input word) are rotated and exclusive-or‟ed (XORed) together and also XORed 

with a round subkey. This rotation is seen in Figure 2 as selection from four different columns of 

the table lookup results for the XOR function of each result word. 

For DES (Figure 3), the round input is a 64-bit block, split into its left (WL) and right (WR) 

halves. TA-TH denote eight 2
6
×32 tables. After WR is expanded into eight bytes, the leftmost six 

bits in each byte are used as an index into one of the tables, for a total of eight lookups.  

The other ciphers in Table 2 also use table lookups. Blowfish, MARS, and Twofish are similar 

to AES in using multiple 2
8
×32 tables, whereas RC4 uses a single 2

8
×8 table. The last three 

columns of Table 2 show the number and structure of the lookup tables used by each cipher.  
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B. Execution time analysis 

For baseline performance data, we implement and optimize the ciphers using the Base ISA in 

Table 1, which excludes the PAX-specific instructions. We use the PLX toolset [18][19] to 

simulate and profile each cipher. The simulator is configured to model a 64-bit single-issue 

processor similar to Figure 1 but excluding the binary field multiplier and the PTLU module. We 

assume that all instructions (including loads and stores) execute in a single cycle. Table 3 shows 

the simulation results, which includes: (a) the execution cycles used per block of encryption, (b) 

the round operations in each cipher, and (c) the fraction of the execution time consumed by these. 

Our data presented so far enable us to make the following observations:  

 Table lookups consume the greatest fraction of the execution time for all ciphers, varying 

from 34% for MARS to 72% for AES (Table 3). Tables are few (at most eight) and have 

constant size  (Table 2). Except for RC4, all table accesses are reads. Number of entries 

per table is small (at most 256) and the data read is either 8 or 32 bits (Table 2). 

 The round structures of the ciphers generally permit the table lookups to be parallelized. 

For example, all 16 lookups in an AES round (Figure 2) or all 8 lookups in a DES round 

(Figure 3) can be performed in parallel, constrained only by hardware resources. 

Table 3: Analysis of symmetric-key cipher execution time 

  DES 3DES RC4 Blowfish AES-128 AES-192 AES-256 Twofish MARS 

 Block size (bits) 64 64 8 64 128 128 128 128 128 

 
Cycles per block  

of encryption 
1147 3384 18 408 870 1056 1272 1753 1677 

           

%
 E

x
ec

u
ti

o
n

 C
y

cl
es

 

S
p

en
t 

in
 …

 

Table Lookups 38 44 54 36 72 72 72 43 34 

Arithmetic - - 14 26 - - - 15 10 

Logical 21 24 26 34 24 24 24 32 18 

Multiply - - - - - - - - 19 

Fixed shift/rotate 8 9 - - - - - 4 5 

Variable rotate - - - - - - - - 8 

Bit permutation 26 15 - - - - - - - 

Other 7 8 6 4 4 4 4 6 6 
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IV. PARALLEL TABLE LOOKUP (PTLU) MODULE 

We propose a Parallel Table Look-Up (PTLU) module to accelerate the table lookups 

commonly used in symmetric key ciphers.  The PTLU module consists of w/8 small blocks of 

memory that can be read in parallel, where w is the wordsize of the processor.  A PTLU 

instruction reads two source registers and writes one result register, using the register datapaths 

already present for the other functional units (Figure 1).  Hence, it looks like a functional unit 

rather than a memory module.  

Figure 4 shows the details of the PTLU-64 module in PAX-64. There are eight tables with 256 

entries each, where each entry is at most w bits wide.  For PAX, we implement each entry as 32 

bits, since this is the widest table entry needed in the cipher suite.
1
 During a read, each table is 

accessed by an 8-bit index from the first source register Rs1. The rightmost byte of Rs1 accesses 

T0; the next byte accesses T1; and so on. All eight tables can be read in parallel. 

The eight 32-bit lookup results, one from each table, are then routed through a combinatorial 

tree of XOR-Multiplexers (XMUXs) to produce a single result to be written to the destination 

register Rd.  We describe one definition of this XMUX tree for PAX in Table 4 – many other 

useful definitions are possible.   

For a parallel table read (ptr) instruction, the first two layers of XMUXs, labeled A_XMUX 

and B_XMUX, each allow selection of the Left (L) or Right (R) input, or an XOR of two inputs, 

based on the values of two control bits (C1,C0) as shown in the first two rows of Table 4. In 

addition, the A_XMUXs allow masking with one or two masks, M0 and M1, to be performed 

first on its two inputs, for the parallel table read masked (ptrm) instruction, as shown in the 

third row of Table 4.  The final XMUX, labeled XMUX_64 is only a 2:1 MUX, enabling either 
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an XOR of its two inputs or their concatenation, as shown in the last row of Table 4. 

Although parallel table lookup requires only one operand to supply indices into the 8 parallel 

tables, the datapath of most processors allow two source register operands (Figure 1).  We use 

this second source register, Rs2, as an extra input to be combined with the other table results in 

the XMUX tree (shown as the final XOR in Figure 4), or as an extra input to supply mask bits for 

the table lookup results, before they are combined in the XMUX tree.  This allows only part of a 

table entry to be selected, and combined with parts of other table entries. 

B7 B6 B5 B4 B3 B2 B1 B0

Rs1

A_XMUX3 A_XMUX2 A_XMUX1 A_XMUX0

B_XMUX1 B_XMUX0

XOR

64
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Figure 4: Reading the PTLU-64 module 

TABLE 4: OPERATION PERFORMED BY THE XMUXS 

 (C0, C1) Value 

 (0, 0) (0, 1) (1,0) (1, 1) 

     B_XMUX             ptr L L XOR R 0 R 

A_XMUX 
ptr L L XOR R 0 R 

ptrm L & M1 (L & M1) XOR (R & M0) 0 R&M1 

XMUX_64 L || R  L || R  0 || L XOR R 0 || L XOR R 

                                                                                                                                                                                           
1 In co-designed embedded systems, the number and/or the width of the tables can be scaled down to limit cost and power. 

Similarly, wider tables may be implemented for higher performance. 
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By using this XMUX tree, it is possible to realize many common operations that the 

symmetric-key ciphers perform on table data. For example, any one of the eight lookup results 

can be selected and written to Rd after being optionally XORed with another value supplied via 

Rs2. Another possibility is to XOR all eight lookup results. This is very useful for ciphers that 

XOR the results of multiple table lookups, such as AES (Figure 2) and DES (Figure 3).By 

allowing concatenation of two 32-bit values (at XMUX_64), we can also achieve two 2
8
×32 

table lookups in parallel. Below, we present instructions that we defined for PTLU; however the 

flexibility of the XMUX tree control allows for a larger set of instructions. 

A. Instructions for reading the PTLU module  

We define two ptr (parallel table read) instructions to read the PTLU module: 

ptr.x.n   Rd, Rs1, Rs2 

ptr.s.n   Rd, Rs1, Rs2 

In each case, Rd is the destination register; Rs1 is the first source register, which supplies the 

byte-sized table indices; and Rs2 is the second source register, which is fed to the XOR gate 

which terminates the XOR tree (Figure 4).  This last XOR operation with Rs2 can be easily 

discarded, by setting Rs2 to R0 (hardwired to zero). 

In the first ptr.x.n instruction, the „x‟ is a subop signifying „XOR‟ -- this instruction is used 

to XOR multiple table lookup results. The „n‟ in the mnemonic signifies the number of 

consecutive table look-up outputs which are XORed together; n can take three different values: 4, 

8 and 16. For PAX-32, there are at most 4 parallel tables, so the only allowed value of n is 4.  For 

PAX-64, there are at most 8 parallel tables, and n can take the values 4 or 8.  For PAX-128, there 

are at most 16 parallel tables, and n can takes the values of 4, 8 or 16.  

In the second ptr.s.n instruction, the subop „s‟ signifies „select‟ because this instruction 
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can select and write one of the table lookup results to Rd, after optionally XORing it with Rs2. 

The sub-opcode „n‟ specifies the table result to be written to register Rd.  

In this paper, we also define for the first time, two novel ptrm (parallel table read masked) 

instructions, which are identical to the above, except that masking of the table lookup results is 

performed in the first stage of the XMUX tree:  

ptrm.x.n   Rd, Rs1, Rs2 

ptrm.s.n   Rd, Rs1, Rs2 

Two masks, M0 and M1, are generated from Rs2, where each bit of Rs2 is expanded into 8 

bits to mask a byte of table result.  Note that PTLU-w will have at most w/8 tables with 4-byte 

entries, hence a mask is (w/8)*4 = w/2 bits long.  Since Rs2 is w bits, it can supply two masks, 

M0 and M1, which are used by the A_XMUXs in the ptrm instructions. 

These masked versions are useful in many ciphers where some rounds differ from others. For 

example, in AES, the last round does not implement the MixColumns operation. This results in 

selecting a byte (instead of all four bytes) in each look-up table output.   The masking we have 

defined is general-purpose and is also useful in other applications, not just for AES. 

Concurrent processing of different algorithms which use the parallel lookup tables, without the 

need for re-loading tables, can be facilitated by using multiple sets of tables [20]. This is 

accomplished via an additional sub-opcode that specifies which set of tables the ptr instructions 

address.  The tradeoff for this performance is the extra area required for each extra set of tables. 

B. Instructions for writing the PTLU module 

To write the tables in the PTLU module, we define the ptw (parallel table write) instruction:  

ptw.n   Rs1, Rs2 

The current implementation of PAX considers tables with 32-bit entries, thus a 64-bit register 
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can bring two table entries. Figure 5 depicts how the ptw instruction works in PAX-64. The 2-

bit sub-op field, n, specifies which PTLU tables are written. If n=i, the two tables identified by i 

and i+4 are written, for i=0, 1, 2 or 3, using the index given by the rightmost byte of Rs1.  

Hence, T0 and T4 are written together, T1 and T5 are written together, and so forth.  Rs2 

supplies the value to be written to the selected entry of the two tables.  

The time taken to write the tables does not degrade cipher performance since writing tables is 

not needed during encryption or decryption (except for RC4 which uses a single table). However, 

fast parallel writes may be desired for rapid initialization of tables at setup time. For this, a 

parallel table initializes instruction, pti, can read an entire cache line from memory and write it 

to a common row of all eight PTLU tables in parallel. All entries of the PTLU module can be 

written using 256 such pti instructions. 

 

Figure 5: the ptw instruction 

C. Instructions for rearranging index bytes 

In the ptr instruction, the position of the index byte in Rs1 selects the table that is read. For 

example, the rightmost byte of Rs1 reads an entry from T0, the next byte reads an entry from T1, 

and so on. While this reduces the number of bits required to encode the instruction, it also 

restricts the types of table lookups that can be performed. For example, ptr cannot be used if the 

bytes in Rs1 need to access T0-T7 in a different order. To overcome this, we enable ptr to 
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perform a much wider variety of table lookups by also defining a byte permutation instruction 

that can perform any permutation of the bytes in a source register:  

byteperm   Rd, Rs, Rc 

Here, Rs supplies the eight bytes to be permuted and Rc contains the bits that specify the 

permutation. Figure 6(a) shows an example. The bytes in Rs are indexed from 0 to 7, the 

rightmost being byte 0. The 32 right-aligned bits in Rc specify the order in which the source 

bytes are written to Rd; the rightmost nibble in Rc selects the source byte to be written to the 

rightmost byte of Rd, and so on.  The leftmost 32 bits of Rc are unused. (Since there are only 8 

bytes in Rs, the most significant bit of each 4-bit nibble is always “0” for PAX-64.) This is 

similar to the permute instruction in MAX-2 [21] and the pperm instruction in [22].   

        

        

 72443251 

7 6 5 4 3 2 1 0 

Rc: 

Rs: 

Rd: 

7 2 4 4 3 2 5 1 

(a) byteperm Rd, Rs, Rc 

Source byte 

indices 

32 bits 

 23 bits 

Rs1 Rs2 

 41 bits 

 Rd: 

(b) shrp Rd, Rs1, Rs2, 23 

 

Figure 6: Examples of byteperm and shrp  

To permute bytes in more than one register, byteperm can be used together with the shift 

right pair (shrp) instruction, which is shown in Figure 6(b). For example, any arbitrary 

permutation of sixteen bytes packed in two 64-bit registers can be performed using at most four 

byteperm and two shrp instructions. An example of this is given in the next section.  

Byteperm can be implemented in hardware using eight 8-to-1 multiplexers (each 8-bit-wide). 

In PAX, we implement byteperm in a modified shifter. 

D. Optimized AES 

Using PTLU-128, an AES-128 block encryption can be done in just 22 cycles in software.  
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Figure 7(a) shows that a round, for the first 9 rounds, takes just 2 instructions each, using 

byteperm followed by ptr.  The last round takes 3 instructions: byteperm, ptrm and XOR. 

Using PTLU-64, each round takes 10 cycles as shown in Figure 7(b) and illustrated in Figure 8.  

The 128-bit AES state is supplied in two 64-bit registers (R16, R17). The first six instructions 

permute (R16, R17) such that R21 and R22 each contain eight indices into tables whose results 

can be directly XOR‟ed together. The load.8 instruction loads the first half of the round subkey 

into R15. The following ptr.x.4 instruction performs eight lookups using the bytes in R21. 

These results are XORed in pairs by A_XMUXs and B_XMUXs. XMUX_64 concatenates the 

outputs of B_XMUX0 and B_XMUX1, and XORs the result with the round subkey contained in 

R20. The destination register R16 then contains (W1
i+1

,W0
i+1

). Similarly, the next ptr.x.4 

instruction computes (W3
i+1

,W2
i+1

).  

The last AES round is 12 instructions: the ptr.x.4 instructions are replaced by ptrm.x.4 

instructions, followed by two XORs with the round sub-key. Hence, the total for AES using 

PTLU-64 is 2+90+12= 104 instructions. 

V. WORKLOAD CHARACTERIZATION OF PUBLIC-KEY CRYPTOGRAPHY 

Public-key ciphers derive their cryptographic strength from hard mathematical problems such as the 

discrete logarithm problem (DLP), the factoring problem (FP), and the elliptic-curve discrete logarithm 

problem (ECDLP) [2][3][23][24]. Diffie-Hellman (DH) and the Digital Signature Algorithm (DSA) are 

DLP-based ciphers, while RSA is a FP-based cipher [2][3][6].  The Elliptic Curve Discrete Logarithm 

Problem, proposed for cryptographic use by Koblitz [23] and Miller [24] independently in 1985, is 

significantly harder than the discrete logarithm and factoring problems. Hence, ECDLP-based ciphers 

can use shorter keys while providing the same security as DLP or FP-based ciphers. The ciphers based on 

ECDLP are collectively called Elliptic Curve Cryptography (ECC). 
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 ; --------------- AES round operation using PTLU-128 --------------------- 

 ; round input 1 word is stored in r17 

  

 ; convert state bytes from:  r17 = b15 b14  b13  b12  | b11  b10  b9  b8   | b7 b6    b5    b4 | b3    b2   b1  b0  

 ; to the new order of:        r17 = b15 b10  b5   b0   | b11  b6  b1  b12 | b7 b2   b13  b8 | b3   b14  b9  b4 

 

   byteperm   r17, r17, r6  ; permute bytes in r17 with the ordering of indices specified in r6 

 

   ptr.x.4       r17, r17, r2x  ; lookup 16 tables, XOR the results with round subkey (key for round x stored in register r2x); 

          ; store the round output W0 into r17  

                                              

 ; round output 1 word is stored in r17, new AES state       

(a) 

 

 ; --------------- AES round operation  using PTLU-64  ---------------------- 

 ; round input 2 words are stored in r17, r16 

     ; ordering of indices for byte permutation stored in  r5 and  r6 

  

 ; convert state bytes from:  r17 = b15 b14  b13  b12  | b11  b10  b9  b8   |  

 ;                                          r16 = b7  b6    b5    b4    | b3    b2   b1   b0   |  

 ; to the new order of:        r22 = b15 b10  b5   b0   | b11  b6  b1  b12 |  

 ;         r21 = b7  b2   b13  b8  | b3   b14  b9   b4   | 

 

   byteperm r23, r16, r5  ; r23 = b6   b5   b1   b0   b7   b4   b3   b2  - group bytes for shrp 

   byteperm r24, r17, r5  ; r24 = b14  b13  b9   b8   b15  b12  b11  b10 - group bytes for shrp 

   shrp r21, r23, r24, #32  ; r21 = b7   b4   b3   b2   b14  b13  b9   b8  - collect bytes in one reg. 

   shrp r22, r24, r23, #32  ; r22 = b15  b12  b11  b10  b6   b5   b1   b0  - collect bytes in one reg. 

   byteperm r21, r21, r6  ; r21 = b7   b2  b13  b8   b3   b14  b9   b4  -  permute bytes in one reg. 

   byteperm r22, r22, r6  ; r22 = b15  b10  b5   b0   b11  b6   b1   b12 - permute bytes in one reg. 

 

 ; parallel table lookup to generate round output for each word 

   load r20, r15, #2    ; load W0 of round subkey from memory - not  enough registers to keep subkeys between rounds 

   ptr.x.4 r16, r21, r20   ; lookup 8 tables, XOR the results with round subkey; 

          ; store the round output W0 into r16  

       

   load r20, r15, #3    ; load W1 of round subkey from memory    

   ptr.x.4 r17, r22, r20   ; lookup 8 tables, XOR the results with round subkey; 

          ; store the round output W1 into r17  

                                        

 ; round output 2 words are stored in r17, r16, new AES state                                 

(b) 

Figure 7: Optimized AES round with ptr.x.4  using (a) PAX-128,  (b) PAX-64 
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Figure 8: Illustrating the data flow in an AES round (first 8 lookups) using PTLU-64 

Table 5 shows that ECC with 160-bit keys offers security equivalent to 1024-bit RSA or DSA [26], 

which is a 6.4× reduction in key size. This differential continues to widen in favor of ECC as the key size 

increases.  The smaller parameters in ECC translate into savings in computation time, processing power, 

storage space, bandwidth, and power consumption [27][28]. This makes ECC particularly suitable for 

resource-constrained mobile devices. ECC has been adopted by major security standards such as ANSI 

X9.62 [29], FIPS 186-2 [6], IEEE P1363 [30], and ISO 14888-3 [31]. 

TABLE 5: EQUIVALENT CIPHER STRENGTHS 

DLP or FP-based 

Public-Key Cipher (e.g. 

DSA, RSA) 

ECDLP-based Public-Key 

Cipher (ECC)  

(e.g. eDSA) 

Reduction in Key 

Size with ECC 

1024 160 6.4 

2048 224 9.1 

3072 256 12.0 

7680 384 20.0 

15360 512 30.0 

 

Since PAX is targeted for mobile devices, we optimize it for ciphers most likely to be used in 

constrained environments, such as ECC. Our cipher suite therefore consists of three representative ECC 

algorithms: Elliptic Curve Diffie-Hellman (eDH), Elliptic Curve ElGamal (eElGamal), and Elliptic Curve 
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Digital Signature Algorithm (eDSA). These are used in mamy security protocols and standards such as 

SSL/TLS, WTLS, SSH, and DSS [1][6][11]  

A. ECC operations 

ECC uses an operation called point multiplication, where a point P = (x0, y0) on an elliptic curve is 

multiplied by a scalar k [27]. The result of this operation is Q, which is another point on the elliptic curve: 

k × P = Q = (x1, y1). Due to the ECDLP, it is computationally infeasible to compute k given only P and Q 

[23][24]. This one-way property provides the security of ECC.  

On word-oriented programmable processors, ECC can be most efficiently implemented using binary 

finite fields, denoted GF(2
m
) [28][32]. The elements of GF(2

m
) can be represented as binary polynomials 

of degree at most m-1 and with coefficients from {0, 1}. For example 163-bit ECC can be defined over 

GF(2
163

) [6], where the coordinates of the curve points will be binary polynomials of the form: 

a(x) = a162x
162

 + … + a2x
2
 + a1x + a0,   where ai   {0, 1} for i = 0, 1, …, 162. 

The point multiplication operation is then realized by multiple arithmetic operations on these 

polynomials [33]. This includes polynomial addition, multiplication, reduction, squaring, and inversion. 

Since the operations on polynomial coefficients are performed modulo 2, polynomial addition can be 

simply performed by XORing the operands. For the remaining polynomial operations, there is a wide 

variety of optimized algorithms that can be used; Hankerson et al. [32] give a comprehensive survey. In 

our simulations, we use the fastest methods from this study. These are: comb method for polynomial 

multiplication, table-lookup method for polynomial squaring, word-based method for polynomial 

reduction, and the modified almost inverse algorithm for polynomial inversion [34]. 

B. Execution Time Analysis 

We implement ECC ciphers with 163-bit, 233-bit, and 283-bit keys specified in FIPS 186-2 [6]. This 

provides security comparable to DLP-based ciphers with 1024-bit to 3072-bit keys (Table 5), considered 

by NIST to be adequate until at least the year 2016 [26]. The ciphers are implemented in C and simulated 

with the Simplescalar toolset configured for the PISA instruction set [35]. The architectural parameters 

of the baseline processor are given in Table 6. 
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TABLE 6: BASELINE PROCESSOR 

Architectural Parameter Value 

Issue-width In-order single-issue 

Number of load/store pipes 1 

L1 I-Cache 64 kB, 2-way, 32 B lines 

L1 D-Cache 64 kB, 2-way, 32 B lines 

L2 Cache (unified) 1 MB, 4-way, 64 B lines 

L1 latency 1 cycles 

L2 latency 10 cycle 

Memory latency 100 cycle 

 

Table 7 indicates that point multiplication is the dominant operation in ECC. Its fraction of the 

execution time for 163-bit ECC ranges from 94.1% for eDSA to 99.1% for eDH. Because point 

multiplication constitutes the bulk of the execution cycles for all ciphers, it is generally used as a proxy 

to measure overall ECC performance [32][33].  

TABLE 7: EXECUTION CYCLES FOR ECC CIPHERS 

Key Size 

(bits) 
Cipher Cycles (×106) 

% Cycles Consumed by Point 

Multiplication 

163 

eDH 20.342 99.1 

eElGamal encrypt 30.629 98.0 

eElGamal decrypt 20.277 97.4 

eDSA sign 10.813 94.1 

eDSA verify 21.590 97.2 

233 

eDH 43.125 99.2 

eElGamal encrypt 65.427 98.1 

eElGamal decrypt 44.197 97.6 

eDSA sign 23.583 94.5 

eDSA verify 46.314 97.6 

283 

eDH 65.867 99.4 

eElGamal encrypt 98.457 98.2 

eElGamal decrypt 65.332 97.7 

eDSA sign 34.839 95.0 

eDSA verify 71.063 98.1 

 

TABLE 8: POLYNOMIAL OPERATIONS IN POINT MULTIPLICATION 

  Per Point Multiplication  

Key Size 

(bits) 
Polynomial Operation Number of Calls Cycles (×106) 

% of Total 

Cycles 

163 

Multiplication  975.95 9.064 87.25 

Squaring 807.96 0.657 6.33 

Inversion 1.00 0.157 1.51 

Other N/A 0.511 4.91 

233 

Multiplication 1408.35 18.999 88.62 

Squaring 1172.48 1.296 6.05 

Inversion 1.00 0.281 1.31 

Other N/A 0.864 4.02 

283 

Multiplication 1703.38 29.896 90.22 

Squaring 1424.65 1.754 5.29 

Inversion 1.00 0.362 1.09 

Other N/A 1.124 3.39 

 

Table 8 shows that point multiplication consists of three major polynomial operations: multiplication, 
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squaring, and inversion. Polynomial multiplication is the dominant operation, which consumes 87.25% of 

the point multiplication time for 163-bit ECC. This is followed by polynomial squaring (6.33%) and 

polynomial inversion (1.51%).  

For the polynomial operations, addition is the simplest, followed by squaring, multiplication, and 

inversion (Table 9). Inversion is the most costly, with a complexity of 15 to 20 times multiplication.  

Hence, ECC execution time is dominated by polynomial arithmetic. Table 7 and Table 8 show that 

more than 90% of the execution time of 163-bit ECC is consumed by two polynomial operations: 

multiplication and squaring.  

TABLE 9: EXECUTION CYCLES FOR POLYNOMIAL OPERATIONS 

 Polynomial Size ( = ECC key size, bits) 

Operation 163 233 283 

Addition 7 9 11 

Reduction 476 644 707 

Squaring excl. reduction 287 426 527 

Squaring incl. reduction 791 1098 1228 

Multiplication excl. reduction 8667 12971 16932 

Multiplication incl. reduction 9199 13498 17512 

Inversion 149836 270477 359102 

VI. PAX FEATURES FOR FAST ARITHMETIC ON GF(2
M
) 

A. Polynomial multiplication 

Polynomial multiplication in ECC constitutes up to 90% of the execution cycles (Table 8). This is 

primarily because a standard integer multiplier cannot be used to multiply two binary polynomials. 

Instead, ALU and shift instructions are used, which require thousands of execution cycles to compute the 

product. 

With minor changes, a standard integer multiplier can be converted into a dual-field multiplier to also 

multiply binary polynomials [36][37]. However, this is a large, multi-cycle functional unit. A binary-field 

multiplier is much smaller and faster than a dual-field multiplier. Omitting the integer multiplier is not 

likely to hurt cryptographic performance since neither symmetric-key ciphers (Section III) nor ECC 

requires integer multiplication.  

A binary-field multiplier can be implemented as an array of AND gates followed by an XOR-tree 
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(Figure 9). Unlike an integer multiplier, the partial products are exclusive-or‟ed (XORed) instead of added. 

Because XOR is much faster than integer addition, binary field multiplication can be completed in a 

single cycle. PAX includes two instructions to use the binary field multiplier: bfmul.lo and 

bfmul.hi, which are shown in Figure 10. In bfmul.hi, the binary polynomials supplied in two 

source registers are multiplied and the left word of the product is written to Rd. In bfmul.lo, the right 

word of the product is written to Rd. 

 

Rs1: 

Rs2: 

XOR tree 

Product: 

AND 

 
Figure 9: Binary field multiplier 

 

Rs1: 

Rs2: 

Rd: 

bfmul.hi   Rd, Rs1, Rs2 

Rs1: 

Rs2: 

Rd: 

bfmul.lo   Rd, Rs1, Rs2 
 

Figure 10: Binary field multiply instructions 

A polynomial multiplication for ECC on PAX-128 requires multiple instructions to complete.  The 

software splits each 163-bit operand into two 128-bit words, with zero extension to the higher unused bits.  

It performs 4 bfmul.lo, 4 bfmul.hi and 4 xor instructions, for a total of 12 instructions, to 

complete the multiplication of two 163-bit operands. The same 163-bit multiplication takes 22 

instructions on PAX-64 and 97 instructions on PAX-32. 

B. Area saving for polynomial multiplication 

The left and right halves of a binary-field multiplier are nearly symmetric (Figure 9). In  [38], we have 

shown that it is possible to compute the left word of the product by using only the right half of the 

multiplier, thereby allowing the circuit size to be reduced by about half. A bfmul.hi instruction can be 

realized by: (1) reversing the order of bits in the operands, (2) multiplying the reversed operands using 

bfmul.lo, (3) shifting the product left by one bit, and (4) reversing the order of bits of the result. 

C. Shuffle instructions for polynomial squaring 

Polynomial squaring involves multiplying a binary polynomial with itself. This can be implemented 

using a multiplication algorithm, such as the comb method in [32], or it could be optimized by exploiting 
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the linearity of the squaring operation on binary fields. For example, let a(x) be a binary polynomial used 

with 163-bit ECC [6]. If we represent a(x) as  

162

0i

i
i xa

, where ai  {0, 1}, then the square of a(x) is 

 


162

0

22 )(
i

i
i xaxa

. The result contains no cross product terms since these appear in pairs and vanish 

when the coefficients are added modulo 2. Hence, the square of a binary polynomial contains the same 

coefficients as the input, but these appear in front of x terms with twice the original degrees. This 

corresponds to interleaving the bits of the input polynomial with zeros. For example, if a(x) = x
3
 + x + 1, 

then a
2
(x) = x

6
 + x

2
 + 1. In vector representation: a = (1011) and a

2
 = (1000101). 

PAX includes bit shuffle instructions to accelerate this computation. As shown in Figure 11, a shuffle 

instruction reads bits alternating between two source registers, and writes these to a destination register. 

Because Rd can accommodate only half of the bits in Rs1 and Rs2, two versions of the instruction are 

defined to shuffle either the left or the right halves of the source registers, called shuffle.hi and 

shuffle.lo respectively. The implementation cost is low, involving only routing of the source bits.  
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Figure 11: 64-bit shuffle instruction 

VII. PAX IMPLEMENTATION: AREA, LATENCY AND CYCLE TIME ANALYSIS 

A. PAX hardware implementation 

We implemented PAX in VHDL with a classic 5-stage pipeline: Instruction Fetch (IF), Decode (D), 

EXecute (EX), Memory (M) and Write Back (WB), with hazard detection and forwarding. Table 10 

shows how the basic PAX instructions are implemented in the pipeline.  The implementation is wordsize-

scalable. The wordsize (ws) indicates register size and data-path width and can be 32, 64 or 128 bits. The 
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choice of ws is made by the designer before synthesis. RTL simulation of the design using the Mentor 

Graphics Modelsim toolset was done for PAX-32, PAX-64 and PAX-128. Simulation results confirm that 

the 10 rounds of AES-128 can be done in 22, 104 and 248 cycles for PAX-32, PAX-64 and PAX-128 

processors, respectively. 

 TABLE 10: INSTRUCTION EXECUTION IN PAX PIPELINE 

ALU, Shift  IF | D | EX |  -  | WB 

Load IF | D | EX | M | WB  

Store IF | D | EX | M |   -    

Branch IF | D | EX |  -  |    -    

PTLU  (ptr, ptrm, ptw) IF | D | EX |  -  | WB  

Byte-perm IF | D | EX |  -  | WB  

B. Wordsize scaling and subword-parallelism 

Some PAX instructions (Table 1) are independent of wordsize.  These include logical instructions 

(AND, OR, XOR, etc.) which operate on pairs of bits, regardless of the word size, and control flow 

instructions.  

Shift, multiply, and permute instructions operate on full words, hence their operand size changes with 

the wordsize. The binary-field multiplier multiplies two wordsize operands. Byteperm is slightly 

different since it always permutes byte-sized data, but the number of source bytes changes with wordsize, 

from 4 in PAX-32 to 16 in PAX-128.  

For the PTLU module, the number of tables is limited by the number of bytes in a word used to index 

different tables. Hence, we implement 4 tables in PAX-32, 8 tables in PAX-64, and 16 tables in PAX-128 

(although fewer tables can be implemented to limit cost and power). We keep the width of the tables at 

32 bits regardless of wordsize. While the architecture permits implementing wider tables, this is not 

generally needed for the block ciphers.  

For add and subtract instructions, it is sufficient to support only 32-bit operations for crypto-

processing. PAX-64 can perform two parallel 32-bit adds in a cycle and PAX-128 can perform four 

parallel 32-bit adds in PAX-128. This is called subword parallelism and was introduced by Lee [40] for 

multimedia acceleration. Since the carry-lookahead logic is the critical path in an ALU, using smaller 

adders reduces latency. Subword parallelism for other instructions is not needed since this provides no 
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performance benefits for crypto-processing [41]. 

C. Area, Delay and Cycle Time 

For area and delay estimates, we performed gate-level synthesis of the functional units using Synopsys 

tools with a TSMC 90nm technology library. For the PTLU module, we used CACTI 5.0, a tool for 

estimating the access time, area, and aspect ratio of memory components [39]. Table 11 summarizes our 

results. For each functional unit, we report absolute area in square-microns and relative area normalized 

to the ALU (shown in parenthesis). Delay is given as absolute delay in nanoseconds and relative delay 

normalized to the ALU (shown in parenthesis). Separate functional unit information is given for 32-bit, 

64-bit, and 128-bit processors.  

Table 11 shows that implementing byte_perm and shuffle instructions in the modified PAX 

shifter (the shift-permute unit, SPU) does not increase the shifter latency.  

The access time of the PTLU tables is greater than the ALU delay. However, the XMUX tree can 

always be synthesized so that the total delay through the PTLU module is no longer than twice the ALU 

latency. If the cycle time is equal to the ALU delay, the ptr instructions would have 2-cycle latency. 

However, the cycle time is more often equal to twice the ALU latency, due to other critical paths in the 

processor-cache subsystem, including bringing the cache access time down to 1 or 2 cycles (rather than 

3-4 cycles from the numbers in Table 11).  Hence, a PAX processor that includes a PTLU module would 

typically set the cycle time to that of the ptr instructions, so that all instructions are single-cycle 

instructions. 

The PTLU tables comprise most of area (96-98%) of the PTLU module.  While the PTLU module is 

large relative to the other functional units, it is small compared to the 32 kB to 256 kB caches typical in 

today‟s high-end embedded processors, e.g., Marvell PXA320 [42]. Compared to these, the size of the 

PTLU module is small; about 45% of the 32 kB cache and 5% of the 256 kB cache (PAX-64).  Since the 

PTLU tables at most 8 KB with 8 parallel reads for PAX-64,  we may also want to compare this to an 8 

kB cache with eight read ports. PTLU has only 8% of the area of such a cache, and is much faster. Hence, 
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the PTLU module provides much greater performance than these caches, and also saves significant area 

since a PAX processor may not need to implement data caches, or only much smaller ones. 

TABLE 11: AREA AND DELAY OF BASELINE AND PAX FUNCTIONAL UNITS 

 

 
PAX-32 PAX-64 PAX-128 

Functional Unit / Component Area (µ2) Delay (ns) Area (µ2) Delay (ns) Area (µ2) Delay (ns) 

       

ALU 4629 (1) 0.5 (1) 9635 (1) 0.55 (1) 20520 (1) 0.6 (1) 

       

Standard barrel shifter 4850 (1.0) 0.5 (1) 12754 (1.3) 0.55 (1) 30603 (1.5) 0.6 (1) 

PAX shifter (SPU) 6432 (1.4) 0.5 (1) 19130 (2.0) 0.55 (1) 49827 (2.4) 0.6 (1) 

       

PAX binary field multiplier 10041 (2.2) 0.5 (1) 40020 (4.2) 0.55 (1) 163642 (8.0) 0.6 (1) 

       

PTLU: Tables only 130814 (28.3) 0.66 261627 (27.2) 0.66 523254 (25.5) 0.66 

PTLU total 134661 (29.1) 0.98 (1.96) 270641 (28.1) 1.05 (1.91) 542271 (26.4) 1.18 (1.97) 

       

32 kB 2-way cache  

w/ 64-byte blocks 

Same  

599104 (62.2) 1.20 (2.18) 

 Same 
256 kB 2-way cache  

w/ 64-byte blocks 
5224494 (542.2) 1.82 (3.31) 

8 kB direct-mapped cache w/ 64-byte 

blocks and 8 read ports 
3255712 (337.9) 1.62 (2.95) 

 

The PAX multipliers are always single cycle units. This shows the advantage of using just binary-field 

multipliers rather than ones that also do integer multiplication, since the latter typically have at least a 3-

cycle latency.  

VIII. PERFORMANCE 

A. Impact of new instructions 

Table 12 shows the symmetric-key cipher speedups obtained with a PAX-64 processor that has the PTLU 

and byteperm instructions. The speedups are relative to the execution cycles needed per block of 

encryption with a 64-bit baseline processor, i.e., a single-issue processor that implements the Base ISA in 

Table 1. While all ciphers benefit from PTLU and byteperm instructions, some show huge 

performance gains. The average speedup for DES/3DES and AES are 5.4× and 8.1× respectively. The 

other ciphers have speedups varying from 1.2× for MARS to 2.8× for Twofish.  

Table 13 shows the speedups obtained with the bfmul instructions for polynomial multiplication. The 

speedups are relative to multiplication using the comb method, which is identified in [32] as the fastest 

algorithm among the ones surveyed. When a full (word-sized) binary-field multiplier is used, the average 
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speedup obtained for the three ECC key sizes [6] is 25.13×. When a half-sized multiplier is used with 

rev (reverse) instructions, the speedup averages 18.03×.   

Table 12: Symmetric-key cipher speedup with PAX 

Cipher 
Block size  

(bits) 

Execution Cycles with Base 

ISA (64-bit processor) 

Speedup with PAX-64 

(ptr + byte_perm) 

DES 64 1147    5.41 × 

3DES 64 3384 5.32 

RC4 8 18 2.00 

Blowfish 64 408 1.66 

AES-128 128 870 7.84 

AES-192 128 1056 8.06 

AES-256 128 1272 8.42 

Twofish 128 1753 2.81 

MARS 128 1677 1.23 

 

Table 14 shows the speedups obtained with the shuffle instructions in polynomial squaring, which are 

relative to the table lookup method described in [32]. The average speedup is 3.86×. 

TABLE 13: POLYNOMIAL MULTIPLICATION SPEEDUP WITH PAX 

 Cycles Speedup 

Polynomial size  

(=ECC key size) (bits) 
Comb method Comb method 

PAX-32 

bfmul.hi + bfmul.lo 

PAX-32 

bfmul.lo + rev 

163 8667 ×1.00× 24.85× 17.87× 

233 12971 1.00 25.16 18.03 

283 16932 1.00 25.38 18.18 

 

TABLE 14: POLYNOMIAL SQUARING SPEEDUP WITH PAX 

 Cycles Speedup  

Polynomial size  

(=ECC key size) (bits) 
Table lookup method Table lookup method 

PAX-32 

shuffle.lo + shuffle.hi 

163 287 ×1.00× 3.78× 

233 426 1.00 3.86 

283 527 1.00 3.95 

 

TABLE 15: ECC POINT MULTIPLICATION SPEEDUP WITH PAX 

  Speedup 

ECC Key 

Size (bits) 

Baseline 

Execution 

Cycles (×106) 

Baseline 

bfmul.lo 

+ 

bfmul.hi 

bfmul.lo 

+  

rev 

shuffle.lo  

+  

shuffle.hi 

PAX-32 

bfmul.lo + bfmul.hi + 

shuffle.lo + shuffle.hi 

PAX-32 

bfmul.lo + rev + 

shuffle.lo + shuffle.hi 

163 10.389 ×1.00× ×6.06× ×5.59× ×1.05× ×20.25× ×16.01× 

233 21.439 1.00 6.44 5.91 1.05 20.63 16.20 

283 33.137 1.00 7.38 6.68 1.04 21.46 16.66 

Average speedup 1.00 6.63 6.06 1.05 20.78 16.29 

 

Table 15 shows the speedups in ECC point multiplication obtained with various combinations of 

bfmul, shuffle, and rev instructions. A full multiplier that implements both bfmul.lo and 
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bfmul.hi instructions provides the highest speedups, averaging 6.63×. To save area and power, a half 

multiplier can be used that only implements the bfmul.lo instruction. This reduces the average speedup to 

6.06×. We implement the full multiplier in our PAX implementation.  

Using only the shuffle instructions provides insignificant performance improvement (5%) because the 

fraction of ECC execution time consumed by polynomial squaring is only 6%, whereas polynomial 

multiplication consumes up to 90% of the baseline execution cycles (Table 8). However, the usefulness 

of shuffle increases significantly when used together with bfmul. Once polynomial multiplication is 

accelerated by up to 25.38× with a binary field multiplier (Table 13), squaring becomes the new 

dominant operation in ECC. Accelerating squaring at this point using shuffle instructions increases the 

cumulative ECC speedups to an average of 20.78×. 

B. Wordsize scaling versus Superscalar execution 

We now show the performance benefits of the wordsize scalability feature in PAX, and compare this 

to ILP scaling used in superscalar processors. Since the two scaling techniques are orthogonal, they can 

be combined to achieve a specific performance-cost target. 

For 3DES, AES-128, and ECC point multiplication, Table 16 shows the speedups obtained using 

Simplescalar with superscalar execution on processors with issue widths from 1 to 8. Speedups are 

relative to the single-issue 32-bit baseline processor. For DES and ECC, we observe that 2-way and 4-

way superscalar execution with a single memory port provides significant speedups for all ciphers (up to 

2.06×). Further increasing the issue width to 8 provides only minor additional performance (up to 2.18×). 

For AES, on the other hand, 8-way superscalar execution provides significant speedup (up to 4.00×). 

Adding a second memory port increases performance significantly at larger issue widths due to the 

memory-intensive round structures. 

For the same ciphers, Table 17 shows the speedups obtained with the much simpler single-issue 32-bit, 

64-bit, and 128-bit PAX processors. In PAX-32, we obtain speedups of 3.4×, 3.3×, 7.7× for 3DES, AES, 

ECC respectively. This should be compared with the single-issue 1/1 machine.  For 3DES and ECC, they 
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are even higher than the speedups obtained on an 8-way superscalar processor with two memory ports 

(Table 16). 

In PAX-64, the AES speedup increases to 7.8×. This should be compared to the 1.97× speedup of the 

2-way 32-bit processor since both have equivalent degrees of operand parallelism. Similarly, the 34.8× 

speedup of PAX-128 can be compared to the 3.8× speedup of the 4-way 32-bit processor. These results 

clearly indicate that wordsize scaling with PAX is far more effective for improving performance than 

IPC scaling in superscalar processors. Compared to a multi-issue processor, a wider single-issue 

processor saves on register ports, data buses, bypass paths, and instruction dispatch logic [40].  

TABLE 16: BASE ISA PERFORMANCE WITH SUPERSCALAR IMPLEMENTATION  

 
Speedup with Superscalar Implementation 

(# issue width / # memory ports) 

Cipher 1/1 2/1 2/2 4/1 4/2 8/1 8/2 

3DES 1.00× 1.62× 1.85× 1.78× 2.32× 1.88× 2.73× 

AES-128 1.00× 1.97× 1.97× 3.49× 3.80× 4.00× 6.33× 

ECC Point Multiplication 1.00× 1.64× 1.76× 2.06× 2.24× 2.18× 2.59× 

Note: In the notation a/b, a is the issue width and b is the number of memory ports. 

 

TABLE 17: PAX PERFORMANCE WITH WORDSIZE SCALING 

 Single-issue Base ISA 

(32-bit) 

Speedup with Single-issue PAX  

(ptr + byte_perm + bfmu.lo + bfmul.hi + shuffle.lo + shuffle.hi)  

Cipher PAX-32 PAX-64 PAX-128 

3DES 1.00× 3.41× 5.32× 5.32× 

AES-128 1.00× 3.33× 7.84× 34.8× 

ECC Point Multiplication 1.00× 7.68× 16.58  × 24.88 × 

 

C. Mobile wireless devices and servers 

Network security protocols usually initiate a secure session by using public-key ciphers and 

then encrypt any subsequent data using symmetric-key ciphers. For example, the WTLS protocol 

[11] has a handshake phase for authentication (public-key) and a record phase for bulk 

encryption (symmetric-key). PAX improves the performance in both WTLS phases. 

In, Figure 12 we show the processor clock rate required to complete a client-side WTLS 

handshake (which includes a digital signature verification and other public-key operations) 

within a given latency. Assuming a 1 second authentication delay, the target clock rate reduces 
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from 131 MHz for the baseline processor, to 22 MHz for PAX-32. Wordsize scaling to PAX-128 

further decreases this to 4 MHz.  

As 3G wireless multimedia phones and appliances start to proliferate [9], it is interesting to see 

what it takes to do cryptographic processing of bulk data at link speeds. Figure 13 shows the 

clock rates required to achieve a desired AES-128 throughput with different PAX processors. On 

the horizontal axis, we show the data rates of a few important wireless technologies [9]. To 

achieve 3G link speeds (2.4 Mbps), we only need a 5 MHz PAX-32 processor, a 2 MHz PAX-64 

processor, or a .5 MHz PAX-128 processor. A basic RISC processor would need to run at 18 

MHz, consuming much more power. To saturate an IEEE 802.11g connection, which has a 54 

Mbps maximum data rate, the clock rate of the base processor needs to be 385 MHz, while PAX-

32 only needs a 116 MHz clock, and PAX-128 only needs a 11 MHz clock. The clock rate of 

PAX-32 is approximately one seventh of the ~800 MHz rate used in today‟s high-end embedded 

processors [42]. This significantly reduces the energy consumption and area, conserving the 

battery and cost of resource-constrained wireless devices. 
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Figure 13: Required clock rate for given AES-128 throughput 

The PAX-specific instructions, such as ptr, bfmul, and shuffle, can also be added to the 

instruction sets of general-purpose microprocessors to accelerate server-side crypto-processing. 

Table 18 shows how many server-side WTLS handshakes can be performed by a 1 GHz server 

within a given time period, with and without PAX extensions. (We show 1 GHz to allow easier 

extrapolation to other GHz rates.) To obtain these results, we used SimpleScalar to simulate a 32-

bit. 8-way superscalar, out-of-order processor with 256kB/1MB L1/L2 caches. Our results 

indicate that a server can increase its authentication throughput by 3.83× by adding a few low-

cost instructions to its instruction set. 

TABLE 18: SERVER PERFORMANCE WITH PAX EXTENSIONS  
 WTLS handshakes in 1 second Times improvement 

Baseline 173 1.00× 

With PAX extensions 662 3.83× 

IX. PAST WORK 

Architectural enhancements to accelerate table lookups in symmetric-key ciphers have been 

proposed previously, e.g., the sbox instruction in [43] which performs fast lookups of tables in 

main memory by accelerating the effective address computations. The CryptoManiac processor 

[44] uses a similar sbox instruction to quickly access four 1 kB on-chip caches. However, unlike 

our PTLU module, both of these approaches read only a single table with each sbox instruction. 

To read two or more tables simultaneously, multiple-issue techniques are needed, such as the 4-
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way VLIW used in CryptoManiac. In contrast, our PTLU module allows multiple tables to be 

read in parallel on a single-issue PAX processor using a single ptr instruction. 

None of the previous work has proposed an XMUX tree, which is a distinctive feature of our 

PTLU module. This low-cost combinational logic, performing simple operations on the table 

output, is a key contributor to the huge speedups obtained. While the XMUX units we presented 

in this paper XOR‟s or selects table data, they can be adapted for other applications.  

While multimedia instructions in IA-64 [45] and PLX [18][19] include instructions like 

shuffle for byte-sized and larger data, these instructions operate on individual bits in PAX. A 

bit-level shuffle instruction is also used in the TI C64x DSP [46] but this is a 2-cycle instruction 

that can only shuffle two halves of the same 32-bit source register. Our work is also new in its 

application and evaluation of bit-level permutation instructions in public-key cryptography. 

Using modified functional units to support binary field arithmetic was first alluded to by 

Nahum in 1995 [47] but no specifics were given regarding hardware or instruction design. Later, 

binary-field multiplication instructions were added in [36] to a single-issue 16-bit RISC 

processor core. Our work differs from these studies in that: (i) we consider dedicated binary field 

multipliers, which are smaller and faster than dual-field multipliers, (ii) we describe how a half 

multiplier can be used without much performance degradation but significant area savings, (iii) 

we consider the performance of binary-field multipliers in combination with other architectural 

techniques such as IPC scaling and wordsize scaling . 

CryptoManiac [44] and Cryptonite [48] are two crypto-processors similar in design goals to 

PAX, but these have only considered symmetric-key cryptography. [44] was also proposed before 

AES became a NIST standard [5][14]. Because public-key ciphers are an inevitable component 

of secure processing, we designed PAX for high-performance processing of both public-key and 
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symmetric-key ciphers. Also, PAX provides support for Elliptic Curve Cryptography, a relatively 

newer class of public-key ciphers suitable for resource-constrained mobile devices. 

X. CONCLUSIONS 

We presented the architecture and implementation of PAX, a small, scalable processor with 

very fast crypto-processing. The PAX instruction set is derived by extending a minimalist RISC 

instruction set with a few PAX-specific instructions that provide huge speedups for important 

operations in symmetric-key and public-key ciphers. PAX includes a PTLU module for fast 

parallel table lookups in symmetric-key ciphers, and polynomial multiplication, squaring and bit 

permutation instructions for Elliptic-Curve Cryptography on binary fields. These instructions are 

also useful in many other applications that use binary finite fields, such as random number 

generators, combinatorics, and coding theory [49].  

PAX has a concise instruction set, suitable for providing low-cost yet high-performance 

cryptography processing in resource-constrained environments such as mobile wireless devices. 

We showed how PAX-based processors can be used to perform public-key authentication within 

a given latency at a low processor clock rate, hence reducing energy consumption, area, and cost, 

while preserving performance and security. We also showed how PAX processors can be scaled 

to provide encryption throughputs that can saturate the link speeds of existing and emerging 

network technologies such as 3G and 4G wireless at low clock rates.  

A major contribution is the demonstration of a software AES-128 implementation at 22 cycles 

per block encryption using PAX-128.  This is equivalent to a rate of 1.38 cycles/byte, rivaling 

hardware ASIC implementations.  This allows a processor with a very low MHz rate to achieve 

link speed encryption.  Furthermore, the PAX processor can also implement other ciphers, 
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including public-key ciphers, unlike a dedicated AES ASIC chip. 

The security of the implementation of some of these ciphers is improved as well with the 

PTLU module. Cache side-channel timing attacks have recently been shown to be viable against 

cryptographic algorithms like AES [50] that use lookup tables stored in cache. Using the PTLU 

module of PAX to perform the table lookups precludes these timing attacks from taking place, as 

the tables do not reside in cache. Table access time is always a constant for all tables in the PTLU 

module. Consequently, the use of PTLU for AES not only provides tremendous performance 

improvements but also increases the security of the implementation of AES and other ciphers 

that use table lookup. 

Another major contribution of this paper is the demonstration of the effectiveness of wordsize 

scaling as a technique for significantly improving performance for both symmetric-key and 

public-key cryptographic processing. For algorithms like AES and ECC, we showed that the 

speedup obtained with wordsize scaling is higher than increasing the number of instructions 

executed per cycle (IPC scaling) in superscalar or VLIW execution, with lower implementation 

complexity. Furthermore, wordsize scaling can be combined with ISA improvements, IPC 

scaling, and multicore processors for even higher performance. 
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