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Abstract: Dynamic Binary Translators (DBTs) allow programs written for a specific platform to be run on 
other platforms without the need for recompilation. They allow legacy software to be run on newer 
hardware architectures, they can perform dynamic optimization of software, and virtualization.  Other 
benefits include providing enhanced security by dynamically adding checking code around possible 
software security vulnerabilities.  However, before this is even considered, there are two aspects of DBTs 
that must first be addressed.  First, are software protections provided by the application preserved under 
the runtime translation and optimizations done by a DBT?  Will they be optimized out?  We study a range 
of software protection techniques including Stackshield, Propolice and Stackguard, Libsafe, address space 
randomization, checksumming, watermarking, system call sandboxing, authenticated system calls, code 
obsfucation and morphing, anti-debugging, instruction-set randomization, and  proof carrying code.  
Second, how is the DBT itself protected?  How is its code cache protected?  Without adequate protection, a 
DBT can be exploited by an attacker to cause disastrous system consequences.  We propose three solutions.  
One solution adds a small set of hardware features to the microprocessor, as defined by the Secret 
Protection (SP) architecture, to protect the DBT and its code cache. 
 
1. Introduction 
 
Dynamic Binary Translation (DBT) is a software technology that allows programs written for a specific 
platform to be run on other platforms without the need for recompilation. This not only introduces the 
opportunity for legacy software to be run on newer hardware architectures, but also enables dynamic 
optimization of software.  The key capability of DBT is that it can transform and optimize any binary 
before it is executed on the processor, thus enabling many new features on existing binaries, such as 
virtualization [1], redundant execution for reliability [2], information flow tracking for security [3], 
dynamic voltage-frequency scaling for power management [4], etc.  In this paper, we study StarDBT [5], 
an application-level DBT (running in user space), to see whether the translation and optimizations it 
performs affect the security of the original programs or not, and to examine ways of protecting the DBT 
itself. 
 
When security protection is provided by software, and if this code undergoes standard DBT translation and 
optimizations, what happens to the security protections?  Do optimizations done by a DBT preserve the 
security protections provided in the original code?  Will they be optimized out?  We study a range of 
software security protections to check if the translation and optimizations performed by a DBT affect the 
security provided to the original program. 
 
A DBT’s resources can be used to increase system security.  For example, it could add checking code 
around potential software security vulnerabilities, such as locations where buffer overflow attacks might 
occur.  A DBT could also add some randomization techniques (e.g., address or instruction set 
randomization) to thwart attacks.  However, as the DBT is only another layer of software, if the attacker 
knows the existence of the DBT, it would not be difficult to attack the DBT itself and the DBT itself 
becomes a target. 
 
Especially for an application-level DBT which runs in user space, we need to study how the DBT itself can 
be protected. How is its code cache protected?  Without adequate protection, a DBT can be exploited by an 
attacker to cause serious system consequences.  We discuss solutions based on moving the DBT to the 
system level, or alternatively using a small set of hardware features (as in the Secret Protection architecture 
[6,7] to protect the DBT and its code cache. 
 
In section 2, we discuss different types of software security techniques that can be provided to an 
application program.  In section 3, we describe our experimental setup and methodology for testing whether 
the security provided by these software security techniques is preserved under DBT translation and 
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optimizations.  In section 4, we provide the results of our tests and explain why the StarDBT we tested 
preserved the security properties provided, or not.  We also suggest why other types of DBT might fail to 
preserve security properties, and also how to improve the DBT to not perturb security properties provided 
by application or system software. In section 5, we propose solutions for protecting the DBT, including a 
hardware technique that can protect the DBT itself, while leaving it in application space.  In section 6, we 
present our conclusions and suggestions for future work. 
 
 
2. Software Security Techniques 
 
In order to see if a Dynamic Binary Translator will affect the security protection provided by different 
software products and techniques, we need to first understand what types of protection are provided and 
how they are provided.  Hence, we illustrate the variety of software techniques that may be used to enhance 
security by preventing software attacks.  These include preventing buffer overflow attacks, detecting hostile 
code modification attacks, checking system calls, mitigating reverse engineering, and checking security 
assertions.  We describe a dozen different software techniques under these five types of protection. (Note 
that some of these techniques could be classified under more than one of these five categories.) 

 
2.1. Preventing Buffer Overflow attacks 
 
Perhaps the most common attack is the buffer overflow attack.  There are many different software solutions 
for this, but it still remains one of the most prevalent software vulnerabilities in both legacy and new code.  
Buffer overflow attacks can cause return address corruption or function pointer corruption, leading to some 
forms of dynamic hostile code insertion or illegitimate library calls. 
 
A buffer overflow attack occurs when data is written into a variable without checking if the length of this 
data exceeds the size of the variable.  This can over-write other data, for example, the return address of a 
procedure call.  This is illustrated in Figure 1, which shows a buffer overflow attack with return address 
corruption in the stack. 
 

 
Figure 1: (a) a typical stack frame, (b) malicious message received from the network, (c) stack buffer 
overflow when message copied to local buffer without checking the size of the message. 
  
By overwriting the return address, the attacker can alter the program control flow on a procedure return to 
jump to an address in the stack where hostile code has also been inserted by the buffer overflow.  This 
hostile code, to which the program jumps, can gain root shell access.  After this hostile code is executed, 
another jump instruction is executed to the original return address.  
 



Alternately, a return to libc attack can also be launched by a buffer overflow attack, where the return 
address is changed to a legitimate library call entry-point.  This causes a library call – that should not 
otherwise be called at that point in the program – before returning to the original return address.  The 
return-to-libc attack is also based on overwriting return addresses on the stack; however, instead of 
transferring control to malicious inserted code, return-to-libc returns to existing functions in the system 
while overwriting the contents on the stack to feed bogus parameters for the existing functions to perform 
malicious operations for the attacker. Since return-to-libc does not require injecting new code into the 
system, even if the overflow buffer is not large enough for malicious shell code, it can still perform a 
successful attack. However, the attacker needs to figure out the address of the desired libc function such as 
system() or printf() to perform the attack. 
 
a. Stackshield 
 
Stackshield [8] is a software mechanism to prevent return address corruption by a buffer overflow attack.  
It is a gcc extension that maintains a (software) shadow stack for return addresses. It copies the return 
address to the beginning of the DATA segment, a location that cannot be overflowed, on function prologs, 
and checks if the two values of the return address are different on function epilogs.  
 
b. Propolice and Stackguard 
 
Propolice [9] is a patch to gcc. It inserts canaries to check for buffer overflow, as does StackGuard [10], to 
protect the return address on the stack. A canary is a bird used in mines to detect toxic air in the mine – the 
canary will die first from toxic air.  Here, a “canary” is a random value inserted in the stack, such that any 
buffer overflow will change the value of the canary before damaging the return address; hence on a 
procedure return, the value of the canary is first checked to see to see if it has changed - if not changed, 
then the return address can be trusted.  Additionally, Propolice reorders the declaration of local variables to 
place buffers before pointers to avoid the corruption of pointers that could be used to point to arbitrary 
memory locations.  
 
c. Libsafe 
 
Libsafe [11] intercepts known-vulnerable library calls and substitutes them with a safe version to ensure no 
that no buffer overflows can occur.  This prevents buffer overflow vulnerabilities and attacks in these 
“safe” library calls. Libsafe does not require source code or recompilation and checks for violations at 
runtime. It is loaded as a linked library during runtime and checks a few “unsafe” functions, e.g. 
strcpy(), strcat(), scanf(), memcpy() etc. Libsafe intercepts these known-vulnerable 
library calls and substitutes them with a safe version to ensure no overflowing can occur. 

 
d. Address space randomization 
 
Address space randomization [12] is a technique devised to thwart buffer overflow attacks by introducing 
randomness into the memory locations of certain system components: stack, heap, BSS, etc. For example, 
the return-to-libc attack, discussed above, needs to know the virtual address of the libc function to be 
written into a function pointer or return address. If the base address of the memory segment containing libc 
is randomized, then the success rate of such an attack significantly decreases. Figure 2 (adapted from [12]) 
shows an example of the address space layout before and after randomization is applied. Linux application 
program code usually starts from 0x08048000, followed by the data segment that stores all initialized data 
and the BSS segment that stores uninitialized data. Dynamic Shared Objects (DSO) segments are where the 
shared libraries are placed. 
 



 
Figure 2: Address space randomization (a) typical address space layout. (b) layout after 
randomization. 
 
For the StarDBT that we test, the StarDBT program is loaded as a dynamic library, residing in one of the 
DSO segments. The code cache of the application-level StarDBT is allocated in the user heap space. 
 
2.2. Detecting hostile code modification attacks 
 
Hostile code  injection into a program, or code modification, can be detected by checking that the code has 
not changed from a known good version,  We call this “static” code modification if it occurs when the 
program is not active, e.g., while the program was residing on disk. Checking that the code has not been 
maliciously modified is typically done only on program launch.  Dynamic code modification occurs when 
the program is active – during runtime.  The buffer overflow attacks, described earlier, enable dynamic 
hostile code insertion and modification.   
 
The software Code Integrity Checking techniques described here are typically used to detect static code 
modification.  However, they could potentially be adapted to detect some forms of dynamic code 
modification.  We describe two different software techniques which add software to re-compute and check 
a checksum (or hash) on the code, or check for an inserted watermark. 
 
e. Self-checksum  
 
Self-checksum [13] is a technique where the program checksums itself to make sure the integrity of the 
protected part of the program is not compromised. A code producer would first compute a checksum (or 
hash) over the critical parts of the program that is to be protected, and insert that information into the 
program itself. In addition, the code producer inserts hash calculation and verification code throughout the 
program execution, to calculate the hash of the critical parts and compare with the inserted known “good” 
hash of those critical parts of the program. Therefore, any modification to the critical parts of the program 
will be detected.  
 
Note that checksumming is not cryptographically strong, and can easily be defeated by an attacker, who 
can change the code then change the checksum value which is kept in the program itself. A better technique 
is to use a keyed-hash, or Message Authentication Code (MAC) rather than a checksum. Such a 
cryptographic hash function has strong collision resistance (unlike a checksum). Further, a keyed hash 
function (MAC) prevents an attacker from generating a new MAC value to correspond to the changes he 
makes in the code. This is because he does not have the key, which is kept securely elsewhere, and not with 
the program itself. 
 



f. Watermarking 
 
Watermarking [14] exploits the inherent redundancy in how instructions may be specified to encode a 
secret message in the program’s binary. The exploitation is based on the fact that a given operation can be 
represented in many ways. For example, adding the value 50 to register eax could be represented as either 
“add %eax, $50” or “sub %eax, &-50”. By replacing selected original machine instructions with 
functionally-equivalent instructions, we can encode a secret message into the program binary and later 
decode it to extract the message. The protection given by using this technique is that, if an attacker 
modified the disk image of the binary by inserting malicious code, the watermarked message would be 
destroyed and we would be able to detect that the binary had been modified. The watermarking technique 
works as follows: a checking program will first read in another program binary in which the watermark is 
going to be inserted, and change the instructions with functionally-equivalent instructions to encode a 
secret message. Afterwards, the checking program could read in the watermarked program’s binary to 
decode the secret message. The watermarked program is not affected in terms of program execution result 
and the checking program only reads the watermarked program as static input.  
 
2.3.  Protecting System Calls 
 
A common characteristic of many attacks is to exploit the system call interface to perform malicious 
actions. Incorrectly invoking a system call can do a great deal of damage to the system.  For example, if a 
system call is invoked at the wrong time or in the wrong sequence, the system might be compromised. 
Forrest et al [15] confirmed that due to the different system call behavior when the system is attacked by 
the sunsendmailcp script [16], a local user may gain root access to the system. Another way of 
compromising a system call is by modifying system call parameters [17].  For example, the actions taken 
by a system call that normally retrieves the current user’s file could be changed to access another user’s file 
by including path traversal “../” characters as part of a filename request. 
 
g. Sandboxing System calls 
 
All sensitive system resources are usually accessed through the OS system call interface, e.g. file 
operations, network sockets, etc. System call sandboxing monitors all system calls made by an application 
by inserting checking instructions before and after the monitored system call and blocking the call if it 
violates some predefined security policy. 
 
h. Authenticated system call 
 
One technique proposed to protect system calls is the authenticated system call [18].  This transforms a 
system call to include extra arguments that specify the policy of that call and a MAC to guarantee the 
integrity of that policy. The policy specifies the allowed system call name, call site, control flow, and 
constant parameter values to be constrained for a system call. The policy is encoded into a string, and a 
Message Authentication Code (MAC), or keyed hash, is computed over the string with a cryptographic key 
that is available only to the kernel.  This allows detection of any tampering of the string. The encoded string 
and its MAC are added to the system call as extra arguments. Before the kernel executes the system call, 
the MAC is re-calculated and verified to guarantee the integrity of the system call.  
 
Before any program in the system is installed, it has to go through a trusted installer program, which 
extracts the allowed behavior for each system call by static analysis and then rewrites the binary to insert 
the policy and MAC. At runtime, each system call is intercepted and the MAC is checked to verify the 
integrity of the system call. If the behavior of the system call matches the policy, it is allowed; otherwise it 
is rejected and the process is terminated. Therefore, only trusted programs that have the authenticated 
system calls and pass the integrity check can execute on the system; regular programs cannot run on the 
system. 
 
2.4. Mitigating reverse engineering 
 



An attacker often first performs some reverse engineering to see if the software has exploitable security 
vulnerabilities, what and where they are, and where certain information is stored. Reverse engineering may 
also be performed to understand how secret or proprietary software works. 
 
i. Code Obfuscation and morphing 
 
Obfuscated code [19,20,21] is source code that has been transformed to make it harder to read and analyze, 
in order to prevent reverse-engineering of the code. Obfuscated code has the same function as normal code, 
just that the code is hard to understand without some processing. A simple code example of C that prints 
out prime numbers less than 100 is given in obfuscated form in Figure 3. Detailed directions on how to 
transform the original source code to obfuscated code are available, e.g., in [22].  
 
_(__,___,____){___/__<=1?_(__,___+1,____):!(___%__)?_(__,___+1,0):___%__==___/ 
__&&!____?(printf("%d\t",___/__),_(__,___+1,0)):___%__>1&&___%__<___/__?_(__,1+ 
___,____+!(___/__%(___%__))):___<__*__?_(__,___+1,____):0;}main(){_(100,0,0);} 
Figure 3: code obfuscation example for a C program 

 
Some code obfuscation techniques simply add unrelated code into the binary.  Other obfuscation techniques 
include the following: 

 Lexical Transformations scramble the identifiers used in the programs, making it difficult to get 
semantic context from the identifiers, e.g., deposit (amount) is transformed to a ( b ).   

 Control flow obfuscations [23] introduce redundant predicates whose outcome are known at the 
obfuscation time, but are difficult to deduce. The resilience of these obfuscations is directly related 
to the resilience of the opaque predicates on which they rely. Opaque predictors based on the 
intractability of static pointer analysis problem have been proposed.   

 Data obfuscation [24] is achieved by modifying data structures to obscure their semantic meaning, 
e.g., variable splitting. Bool A -> int a1, a2. A = TRUE -> a1 = 0, a2 = 1, A = FALSE -> a1 = 1, 
a2 = 0.   

 Inter-module call relation obfuscation [20] makes it a very complex problem to determine the 
address a function pointer points to, in the presence of arrays of function pointers.   

 
Code morphing is code obfuscation done to the object code to deter disassembly and reverse engineering 
and analysis of object code. This technique breaks up the protected code into several processor commands 
and replaces them by others, while maintaining the original function. It turns binary code into an 
undecipherable mess that is not like normal compiled code. An example of code morphing is given in [25]. 
 
j. Anti-debugging techniques 
 
Some hackers use debugging software to gain knowledge of how programs work, thereby allowing the 
hacker to find vulnerabilities that he/she can exploit. Therefore, commercial software often employ some 
anti-debugging techniques to prevent hackers from gaining this knowledge. There are various anti-
debugging techniques, e.g. detecting SoftICE (a kernel-mode debugger for Windows), detecting VMware 
[26], searching for names installed by SoftICE in memory, etc. In general, these anti-debugging methods 
are simple instructions and do not depend on any dynamic behavior. However, one particular anti-
debugging technique needs special attention: it checks execution timing to determine if being debugged.  

xor ecx,ecx 
rdtsc  
add ecx,eax  
… 
rdtsc  
sub eax,ecx  
cmp eax,0FFF  
jb short _FAST_ENOUGH 
… 
_FAST_ENOUGH: -> Code continues here 
 Figure 4: Timing-based anti-debugging detection 



 
In  Figure 4 the rdtsc instruction reads the time stamp counter and returns a 64-bit value in register  eax 
that represents the count of ticks from processor reset. When being debugged, i.e. stepping through the 
program, the distance between the values in eax will be higher when the program is being debugged than 
when it is not being debugged. For emulators or interpreters, the overhead could be great enough to cause 
the program to always exit. 
 
k. Instruction set randomizations 
 
Randomizing the instruction set (i.e., the instruction encodings) [27] can deter remote attacks assuming that 
the attacker cannot obtain the encryption key that is used for randomizing. The idea is to randomize the 
entire instruction by XOR’ing the instruction with a key, as illustrated in Figure 5 The decoding (de-
randomizing) to get the plaintext instruction from the encoded (randomized) instruction can be done in 
hardware or in software.  
 

 
Figure 5: Decoding instructions in instruction set randomization (from [27]) 
 
Note that this form of instruction-set randomization is a very insecure form of One-Time Pad (OTP) 
encryption, since the encoding key is repeated over and over in the key pad of the OTP cipher.  It would be 
rather easy for an attacker to break this encoding and discover the key.  However, the purpose here is 
randomization to introduce diversity to thwart attacks and deter reverse engineering, rather than strong 
encryption. 
 
2.5. Checking Security Assertions 
 
l. Proof-Carrying Code  
 
Proof-carrying code (PCC) [28] is code that carries an attached “safety proof” to prove that the code abides 
by certain security policies. The program binary is just a normal binary. The attached proof is written in 
Logical Framework (LF) and is encoded to be later checked by a “proof checker”. All of the proof 
generation, encoding and proof checking are done statically—before the program is actually executed. 
Once the program passes the proof checker, the program will be executed as “trusted”.  
 
3. Experimental Setup and Methodology 
 
We investigated several of these software protection techniques with and without using StarDBT.  StarDBT 
is an application-level dynamic binary translator, and like most other sophisticated DBT systems [5, 29,30], 
it adopts the two-phase translation strategy. It uses a simple fast translator for cold code translation and 
once a workload hotspot is detected, it applies optimizations.  The simple and fast translation tries to 
generate target code with minimal runtime overhead.  Control transfer instructions such as branches, 
function calls and returns need to be rewritten. This involves some translation table lookup and dispatch 
code. The simply translated code can also be instrumented with profiling code to collect block frequency 
information to recognize program hotspots for optimizations. 
 
For program hotspots, StarDBT forms straight-line traces (superblocks) to optimize, such as code layout 
and partial redundancy elimination.  The translators place generated code in the code cache for later reuse. 



The runtime dispatcher maintains a translation lookup table. The execution of the native IA32 code is 
achieved via the execution of the translated code and dispatching in the runtime system.   
 
To verify that StarDBT does not compromise the security enhancement in the applications, we run the 
security-enhanced applications by themselves and also with StarDBT, under security attacks, such as the 
“attack benchmark” suite [31].  If the application, with and without DBT, can detect the same attacks, we 
consider that StarDBT does not compromise the security.  Otherwise, we analyze the compromised security 
situation and determine how we may enhance StarDBT to prevent the situation from happening. 
 
Since StarDBT is just a particular implementation of dynamic binary translation, some other types of DBT 
may compromise a security feature that is preserved by StarDBT, or vice versa.  We identify this possibility 
by detailed analysis of the software security enhancement techniques (discussed in section 2), and point out 
the possible DBT translation and optimizations that may compromise the security provided. 
 
 
4. Experimental results 
 
We present the results of our experiments, described in the previous section, under three categories. Table 1 
summarizes our overall findings.  In section 4.1, we list the software protection techniques (DBT friendly 
techniques) that are not affected by DBT optimizations.  In section 4.2, we list those software protections 
(DBT-tolerable techniques) that are preserved under certain conditions, and describe these conditions.  In 
section 4.3, we list those software protections (DBT-troublesome techniques) that are not preserved by an 
application-level DBT, but can be preserved if the DBT is moved to the system level.  In each case, we 
explain why the translation and optimizations done by the DBT we tested either preserved the software 
protections or not.  We also discuss what might happen with other types of DBTs.  We base our 
explanations on the following fundamental requirements for a DBT. 

1) DBT must translate a program into a semantically equivalent version, in terms of all visible 
system states, including the detection of self-modifying code and retranslate them when 
necessary. 

2) DBT must preserve the relative code and data layout of the original program in each of the 
data, bss, stack, and heap segments.  This is required as some program may have built the 
relative offset in the program logic, although the runtime system is allowed to load each 
segment in a statically unknown location.  

3) DBT must preserve self-referencing, i.e. the original program must be kept untouched and any 
self-reference to the original program during the translated execution must be faithfully 
provided. 

4) DBT must preserve precise exceptions of the original program, i.e. all the executions must 
occur in the same order and the same places as in the original execution. 

 
4.1 DBT-friendly techniques 
 
For Stackshield, the shadow return stack value and the checking code are inserted statically.  Their 
operations are part of the required behavior of the transformed program, and DBT will preserve the correct 
execution of these statically-inserted transformations. Specifically, the values in the shadow return stack 
cannot be determined as redundant by DBT if there is any code that may overrun the original stack, and 
therefore DBT will preserve the checking code, and will translate and execute it correctly. 
 
Similarly, for Propolice and Stackguard, the special “canary” data value inserted onto the stack and 
checking code are inserted statically.  If there is any chance of stack overrun, DBT cannot determine that 
the checking of the canary value is redundant computation, and thus is required to guarantee the correct 
execution of the input binary with its static Propolice or Stackguard additions.    
 
Libsafe may substitute one library call with another dynamically at program load time.  In this case, DBT 
will only translate the library calls after the substitution and thus a program under Libsafe will work 
correctly.  If Libsafe substitutes library calls during program execution, DBT will detect the substitution as 



self-modifying code, and will still be able to translate and execute the newly substituted library code 
correctly.   
 
For address space randomization, since the randomization is done at program loading time, DBT is 
required to not change the original memory layout within each segment, so the randomized address space 
will not be affected by DBT operations.  For an application-level 32-bit DBT, the DBT needs to place its 
code cache in the same address space as the user application.  There is a chance that the code cache may 
conflict with some of the user code/data.  When this happens, DBT will relocate itself to another unused 
space and thus there will be no problem. 
 
For watermarking, a secret message is embedded in the binary’s disk image.  Since the watermark 
checking program reads the image to decode the secret message and DBT translation will not modify the 
disk image at all, watermarking will not be affected by DBT.  

 
Sandboxing system calls involves inserting checking instructions before and after the monitored system 
calls.  Since the checking code is inserted for a valid purpose, DBT will not remove the checking code and 
so it will not compromise the protection.   
 
For Proof-Carrying Code, if this proof-carrying code remains static, it will not be affected at all by DBT. 
Since all of the proof generation, encoding and proof checking are done statically -- before the program is 
actually executed, a DBT would not interfere with any step within the PCC framework. 
 
Table 1: Summary of Preservation of Software Security Technique’s protections under DBT 

Software protection technique Execution with DBT 
Preventing Bufffer Overflow attacks 

a. Stackshield OK 
b. Propolice and Stackguard OK 
c. Libsafe OK 
d. Address space randomization OK 

Detecting Hostile Code Modification attacks 

e. Self-checksum (and self-MAC) OK if self-referencing property guaranteed 
f. Watermarking OK 

Protecting System Calls 
g. System call sandboxing  OK 
h. Authenticated system call This could be affected 
Mitigating Reverse Engineering 
i. Code obfuscation and code morphing May make the code less obfuscated 
j. Anti-debugging OK, except for some timing-based methods 
k. Instruction set randomizations DBT may not work with HW decryption of 

instructions; OK with SW decryption. 

Checking Security Assertions 

l. Proof-carrying code OK 

 
4.2. DBT-tolerable techniques 
 
Self-checksum should not be affected by DBT as the checksum is validated by the program itself and DBT 
ensures that all self-referencing refer to the original binary, not the translated code.  However, for some 
DBTs that patch the input binary to link with the optimized code [32], the checksum may change because 



the patched code is different from the original code, so it will change the checksum.  However, product 
quality DBT is required to support correct self-referencing at all times so this should not be a problem for a 
product quality DBT. 
 
4.4. DBT-troublesome techniques 
 
Authenticated system call replaces original system calls at program installation time with new system 
calls carrying additional parameters for authentication by the OS syscall checker.  For binaries running 
under DBT, the system call is made from the code cache instead of the original code address.  Furthermore, 
DBT may perform branch optimization which may result in a different control flow.  If the policy string 
takes runtime call sites and control flow into consideration, this could be affected by DBT. 
 
For code obsfucation, DBT nay affect some methods, especially the ones that simply add unrelated, 
redundant code into the binary.  Since a DBT may perform sophisticated optimizations, it may optimize 
such code away and thus undo the obfuscation effect.  The good news is that the recent code obfuscation 
techniques also try to make the code hard to optimize, and hence the obfuscation performed by the tools 
cannot be easily reversed by StarDBT.   
 
In particular, the four types of obfuscations discussed in section 2.4 will not be compromised by DBT. 
Lexical transformations make it difficult to get semantic context from the identifiers -- but since this does 
not change the binary code, DBT will not affect it. Control flow obfuscations introduce redundant or 
opaque predicates -- but since these are based on the intractability of the static pointer analysis problem, 
DBT will not be able to compromise this. Data obfuscation is achieved by modifying data structures to 
obscure their semantic meaning -- but since DBT does not change data layout, it will not affect this 
transformation.  (The variables are split statically in the example in section 2.4, and hence DBT will not 
impact this.) Inter-module call relation obfuscation makes it hard to determine the address a function 
pointer points to -- but since “point-to” analysis is difficult to perform at runtime by DBT, this technique 
will also not be affected by DBT. 
 
For code morphing, DBT could, in theory, optimize the morphed code and revert it back to more readable 
binary instruction sequences. Therefore, this technique is not fundamentally secure under DBT code 
transformation that is not aware of the morphing. However, in practice; the binary codes are typically 
morphed in such a way that it is not easily optimized away by a fast runtime DBT optimizer.  
 
For anti-debugging, since these methods consist of simple instructions and do not depend on any dynamic 
behavior, they should not be affected by DBT translation and optimizations.  For anti-debugging techniques 
that check execution timing, it is possible that DBT may translate the code into a code sequence with a 
different timing.  However, since the timing constraints for detecting a debugging event is usually quite 
large and DBT does not change the execution timing much, this technique should work with DBT.  Note 
that timing-based anti-debugging techniques may result in false positives anyway -- if events like interrupts 
or context switching occur.  Hence, DBT will not make this situation worse. 

 
Instruction set randomization can deter remote attacks assuming that the attacker cannot obtain the 
encryption key that is used to randomize the instructions. Whether DBT will affect the security of this 
technique depends on how the randomization system is designed. If the system’s decryption is done in 
hardware, the encrypted code will be fed into the decoder of the DBT, causing the DBT to fail completely, 
and the program will not work normally. The DBT can just leave the code un-translated and un-optimized – 
which may be OK in some situations, but not in cases where translation is necessary for correct execution 
of legacy code on a new machine. On the other hand, if the decryption is done in software, DBT can use the 
already decrypted instructions and the execution will not be affected.  However, the DBT must be trusted to 
see the decrypted code, or even to have access to the secret key for decryption. 
 
If a DBT is to co-exist with a system enhanced with instruction set randomization, both DBT and the 
decryption engine of the randomization should be incorporated into the hardware (or firmware) to be truly 
protected and, furthermore, to allow the DBT to use the decrypted machine code for its translation and 



optimizations. 
 
4.6. Summary of Results  
 
Although the 12 cases examined above are not exhaustive, they are representative and do include some of 
the most recent software protection techniques. With the results and discussion given in these cases, it 
seems that, as long as the implementation of the DBT is transparent and correct, most of the software 
protection mechanisms are preserved by DBT, except for a few cases where side-channel information or 
hardware is used for protection.   
 
We make the following general observations based on our experimental results and analysis:  
1) If the software protection is done statically, or at load time, then the DBT does not affect it – unless 

redundant information is added that the DBT can easily detect as redundant and may optimize away. 
(This is true for some simple, and probably less effective, types of code obsfucation and morphing.)   

2) The software protections that operate at runtime should not be affected by DBTs if they are executed 
by the protected application program itself – this is due to the guarantee of correct self-referencing 
behavior that all product-quality DBTs should provide.   

3) However, if the checking of the application program to be protected is done by a different program at 
runtime, based on the runtime behavior of the protected application code, then this can be problematic 
for the DBT since the dynamic code executed may be different from the application’s static code. (This 
is the case for the time-dependent anti-debugging technique and for some types of authenticated 
system calls.) 

4) If the instructions are transformed into a form not recognizable by the DBT, it would not work.  
Otherwise, the DBT has to be disabled, or it has to be trusted to see the decrypted instructions, or the 
key for decryption, before it can apply its translations and optimizations. 

 
5. Protecting the DBT itself from attackers  
 
An application-level (or user-level) DBT is as vulnerable as the application it protects, since it is just 
another level of application itself.  It could potentially cause the application to be compromised without 
being detected if the DBT does not implement any protection to its code cache, or if the DBT’s code itself 
is changed by an attacker.  For example [33] reports a vulnerability with DBT via interprocess 
communications. 
 
Alternative solutions to protecting the DBT’s code are: 
 Move the entire DBT to the kernel to get a system-level DBT 
 Integrate DBT as a part of the hardware or firmware component 
 Use Secret-Protection (SP) hardware mechanisms [6,7] to protect the DBT itself as a Trusted Software 

Module. 
 
5.1. System-level DBT 
 
The DBT can be integrated as part of the OS kernel, i.e., the DBT runs as a kernel module and the code 
cache is only written in kernel mode by the DBT module. The code cache can be mapped read-only and/or 
execute-only into user space. Thus, both the DBT module and code cache are protected by the OS kernel. 
However, if the kernel itself is not protected, then it can also be compromised by an attacker. Especially as 
commodity OS are getting increasingly larger and more complex, it is hard to guarantee that the OS is free 
from bugs and software security vulnerabilities that can be exploited by attackers.   
 
Alternatively, if a trusted Virtual Machine Monitor (VMM) layer is present in the system, a system-level 
DBT can reside there.  Since this VMM will run at the highest privilege level, we assume that the enhanced 
hierarchical ring protection mechanism present in the processor ISA (e.g., using VT ) can be used to protect 
both the VMM and the DBT. Since VMM is typically much smaller than OS kernels, it should, in theory, 
be less vulnerable to attacks.   
 



5.2.  Integrate DBT as part of the hardware or firmware component 
 
A DBT system can also be integrated as part of the processor or platform microarchitecture, such as the 
Transmeta code morphing software [34]. In this case the DBT is coded in internal implementation ISA and 
the translated code is placed in memory hidden inside the processor.  Thus DBT will be as trustable as the 
processor itself.  .  
 
5.3. Use SP architecture to protect the DBT 
 
As an application layer, DBT is as vulnerable to attacks as any application.  We propose that a small set of 
hardware-software mechanisms, called the Secret Protection (SP) architecture [6,7], can be used to protect 
the DBT as a trusted software module (TSM).  
 

 
Figure 6: SP protection of DBT and code cache (white = the trusted parts.). 
 
Figure 6 shows a conceptual view of the SP architecture consisting of a Trusted Software Module (TSM) in 
application space directly protected by hardware (SP) mechanisms in the microprocessor, even if the 
operating system has been compromised.  With the size and complexity of commodity operating systems, 
this is not unlikely. SP architecture provides 3 main protections: (1) The TSM has access to pervasive 
secure storage. (2) SP hardware provides a secure execution environment for the TSM by protecting the 
intermediate data the TSM generates during its execution. (3) The TSM’s code is integrity protected, so it 
cannot be changed by an attacker without detection. We describe each of these SP protections in the 
following paragraphs, after we first describe the SP hardware roots-of-trust added to the microprocessor. 
 
SP contains two hardware roots-of-trust, a Device Root Key (DRK) and a Storage Root Hash (SRH), that 
protect the TSM and can only be accessed by the TSM (see Figure 7).  Each SP device has a different DRK 
value (installed at deployment in its DRK register – not burned in at manufacture) that cannot be accessed 
by any software, except the TSM which can use an SP instruction, DRK_derive, to derive new keys for 
encryption or decryption from the DRK.  No other computer can derive these keys without knowledge of 
the DRK.   
 
The TSM has access to pervasive secure storage whose integrity is protected by an encrypted Merkle hash 
tree with the root of this tree stored in the SRH register in the microprocessor chip. The SRH can only be 
accessed by the TSM.  Each level of the hash tree encrypts and hashes its sons using an encryption key and 
a hash key derived from the DRK.  This pervasive storage structure can be stored in the untrusted disk, and 
no one, not even the OS, can access it except the TSM with the correct DRK.  This pervasive secure storage 
is used by the TSM to store critical secrets, such as long-term public and private keys, certificates, licenses, 
encryption keys and security policies. 



 
Figure 7: New SP components in microprocessor (white areas). 
 
SP hardware provides a secure execution environment for the TSM so that no secret information accessed 
by the TSM is leaked out of the microprocessor chip. Since the security provided by SP depends so heavily 
on the DRK and SRH roots-of-trust, they must not be leaked out during TSM execution. Hence, SP 
provides a Concealed Execution Mode for TSM execution.  SP considers only the microprocessor chip to 
be the physical security perimeter, i.e., only information inside the microprocessor chip is considered 
trusted and safe from physical probing and eavesdropping attacks – all information outside the 
microprocessor chip are considered untrusted, including information in the external main memory.  (This is 
stricter security than TPM which considers the whole box to be the physical security perimeter.)  Hence, SP 
provides automatic encryption and hashing of all temporary data belonging to the TSM if its cache lines get 
evicted from the microprocessor chip. Within the microprocessor chip, the TSM’s secure cache lines are 
decrypted, so that there is no performance penalty with respect to the processor’s pipelined execution. 
These secure lines are tagged (as shown in Figure 7).  Further, SP hardware protects the general register 
values of the microprocessor, on interrupts, by automatic encryption and hashing, before allowing the OS 
to handle register saving. (This GR hash value and the interrupt return address is securely stored in new SP 
registers on-chip, as shown in Figure 7)  Hence, the attacker can not get any access to plaintext information 
of the TSM during its execution, or while the TSM process is suspended or resumed. This protects leaking 
out bits of the DRK and SRH, as well as the secrets in the pervasive storage structure. 
 
The TSM’s code is integrity checked.  SP provides dynamic Code Integrity Checking to TSM code on a 
cacheline granularity during runtime.  Since this need only be done on the rare cache misses of the last 
level of on-chip caches, performance degradation is not noticeable.  Prior to TSM installation on a given 
SP-enhanced machine, each instruction cache line chunk of TSM code is “signed” by generating a keyed-
hash of that cacheline (minus the space to insert a 128-bit hash value) of instructions, keyed by the DRK.  
On a cachemiss, as the instruction cacheline for a TSM is brought into the microprocessor chip, its hash is 
re-computed.  If it does not match the keyed-hash value stored at the end of the instruction cacheline, an 
exception is raised and that corrupted TSM instruction cacheline is not stored into an on-chip cache (which 
is typically the Level-2 or Level-3 cache).  Hence, SP automatically provides protection of the TSM code 
from dynamic hostile code insertion, including those from buffer overflow attacks.  It also provides 
detection of static hostile code modification while on the disk, by both the method just described and by 
verifying the integrity of the static image of the TSM code signed by the private key of the trusted software 
vendor (in this case the vendor of the trusted DBT). 
 
We protect the entire DBT as a TSM in application space protected by SP hardware (Figure 6).  We protect 
the code cache of the DBT as secure temporary data of the TSM that is automatically protected by 
encryption and hashing if any of it is evicted from the on-chip caches as the DBT translates or optimizes 
instructions.  This means that attackers cannot see unencrypted contents of the code cache, and cannot 
modify the code cache without detection.  Also, the integrity of the DBT code itself will be protected by 
SP’s Code Integrity Checking mechanism. Hence, the application-level DBT itself, and its code cache, can 
be protected by SP from software and hardware attacks. In addition, the SP pervasive secure storage allows 
the DBT to keep secret information safe from attackers, across power off and on events. 
 



Since the hardware additions for SP represent a very small area in a microprocessor chip, it is not difficult 
to add.  (SP consists of only a few registers, 1-2 tag bits on a cacheline, and an encryption and hashing 
engine at the last on-chip cache miss handling mechanism.)  These few hardware additions for security of 
the DBT can be done together with the hardware additions to speed up the dynamic translations done by a 
DBT.   
 
6. Conclusions and Future Work 
 
We have surveyed a range of software protection techniques and commercial software programs that can be 
used to enhance the security of programs, and described how they work.  While many of the software 
techniques can fall into multiple categories, we have categorized them into 5 classes of techniques that: (1) 
prevent buffer overflow attacks, (2) prevent code modification attacks, (3) protect system calls, (4) mitigate 
reverse engineering and (5) check security assertions. Within these 5 classes, we described 12 
representative software protection techniques. 
 
We examined whether a DBT, in particular the StarDBT, inadvertently removes or lessens these software 
protections when the DBT applies its standard translation and optimizations to the application programs.  
Our results show that almost all of the software security protections are preserved, except for 4 cases where 
care has to be taken and certain changes in the DBT may be necessitated (see Table 1 and section 4).   
 
Since DBTs are often application-level programs, they can themselves be attacked.  Hence, we also 
proposed three solutions to protect the DBT itself.  In particular, we show that the Secret Protection (SP) 
processor features can protect the application-level DBT and its code cache. 
 
Future work can examine more software protection techniques, different types of DBT translation and 
optimizations, and DBT changes or features that can preserve the security of all essential software 
protection techniques.  Some software protections may be superfluous – especially if the DBT is enhanced 
to provide these protections itself.  Future work will also explore the many ways a trusted DBT can provide 
security enhancements for all programs – even legacy programs with no software security protection at all.  
In addition, future work can also perform a detailed security analysis of the mapping of the DBT and its 
code cache to a Trusted Software Module protected by the SP hardware. 
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