
Performance Measurement and Security

Testing of a Secure Cache Design

Hao Wu

Master’s Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Master of Science in Engineering

Recommended for Acceptance

by the Department of

Electrical Engineering

Adviser: Professor Ruby B. Lee

June 2015

c© Copyright by Hao Wu, 2015.

All rights reserved.

Abstract

A side channel attack exploits information leaked out by the physical implementation of a cryp-

tosystem. Cache side channel attacks are attacks based on the processor’s cache access mechanisms,

from which the attacker can infer extra information (e.g. secret key bits etc.) to break the cryptosys-

tem. Software solutions to mitigate information leakage of cache side channels have been proposed,

but they alone are not enough to defend against this kind of attack. Adding security properties into

cache design can inhibit the root causes of cache side channels. For instance, Newcache is a secure

cache design that is reported to have performance and power efficiency comparable to regular set-

associative caches through the implementation of dynamic memory-cache remapping and eviction

randomization. However, these cache designs have not had their performance verified experimentally

under full system architectural simulation for current cloud computing environments.

In this thesis, we carefully selected some commonly-used cloud server benchmarks, and did a

thorough performance measurement (e.g. IPC, Cache Miss Rate etc.) of Newcache used as a data

cache, an L2 cache and an instruction cache for these cloud server benchmarks on the gem5 simulator.

The results show that for the L1 data cache and L1 instruction cache, Newcache has performance

comparable with normal set-associative caches. Newcache as L2 cache has higher local and global

L2 miss rates compared with a set-associative cache as L2 cache. However, the overall performance

of the program execution, in terms of Instructions Per Cycle (IPC), is not impacted.

Furthermore, previous research had shown that Newcache can mitigate data cache side channel

attacks. However, no experiment has ever been done to show Newcache’s ability in defending against

instruction cache side channel attacks. In this thesis, we also did security testing experiments on

Newcache used as an instruction cache. The results show that Newcache can thwart side-channel

attacks targeting set-associative instruction caches. In addition, we did a detailed security analysis

on Newcache as instruction cache.

iii

Acknowledgements

First and foremost, I would like to thank my Thesis Advisor, Prof. Ruby B. Lee, for her con-

tinuous assistance and support during the semester just after I switched my research group, and in

the following year. Without her support, I would not even have a chance to continue my graduate

study in Princeton, nor would I be able to finish this Master Thesis. I would like to thank her for

giving me the opportunity to study and do research in her PALMS group. Even on sabbatical, Prof.

Lee still spent a lot of time helping me gain a decent understanding of different research topics and

steering my research in the right direction. I would also like to thank current members of the PALMS

research group (Fangfei, Tianwei and Pramod) for the time they spent discussing the research. In

particular, Fangfei was a great mentor, who helped me through the starting phase in PALMS group

and filled in the voids I lack in system and security research. Moreover, Prof. Lee and all group

members showed great concerns for my health after I went through an acute appendicitis surgery

the first semester here.

I am really grateful to Gang Hu, my former high school classmate and now a graduate student

in Columbia, for his insightful discussions about the implementation details in my research. I also

want to express my gratitude to Yinqian Zhang from UNC-Chapel Hill for his generous sharing of

research codes, Maggie Ye for bringing me happiness and enthusiasm, and Liang Dai, my roommate,

for just being my roommate since my 2nd year graduate study.

I would not have achieved any of this without the support of my parents. They tried their best

to provide their only child with all the opportunities I could ever ask for. I would like to express my

gratitude again for their unconditional love and encouragement.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . viii

List of Figures . xi

1 Introduction 1

2 Background and Past Work 4

2.1 Cache Side Channel Attacks . 4

2.1.1 Access-Driven Attack: Prime and Probe . 4

2.1.2 Trace-Driven Attack and Timing-driven Attack 8

2.2 Software and Hardware Solutions . 11

2.3 Newcache . 11

2.3.1 The Original Newcache [42] . 12

2.3.2 The Modified F. Liu’s Newcache [35] . 15

2.3.3 Security Analysis . 16

3 NewCache Performance Measurement and Analysis for Cloud Server Bench-

marks 18

3.1 Gem5 Simulation Methodology . 18

3.2 Cloud Server Benchmarks Description and Selection 20

3.2.1 Web Server and Client . 20

3.2.2 Database Server and Client . 21

3.2.3 Mail Server and Client . 21

3.2.4 File Server and Client . 22

3.2.5 Streaming Server and Client . 23

v

3.2.6 Application Server and Client . 24

3.2.7 Benchmark Summary . 25

3.3 Testing Results: Newcache as L1 Data Cache . 25

3.3.1 IPC . 25

3.3.2 DCache Miss Rate . 28

3.3.3 Global L2 Miss Rate . 30

3.4 Testing Results: Newcache as L2 Cache . 31

3.4.1 IPC . 31

3.4.2 DCache Miss Rate . 33

3.4.3 Local L2 Miss Rate . 34

3.4.4 Global L2 Miss Rate . 37

3.5 Testing Results: Newcache as Both L1 Data Cache and L2 Cache 38

3.5.1 IPC . 38

3.5.2 DCache Miss Rate . 39

3.5.3 Local L2 Miss Rate . 40

3.5.4 Global L2 Miss Rate . 40

3.6 Testing Results: Newcache as L1 Instruction Cache (Part A) 41

3.6.1 IPC . 42

3.6.2 ICache Miss Rate . 42

3.6.3 Local L2 Miss Rate for Instructions . 43

3.6.4 Global L2 Miss Rate for Instructions . 44

3.7 Testing Results: Newcache as L1 Instruction Cache (Part B) 44

3.7.1 IPC . 45

3.7.2 ICache Miss Rate . 45

3.7.3 Local L2 Miss Rate for Instructions . 46

3.7.4 Global L2 Miss Rate for Instructions . 47

3.8 Testing Results: Newcache as L1 Instruction Cache (Part C) 48

3.8.1 IPC . 48

3.8.2 ICache Miss Rate . 48

3.8.3 Local L2 Miss Rate for Instructions . 49

3.8.4 Global L2 Miss Rate for Instructions . 50

3.9 Chapter Summary . 51

vi

4 Security Analysis of Newcache as Instruction Cache 53

4.1 Reconstruction of Instruction Cache Side-Channel Attack 53

4.1.1 Instruction Cache PRIME and PROBE . 53

4.1.2 Clean PROBE-ing Result . 55

4.1.3 Unique ICache Footprints Left by Square, Mult and Reduce 57

4.1.4 Modular Exponentiation Experiments . 61

4.2 Newcache in Defending against Instruction Cache Side-Channel Attack 64

4.2.1 Clean PROBE-ing Result . 64

4.2.2 ICache footprint left by Square, Mult and Reduce 67

4.2.3 More Analysis . 71

5 Closing Words 76

A Data for Newcache Performance Measurement 77

A.1 Data for Newcache as L1 Data Cache . 77

A.2 Data for Newcache as L2 Cache . 81

A.3 Data for Newcache as Both L1 Data Cache and L2 Cache 86

A.4 Data for Newcache as L1 Instruction Cache (Part A) 88

A.5 Data for Newcache as L1 Instruction Cache (Part B) 91

A.6 Data for Newcache as L1 Instruction Cache (Part C) 94

B Performance Measuring Scripts and Data Collecting Scripts 98

B.1 Sample Performance Measuring Script for Dbench Write 98

B.2 Python Script to Generate Performance Measuring Scripts 99

B.3 Sample Server-Side and Client-Side Configuration Scripts for Dbench Write on Gem5 103

B.4 Sample Performance Stats Collecting Script . 106

Bibliography 109

vii

List of Tables

3.1 Metrics Definitions . 19

3.2 Gem5 Base CPU and Cache Configurations . 20

3.3 Summary of Cloud Server Benchmarks . 25

3.4 Newcache as L1-DCache: Different Cache Sizes’ IPC, and IPC Increase Relative to SA 27

3.5 Newcache as L1-DCache: Different Associativity and Nebit’s IPC, and IPC Increase

Relative to SA-8way . 28

3.6 Newcache as L1-DCache: Different Cache Sizes’ DCache Miss Rate Increase Relative

to SA . 29

3.7 Newcache as L1-DCache: Different Associativity and Nebit’s DCache Miss Rate In-

crease Relative to SA-8way . 29

3.8 Newcache as L1-DCache: Different Cache Sizes’ Global L2 Miss Rate Increase Relative

to SA . 30

3.9 Newcache as L1-DCache: Different Associativity and Nebit’s Global L2 Miss Rate

Increase Relative to SA-8way . 31

3.10 Newcache as L2 Cache: Different Cache Sizes’ IPC, and IPC Increase Relative to SA 32

3.11 Newcache as L2 Cache: Different Associativity and Nebit’s IPC Increase Relative to

SA-8way . 32

3.12 Newcache as L2 Cache: Different Cache Sizes’ DCache Miss Rate Increase Relative

to SA . 34

3.13 Newcache as L2 Cache: Different Associativity and Nebit’s DCache Miss Rate Increase

Relative to SA-8way . 34

3.14 Newcache as L2 Cache: Different Cache Sizes’ Local L2 Miss Rate Increase Relative

to SA . 35

3.15 Newcache as L2 Cache: Different Associativity and Nebit’s Local L2 Miss Rate In-

crease Relative to SA-8way . 36

viii

3.16 Newcache as L2 Cache: Different Cache Sizes’ Global L2 Miss Rate Increase Relative

to SA . 37

3.17 Newcache as L2 Cache: Different Associativity and Nebit’s Global L2 Miss Rate

Increase Relative to SA-8way . 38

3.18 Newcache as Both L1-DCache and L2 Cache: IPC Increase Relative to l1d.SA-l2.SA 38

3.19 Newcache as Both L1-DCache and L2 Cache: DCache Miss Rate Increase Relative to

l1d.SA-l2.SA . 39

3.20 Newcache as Both L1-DCache and L2 Cache: Local L2 Miss Rate Increase Relative

to l1d.SA-l2.SA . 40

3.21 Newcache as Both L1-DCache and L2 Cache: Global L2 Miss Rate Increase Relative

to l1d.SA-l2.SA . 41

3.22 Newcache as L1-ICache: IPC, and IPC Increase Relative to all.SA.base 42

3.23 Newcache as L1-ICache: ICache Miss Rate Increase Relative to all.SA.base 42

3.24 Newcache as L1-ICache: Local L2 Instruction Miss Rate Increase Relative to all.SA.base 43

3.25 Newcache as L1-ICache: Global L2 Instruction Miss Rate Increase Relative to

all.SA.base . 44

3.26 Newcache as L1-ICache: IPC, and IPC Increase Relative to all.SA.base 45

3.27 Newcache as L1-ICache: ICache Miss Rate Increase Relative to all.SA.base 46

3.28 Newcache as L1-ICache: Local L2 Instruction Miss Rate Increase Relative to all.SA.base 46

3.29 Newcache as L1-ICache: Global L2 Instruction Miss Rate Increase Relative to

all.SA.base . 48

3.30 Newcache as L1-ICache: IPC, and IPC Increase Relative to all.SA.base 48

3.31 Newcache as L1-ICache: ICache Miss Rate Increase Relative to all.SA.base 50

3.32 Newcache as L1-ICache: Local L2 Instruction Miss Rate Increase Relative to all.SA.base 50

3.33 Newcache as L1-ICache: Global L2 Instruction Miss Rate Increase Relative to

all.SA.base . 51

4.1 Simulator Configurations . 64

4.2 Classification Matrix for 8-way SA Cache with LRU Replacement Algorithm used as

ICache , with Fixed Interval for Victim to Execute, between Prime-Probe Phases . . 74

4.3 Classification Matrix for Newcache with Nebit k=4 used as ICache , with Complete

S, M or R Operation Performed, between Prime-Probe Phases 75

ix

4.4 Classification Matrix for Newcache with Nebit k=4 used as ICache, with Fixed Interval

for Victim to Execute, between Prime-Probe Phases 75

A.1 Newcache as L1-DCache: IPC for Different Cache Sizes 77

A.2 Newcache as L1-DCache: IPC for Different Associativity and Nebit 78

A.3 Newcache as L1-DCache: DCache Miss Rate for Different Cache Sizes 78

A.4 Newcache as L1-DCache: DCache Miss Rate for Different Associativity and Nebit . 79

A.5 Newcache as L1-DCache: Global L2 Miss Rate for Different Cache Sizes 79

A.6 Newcache as L1-DCache: Global L2 Miss Rate for Different Associativity and Nebit 80

A.7 Newcache as L2 Cache: IPC for Different Cache Sizes 81

A.8 Newcache as L2 Cache: IPC for Different Associativity and Nebit 82

A.9 Newcache as L2 Cache: DCache Miss Rate for Different Cache Sizes 82

A.10 Newcache as L2 Cache: DCache Miss Rate for Different Associativity and Nebit . . 83

A.11 Newcache as L2 Cache: Local L2 Miss Rate for Different Cache Sizes 83

A.12 Newcache as L2 Cache: Local L2 Miss Rate for Different Associativity and Nebit . . 84

A.13 Newcache as L2 Cache: Global L2 Miss Rate for Different Cache Sizes 84

A.14 Newcache as L2 Cache: Global L2 Miss Rate for Different Associativity and Nebit . 85

A.15 Newcache as Both L1-DCache and L2 Cache: IPC 86

A.16 Newcache as Both L1-DCache and L2 Cache: DCache Miss Rate 86

A.17 Newcache as Both L1-DCache and L2 Cache: Local L2 Miss Rate 87

A.18 Newcache as Both L1-DCache and L2 Cache: Global L2 Miss Rate 87

A.19 Newcache as L1-ICache: IPC . 88

A.20 Newcache as L1-ICache: ICache Miss Rate . 89

A.21 Newcache as L1-ICache: Local L2 Instruction Miss Rate 89

A.22 Newcache as L1-ICache: Global L2 Instruction Miss Rate 90

A.23 Newcache as L1-ICache: IPC . 91

A.24 Newcache as L1-ICache: ICache Miss Rate . 92

A.25 Newcache as L1-ICache: Local L2 Instruction Miss Rate 92

A.26 Newcache as L1-ICache: Global L2 Instruction Miss Rate 93

A.27 Newcache as L1-ICache: IPC . 94

A.28 Newcache as L1-ICache: ICache Miss Rate . 95

A.29 Newcache as L1-ICache: Local L2 Instruction Miss Rate 96

A.30 Newcache as L1-ICache: Global L2 Instruction Miss Rate 97

x

List of Figures

2.1 Prime and Probe . 4

2.2 Instruction Cache Prime and Probe . 7

2.3 Timing Characteristic Charts for Byte 0 for Known Key K 10

2.4 Timing Characteristic Charts for Byte 0 for Unknown Key K ′ 10

2.5 Newcache Block Diagram 1 . 12

2.6 Cache Access Handling Process 1 (SecRAND) . 14

2.7 Newcache Block Diagram 2 . 15

2.8 Cache Access Handling Process 2 . 16

3.1 x86 Dual System . 19

3.2 Newcache as L1-DCache: IPC for Different Cache Sizes 26

3.3 Newcache as L1-DCache: IPC for Different Associativity and Nebit 27

3.4 Newcache as L1-DCache: DCache Miss Rate for Different Cache Sizes 28

3.5 Newcache as L1-DCache: DCache Miss Rate for Different Associativity and Nebit . 29

3.6 Newcache as L1-DCache: Global L2 Miss Rate for Different Cache Sizes 30

3.7 Newcache as L1-DCache: Global L2 Miss Rate for Different Associativity and Nebit 31

3.8 Newcache as L2 Cache: IPC for Different Cache Sizes 32

3.9 Newcache as L2 Cache: IPC for Different Associativity and Nebit 33

3.10 Newcache as L2 Cache: DCache Miss Rate for Different Cache Sizes 33

3.11 Newcache as L2 Cache: DCache Miss Rate for Different Associativity and Nebit . . 34

3.12 Newcache as L2 Cache: Local L2 Miss Rate for Different Cache Sizes 35

3.13 Newcache as L2 Cache: Local L2 Miss Rate for Different Associativity and Nebit . . 36

3.14 Newcache as L2 Cache: Global L2 Miss Rate for Different Cache Sizes 37

3.15 Newcache as L2 Cache: Global L2 Miss Rate for Different Associativity and Nebit . 38

3.16 Newcache as Both L1-DCache and L2 Cache: IPC 39

xi

3.17 Newcache as Both L1-DCache and L2 Cache: DCache Miss Rate 39

3.18 Newcache as Both L1-DCache and L2 Cache: Local L2 Miss Rate 40

3.19 Newcache as Both L1-DCache and L2 Cache: Global L2 Miss Rate 41

3.20 Newcache as L1-ICache: IPC . 42

3.21 Newcache as L1-ICache: ICache Miss Rate . 43

3.22 Newcache as L1-ICache: Local L2 Instruction Miss Rate 43

3.23 Newcache as L1-ICache: Global L2 Instruction Miss Rate 44

3.24 Newcache as L1-ICache: IPC . 45

3.25 Newcache as L1-ICache: ICache Miss Rate . 46

3.26 Newcache as L1-ICache: Local L2 Instruction Miss Rate 47

3.27 Newcache as L1-ICache: Global L2 Instruction Miss Rate 47

3.28 Newcache as L1-ICache: IPC . 49

3.29 Newcache as L1-ICache: ICache Miss Rate . 49

3.30 Newcache as L1-ICache: Local L2 Instruction Miss Rate 50

3.31 Newcache as L1-ICache: Global L2 Instruction Miss Rate 51

4.1 Typical Memory Address . 53

4.2 32kB Contiguous Memory Chunk for PRIME-ing . 55

4.3 Clean PROBE-ing Result for 32kB 8-way Set-Associative Cache 56

4.4 Wrong PROBE-ing Result for 32kB 8-way Set-Associative Cache 56

4.5 ICache Footprint Left by Square . 57

4.6 Square’s Footprint after Subtracting the Clean Prime-Probe 58

4.7 ICache Footprint Left by Mult . 59

4.8 Mult’s Footprint After Subtracting the Clean Prime-Probe 59

4.9 ICache Footprint Left by Reduce . 60

4.10 Reduce’s Footprint after Subtracting the Clean Prime-Probe 60

4.11 Gray Scale Matrix I . 61

4.12 Gray Scale Matrix II . 62

4.13 Gray Scale Matrix III . 63

4.14 Clean PROBE-ing Result I for 32kB Newcache . 65

4.15 Clean PROBE-ing Result II for 32kB Newcache . 66

4.16 Averge PROBE Time for 800 Clean Prime-Probe . 66

4.17 Number of PRIME-ed Cache-lines . 67

xii

4.18 PROBE Result I for Square . 68

4.19 PROBE Result II for Square . 68

4.20 Average PROBE Result for Square . 68

4.21 PROBE Result I for Mult . 69

4.22 PROBE Result II for Mult . 69

4.23 Average PROBE Result for Mult . 69

4.24 PROBE Result I for Reduce . 70

4.25 PROBE Result II for Reduce . 70

4.26 Average PROBE Result for Reduce . 70

4.27 Illustration of the Attack (a) . 72

4.28 Illustration of the Attack (b) . 72

xiii

Chapter 1

Introduction

Cryptography uses ciphers to encrypt our data so as to protect our secret information. Strong

cryptography makes it computationally impossible for an attacker to infer the key bits by using a

brute-force attack or exploiting the weakness in the algorithm. However, in the real world, attacks

can involve multiple parts of the system: algorithm level, software level, hardware level etc. Security

problems may occur when components at different levels interact with each other. Side channel

attacks on hardware can exploit information leaked out by the physical implementation of the

cryptosystem. For example, timing, power consumption, and electromagnetic radiation can provide

attackers with extra information to break the cryptosystem [32, 27, 31].

Cache side channel attacks are side channel attacks based on the processor’s cache access mech-

anisms [26, 25, 44, 38, 23, 29, 43, 45, 22]. One class of cache side channel attacks is the timing

attack. Some cryptographic operations frequently look up data in precomputed tables in mem-

ory, and the addresses of memory accesses are dependent on the secret key. For traditional caches

and memory mechanisms, the timing difference between cache misses and cache hits is large. The

attacker can thus use some techniques to learn the addresses of the accessed memories, and infer

secret key bits. Bernstein’s AES attack [26] and Bonneau’s AES attack [23] are timing attacks.

Bernstein’s attack is mainly due to deterministic cache contention, while Bonneau’s attack is based

on reuse of data across victim and attacker processes [36]. Another cache side channel attack is

the access-driven attack, the representative techniques of which are Prime-Probe [25, 44] and Flush-

Reload [29, 43, 45]. I mainly focus on Prime-Probe attacks in this thesis. Prime-Probe involves an

attacker’s exploitation of distinguished cache footprints left by different cryptographic operations.

In this attack, cryptographic operations’ sequence contains information related to secret key bits.

Different cryptographic operations will access different data and use different instructions residing

in different memory regions, which may leave a distinguished cache footprint after the operation is

executed. Percival’s RSA attack [25] and Zhang’s ElGamal attack [44] are this kind of cache side

1

channel attack. Percival’s RSA attack is based on the data cache, while Zhang’s attack is based on

the instruction cache. Cache side channel attacks are a serious security consideration; they can be

formed on platforms ranging from smart cards to cloud servers.

Different solutions to mitigate information leakage of cache side channels have been proposed,

and most of them are software-based techniques. Earlier software solutions (mostly on AES) im-

prove security but may lead to significant performance degradation [24, 38]. Recently, by optimizing

the implementation of the AES algorithm [33], by extending existing Instruction Set Architecture

(ISA) [37] to support dedicated AES instructions, or by adding general-purpose parallel table lookup

instructions that can accelerate AES (and other algorithms) [34], people have achieved both high

performance and security for AES. However, these solutions are either specific to AES or have not

been widely deployed. Cache based hardware techniques have also been proposed. Some cache ap-

proaches use private partitions or locked regions for security data [39, 41], which prevents undesired

cache evictions by other cache lines. However, these methods can result in cache under-utilization

problems. Some other solutions use a randomized mapping approach [41, 42], which randomizes

cache interference by doing random permutations of the memory-cache mapping or randomizing

cache evictions. Furthermore, the randomization strategies are reported to have little or no perfor-

mance degradation.

Newcache is a representative cache design using the randomization approach; it was first designed

by Z. Wang and R. Lee [42] and then improved by F. Liu and R. Lee [35]. It employs the techniques

of dynamic memory-cache remapping and eviction randomization. According to Z. Wang’s analysis,

due to Newcache’s mechanism, it can prevent existing AES attacks and RSA attacks [42]. Moreover,

F.Liu’s improved version of Newcache [35] can prevent redesigned AES and RSA attacks targeting

the original Newcache. However, these AES attacks and RSA attacks both target the data cache

side channel; no one has ever done experiments to see if Newcache can mitigate instruction cache

side channel attacks, a representative of which is Zhang’s Elgamal attack [44]. Also, a full system

architectural simulation under gem5 [20] needs to be done to see if Newcache can achieve performance

comparable to the conventional set-associative (SA) cache (e.g. IPC, Cache Miss Rate etc.) by

running representative and commonly used benchmarks on the simulator. The main contributions

of this work include:

• A careful selection of the commonly-used cloud server benchmarks that are suitable for testing

under the full system architecture simulator gem5 [20].

• A thorough measurement of the performance (e.g. IPC, Cache Miss Rate etc.) of Newcache

used as a data cache, an L2 cache and an instruction cache, and a detailed performance analysis

and comparison with a conventional SA cache for these cloud server benchmarks on gem5.

2

• Doing experiments and security analysis on Newcache as an instruction cache to see if Newcache

can prevent Zhang’s side channel attack [44] on the instruction cache.

Chapter 2 provides necessary background information and gives a brief introduction to some

representative cache side channel attacks, mitigation approaches and Newcache’s cache design and

mechanism. In Chapter 3, we use Newcache as a data cache, an L2 cache and an instruction cache,

and evaluate the performance of Newcache for cloud server benchmarks under gem5. In Chapter 4,

we first reconstruct Zhang’s attack by modifying the necessary operations in libgcrypt 1.5.3 library

[11] under a conventional SA cache configured memory system. We then do experiments to see

if by replacing the instruction cache with Newcache, we can prevent Zhang’s side channel attacks

targetting conventional SA instruction caches. Finally we analyze more security issues of Newcache

used as an instruction cache. Chapter 5 provides conclusions and future work.

3

Chapter 2

Background and Past Work

2.1 Cache Side Channel Attacks

Cache side channel attacks can be categorized into access-driven, trace-driven and timing-driven

attacks. They will be described in detail in the following sub-sections.

2.1.1 Access-Driven Attack: Prime and Probe

For an access-driven attack, an attacker can use a technique called Prime and Probe shown in Figure

2.1.

Figure 2.1: Prime and Probe

The figure shows a cache with 4 sets, and each set has 2 cache blocks (i.e., 2-way set-associative

cache). We have an attacker process and a victim process running on the same processor. The

4

attacker process fills the cache with its own data, which is called a PRIME phase. Then the victim

process gains control of the processor and runs. After a certain time interval, the attacker process

gains control of the CPU again, and measures the time taken to load its data into the cache for

each cache set, which is called a PROBE phase; the PROBE phase actually primes the cache for

subsequent observations. If the victim process uses some cache sets during this time interval, some

of the attacker’s cache lines in these cache sets will be evicted, which causes longer load time during

the PROBE phase. The timing information of accessing all the cache sets during the PROBE

phase can be represented as a cache footprint. Different cryptographic operations from the victim

process will access different data and use different instructions residing in different memory regions,

which may leave a distinguished cache footprint after the operation is executed. More importantly,

a sequence of cryptographic operations may contain information of secret key bits. Thus an

attacker can exploit the Prime and Probe technique to learn information about key bits. Percival’s

RSA attack [25] and Zhang’s ElGamal attack [44] are this kind of cache side channel attack. Per-

cival’s RSA attack is based on the data cache, while Zhang’s attack is based on the instruction cache.

- Percival’s RSA attack:

Percival’s Attack [25] demonstrates an L1 data cache side-channel attack on the OpenSSL 0.9.7c’s

[15] implementation of the RSA algorithm. The attack is based on the fact that multiple threads

can run simultaneously on modern Simultaneous Multi-Threading (SMT) processors, and thus they

can share part of the cache subsystem. The spy process is thus able to observe other concurrent

threads’ L1 cache accesses.

- Attack Description: In the attack demonstration, the victim process performs an RSA oper-

ation, and the spy process runs simultaneously with the victim process. The spy process uses the

Prime and Probe technique described above to repeatedly load its own data into each cache line.

Meanwhile it uses the rdtsc instruction to measure the total time for PROBE-ing each cache set.

The victim’s cache accesses will evict the attacker’s data from the cache, causing different time

measurements for each set from the attacker’s perspective.

- RSA Description: To fully understand how the attack reveals RSA’s secret key, we need to

understand the RSA algorithm first. RSA is an algorithm for public-key cryptosystems. The method

to generate RSA private and public key pairs is briefly described as follow:

• We choose two primes p and q, where p 6= q.

• Calculate: N = p · q , and φ(N) = (p− 1)(q− 1), where φ() is the Euler function (φ(N) = the
number of positive integers less than N that are relatively prime to N).

• Randomly choose integer e (1 < e < φ(N)), such that e and φ(N) are coprime.

• Calculate the modular multiplicative inverse of integer e modulo φ(N) to get d.

• (N, e) is the public key, while (N, d) is the private key.

5

The encryption and decryption process are straight-forward:

• Encryption: given plaintext m, we do me ≡ c (mod N) to get encrypted message c.

• Decryption: given encrypted message c, we do cd ≡ m (mod N) to get decrypted message m.

RSA’s key generation scheme ensures that e and d have this kind of property to do encryption and

decryption.

- Attack Analysis: From the previous RSA descryption, we know that the core operation in

RSA is modular exponentiation and the exponent is the key. For OpenSSL, it computes a 1024-bit

modular exponentiation using two 512-bit modular exponentiations. The goal of the attacker is to

get every bit of the private key d used by the victim.

• The main reason that the attacker can extract information from the data cache side-channel

is that the modular exponentiation in OpenSSL is implemented with a series of squarings

and multiplications (decomposing x := ad mod p into a series of x := a2 mod p and x :=

x · a(2k+1) mod p; a here can be either the plaintext m or the encrypted message c). From

attacker’s perspective, the modular squaring and modular multiplication are easily distin-

guishable from their unique cache footprints. Thus, from the unique sequence of squaring and

multiplications, about 200 bits out of each 512-bit exponent can be obtained [25].

• Moreover, different cache footprints are left behind by the multiplication x := x ·a(2k+1) mod p

for different ks. As described above, a cache footprint is the timing information of accessing

all the cache sets during the PROBE phase. The multipliers a(2k+1) (k = 0, 1.., 15) are pre-

computed at the start of the modular exponentiation. When accessing the multiplier data,

the CPU fetches the data into the data cache. Because different multipliers reside in different

memory locations, different multiplier data may belong to different data cache sets. So after

each multiplication is executed, a distinguished data cache footprint is left. By examining the

footprint, we can identify the locations where these multipliers are stored. By oberserving a

sequence of these footprints, we may get the information of the sequence of multipliers that

are used, from which we can get additional key bits.

- Zhang’s Elgamal attack:

Another paper demonstrated the utilization of Cross-VM Side Channels to extract private ElGa-

mal keys [44]. Their work also exploits an access-driven side channel. However this side channel is

constructed on the L1 instruction cache, which is originally described by Aciiçmez [22]. In Zhang’s

attack, the victim process performs Elgamal decryptions using the libgcrypt v1.5.0 cryptographic

library [11], and the spy process schedules itself on the same physical CPU so that it can use the

Prime and Probe technique to collect information leaked out by the victim process.

6

Prime and Probe for the instruction cache is a bit different from that for the data cache, but has

the same idea (See Figure 2.2). Assume the cache is a w-way SA cache, and it has n cache sets, and

the cache block is b bytes. Then the cache has size b · w · n bytes. Also memory addresses that are

b · n bytes apart will be mapped to the same cache set.

To prime one cache set, we just need to allocate w cache blocks (the red (or dark) blocks in

Figure 2.2), and starting from the second cache block, each cache block is b · n bytes away from

the previous block. Inside each cache block is the instruction jmp b · n, which jumps to the next

block, except for the last block, which is a ret (return) instruction. When priming the cache set,

the attacker’s main program jumps (using call instruction) to the address of the first block. Then

the w cache blocks will be fetched into the cache set one by one, and the last block ret returns to

the main program. We can use the same mechanism to prime the remaining n − 1 sets. Basically,

we allocate a contiguous memory chunk that has the same size as the instruction cache to prime the

whole cache. PROBE-ing is just like PRIME-ing, except the rdtsc instruction is used to measure

the time to probe each set of the instruction cache.

Figure 2.2: Instruction Cache Prime and Probe

In Elgamal decryption, we have the encrypted message (a, b), and we need to use secret key x

to do m = decode(a, b) = b
ax(mod p) to get the decrypted message m. The decryption computes

the modular exponentiation ax (mod p). The modular exponentiation computed in libgcrypt v1.5.3

also uses the square and multiply algorithm. The square and multiply algorithm is depicted in

Algorithm 1. They let S, R, M stand for calls to functions Square, ModReduce, Mult, respectively,

inside SquareMult.

By observation, the sequence of function calls in one execution of SquareMult will leak in-

formation about the exponent exp, which is the secret key x here. For example, the sequence

7

(SRMR)(SR) corresponds to exp = 110b = 6. SRMR leaks information e2 = 1, and SR gives

e1 = 0 (note that the most siginificant bit, here e3, is always 1; the sequence leaks information from

the second most significant bit en−1 to the least siginificant bit e1). Unfortunately the attacker

can use the Prime and Probe technique to know the S, R, M sequence, and thus infer the secret

key. Because each of the S, R and M functions have their instructions located in different memory

addresses; performing these 3 calls will leave the instruction cache with different unique footprints.

The attacker can detect which function has been executed through the cache footprint derived from

the PROBE-ing phase.

Algorithm 1 SquareMult Algorithm

procedure SquareMult(base, exp,mod)

Let en, ..., e1 be the bits of exp, and en = 1

y ← base

for i = (n− 1)→ 1 do

y ← Square(y) (S)

y ← ModReduce(y,mod) (R)

if ei = 1 then

y ← Mult(y, base) (M)

y ← ModReduce(y,mod) (R)

end if

end for

end procedure

In Zhang’s work, they use a support vector machine (SVM) to classify the instruction cache

PROBE-ed footprints into the corresponding function calls (S, M or R). To make the attack actually

work, they have to deal with issues like observation granularity, observation noise etc. Especially

when their work elevates the side-channel attack from process-level to virtual machine level, they will

have to consider more issues, e.g. core migration, error correction, operation sequence reassembly

etc.

2.1.2 Trace-Driven Attack and Timing-driven Attack

For trace-driven attacks and timing-driven attacks, an attacker can get information related to the

cache hits and cache misses for the victim process’s memory accesses. In trace-driven attacks, the

profile of all the cache activities in terms of hit or miss for each memory access can be captured

by the attacker. While in timing-driven attacks, an attacker only gets the aggregate profile of the

cache activities (e.g. the total execution time for a cipher to do a block encryption), from which the

attacker can know approximate cache hits and misses.

In the timing attacks, an attacker can use a technique called Evict and Time [38] to introduce

some interference to the victim process and infer critical information from the latter timing results.

The attacker can frequently trigger a victim block encryption. Before each encryption, the attacker

8

evicts one specific cache set with its own data items, and then measures the encryption time. If the

victim process accesses the evicted set and replaces at least one of the attacker’s cache blocks, the

block encryption time tends to be higher. Bernstein’s AES attack [26] is this kind of timing attack.

However, instead of the attacker’s eviction of a cache set, some data components inside the victim

AES encryption process will always evict some fixed cache sets before each encryption.

- Bernstein’s AES attack: Bernstein’s attack presents a successful extraction of a complete AES

key from a networked server computer. The victim is a server-side service program that runs AES

encryption. The attacker can be a process requesting encryption service; he can choose different

inputs to the service AES encryption software and measure the time of each encryption. The attacker

process can perform requests either from a remote machine or in the same machine that runs AES

encryption. The victim uses OpenSSL v0.9.7a library [15] to do the AES encryption. To increase

encryption speed, four 1024-byte tables T0, T1, T2, T3 are pre-computed from 256-byte tables

S and S’. All the subsequent operations, such as sbox-lookup, shift-rows, mix-columns etc., can

be accomplished by directly indexing T0, T1, T2, T3. However, the time for these table lookups

depends on whether the accessed table entries are present in the cache or not, which means the

time for the whole AES computation is correlated with these table lookups. An attacker can detect

key-byte values from the distribution of AES encryption timings.

- Attack Summary:

Take AES128 for example, we have key length of 128 bits (16 bytes) and block length of 128 bits

(16 bytes). In the preparation phase, the attacker lets the victim use a known key K. He gives a

lot of different plaintext block inputs n to the encryption process (victim) and records the time for

each AES encryption. Suppose we just consider one byte n[0] (input n has 16 bytes n[0]...n[15]).

We record all the encryption times for n[0], and get the average time for each n[0] value (byte n[0]

has 8 bits, thus 256 possible values) (Figure 2.3 [41]).

Then in the attacking phase, the attacker repeats the previous phase with an unknown key

K ′, and gets the timing characteristics of byte n[0] for K ′ (Figure 2.4 [41]). The inputs are not

necessarily the same as that used in the preparation phase. Figure 2.3 and Figure 2.4 are just one

pair of timing characteristic charts; there are 15 other pairs for bytes n[1] to n[15].

During the final key recovery phase, we may first observe from Figure 2.3 that the encryption

time for the known key is maximum when n[0] = 223 = 11011111b, and from Figure 2.4 that

the time for the unknown key is maximum when n′[0] = 5 = 00000101b. Suppose the known

key byte K[0] = 33 = 00100001b, then the attacker can be almost sure that the AES time is

maximum when K[0] ⊕ n[0] = 33 ⊕ 223 = 00100001b ⊕ 11011111b = 11111110b = 254. Since in

AES, K[0]⊕ n[0] = K ′[0]⊕ n′[0], the attacker can conclude that the victim’s K ′[0] = 254⊕ n′[0] =

9

Figure 2.3: Timing Characteristic Charts for Byte 0 for Known Key K

Figure 2.4: Timing Characteristic Charts for Byte 0 for Unknown Key K ′

11111110b⊕ 00000101b = 11111011b = 251. The attacker can also get the rest of the key bytes from

the other 15 pairs of timing characteristic charts.

- Attack Analysis:

People may get confused about the final key recovery phase. Table lookups are intensively used

in the AES implementation of OpenSSL v0.9.7a [15] library and other cryptographic libraries to get

high performance. During the first round of each encryption, for each byte n[i] of the input plaintext,

K[i]⊕ n[i] is used to index one of the tables (K[i] is the i′th byte of the known key K). Similarly,

during the attack phase, K ′[i] ⊕ n′[i] is also used to index that table. If K[i] ⊕ n[i] = K ′[i] ⊕ n′[i],

then they are actually indexing the same entry in the table. Ideally, if the cache is large enough,

these table lookups will always hit in the cache. However, in the real case, just before the encryption

starts, some fixed AES table entries in the cache have always been evicted by some memory accesses

from the victim software itself. These memory accesses regularly contend for cache lines at fixed

locations. If given an index, the corresponding table entry is mapped to these ”hot” cache locations,

a cache miss occurs, and the average encryption time will be long (the high bar in Figure 2.3 and

Figure 2.4). Thus there are always some high bars in each of these 16 pairs of timing characteristic

10

charts. If index K[i] ⊕ n[i] and K ′[i] ⊕ n′[i] correspond to the high bars in Figure 2.3 and Figure

2.4, then they should be the same index. From K[i]⊕ n[i] = K ′[i]⊕ n′[i], we can get the unknown

key byte K ′[i].

2.2 Software and Hardware Solutions

A lot of solutions to mitigate information leakage of cache side channels have been proposed, and

most of them are software-based techniques. Earlier software solutions (mostly on AES) improve

security but may lead to significant performance degradation [24, 38]. Recently, progress has been

made in high performance AES implementations. Könighofer’s bitslices implementation [33], Intel’s

introduction of AES-NI instructions [37] as an extension to the x86 ISA, and Lee’s proposition of

a general-purpose parallel table lookup instruction [34] all speed up AES and mitigate cache side

channel attacks. Cache based hardware techniques have also been proposed. Some cache micro-

architecture designs allow security data to be put into the private partition or locked region in

the cache [39, 41], which prevents undesired cache evictions by other cache lines. However, cache

lines that are locked or belong to the private partition cannot be used by other processes’ cache

line data even if the partition is not fully used or the locked lines are not used, which cause a

cache under-utilization problem. Some other solutions use randomization-based approach [41, 42],

which randomizes cache interference by doing random permutation of the memory-cache mapping

or randomizing cache evictions.

2.3 Newcache

Newcache is a representative cache design using the randomization approach; it is first designed by

Wang and Lee [42] and then improved by Liu and Lee [35]. It employs the techniques of dynamic

memory-cache remapping and randomized eviction.

For a conventional SA cache, the index-bits from the memory address are used to index the cache

set. n index bits indicate 2n sets in the cache. For example, the data cache and instruction cache

we use in our lab have 64 sets, and bit 11 to bit 6 of the physical memory address are used to index

the cache set. For a 32KB SA cache with 64 byte cache-line size, we have 32kB/64B/64 = 8 way

set-associative cache. Our Intel cpu uses virtually-indexed physically-tagged (VIPT) caches, thus

cache indexing and TLB lookup are done in parallel. The virtual tag is translated into physical tag,

and then compared with the 8 physical tags inside the indexed cache set. If the physical tag matches

one of the physical tags inside the set, then the corresponding cache block contains the desired data;

otherwise a new cache block is fetched from higher level caches or main memory into the cache.

Some cache block is replaced, and the corresponding physical tag in the cache set is updated.

11

2.3.1 The Original Newcache [42]

Newcache is quite different from a conventional SA cache. A 32KB Newcache with 64Byte cache-line

size has 32kB/64B = 512 entries. Thus we need n = log2512 = 9 bits to index these 512 entries.

However, As shown in Figure 2.5 [42], it uses n+ k index bits. In this case the n+ k index bits are

no longer used to index a cache set to compare the corresponding physical tags, instead the n + k

bits themselves are used for comparison first. The n+ k bits are stored in one of the Line Number

Registers (LNreg), along with a d-bit RMT ID. These d+n+k bits form the Line Number Register

(LNreg) for one entry. When the CPU needs data from a typical address, the d+n+ k bits are first

compared with all the 2n LNregs (at most one LNreg will match). If one LNReg matches, the tag

comparison will be performed in the corresponding tag entry in the tag array. If the tag matches,

it means that the corresponding cache block contains the desired data. Otherwise, either an index

miss or a tag miss causes cache line replacement.

Figure 2.5: Newcache Block Diagram 1

- Newcache as PIPT cache:

Also, Newcache is implemented as a physically indexed physically tagged (PIPT) cache in gem5; so

the virtual address is first translated to the physical address via the TLB, and then the physical

address is used to fetch data in Newcache. In x86, a memory chunk is allocated as 4kB pages,

and the lower 12 bits of the memory address are used as offset inside the page. For a 32KB 8-way

set-associative cache, bit 11 to bit 6 are the index bits, and bit 5 to bit 0 are the cache block offset;

thus there is no aliasing problem, and the cache indexing and TLB lookup can be done in parallel,

because the lower 12 bits of the address will not change at all. However for a 32kB Newcache with

12

k = 4, the memory address uses n + k = 9 + 4 = 13 index bits; along with the 6 bits for block

offset, these 19 bits will cause aliasing problem with 4kB page’s 12 bits, which is why Newcache is

implemented as a PIPT cache.

- LDM Cache:

As described above, Newcache contains 2n physical cache lines, while it uses n+ k index bits, which

means that 2n+k cache lines can be mapped into 2n physical cache lines. However, the cache block

with the same n + k bits cannot appear more than once in Newcache. It is equivalent to mapping

the memory space to a larger logical direct-mapped (LDM) cache with 2n+k lines before mapping to

Newcache. The LDM cache does not physically exist; it is only used to facilitate the analysis. The

LDM cache is just a direct-mapped cache with n + k index bits. So the memory-cache mapping is

a fixed-mapping from the memory to the LDM cache, and is a fully-associative mapping from the

LDM cache to the Newcache.

- RMT ID:

For x86, the TLB simply maps virtual addresses to physical addresses; thus for x86, we have to do a

full TLB flush on each context switch. Some other platforms (e.g. MIPS, some ARM core etc.) map

(ASID, virtual address) pairs to physical addresses. ASID (Address Space Identifier) is basically an

identifier for a process. In the Newcache design, Z. Wang used something similar to ASID called

RMT ID. The RMT ID identifies a hardware context, and each process is attached to a context

RMT ID. A process that needs to be protected against information leak from other processes should

use a different RMT ID. RMT ID’s d bits and the n+ k index bits are stored inside the LNregs, so

actually the LDM cache has 2d+n+k cache lines that can be mapped into the 2n physical cache lines.

- Protection Bit:

As shown in the above block diagram (Figure 2.5), each cache line also has a protection bit P,

indicating if the corresponding cache line is protected or not. Z. Wang puts the protection bit in

the tag array, which may cause some security problem as analyzed by F. Liu [35]. F. Liu puts the

protection bit P inside the LNreg. Also, each page table entry and page directory entry should be

implemented with a Protection Flag bit, indicating a protected page.

- Cache access handling process:

The cache access handling process for Z. Wang’s Newcache is shown in Figure 2.6 [42], which is

called SecRAND. When the CPU needs to fetch data of memory block D from Newcache, it first

uses d+ n+ k (RMT ID + index-bits) bits of D to compare with the contents in each 2n LNreg. If

no matched LNreg is found, an index miss occurs (4th column). For this case, a random victim from

13

the 2n cache line is selected for replacement, thus the interference caused by an index miss is always

randomized. If the LNreg of a cache line C matches the RMT ID + index-bits of D, but the tag of

D does not match the corresponding tag in the tag array; in this case, a tag miss occurs. A tag miss

always indicates a matching RMT ID and index-bits, thus C and D have the same RMT ID, which

usually means C and D belong to the same process. This is internal interference of the same process

or processes in the same security group (with the same RMT ID). Under the tag miss, if it involves

protected memory lines (colume 3), meaning that the interference may leak out critical information,

a random victim is evicted, and D is accessed directly from higher level cache or memory without

being put into the cache. The protection bit introduced here is used to randomize internal cache

interference. If the tag miss does not involve protected memory lines (column 2), the miss is handled

normally like in a traditional cache: the cache block corresponding to the LNreg is evicted, and the

new cache block is fetched into this location. Cache hits (both index-bits and tag match) (column

1) are also handled as for a traditional cache.

Figure 2.6: Cache Access Handling Process 1 (SecRAND)

However, Z.Wang’s design has some security problems. By carefully redesigning attacks targeting

newcache, F.Liu found that the original Newcache cannot 100% prevent the evict and time attack

(e.g. Bernstein’s AES attack) [35]. We noticed that although the mapping from the LDM cache to

the physical cache is fully associative, the mapping from the memory to the LDM is fixed. Thus a

memory line only has a fixed cache slot to be placed in if the mapping from the LDM cache to the

physical cache has been established (i.e. index hit but tag miss). The redesigned attack involves an

attacker’s memory line A that has the same mapping (same d+n+ k LNreg bits) as a memory line

14

E that contains some of the AES table entries. Before each of the consecutive measurements, the

attacker accesses A and then triggers a block encryption. If line A occupies the cache slot first, the

following access to E will be a tag miss involving protected memory line (E has its P-bit set). Thus

E cannot be fetched into the cache slot and replace A, but is accessed from memory. The SecRAND

algorithm cannot prevent the attacker’s memory line A from occupying the conflicting cache slot

first when neither A nor E is in the cache. Thus the following accesses to E are all memory accesses

(taken a longer time like a cache miss), which helps the attacker to achieve a time difference of

AES table accesses between E and other AES table entries (other AES table entries in the physical

cache).

2.3.2 The Modified F. Liu’s Newcache [35]

F. Liu puts the protection-bit (P-bit) into the LNregs instead of the tag array (Figure 2.7 [35]). The

new Newcache access handling process will consider a P-bit difference as an index miss (Figure 2.8

[35] column 3). So if line A occupies the cache slot first, the following access to E will be an index

miss, and a random cache line is chosen to be replaced. The new Newcache access handling process

provides a true randomized memory-cache mapping, and the internal cache interference through the

tag miss of the original Newcache is eliminated. The resulting replacement algorithm is also simpler

(see Figure 2.8).

Figure 2.7: Newcache Block Diagram 2

15

Figure 2.8: Cache Access Handling Process 2

2.3.3 Security Analysis

RMT ID is used to distinguish different processes, or processes from different security regions. The

index miss caused by RMT ID will randomize the eviction, thus the attacker can get no useful

information about his evicted cache lines in the PRIME-PROBE attacks (e.g. Percival’s RSA attack,

Zhang’s ElGamal attack etc.). Basically, RMT ID is used to eliminate external cache interference

from the attacker’s process.

P-bit is used to set protected memory regions inside a process. The index miss caused by P-bit

mismatch will also randomize the eviction. Thus for attacks concerning internal cache interference

(e.g. Bernstein’s AES attack), the evicted cache lines will no longer be some fixed entries of the

AES table. Instead, the randomized evicted cache lines will make the obtained timing information

useless.

One more thing to notice: F.Liu’s redesigned attack targeting the original Newcache actually

involves an attacker process’s memory cache lines A occupying some AES table’s cache lines E.

Actually, if the attacker’s process and the victim process (AES encryption program) are assigned

different RMT IDs, the following access to E will be considered as an index miss in the first place.

To make the attack work, the victim process’s binary should be modified, so the malicious data will

be assigned with the same RMT ID. The attack model here is unrealistic, in my opinion.

After some careful thoughts, I think that under this attack model, F.Liu’s new Newcache still

does not necessarily prevent the redesigned Bernstein’s AES attack. If the attacker has the power

to modify the binary, then modifying the P-bit of his own cache lines seems even easier. As long as

the attacker allocates himself memory locations that have the same n+ k index bits, RMT ID bits

16

and the P-bit as those of the victim’s cache lines, he can always bypass the index miss and force a

tag miss (See Figure 2.8 column 2). The attacker is thus still able to occupy cache lines in the LDM

cache that should be occupied by the protected AES table entries before each encryption, which

will then cause a longer encryption time every time the user tries to access that portion of the AES

table.

In summary, if we use Fangfei’s attack assumption that the attacker can modify RMT ID and

the P-bit, then neither the old nor the new Newcache can prevent the redesigned attack. However,

in the real world, RMT ID is deliberately designed to mitigate Fangfei’s redesigned attack. Two

cache lines with different RMT ID are considered as index miss in the first place, and the attacker’s

cache line A can never occupy the cache before victim’s cache line E does.

There is actually another question: do we actually need the P-bit in a real implementation to

prevent Bernstein’s attack? Is the P-bit really necessary to prevent internal cache interference?

Note that the success of Bernstein’s attack relies on its internal contention (from some program

wrapper module) with some AES entries for the same cache lines (which means they have the same

set number (6-bit) in the conventional SA cache). However, in Newcache, we have 9-bit index bits,

plus k=4 Nebit. Will the cache lines that originally contended for the same sets still have the same

13 bits as those entries in the AES tables? Probably not, as the index bits increase, the chance of a

program wrapper module and the AES table entries contending for the same physical cache lines is

already greatly reduced.

These analysis will give system designers useful information to judge how to implement the P-bit

and RMT ID bits.

17

Chapter 3

NewCache Performance

Measurement and Analysis for

Cloud Server Benchmarks

In this chapter, we use Newcache as a (1) L1 data cache, (2) L2 cache, (3) L1 instruction cache,

and (4) mix of the previous 3 caches, we measure the performance difference between Newcache

and conventional set-associative (SA) caches. To see the performance difference, we use different

nebits (nebits are the k bits of the n + k index bits described in Chapter 2.3.1) and cache size for

Newcache, and different associativity and cache size for the SA cache. Then we simulate server

and client communication under gem5 [20] (a cycle accurate architectural simulator). We use these

different cache configurations on the server side, and measure the cache performances for different

cloud server benchmarks on the server side. These server applications are driven by testing tools from

the client side. This experiment will help us gain a deeper understanding of Newcache performance

under real world common server platforms and applications.

Table 3.1 shows the definitions of all the parameters we measured and analyzed for each bench-

mark.

3.1 Gem5 Simulation Methodology

To simulate both server side and client side, we need to do a dual-system configuration under gem5.

Since most current programs run under x86 architecture, we want to ensure that x86’s dual-system

works under gem5. The configuration was successfully set by F.Liu in our lab. She assigned I/O

Advanced Programmable Interrupt Controller (APIC) PIN17 to the Ethernet device and configured

I/O APIC via Multiprocessor Configuration Table (MP Table, a data structure in BIOS). As shown

18

Table 3.1: Metrics Definitions

IPC
Instructions per cycle: the average
number of instructions executed for
each clock cycle for each benchmark

L1 Data Cache Miss Rate
The overall misses of L1 Data cache

over the overall accesses to
L1 Data cache

L1 Instruction Cache Miss Rate
The overall misses of L1 Instruction

cache over the overall accesses to
L1 Instruction cache

Local L2 Cache Miss Rate for Data
The overall data misses of L2 cache

over the overall data accesses to
L2 cache

Local L2 Cache Miss Rate for Instructions
The overall instruction misses of L2

cache over the overall instruction
accesses to L2 cache

Global L2 Cache Miss Rate for Data
The overall data misses of L2 cache

over the overall accesses to
L1 Data cache

Global L2 Cache Miss Rate for Instructions
The overall instruction misses of L2

cache over the overall accesses to
L1 Instruction cache

in Figure 3.1, after configuration, the server side (Test system) and the client side (Drive system)

should be able to communicate via the Ethernet link. The server has an IP address 10.0.0.1, and

the client has an IP address 10.0.0.2. The server has different server-side applications installed.

The drive system is used to send requests to the server, and the server handles the requests. The

purpose of the experiment is to see the performance of different detailed cache models (SA cache

and Newcache) on the server side.

Figure 3.1: x86 Dual System

It’s not easy to install server benchmarks under the gem5 simulator system. So we install the

software package on a real machine, and then copy the installed package and all the required dynamic

libraries to gem5’s image disk. Both server side and client side use a basic Linux system installed on

gem5’s image disk. When booting the dual system in gem5, both server and client configure their

network interface. The server starts the required network services, sets the necessary server side

19

configuration, and sends a ‘ready’ signal to the client. The client waits for the ‘ready’ signal, and

after that, drives the server side with requests.

Table 3.2 shows the detailed base CPU and cache configurations used on the server side of gem5.

The configurations are collected from Hennessy and Patterson’s latest architecture book [30] for

Intel’s Core i7 hierarchy. Gem5 simulates one of the 4 cores of Intel i7. All the caches are normal SA

Cache. Since latest i7 has very high cpu frequency, 4 cycles latency for L1-ICache and L1-Dcache

hits are not too much penalty. Based on the base configurations, we change different levels’ cache

type to Newcache and measure the performance differences. The baseline Newcache configuration

has k=4.

Table 3.2: Gem5 Base CPU and Cache Configurations

Single-core
out-of-order

X86 processor

L1-ICache
(private)

L1-DCache
(private)

L2 Cache
(private)

L3 Cache
(shared)

Memory
(shared)

32 kB
4-way
4-cycle
latency

32 kB
8-way
4-cycle
latency

256 kB
8-way

10-cycle
latency

2MB
16-way
35-cycle
latency

2GB
100-cycle
latency

Cache line size 64B
Clock freq 3 GHz
Evaluate the performance of Newcache as L1 data cache, L2 cache and

L1 instruction cache, k=4 for baseline Newcache configuration

3.2 Cloud Server Benchmarks Description and Selection

We divide cloud server benchmarks into several categories based on D. Perez-Botero’s MSE thesis

[40]: Web Server, Database Server, Mail Server, File Server, Streaming Server, and Application

Server. We describe the potential possible benchmarks for each category and the way we do the

performance measurements.

3.2.1 Web Server and Client

When people want to host web sites (e.g., a small company’s homepage, a blog, etc.), a software web

server is required to handle clients’ Hypertext Transfer Protocol (HTTP) requests, and to process

and deliver web pages to clients. Sometimes we also deploy a database server (MySQL [13], etc.)

to store data and a server-side scripting engine (PHP [16], etc.) to generate dynamic web pages if

necessary. The Web Server and Client are basically chosen by F. Liu.

Server:

- Apache HTTP server (httpd) [2]: We basically choose httpd as our web server. Apache httpd

has been the most popular web server on the Internet since April 1996. The Apache HTTP Server

Project is an effort to develop and maintain an open-source HTTP server for modern operating

20

systems including UNIX and Windows NT. On the server side, we write a script called apachectl,

which uses the binary httpd to start the Apache HTTP server.

Client:

- Apache Benchmark Tool (ab) [1]: ApacheBench (ab) is a single-threaded command line com-

puter program for measuring the performance of HTTP web servers. It is also well suited for the

non-GUI testing environment under gem5. It is originally designed to test the Apache HTTP Server,

but actually it is generic enough to test any web server, which especially shows how many requests

per second the Apache installation is capable of serving. ab allows picking the number of total

requests and the number of concurrent requests. For example, to send 1000 HTTP requests to

our Apache server with a concurrency of 10 requests at the same time, we type ab -n 1000 -c 10

http://10.0.0.1:8080/.

3.2.2 Database Server and Client

The Database Server and Client are also chosen by F.Liu.

Server:

- MySQL [13]: MySQL is the database server we select for the test. It is a famous open-source

relational database management system (DBMS). It is a popular choice of database for use in web

applications, and is a central component of the widely used LAMP open source web application

software stack. To start MySQL server, we need to do some post-installation setup. We need to

create a user and group for the main program mysqld to run. Then we run script mysql install db

to set up initial grant tables, which determine how users are permitted to connect to the server.

Finally we start mysqld service and explicitly allow the client to remotely connect to the server.

- IBM DB2 [8]: IBM DB2 is an alternative server. It is a commercialized family of database server

products developed by IBM. It is standardized but closed source and expensive.

Client:

- SysBench [19]: SysBench is a modular, cross-platform and multi-threaded benchmark tool for

evaluating OS parameters that are important for a system running a database under intensive load.

The idea of this benchmark suite is to quickly get an impression about system performance without

setting up complex database benchmarks. In SysBench, we use OLTP test mode, which benchmarks

a real database’s performance. In the preparation phase, we create test tables with 100 records,

while for the running phase, we do 200 advanced transactions.

3.2.3 Mail Server and Client

We can categorize mail servers into outgoing mail servers and incoming mail servers. The outgoing

mail server is known as Simple Mail Transfer Protocol (SMTP), while the incoming mail server can

be Post Office Protocol v3 (POP3) or Internet Message Access Protocol (IMAP). We mainly focus

21

on SMTP under gem5.

Server:

- Bhm [17]: We choose bhm to act as the SMTP server. A sender SMTP server would receive

messages from email clients (Gmail, Outlook Express, etc.), and a message usually contains the

sender’s and recipients’ email addresses, the message body, attachments, etc. The sender SMTP

server would put the message into a FIFO queue and send them to other servers, which are finally

routed to the recipient’s POP3 or IMAP server. The bhm program is a simple SMTP sink program,

which monitors TCP:25 on the server side and dumps the messages to /dev/null. Typing bhm t X

in the command line means using X threads to receive incoming messages.

Client:

- Postal [17]: We use postal to send messages to the server. Postal aims at benchmarking mail

server performance. It shows how fast the system can process incoming email. We can set thread

number, message size on command line when using postal.

Testing:

Bhm is fixed to use 2 threads to receive incoming messages. In the results shown in the next few

sections, Mail tx means using x threads in Postal to send messages to server. In gem5 dual system,

Mail t1 sends 521KB/minute, Mail t2 sends 1043KB/minute, and Mail t5 sends 2245KB/minute.

All three tests last 20 seconds.

3.2.4 File Server and Client

A client can interact with the remote server file system via serveral protocols: the File Transfer

Protocol (FTP), the SSH File Transfer Protocol (SFTP), the Server Message Block (SMB) protocol,

the Network File System (NFS) protocol, etc. FTP is widely used, but it only transfers (upload-

/download) files between servers and clients. In SFTP and SMB, the client can also mount and

interact (view, edit, zip, etc.) with files and directories located on a remote server. In addition,

SMB provides file sharing and printing services to Windows clients as well as Linux clients.

Server:

- Samba smbd [18]: We use smbd as the file server in our test. A session is created whenever a

client requests one. Each client gets a copy of the server for each session. This copy then services all

connections made by the client during that session. We type smbd start to start the smbd service.

Client:

Dbench [5]: We choose dbench as the workload generator. It can generate different I/O workloads

to stress either a file system or a networked server. We can first choose dbench’s stressing backend

(smb, nfs, iscsi, socketio, etc.) by specifying the -B option. Since the server is Samba smbd, we

choose the backend to be smb. Then we need to specify the shared file server folder and the user-

password pair through the –smb-share option and the –smb-user option. The shared folder and the

22

user-password pair are already set up by the smbd server. However in our experiments, we don’t

use a user-password pair. Moreover, dbench has a key concept of a “loadfile”, which is a sequence

of operations to be performed on the file server’s shared folder. The operations could be “Open file

1.txt”, “Read XX bytes from offset XX in file 2.txt”, “Close the file”, etc. In the experiment, we

generate two different “loadfiles”, one is a write-intensive load (smb-writefiles.txt), and another is

a read-intensive load (smb-readfiles.txt). Finally, we can add a number n at the end of the dbench

command to specify the total clients simultaneously performing the load.

Testing:

We use smbd and dbench to form file server and client. In the results shown in the next few sections,

we type ./dbench -B smb –smb-share=//10.0.0.1/share –smb-user=% –loadfile=smb-writefiles.txt –

run-once –skip-cleanup 3 to generate Dbench write, which means launching 3 clients (simulated

as processes), and each client opens and writes five 64kB files. By replacing loadfile with smb-

readfiles.txt, we generate Dbench read, which launches 3 clients and each client opens and reads five

64kB files.

3.2.5 Streaming Server and Client

There are different kinds of streaming protocols such as RTSP/RTP, MMS, HTTP etc. RTSP al-

lows states, and streaming can be controlled and given feedback by the client side, while HTTP is

a stateless protocol. We choose RTSP protocol. Most RTSP servers use the Real-time Transport

Protocol (RTP) in conjunction with Real-time Control Protocol (RTCP) for media stream delivery.

In a word, RTP is used for data transmission while RTCP is used to control the transmission.

Server:

- ffserver [6]: We use ffserver as our streaming server. It is a streaming server for both audio and

video, which can stream mp3, mpg, wav etc. ffserver is part of the ffmpeg package. It is small and

robust. Before starting the server, we need to register server side media-files at ffserver.conf file.

- LIVE555 Media Server [12]: The “LIVE555 Media Server” is a complete RTSP server appli-

cation. It can also stream several kinds of media files. Unlike ffserver, LIVE555 Media Server does

not need to register all the media files during configuration. Instead, we just need to set the current

working directory which contains all the media files to make these files stream-able.

- VLC [21]: VLC is a free and open source cross-platform multimedia player and framework, and it

is the favorite multimedia player for a lot of people. By doing simple configurations on VLC, we can

also make it a useful streaming server. All the other computers that have VLC installed on them

can stream video or audio located on a remote server. However, it is not a good option for gem5’s

testing purpose. Basically VLC uses LIVE555 Media Server as its streaming component, but VLC

also contains a lot of other internal packages that cannot be disabled (e.g. encoder/decoder packages

etc.). A lot of internal packages require too many dynamic libraries, and installing all these libraries

23

one by one would be quite inconvenient. Most importantly, loading all the libraries and running the

whole VLC as a test server on gem5 would be really slow.

Client:

- openRTSP [14]: We use openRTSP as our streaming client. openRTSP is an RTSP client, which

is also part of the LIVE555 streaming media package. RTSP (Real Time Streaming Protocol) is a

network control protocol designed to control streaming media servers. Clients can issue VCR-like

commands, such as play and pause, to facilitate real-time control of playback of media files from the

server.

In the experimental results shown in the next few sections, Rtsp sX means sending X different

remote connection requests to the ffserver for media file streaming. We basically generate 3 different

streaming workloads (X=1, X=3 and X=30) to test the streaming server.

3.2.6 Application Server and Client

An application server [4] is either a software framework that provides a generalized approach for

creating an application-server implementation or the server portion of a specific implementation.

An application server acts as a set of components accessible to the software developer through an

API defined by the platform itself. For web applications, these components’ main job is to support

the construction of dynamic pages [4]. However, many application servers also provide services

like clustering, fail-over, and load-balancing [4]. The currently most used Java application server is

actually an extension of Java virtual machine for running applications. The server handles connection

to database on one side and connections to the web client on the other side [4]. Application servers

differ from web servers by dynamically generating html pages each time a request is received, while

most http servers just fetch static web pages. Application servers can utilize server-side scripting

languages (PHP, ASP, JSP, etc.) and Servlets to generate dynamic contents.

Server:

- Tomcat [3]: We use Tomcat on the server side. Tomcat, Jetty [10], Jboss [9] and Glassfish

[7] are all popular Java application servers. Tomcat is more popular, because it is small, robust,

and supports the required JSP and Servlet. Most of the application servers work above the Java

runtime environment; they are pretty slow when launching under gem5. Tomcat would take an hour,

Glassfish4 would take more than 8 hours. That’s the main reason we use Tomcat as the application

server.

Client and Testing:

For the testing, we use Apache ab [1] to send HTTP requests to Tomcat (Apache ab is described

previously as a web server client). Tomcat provides us with a lot of small JSP and Servlet examples,

which are quite useful. We use command: ab -n Y -c Z http://10.0.0.1:8080/(X URLs), where

X represents X different URLs, Y is the number of requests to perform for each URL, and Z is

24

the requesting concurrency for each URL. These different URLs contain different JSP and Servlet

examples provided by Tomcat. In our experiments, we fix Y=10 and Z=2, and choose X to be 1,

3 and 11, respectively, for three different workloads, ranging from light to heavy work.

3.2.7 Benchmark Summary

Table 3.3 summarizes the testing benchmarks and the driving tools we use for the Web Server,

Database Server, Mail Server, File Server, Streaming Server and Application Server.

Table 3.3: Summary of Cloud Server Benchmarks

Server-side Benchmarks Client-side Driving Tool
Web Server Apache httpd Apache ab
Database Server MySQL SysBench
Mail Server Bhm Postal
File Server Samba smbd DBench
Streaming Server ffserver openRTSP
Application Server Tomcat Apache ab

We should also notice that some Server-side benchmarks require some time to start up before

their services are available to the client under gem5. I actually use a daemon program to test

periodically if the service ports are opened up by the benchmark. Only until that time will the

server send a ‘ready’ signal to the client.

3.3 Testing Results: Newcache as L1 Data Cache

Based on the base CPU and cache configurations in Table 3.2, we replace the L1 data cache with

Newcache. We run the benchmark services on the server side and driving tools on the client side.

We then collect the required data and get IPC (Instructions per cycle), Data Cache Miss Rate and

Global L2 Miss Rate for all the benchmarks. These results are compared with those we got from

the base configurations, where L1 data cache is a conventional set-associative (SA) Cache.

3.3.1 IPC

Figure 3.2 shows the IPC for different cache sizes for all the benchmarks. The results include a

conventional SA cache (size 16kB, 32kB, and 64kB) and Newcache (size 16kB, 32kB and 64kB).

From the results, we see that:

• IPCs for these server benchmarks are far below 1, which means there is not a lot of instruction-

level parallelism that can be exploited by the Out-Of-Order processor. Server applications

tend to have very low IPCs [28], because they spend a lot of time in the kernel. Accessing the

network stack, the disk subsystem, handling the user connections and requests, syncing large

25

Figure 3.2: Newcache as L1-DCache: IPC for Different Cache Sizes

amounts of threads all require the program trapping into the kernel, which also induces a lot

of context switches. Kernel codes have a lot of dependencies, thus causing low IPCs.

• For both SA cache and Newcache, as the cache size increases, the IPC also increases for each

benchmark. Larger cache tends to have more immediate data available for instructions’ use,

thus more instructions that have no dependencies can execute simultaneously in this case,

which leads to larger IPC.

• From the Streaming Server test rtsp s1, rtsp s3, rtsp s30 and Mail Server test mail t1, mail t2,

mail t5, we can see that as the client requests increase, the IPC decreases, which agrees with

our expectation. As the server program handles more user connections and requests, and

sync more threads etc., more kernel traps are incurred. More context switches and a lot of

dependencies inside kernel codes causes lower IPCs.

• There is an abnormal value for tomcat.t1 under SA-size16. From time to time, gem5 may cause

certain glitch on a certain running of a benchmark. We also cannot get any result for mysql

under SA-size16. Under a small cache size, some benchmark service cannot start normally

under gem5 or the results cannot be dumped out, which might be caused by gem5’s internal

implementations.

Table 3.4 summarizes the Newcache’s IPC increase relative to SA for different cache sizes on

average. As we described in Table 3.2, the baseline Newcache has Nebit k = 4, and the baseline SA

cache has associativity 8 for L1-DCache. We can see that basically Newcache performs as well as SA

cache. As the size increases, Newcache tends to perform a little better than SA cache. Newcache’s

fully associative mapping from LDM to physical cache and it’s random eviction scheme tend to

benefit more from larger cache sizes.

26

Table 3.4: Newcache as L1-DCache: Different Cache Sizes’ IPC, and IPC Increase Relative to SA

16KB 32KB 64KB
SA Newcache SA Newcache SA Newcache

Average 0.2890 0.2791 0.2999 0.2984 0.3125 0.3167
Increase relative

to SA
-3.45% -0.52% 1.36%

Figure 3.3 shows the IPCs for different SA-Associativity and Newcache-Nebit for all the bench-

marks. The larger the SA-Associativity, the more cache lines with the same index can stay in the

cache at the same time. Similarly, the bigger the Newcache-Nebit, the longer the index (n+ k) bits,

thus the larger amount of cache lines that can be mapped into the physical cache at the same time.

Figure 3.3: Newcache as L1-DCache: IPC for Different Associativity and Nebit

Table 3.5 shows all these configurations’ IPC Increase Relative to SA-8way on average of all the

benchmarks. As we described in Table 3.2, the baseline Newcache and the baseline SA cache have

32kB cache size. Again, we can see that Newcache performs as well as SA cache. The IPCs tend

to be better with larger SA-Associativity. Table A.2 in Appendix A shows that for most of the

benchmarks, the IPCs tend to be better with bigger Newcache-Nebit. A 32kB Newcache with Nebit

k = 3 has a 256kB LDM cache, while a 32kB Newcache with Nebit k = 6 has a 2048kB LDM cache.

Unlike desktop applications, server applications tend to fetch data from a wider range of memory

space, because server applications may need to handle a lot of user connections and requests, and

sync large amounts of threads. That’s why server applications tend to benefit more from bigger

Newcache-Nebit. However, in Table 3.5, the average IPC seems to decrease for larger nebit, because

some of the benchmarks in Table A.2 do have lower IPC for k = 4 and k = 5. Also, the glitch of

mail t5 in Figure 3.3 causes the average (arith-mean) IPC of k = 6 to be a bit higher. Thus, some

benchmarks benifit from larger nebit, some may not.

27

Table 3.5: Newcache as L1-DCache: Different Associativity and Nebit’s IPC, and IPC Increase
Relative to SA-8way

SA
2way

SA
4way

SA
8way

Newcache
k=3

Newcache
k=4

Newcache
k=5

Newcache
k=6

Average 0.2929 0.2962 0.2999 0.2991 0.2984 0.2983 0.3082
Increase

relative to
SA-8way

-2.35% -1.26% 0.00% -0.28% -0.52% -0.53% 2.77%

3.3.2 DCache Miss Rate

Figure 3.4: Newcache as L1-DCache: DCache Miss Rate for Different Cache Sizes

Figure 3.4 shows the Data Cache Miss Rate under different cache sizes for all the benchmarks.

We can find something similar to the IPC results:

• For both SA cache and Newcache, as the cache size increases, the DCache Miss Rate decreases

for each benchmark. Larger cache tends to have more data available for immediate use, which

leads to lower DCache Miss Rate.

• From the Streaming Server test rtsp s1, rtsp s3 and rtsp s30 and Mail Server mail t1, mail t2,

mail t5, we can see that as the client requests increase, the DCache Miss Rate increases a lot.

Because as the server handles more user requests and more threads, the data from different

threads tend to contend for the limited slots in the cache, thus evicting each others’ data and

causing larger DCache Miss Rate.

Table 3.6 summarizes the Newcache’s DCache Miss Rate increase relative to SA for different

cache sizes on average. Still, Newcache basically performs as well as SA cache. 16kB cache size

really limits the Newcache performance, while as the size increases, Newcache tends to perform

much better than SA cache. As we described above, Newcache tends to benefit more from larger

cache sizes.

28

Table 3.6: Newcache as L1-DCache: Different Cache Sizes’ DCache Miss Rate Increase Relative to
SA

16KB 32KB 64KB
SA Newcache SA Newcache SA Newcache

Average 0.0836 0.0945 0.0598 0.0640 0.0437 0.0420
Increase relative

to SA
13.05% 6.97% -3.91%

Figure 3.5 shows the DCache Miss Rate for Different Associativity and Nebit, and Table 3.7

shows the different configurations’ DCache Miss Rate Increase Relative to SA-8way.

Figure 3.5: Newcache as L1-DCache: DCache Miss Rate for Different Associativity and Nebit

Table 3.7: Newcache as L1-DCache: Different Associativity and Nebit’s DCache Miss Rate Increase
Relative to SA-8way

SA
2way

SA
4way

SA
8way

Newcache
k=3

Newcache
k=4

Newcache
k=5

Newcache
k=6

Average 0.0706 0.0641 0.0598 0.0650 0.0640 0.0637 0.0602
Increase

relative to
SA-8way

18.12% 7.22% 0.00% 8.68% 6.97% 6.45% 0.70%

From the results, we can see that SA-8way performs best for DCache Miss Rate under different

DCache configurations. Smaller SA-Associativity and smaller Newcache-Nebit have large negative

impacts on performance, causing high miss rate. From the results, we can also see that only when

Nebit reaches 6 can Newcache reach almost the same miss rate as that of the SA-8way (base case).

29

3.3.3 Global L2 Miss Rate

Here L2 Cache is the base a conventional 256kB 8-way SA cache. The Global L2 Cache Miss Rate

is the miss rate for data access. Here

Global L2 Miss Rate =
l2.overall misses

cpu.dcache.overall accesses

Figure 3.6 shows the Global L2 Miss Rate under different cache sizes for all the benchmarks.

Figure 3.6: Newcache as L1-DCache: Global L2 Miss Rate for Different Cache Sizes

Table 3.8: Newcache as L1-DCache: Different Cache Sizes’ Global L2 Miss Rate Increase Relative
to SA

16KB 32KB 64KB
SA Newcache SA Newcache SA Newcache

Average 0.0139 0.0142 0.0141 0.0138 0.0130 0.0123
Increase relative

to SA
2.40% -1.81% -5.17%

We can find something similar to the DCache Miss Rate results:

• As analyzed above, for both SA cache and Newcache, as the cache size increases, the DCache

Miss Rate decreases for each benchmark. Because larger cache tends to have more data

available for immediate use, which leads to lower DCache Miss Rate. So the number of data

requests from DCache to L2 Cache also shrinks, which is why Global L2 Miss Rate also

decreases.

• The test results for the Streaming Server series rtsp s1, rtsp s3, rtsp s30 and the Mail Server

series mail t1, mail t2, mail t5 also meet our expectations. The more the client’s requests, the

larger the Global L2 Miss Rate.

30

Table 3.8 shows the different cache sizes’ Global L2 Miss Rate Increase Relative to SA. Still,

Newcache basically performs as well as SA cache. It’s interesting to find that after changing DCache

to Newcache, Global L2 Miss Rate benefits a lot for 64kB cache sizes.

Figure 3.7: Newcache as L1-DCache: Global L2 Miss Rate for Different Associativity and Nebit

Table 3.9: Newcache as L1-DCache: Different Associativity and Nebit’s Global L2 Miss Rate Increase
Relative to SA-8way

SA
2way

SA
4way

SA
8way

Newcache
k=3

Newcache
k=4

Newcache
k=5

Newcache
k=6

Average 0.0141 0.0141 0.0141 0.0137 0.0138 0.0138 0.0136
Increase

relative to
SA-8way

0.42% 0.60% 0.00% -2.82% -1.81% -1.67% -3.12%

Figure 3.7 shows the Global L2 Miss Rate for Different Associativity and Nebit, and Table 3.9

shows the different configurations’ Global L2 Miss Rate Increase Relative to SA-8way. When DCache

is Newcache, Global L2 Miss Rates are even better than those of a conventional SA cache.

3.4 Testing Results: Newcache as L2 Cache

Similar to the previous section, based on the base CPU and cache configurations in Table 3.2, we

replace L2 cache with Newcache in this test. We run the benchmark services on the server side and

driving tools on the client side. We then collect the required data and get Instructions per cycle

(IPC), Data Cache Miss Rate, Local L2 Miss Rate and Global L2 Miss Rate for all the benchmarks.

3.4.1 IPC

Figure 3.8 shows the IPC for different L2 cache sizes for all the benchmarks. The results include

conventional SA cache (size 128kB, 256kB and 512kB) and Newcache (size 128kB, 256kB, and

31

512kB). As we described in Table 3.2, the baseline Newcache for L2 cache has Nebit k = 4, and the

baseline SA cache has associativity 8 for L2 Cache.

Figure 3.8: Newcache as L2 Cache: IPC for Different Cache Sizes

Table 3.10: Newcache as L2 Cache: Different Cache Sizes’ IPC, and IPC Increase Relative to SA

128KB 256KB 512KB
SA Newcache SA Newcache SA Newcache

Average 0.2864 0.2812 0.3016 0.2951 0.3123 0.3064
Increase relative

to SA
-1.81% -2.16% -1.89%

Table 3.10 summarizes the Newcache’s IPC increase relative to SA for different L2 cache sizes

on average. From the results, we can see that Newcache performs almost as well as SA cache for

different L2 cache sizes. On average, it performs only slightly worse than SA cache by about 2%.

Figure 3.9 shows the IPCs for different L2 SA-Associativity and Newcache-Nebit for all the

benchmarks, and Table 3.11 shows all these L2 configurations’ IPC increase relative to SA-8way on

average of all the benchmarks. As we described in Table 3.2, the baseline Newcache and the baseline

SA cache have 256kB cache size for L2 cache. Again, L2 as Newcache performs almost as well as

SA cache. Also, the IPC increases slowly as Newcache-Nebit increases from 3 to 6.

Table 3.11: Newcache as L2 Cache: Different Associativity and Nebit’s IPC Increase Relative to
SA-8way

SA
4way

SA
8way

SA
16way

Newcache
k=3

Newcache
k=4

Newcache
k=5

Newcache
k=6

Average 0.2997 0.3016 0.3040 0.2938 0.2951 0.2945 0.3053
Increase

relative to
SA-8way

-0.61% 0.00% 0.81% -2.56% -2.16% -2.36% 1.22%

32

Figure 3.9: Newcache as L2 Cache: IPC for Different Associativity and Nebit

3.4.2 DCache Miss Rate

Figure 3.10 shows the Data Cache Miss Rate under different L2 cache sizes for all the benchmarks,

and Table 3.12 summarizes the Newcache’s DCache Miss Rate increase relative to SA for different

cache sizes on average. Basically Data Cache Miss Rate increases a little bit by changing L2 cache

from normal SA cache to Newcache with the same cache size.

Figure 3.10: Newcache as L2 Cache: DCache Miss Rate for Different Cache Sizes

Figure 3.11 shows the DCache Miss Rate for Different Associativity and Nebit, and Table 3.13

shows the different configurations’ DCache Miss Rate increase relative to SA-8way. We can see that

for L2 as Newcache results, the DCache Miss Rate tends to decrease as we increase Nebit from 3 to

6.

33

Table 3.12: Newcache as L2 Cache: Different Cache Sizes’ DCache Miss Rate Increase Relative to
SA

128KB 256KB 512KB
SA Newcache SA Newcache SA Newcache

Average 0.0609 0.0616 0.0599 0.0602 0.0578 0.0587
Increase relative

to SA
1.08% 0.54% 1.47%

Figure 3.11: Newcache as L2 Cache: DCache Miss Rate for Different Associativity and Nebit

3.4.3 Local L2 Miss Rate

The Local L2 Cache Miss Rate here is the miss rate for data access, and we have the equation:

Local L2 Miss Rate =
l2.overall misses

dcache.overall mshr misses

Here MSHR stands for Miss Status Handling Register for Dcache. It is used to store the fetch

request of an outstanding miss for a non-blocking cache. So actually, two data misses inside the

same cache block are stored as one outstanding miss in MSHR.

Figure 3.12 shows the Local L2 Miss Rate under different cache sizes for all the benchmarks, and

Table 3.14 shows the different cache sizes’ Local L2 Miss Rate increase relative to SA.

Table 3.13: Newcache as L2 Cache: Different Associativity and Nebit’s DCache Miss Rate Increase
Relative to SA-8way

SA
4way

SA
8way

SA
16way

Newcache
k=3

Newcache
k=4

Newcache
k=5

Newcache
k=6

Average 0.0596 0.0599 0.0592 0.0603 0.0602 0.0605 0.0589
Increase

relative to
SA-8way

-0.48% 0.00% -1.13% 0.60% 0.54% 0.92% -1.64%

34

Figure 3.12: Newcache as L2 Cache: Local L2 Miss Rate for Different Cache Sizes

Table 3.14: Newcache as L2 Cache: Different Cache Sizes’ Local L2 Miss Rate Increase Relative to
SA

128KB 256KB 512KB
SA Newcache SA Newcache SA Newcache

Average 0.5053 0.5307 0.3212 0.3991 0.1961 0.2852
Increase relative

to SA
5.05% 24.26% 45.46%

From the results, we may find that on average, as the L2 cache size increases, the L2 Local Miss

Rate decreases a lot for both SA cache and Newcache. However, compared with SA cache with the

same size, Newcache performs worse, especially for larger cache sizes. Nevertheless, the Newcache’s

L2 local miss rate results do not influence the performance of program execution too much, as we

can see from the above results of IPC and data cache miss rate. We give some reasons:

1. The average data cache miss rate from Figure 3.10 and Figure 3.11 are already very low; under

this case, even Newcache as L2 cache has larger local L2 miss rate than SA cache as L2 cache, the

performance of program execution, which is directly reflected by the IPC, is not influenced too much.

2. For the base configurations shown in Table 3.2, both L1 Dcache and L2 cache are 8-way SA cache.

If SA cache uses LRU or LRU-like replacement policies, the data in lower level cache may very likely

reside in higher level caches. However, Newcache as L2 cache is different. Due to Newcache’s random

eviction scheme, it’s more likely to evict cache lines which still have their copies in L1 data cache.

So next time when these cache lines need to be evicted from L1 Data cache, L2 cache miss will

be incurred if cache lines are dirty and data need to be written back. Currently, we just model a

single core under gem5; things will get more complicated in a real-world multi-core case, which is

common for servers and even today’s desktops and laptops. Due to the data sharing problem, some

implementation requires data to be written-through at least to the lowest-level shared cache (L3

cache in Intel i7 case). Thus more cache coherence issues need to be considered when we implement

35

Newcache on large memory hierarchies.

3. Server applications tend to do a lot of stuff, like accessing network stack, the disk subsystem,

handling the user connections and requests, syncing large amounts of threads etc., which induce a

lot of context switches and kernel trapping. L2 Newcache’s random eviction scheme may cause those

constantly-needed data and instructions to be replaced, which cause a lot of penalties on local L2

Cache Miss. In constract, SA cache tends to keep these cache lines for a long time.

4. For the two tests dbench read and dbench write, we can see that Newcache only performs a little

worse on size 512kB, while on size 128kB, Newcache even has smaller L2 Miss Rate than SA cache.

Perhaps dbench read only focuses on reading files and dbench write only focuses on writing files on

the server, there are not much other work that needs to be done. For other testing series like rtsp

and tomcat which require a lot of server side controls and actions, Newcache performs worse than

SA cache on all cache sizes.

Figure 3.13 shows the Local L2 Miss Rate under different SA-Associativity and Newcache-Nebit

for all the benchmarks, and Table 3.15 shows the different configurations’ Local L2 Miss Rate increase

relative to SA-8way. Similarly, Newcache basically performs worse than SA cache with the same

cache size.

Figure 3.13: Newcache as L2 Cache: Local L2 Miss Rate for Different Associativity and Nebit

Table 3.15: Newcache as L2 Cache: Different Associativity and Nebit’s Local L2 Miss Rate Increase
Relative to SA-8way

SA
4way

SA
8way

SA
16way

Newcache
k=3

Newcache
k=4

Newcache
k=5

Newcache
k=6

Average 0.3445 0.3212 0.3071 0.4053 0.3991 0.3944 0.3771
Increase

relative to
SA-8way

7.25% 0.00% -4.40% 26.19% 24.26% 22.78% 17.40%

36

3.4.4 Global L2 Miss Rate

We list the equation again: Global L2 Miss Rate = l2.overall misses
cpu.dcache.overall accesses . Figure 3.14 shows the

Global L2 Miss Rate under different cache sizes for all the benchmarks, and Table 3.16 shows the

different cache sizes’ Global L2 Miss Rate increase relative to SA.

Figure 3.14: Newcache as L2 Cache: Global L2 Miss Rate for Different Cache Sizes

Table 3.16: Newcache as L2 Cache: Different Cache Sizes’ Global L2 Miss Rate Increase Relative to
SA

128KB 256KB 512KB
SA Newcache SA Newcache SA Newcache

Average 0.0208 0.0219 0.0136 0.0167 0.0084 0.0118
Increase relative

to SA
5.25% 22.15% 40.48%

The results are similar to what we have got from the previous Local L2 Miss Rate section. On

average, as the L2 cache size increases, the L2 Global Miss Rate decreases a lot for both SA cache

and Newcache. However, compared with SA cache with the same size, Newcache performs worse,

especially for larger cache sizes.

Figure 3.15 shows the Global L2 Miss Rate under different SA-Associativity and Newcache-

Nebit for all the benchmarks, and Table 3.17 shows the different configurations’ Global L2 Miss

Rate increase relative to SA-8way. Similarly, Newcache basically performs worse than SA cache

with the same cache size.

37

Figure 3.15: Newcache as L2 Cache: Global L2 Miss Rate for Different Associativity and Nebit

Table 3.17: Newcache as L2 Cache: Different Associativity and Nebit’s Global L2 Miss Rate Increase
Relative to SA-8way

SA
4way

SA
8way

SA
16way

Newcache
k=3

Newcache
k=4

Newcache
k=5

Newcache
k=6

Average 0.0144 0.0136 0.0130 0.0169 0.0167 0.0165 0.0153
Increase

relative to
SA-8way

5.68% 0.00% -5.08% 23.83% 22.15% 21.14% 12.04%

3.5 Testing Results: Newcache as Both L1 Data Cache and

L2 Cache

In this test, I set both L1 Data Cache and L2 Cache as Newcache, and measure IPC, Data Cache

Miss Rate, Local L2 Miss Rate and Global L2 Miss Rate for all the benchmarks. The l1d.new-l2.new

results are then compared with l1d.SA-l2.SA, l1d.new-l2.SA and l1d.SA-l2.new. The settings are all

base configurations (base size, base associativity and base nebit in Table 3.2).

3.5.1 IPC

From Figure 3.16 and Table 3.18, on average, the IPC for l1d.new-l2.new is just slightly smaller than

that for l1d.SA-l2.SA. Basically, even if both L1 DCache and L2 Cache are Newcache, IPC does not

change a lot.

Table 3.18: Newcache as Both L1-DCache and L2 Cache: IPC Increase Relative to l1d.SA-l2.SA

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new
Average 0.3016 0.3004 0.2951 0.2933
Increase relative
to l1d.SA-l2.SA

0.00% -0.37% -2.16% -2.73%

38

Figure 3.16: Newcache as Both L1-DCache and L2 Cache: IPC

3.5.2 DCache Miss Rate

Figure 3.17 shows the Data Cache Miss Rate of the four configurations for all the benchmarks,

and Table 3.19 summarizes on average the DCache Miss Rate Increase of the four configurations

relative to l1d.SA-l2.SA. l1d.new-l2.new induces only slightly more DCache Miss Rate than that of

l1d.SA-l2.SA. Basically, even if both L1 DCache and L2 Cache are Newcache, DCache Miss Rate

does not increase a lot.

Figure 3.17: Newcache as Both L1-DCache and L2 Cache: DCache Miss Rate

Table 3.19: Newcache as Both L1-DCache and L2 Cache: DCache Miss Rate Increase Relative to
l1d.SA-l2.SA

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new
Average 0.0599 0.0631 0.0602 0.0639
Increase relative
to l1d.SA-l2.SA

0.00% 5.25% 0.54% 6.57%

39

3.5.3 Local L2 Miss Rate

Figure 3.18 shows the Local L2 Miss Rate of the four configurations for all the benchmarks, and

Table 3.20 summarizes on average the Local L2 Miss Rate Increase of the four configurations relative

to l1d.SA-l2.SA. Still similar to the results we get in previous Section 3.4.3, Newcache as L2 Cache

performs worse on Local L2 Miss Rate than SA cache. However, Newcache as L1-DCache performs

better, on average, than conventional SA cache as L1-DCache. The reasonings are similar to what

I have analyzed in Section 3.3.3.

Figure 3.18: Newcache as Both L1-DCache and L2 Cache: Local L2 Miss Rate

Table 3.20: Newcache as Both L1-DCache and L2 Cache: Local L2 Miss Rate Increase Relative to
l1d.SA-l2.SA

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new
Average 0.3212 0.2992 0.3991 0.3788
Increase relative
to l1d.SA-l2.SA

0.00% -6.86% 24.26% 17.92%

3.5.4 Global L2 Miss Rate

Figure 3.19 shows the Global L2 Miss Rate of the four configurations for all the benchmarks, and

Table 3.21 summarizes on average the Global L2 Miss Rate Increase of the four configurations

relative to l1d.SA-l2.SA. Still similar to the results we get in previous Section 3.4.4, Newcache as L2

Cache performs worse on Global L2 Miss Rate than SA cache. However, Newcache as L1-DCache

performs better (by 6.86%) than SA cache used as L1-DCache. Note also that the Global L2 miss

rates are an order of magnitude smaller than the local L2 miss rates. The reasonings are similar to

what I have analyzed in Section 3.3.3.

40

Figure 3.19: Newcache as Both L1-DCache and L2 Cache: Global L2 Miss Rate

Table 3.21: Newcache as Both L1-DCache and L2 Cache: Global L2 Miss Rate Increase Relative to
l1d.SA-l2.SA

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new
Average 0.0136 0.0134 0.0167 0.0167
Increase relative
to l1d.SA-l2.SA

0.00% -1.92% 22.15% 22.44%

3.6 Testing Results: Newcache as L1 Instruction Cache (Part

A)

In this experiment, we test the server side’s IPC, ICache Miss Rate, Local L2 Instruction Miss Rate

and Global L2 Instruction Miss Rate for all the benchmarks under 6 configurations:

- All L1-ICache, L1-DCache and L2 Cache are SA-base (Table 3.2)

- L1-ICache as SA-base, L1-DCache and L2 Cache as Newcache-base (same size as SA cache and

nebit k=4)

- L1-ICache as Newcache (k=3), L1-DCache and L2 Cache as Newcache-base

- L1-ICache as Newcache (k=4), L1-DCache and L2 Cache as Newcache-base

- L1-ICache as Newcache (k=5), L1-DCache and L2 Cache as Newcache-base

- L1-ICache as Newcache (k=6), L1-DCache and L2 Cache as Newcache-base

L1 Instruction Cache is similar to L1 Data Cache. Instruction cache also fetches data in cache-

blocks, except the data are x86-instructions (machine codes). When the program runs, the instruc-

tions are stored in the process’s text section. So instructions tend to be fetched from a fixed memory

region. Also, programs tend to run the instruction right after the current executing instruction, if

the current executing instruction is not a taken jump. For DCache, data can be fetched from a much

wider range of memory space: stack, heap and initialized region etc. However, the ways the ICache

and DCache mechanisms work are similar.

41

3.6.1 IPC

So according to our analysis, IPC should not change a lot if we use Newcache as L1 Instruction

cache. Figure 3.20 and Table 3.22 below show the results. Basically, IPC only decreases by a small

amount by replacing SA cache with Newcache as L1-ICache.

Figure 3.20: Newcache as L1-ICache: IPC

Table 3.22: Newcache as L1-ICache: IPC, and IPC Increase Relative to all.SA.base

all.SA
.base

l1i.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.3016 0.2933 0.2921 0.2914 0.2927 0.2930
Increase relative
to all.SA.base

0.00% -2.73% -3.15% -3.39% -2.95% -2.84%

3.6.2 ICache Miss Rate

Figure 3.21 and Table 3.23 show the ICache Miss Rate results. Similar to the analysis we did in

Section 3.3.1 and 3.3.2, Newcache should perform almost the same as SA cache on L1-ICache, and

ICache Miss Rate slightly decreases as Newcache nebit increases.

Table 3.23: Newcache as L1-ICache: ICache Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.1309 0.1326 0.1395 0.1377 0.1362 0.1364
Increase relative
to all.SA.base

0.00% 1.32% 6.60% 5.21% 4.06% 4.25%

42

Figure 3.21: Newcache as L1-ICache: ICache Miss Rate

3.6.3 Local L2 Miss Rate for Instructions

Figure 3.22 and Table 3.24 show the local L2 Instruction Miss Rate results. Similar to what we have

analyzed in Section 3.4.3, on average, L2 cache as Newcache increases the Local L2 instruction Miss

Rate by about 40% compared with L2 cache as a conventional SA cache. Newcache used as ICache

does not induce more local L2 miss rate. However, setting L2 cache as a conventional SA cache, and

getting the performance results of ICache as Newcache would be necessary in the future work.

Figure 3.22: Newcache as L1-ICache: Local L2 Instruction Miss Rate

Table 3.24: Newcache as L1-ICache: Local L2 Instruction Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.2276 0.3261 0.3101 0.3152 0.3177 0.3181
Increase relative
to all.SA.base

0.00% 43.30% 36.26% 38.51% 39.62% 39.80%

43

3.6.4 Global L2 Miss Rate for Instructions

Figure 3.23 and Table 3.25 show the global L2 Instruction Miss Rate results. Similar to what we

have analyzed in Section 3.4.3 and 3.4.4, on average, L2 cache as Newcache increases the Global L2

instruction Miss Rate by about 40% compared with L2 cache as a conventional SA cache. Note,

however, that this is a large percentage of a very small global L2 miss rate of on average 2-3%. Also,

the performance of program execution, which is directly reflected by the IPC, is not influenced too

much.

Figure 3.23: Newcache as L1-ICache: Global L2 Instruction Miss Rate

Table 3.25: Newcache as L1-ICache: Global L2 Instruction Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.0230 0.0329 0.0336 0.0337 0.0337 0.0337
Increase relative
to all.SA.base

0.00% 42.98% 46.26% 46.70% 46.42% 46.53%

3.7 Testing Results: Newcache as L1 Instruction Cache (Part

B)

In this experiment, we fix L1-DCache and L2 Cache to be SA-base (Table 3.2), and test the server

side’s IPC, ICache Miss Rate, Local L2 Instruction Miss Rate and Global L2 Instruction Miss Rate

for all the benchmarks under the below 5 configurations:

- L1-ICache as SA-base

- L1-ICache as Newcache (k=3)

- L1-ICache as Newcache (k=4)

44

- L1-ICache as Newcache (k=5)

- L1-ICache as Newcache (k=6)

It’s important to see the the performance of Newcache as ICache alone, with DCache and L2

Cache fixed as the conventional SA cache.

3.7.1 IPC

According to Figure 3.24 and Table 3.26 below, IPC almost stays the same if we use Newcache as

L1 Instruction cache, compared with the all.SA.base case. Also, IPC cannot benefit from increasing

the nebit value of ICache. Since instructions tend to be fetched from the same page (virtual and

physical), increasing the LDM cache size does not influence IPC.

Figure 3.24: Newcache as L1-ICache: IPC

Table 3.26: Newcache as L1-ICache: IPC, and IPC Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.2958 0.2928 0.2963 0.2960 0.2974
Increase relative
to all.SA.base

0.00% -1.01% 0.17% 0.08% 0.55%

3.7.2 ICache Miss Rate

Figure 3.25 and Table 3.27 show the ICache Miss Rate results. As expected, on average Newcache

induces about 3% more ICache Miss Rate than that of the all.SA.base case. I would say that the

random eviction policy does pose some negative effects on the ICache Miss Rate, destroying some

conventional advantages of SA cache (e.g. temporal/spatial locality of instructions, etc.). However,

45

for some benchmark (e.g. tomcat, etc.), Newcache as ICache almost induces no penalty on ICache

Miss Rate.

Figure 3.25: Newcache as L1-ICache: ICache Miss Rate

Table 3.27: Newcache as L1-ICache: ICache Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.1344 0.1398 0.1381 0.1372 0.1374
Increase relative
to all.SA.base

0.00% 4.00% 2.71% 2.06% 2.23%

3.7.3 Local L2 Miss Rate for Instructions

Figure 3.26 and Table 3.28 show the local L2 Instruction Miss Rate results. It’s interesting to see

the Local L2 Miss Rates for Instructions for most benchmarks are much lower if we use Newcache

as ICache alone. Actually, the high L1 ICache Miss Rate causes more outstanding MSHR accesses

to the L2 Cache. However, these instructions tend to stay in the L2 Cache, which means that

the amount of total L2 misses does not increase. That is why we have lower L2 Miss Rate for

l1i.new.nebit3-6 cases.

Table 3.28: Newcache as L1-ICache: Local L2 Instruction Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.2251 0.2097 0.2128 0.2088 0.2142
Increase relative
to all.SA.base

0.00% -6.83% -5.46% -7.26% -4.87%

46

Figure 3.26: Newcache as L1-ICache: Local L2 Instruction Miss Rate

3.7.4 Global L2 Miss Rate for Instructions

Figure 3.27 and Table 3.29 show the global L2 Instruction Miss Rate results. The average global

L2 Miss Rate almost shows no difference between Newcache with different nebits and conventional

SA cache, which indicates the fact that the total L2 cache misses do not increase when L1 ICache

changes from SA cache to Newcache.

Figure 3.27: Newcache as L1-ICache: Global L2 Instruction Miss Rate

47

Table 3.29: Newcache as L1-ICache: Global L2 Instruction Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3

l1i.new
.nebit4

l1i.new
.nebit5

l1i.new
.nebit6

Average 0.0229 0.0233 0.0232 0.0230 0.0232
Increase relative
to all.SA.base

0.00% 1.69% 1.44% 0.43% 1.47%

3.8 Testing Results: Newcache as L1 Instruction Cache (Part

C)

In this experiment, we still fix L2 Cache to be SA-base (Table 3.2), and test the server side’s IPC,

ICache Miss Rate, Local L2 Instruction Miss Rate and Global L2 Instruction Miss Rate for all the

benchmarks under the below 8 configurations:

- L1-ICache as Newcache (k=3, 4, 5, 6), and L1-DCache as Newcache (k=4)

- L1-ICache as Newcache (k=3, 4, 5, 6), and L1-DCache as Newcache (k=6)

It’s also important to see the the performance of Newcache as ICache, with DCache set to be

Newcache, but L2 Cache still fixed as the conventional SA cache.

3.8.1 IPC

According to Figure 3.28 and Table 3.30 below, similar to section 3.7.1, IPC almost stays the same

if we use Newcache as L1 Instruction cache, compared with the all.SA.base case, except for the

rtsp s3 and rtsp s30 case, which indicates that when the streaming server side tries to handle many

media streaming requests, the system performance might be degraded. Also, IPC cannot benefit

from increasing the nebit value of ICache. Since instructions tend to be fetched from the same page

(virtual and physical), increasing the LDM cache size does not influence IPC.

Table 3.30: Newcache as L1-ICache: IPC, and IPC Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3-
l1d.new
.nebit4

l1i.new
.nebit4-
l1d.new
.nebit4

l1i.new
.nebit5-
l1d.new
.nebit4

l1i.new
.nebit6-
l1d.new
.nebit4

l1i.new
.nebit3-
l1d.new
.nebit6

l1i.new
.nebit4-
l1d.new
.nebit6

l1i.new
.nebit5-
l1d.new
.nebit6

l1i.new
.nebit6-
l1d.new
.nebit6

Average 0.2958 0.2955 0.2940 0.2951 0.2951 0.2927 0.2953 0.2951 0.2950
Increase relative
to all.SA.base

0.00% -0.76% -0.60% -0.24% -0.23% -1.06% -0.16% -0.24% -0.25%

3.8.2 ICache Miss Rate

Figure 3.29 and Table 3.31 show the ICache Miss Rate results. On average Newcache as both

ICache and Dcache induces about 3% more ICache Miss Rate than that of the all.SA.base case.

Still, I would say that the random eviction policy does pose some negative effects on the ICache

48

Figure 3.28: Newcache as L1-ICache: IPC

Miss Rate, destroying some conventional advantages of SA cache (e.g. temporal/spatial locality of

instructions, etc.). However, for some benchmark (e.g. tomcat, etc.), Newcache as ICache almost

induces no penalty on ICache Miss Rate.

Figure 3.29: Newcache as L1-ICache: ICache Miss Rate

3.8.3 Local L2 Miss Rate for Instructions

Figure 3.30 and Table 3.32 show the local L2 Instruction Miss Rate results. Similar to section 3.7.3,

the Local L2 Miss Rates for Instructions for most benchmarks are much lower. Actually, the high

L1 ICache Miss Rate causes more outstanding MSHR accesses to the L2 Cache. However, these

49

Table 3.31: Newcache as L1-ICache: ICache Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3-
l1d.new
.nebit4

l1i.new
.nebit4-
l1d.new
.nebit4

l1i.new
.nebit5-
l1d.new
.nebit4

l1i.new
.nebit6-
l1d.new
.nebit4

l1i.new
.nebit3-
l1d.new
.nebit6

l1i.new
.nebit4-
l1d.new
.nebit6

l1i.new
.nebit5-
l1d.new
.nebit6

l1i.new
.nebit6-
l1d.new
.nebit6

Average 0.1344 0.1409 0.1389 0.1378 0.1382 0.1407 0.1387 0.1383 0.1380
Increase relative
to all.SA.base

0.00% 4.78% 3.33% 2.50% 2.78% 4.68% 3.17% 2.90% 2.68%

instructions tend to stay in the L2 Cache, which means that the amount of total L2 misses does not

increase. That is why we have lower L2 Miss Rate for l1i.new.nebit3-6 cases.

Figure 3.30: Newcache as L1-ICache: Local L2 Instruction Miss Rate

Table 3.32: Newcache as L1-ICache: Local L2 Instruction Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3-
l1d.new
.nebit4

l1i.new
.nebit4-
l1d.new
.nebit4

l1i.new
.nebit5-
l1d.new
.nebit4

l1i.new
.nebit6-
l1d.new
.nebit4

l1i.new
.nebit3-
l1d.new
.nebit6

l1i.new
.nebit4-
l1d.new
.nebit6

l1i.new
.nebit5-
l1d.new
.nebit6

l1i.new
.nebit6-
l1d.new
.nebit6

Average 0.2251 0.2079 0.2073 0.2089 0.2070 0.2033 0.2086 0.2092 0.2133
Increase relative
to all.SA.base

0.00% -7.66% -7.90% -7.19% -8.04% -9.71% -7.35% -7.09% -5.25%

3.8.4 Global L2 Miss Rate for Instructions

Figure 3.31 and Table 3.33 show the global L2 Instruction Miss Rate results. The average global

L2 Miss Rate almost shows no difference between Newcache with different nebits and conventional

SA cache, which indicates the fact that the total L2 cache misses do not increase when L1 ICache

changes from SA cache to Newcache.

50

Figure 3.31: Newcache as L1-ICache: Global L2 Instruction Miss Rate

Table 3.33: Newcache as L1-ICache: Global L2 Instruction Miss Rate Increase Relative to all.SA.base

all.SA
.base

l1i.new
.nebit3-
l1d.new
.nebit4

l1i.new
.nebit4-
l1d.new
.nebit4

l1i.new
.nebit5-
l1d.new
.nebit4

l1i.new
.nebit6-
l1d.new
.nebit4

l1i.new
.nebit3-
l1d.new
.nebit6

l1i.new
.nebit4-
l1d.new
.nebit6

l1i.new
.nebit5-
l1d.new
.nebit6

l1i.new
.nebit6-
l1d.new
.nebit6

Average 0.0229 0.0234 0.0231 0.0231 0.0231 0.0232 0.0231 0.0232 0.0233
Increase relative
to all.SA.base

0.00% 2.06% 1.11% 1.06% 0.76% 1.48% 1.03% 1.39% 1.80%

3.9 Chapter Summary

In this chapter, we introduce gem5’s configuration methodology and how we set the server side and

client side under gem5. Then we describe the way we choose cloud server benchmarks. Afterwards,

by using different cache configurations, we do the following tests and performance measurements for

all the cloud server benchmarks under gem5:

- L1-DCache performance measurement

- L2 Cache performance measurement

- L1-DCache and L2 Cache performance measurement

- L1-ICache performance measurement

The results basically show that L1-DCache as Newcache and L1-ICache as Newcache have com-

parable performance results with L1-DCache as SA cache and L1-ICache as SA cache. Newcache as

L2 cache has higher global and local l2 miss rate compared with SA cache as L2 cache. However,

the performance of program execution, which is directly reflected by the IPC, is not influenced too

much (only 2-3%).

In section 3.6, we studied configurations where when Newcache is used as the L1-ICache, it is also

used as the L1-DCache and L2 cache. In section 3.7, we considered the performance of Newcache

51

used as L1-ICache (k = 3 to 6), with the L1-DCache and L2 cache remaining as SA caches, to see the

impact of just changing the L1-ICache. In section 3.8, we also considered the configurations where

both Level 1 caches (L1-ICache and L1-DCache) are Newcache (L1-ICache: k = 3 to 6; L1-DCache:

k = 4 and 6), but L2 cache remains as a conventional SA cache, which would improve the local and

global L2 cache miss rates, without compromising the security provided to the L1 caches.

52

Chapter 4

Security Analysis of Newcache as

Instruction Cache

4.1 Reconstruction of Instruction Cache Side-Channel At-

tack

4.1.1 Instruction Cache PRIME and PROBE

We have Intel(R) Xeon(R) CPU in our lab testbed, of which the Instruction Cache (ICache) is a

32kB, 8-way set-associative (SA) cache. The block size is 64 bytes, thus there are 32k/64/8 = 64

sets. For a typical virtual memory address (Figure 4.1), the last 6 bits (bit 5 to bit 0) are the offset

for the 64-byte block, while bit 11 to bit 6 are used to index the cache sets.

Figure 4.1: Typical Memory Address

When the cpu needs to execute instructions from some virtual address, it will first check if

these instructions are already in the ICache, if not, these instructions will be fetched from higher-

level caches or physical memory. A virtual memory address will always be mapped into the same set

location inside the ICache. For example, virtual address 0xFFFFFABF has set index 1010102 = 4210;

thus the memory block corresponding to this address will be fetched to set 42. Moreover, the system

usually allocates memory in a 4kB page size. Thus there are 4kB/64B = 64 cache-line-sized memory

blocks inside each page.

53

- Instruction Cache PRIME-ing and PROBE-ing:

Aciiçmez [22] described a ICache side-channel: for each individual cache set, timing how long it takes

to read data to occupy this whole set. To do this, we need to first allocate a chunk of memory, the

size of which equals the size of the ICache (32kB). 32kB is actually 8 contiguous 4kB memory pages.

Within each page, we divide the page into 64 64-byte blocks (Figure 4.2). Within each block, only

the first 5 bytes are used as machine codes, the rest can be anything (e.g. nop etc.). The 5 bytes of

machine code are “e9 fb 0f 00 00”, which jumps to an address 0x1000 (4kB) higher. For example, see

the blue (light shaded) blocks, the code jumps from entry0 0 to entry0 1, then to entry0 2, ..., and

finally to entry0 7. These blue blocks are in the same location in their corresponding memory pages,

which means the addresses in these blue blocks have the same 12 least significant bits, so these blue

blocks will be mapped to the same cache set (in this case, set0). Thus, doing an indirect call to

entry0 0’s address will fill cache set 0 (notice that entry0 7 is actually a retq instruction that returns

to the caller). Filling a cache set is called PRIME-ing. The rest of the 63 entries from entry1 0

to entry63 0 in the first page perform similarly: doing indirect call to entry1 0 primes cache set 1,

doing indirect call to entry2 0 primes cache set 2 etc.

We also want to measure the time it takes to prime each cache set, which is called PROBE-ing.

X86 provides an instruction rdtsc, which stores the current time stamp (cpu-cycles) in two registers.

In the main function, we can do rdtsc just before we call entry0 0, and do rdtsc again just after

entry0 7 returns. We then store the difference of the two measurements, which is the elapsed time

of filling cache set 0. This is repeated for each of the 64 cache sets to produce a vector of elapsed

time.

- The Prime-Probe Protocol:

Osvik et al. [38] described this common prime-probe protocol. A lot of access-driven cache attacks

are achieved by first PRIME-ing and later PROBE-ing the cache. Specifically, the attacker needs to

bind the prime-probe process to the same cpu used by the victim’s process. The attacker’s process

first fills all the ICache sets as described above (PRIME-ing), then it waits for a prespecified PRIME-

PROBE interval while the cpu and caches are utilized by the victim’s process. After this interval,

the attacker’s process times the duration to refill the ICache sets (PROBE-ing) to learn the victim’s

cache activity. The victim’s activity during the PRIME-PROBE interval will evict the attacker’s

instructions from the cache sets, which causes higher timing measurements for these sets during the

attacker’s PROBE phase. We also need to notice that the attacker’s PROBE-ing actually PRIMEs

the whole cache; so repeatedly PROBE-ing the cache with the PRIME-PROBE interval eliminates

the need to separately do a PRIME.

54

Figure 4.2: 32kB Contiguous Memory Chunk for PRIME-ing

4.1.2 Clean PROBE-ing Result

Since the test-bed server has 8 CPUs, measurements on different CPUs may result in slightly different

results, so I bind the main prime-probe program to CPU5.

A clean PROBE-ing means PROBE-ing happens directly after PRIME-ing. For this case, before

probing, the 32kB cache has already been occupied with the 32kB allocated instructions. We want

to see if the resulting PROBE-ing time for each of the 64 sets is minimum or not. We did 30000

probings for all the 64 sets and averaged the results (Figure 4.3).

From the results, we can see that most of the sets are around 100 cycles. Only set0, set1, set32 and

set33 are distinctly larger than 100 cycles. First, PRIME() function has virtual addresses 0x52030

to 0x5203d, the index bits (bit 11 to bit 6 of the address) of which show index 0. These addresses

are in set0, which means that after PRIME-ing the last set, set0 is again occupied by PRIME()’s

codes before PROBE-ing; thus PROBE-ing set0 will take a lot longer. Also, the function PROBE()

55

Figure 4.3: Clean PROBE-ing Result for 32kB 8-way Set-Associative Cache

is located in the address range 0x51820 to 0x51879 in the final compiled library. These addresses

correspond to set32 and set33 in the instruction cache, thus probing set32 and set33 will take longer

time.

Moreover, using printf() function to print the probing time directly inside the PROBE() function

is not a good idea. Because printf() function itself occupies a lot of cache sets before PROBE-ing

each set (Figure 4.4), which totally ruins the purpose of PROBE-ing. Instead, we could store the

PROBE-ing time in a global array. After PROBE() finishes for all the 64 cache sets, we could use

another function printtime() to print the global array.

Figure 4.4: Wrong PROBE-ing Result for 32kB 8-way Set-Associative Cache

56

4.1.3 Unique ICache Footprints Left by Square, Mult and Reduce

As described in Algorithm 1 in Chapter 2.1.1’s Zhang’s Elgamal Attack, the modular exponentiation

computed in libgcrypt v1.5.3 uses the square and multiply algorithm. They let S, R, M stand for

calls to functions Square, ModReduce and Mult, respectively, inside SquareMult. As described

previously, the sequence of function calls in one execution of SquareMult will leak information

about the exponent exp, which is the secret key x here. For example, the sequence (SRMR)(SR)

corresponds to exp = 110b = 6. SRMR leaks information e2 = 1, and SR gives e1 = 0 (the most

siginificant bit here is always 1; the sequence leaks information from the second most significant bit

en−1 to the least siginificant bit e1). Because each of the S, R and M functions have their instructions

located in different memory addresses; performing these 3 calls will leave different unique footprints

in the instruction cache. The attacker can detect which function has been executed through the

cache footprint he got from the PROBE-ing phase. Afterwards, the attacker can infer the secret key

from the S,R,M sequence.

In my experiment, to get the clear unique ICache footprint left by each of these functions, a

PRIME() is done just before calling to that function, and a PROBE() is done just after the function

returns.

- Square:

Figure 4.5: ICache Footprint Left by Square

Figure 4.5 is the probing time for each cache set after the Square function returns. We need to

understand that set0,set1, set32, set33 are the sets we want to ignore (as described above), because

they are not related to the Square function. We get Figure 4.6 by doing a subtraction of Figure 4.5

57

and the clean prime-probe figure, so that we can clearly get how much more time (cycles) is required

to PROBE each set after the Square function.

Figure 4.6: Square’s Footprint after Subtracting the Clean Prime-Probe

In the final compiled dynamic library libgcrypt.so.11.8.2, the Square operation: gcry mpih sqr n()

has virtual address ranging from 0x54e50 to 0x5521d, which is about 973 bytes. These instructions

occupy set57 to set63, and set0 to set8. From Figure 4.6, we can see that probing these sets

takes longer time. Moreover, gcry mpih sqr n() also calls other functions: gcry mpih addmul 1

at address 0x57040 to 0x5707f (set1), gcry mpih sub n at address 0x56fb0 to 0x56fea (set62 to

set63), gcry mpih add n at address 0x56f70 to 0x56faa (set61 to set62), gcry mpih sqr n basecase

at address 0x54d30 to 0x54e4f (set52 to set57). These information are also reflected in Figure 4.6.

- Mult:

Similarly, Figure 4.7 is the probing time for each cache set after Mult function returns. Figure 4.8

is done by doing a subtraction of Figure 4.7 and the clean prime-probe figure.

The Mult operation gcry mpih mul karatsuba case() has virtual address ranging from 0x555a0

to 0x558ff, which is about 863 bytes. These instructions occupy set22 to set35. From Figure 4.8, we

can see that probing these sets takes longer time. Moreover, gcry mpih mul karatsuba case()

also calls other functions: mul n basecase at address 0x54750 to 0x5486f (set29 to set33),

gcry mpi free limb space at address 0x55a30 to 0x55a69 (set40 to set41), gcry mpih add n at

address 0x56f70 (set61), mul n at 0x54870 (set33), gcry mpi alloc limb space at 0x55930 (set36),

gcry mpih mul at 0x553f0 (set15) etc. I will not list how much virtual memory all these functions

take, but basically, the probing pattern is reflected in Figure 4.8.

58

Figure 4.7: ICache Footprint Left by Mult

Figure 4.8: Mult’s Footprint After Subtracting the Clean Prime-Probe

59

- Reduce:

Figure 4.9 is the probing time for each cache set after the Reduce function returns. Figure 4.10 is

done by doing a subtraction of 4.9 and the clean prime-probe figure.

Figure 4.9: ICache Footprint Left by Reduce

Figure 4.10: Reduce’s Footprint after Subtracting the Clean Prime-Probe

The Reduce operation: gcry mpih divrem() has virtual address ranging from 0x53c10 to 0x5440f,

which is about 2047 bytes. These instructions occupy set48 to set63, and set0 to set8. From the

figure above, we can see that probing these sets takes longer time. Also, not all the instructions are

executed during each run of gcry mpih divrem(). Moreover, gcry mpih divrem() also calls other

60

functions: gcry mpih submul 1 at address 0x57080 (set2), gcry mpih add n at address 0x56f70

(set61), and gcry mpih sub n at 0x56fb0 (set62).

From Figure 4.6, Figure 4.8 and Figure 4.10, we can distinguish the ICache footprints left by

Square, Mult and Reduce clearly, because different operations have different PROBE-ing time pat-

terns for different cache sets.

4.1.4 Modular Exponentiation Experiments

For the actual attack, we need an attacker process and a victim process. However my experiments

are done in an ideal setting. I assume the attacker has the ability to PROBE at the exact time that

one of Square, Mult or Reduce is finished. The clear experimental results would give us an intuition

about how the attack works.

Message (base) has 1000 bits, key (exponent) and modular both have 1024 bits. Message is chosen

to be 10101010...1010b, where there is a 1 in every other bit. Modular is chosen to be 101010...1010b,

where also there is a 1 in every other bit. It does not matter what values we choose for message

and modular, because different message and different modular values do not influence the execution

of Mult, Square and Reduce. Mult, Square and Reduce functions have fixed virtual addresses; No

matter what message and modular we choose, the Mult, Square, and Reduce footprints left in the

SA cache will be the same.

Figure 4.11: Gray Scale Matrix I

First, I set key to be 100010001000...1000b, where there is a 1 in every four bits. Prime-probe

is done at the same time that the program is executing modular exponentiation. I get 2556 prime-

probe results for the Square, Mult and Reduce operations. The first 64 prime-probe trials are

61

extracted from the results and are printed as gray-scale matrix shown in Figure 4.11. The white-

black scale is set from 100 to 200 (cycles) (white is 100 cycles and black is 200 cycles). Comparing

with the unique footprints we got above, especially Figure 4.8, we can clearly find that red-circled

trial 9,19,29,39,49, 59 ... are Mult operations. The whole execution path of the experiment is:

SRSRSR(SRMR)SRSRSR(SRMR)..., which clearly shows that the 2nd bit to 9th bit are 00010001

(we should note that the first bit is always 1). From the whole 2556 prime-probe trials, the attacker

can easily know each bit of the key.

Figure 4.12: Gray Scale Matrix II

Similarly, I now set key to be 100000010000000...10000000b, where there is a 1 in every eight

bits. I get 2300 prime-probe results for the Square, Mult and Reduce operations. Again, the first

64 prime-probe trials are extracted from the results and are printed as gray-scale matrix shown

in Figure 4.12. We can clearly find that trial 17, 35, 53 ... are Mult operations. The whole

execution path of the experiment is: SRSRSRSRSRSRSR(SRMR)SRSRSRSRSRSRSR(SRMR)...,

which clearly shows that the 2nd bit to 17th bit are 0000000100000001.

Finally, I set the key bits randomly to be 1 or 0. In this case, the 1st bit, 6th bit, the 21st bit

... from the MSB side are randomly choosen to be bit 1. Again the first 64 prime-probe trials are

extracted from the results and are printed as gray-scale matrix shown in Figure 4.13. The Mult

operations clearly manifest themselves in the red-circles (trial 11 and trial 43), indicating the 6th

bit and 21st bit’s operations are (SRMR), which correspond to bit 1. It is also easy to distinguish

between a Square operation and a Reduce operation by looking into the PROBE time of set19, 20

and 21.

62

Figure 4.13: Gray Scale Matrix III

The above experiment showed that ICache footprints left behind by different operations are

different, and thus can be used to infer the execution path of the program, from which we can get

the cryptographic key. However, I just used a simplified method to get the clear footprint left by

each operation. In a real scenario, attackers cannot modify the source code of the crypto-library,

neither can they prime-probe at the exact time after one typical operation is finished. In Zhang’s

work [44], they use a support vector machine (SVM) to classify the instruction cache PROBE-ed

footprints into the corresponding function calls (S, M or R) during the training phase. To make the

attack actually work, they have to deal with issues like observation granularity, observation noise

etc. Actually they use an artificial intelligence method called Hidden Markov Model to reduce noise

and increase prime-probe accuracy when they cannot control the exact PROBE time. Furthermore,

when their work elevates the side-channel attack from process level to virtual machine level, they will

have to consider more issues, e.g. core migration, error correction, operation sequence reassembly

etc.

The original Libgcrypt 1.5.0 does not provide secure memory execution, so attackers can detect

each bit of the exponent from the executing sequence of these instructions through an ICache side

channel. Libgcrypt 1.5.3 provides some secure execution: if the exponent is inside secure memory,

then no matter what value ei is, Mult will always be executed. However, libgcrypt 1.5.3 gives

programmers the option to use secure memory or not (actually not using secure memory is the

default option). So, programmers still tend to sacrifice security for execution efficiency.

63

4.2 Newcache in Defending against Instruction Cache Side-

Channel Attack

Newcache is implemented in gem5 [20] by F.Liu [35]. The testing environment is shown in Table 4.1.

The whole architecture simulates a single core of the latest Intel i7 processor. In the configuration,

ICache is simulated as a 32kB Newcache with k = 4 (The details of Newcache are described in

Chapter 2.3). I did two experiments and got the results. One is the clean prime-probe result,

another is the probe patterns after executing the Square, Mult and Reduce operations in the modular

exponentiation.

Table 4.1: Simulator Configurations

Single-core
out-of-order

X86 processor

L1-ICache
(private)

L1-DCache
(private)

L2 Cache
(unified)

L3 Cache Memory

32 kB
Newcache

4-cycle
latency

32 kB
8-way
4-cycle
latency

256 kB
8-way

10-cycle
latency

2MB
16-way
35-cycle
latency

2GB
100-cycle
latency

Cache line size 64B
Clock freq 3 GHz
Evaluate Newcache as a L1 instruction cache, k=4 for Newcache configuration

4.2.1 Clean PROBE-ing Result

A clean primeprobe means probing happens directly after priming. For this experiment, the 32kB

Newcache has 32kB/64B=512 LNregs, each represents one cache-line. Because there is no notion

of cache-set in Newcache, I slightly modify the PRIME method. I still allocate a contiguous 32kB

memory for the attacker, and access the memory to evict out the entries in the ICache. But instead

of PRIME-ing each of the sets for SA cache, I prime each of the 512 LNregs for ICache as Newcache.

However, for this case, not like the traditional SA cache, we cannot prime all the cache-lines due

to Newcache’s random eviction mechanism. In the PRIME phase, imagine that the Newcache is

gradually filled with more and more attacker’s cache-lines, then it’s also more and more likely that

the next access to another attacker’s cache-line may randomly evict a cache-line belonging to the

attacker. Also, in the PROBE phase, access to some cache-line not already in the cache may still

possibly evict a cache-line belonging to the attacker.

Algorithm 2 shows the PROBE algorithm. virtual code address is the start of the 32kB memory.

We do num set = 512 iterations. Each iteration calls temp code address, which just contains a ret

instruction. At the end of each iteration, temp code address is increased by the cache block offset.

PRIME is just like PROBE without rdtsc instructions. Doing this clean PROBE-ing experiment

will also allow us to see how many of the 512 LNregs can be primed after one PRIME phase.

64

Algorithm 2 PROBE-ing for 32kB Newcache

procedure ProbeNewcache()

temp code address← virtual code address

num set← 512

block offset← 64

for i = 0→ num set do

cycles begin← rdtsc()

Call ∗temp code address
cycles end← rdtsc()

elapsed time[i]← cycles end− cycles begin
temp code address = temp code address+ block offset

end for

end procedure

Figure 4.14 and Figure 4.15 are two clean prime-probe results. The LNreg numbers with lower

probe time (about 30 cycles) are the cache-lines already in the cache, while those with higher probe-

time are the cache-lines not successfully occupying one slot in the cache. From the two figures below,

we may find that those evicted and those kept in the cache are totally randomized, which shows the

successful implementation of random eviction policy for Newcache due to index miss.

Figure 4.14: Clean PROBE-ing Result I for 32kB Newcache

Also, I collect about 800 clean prime-probe timings, average the probe-time for each of LNregs

and get Figure 4.16

Figure 4.16 shows that the cache-eviction is truly random, the average probe time for all these

LNregs are all about 40 cycles. However, there are small peaks in the average results for some

LNregs (e.g. LNreg 17,33,49...). Actually, from Figure 4.14 and Figure 4.15, we may find that

if LNreg 17,33,49... encountered a cache miss, their PROBE-time will be around 80 cycles, much

65

Figure 4.15: Clean PROBE-ing Result II for 32kB Newcache

Figure 4.16: Averge PROBE Time for 800 Clean Prime-Probe

66

higher than other cache-miss lines’ (about 60 cycles). These glitches may be caused by the memory

architecture implementation in gem5, but they do not influence the functionality of Newcache.

Also, from these more than 800 clean prime-probe results, we get the number of successfully-

primed cache lines (Figure 4.17). We can see that on average about 330 out of 512 cache-lines can

successfully occupy Newcache after the PRIME-phase.

Figure 4.17: Number of PRIME-ed Cache-lines

4.2.2 ICache footprint left by Square, Mult and Reduce

- Square:

For this case a PRIME is done just before calling the Square function, and a PROBE is done just

after the function returns. Figure 4.18 and Figure 4.19 are the two PROBE results for the Square

function. We find that Newcache’s random eviction policy helped prevent the ICache side-channel

attack a lot; the two footprints left by Square function are not even alike, which successfully conceal

the information that a Square operation has just executed.

Averaging about 800 probe-time for each of LNregs (Figure 4.20) shows similar result as that

of clean prime-probe. The cache-eviction is truly random, each LNreg has equal probability to be

evicted, and the average probe time for each LNreg is about 45 cycles. The attacker cannot get

any useful information about what instructions are executed under the random eviction scheme of

Newcache.

- Mult:

67

Figure 4.18: PROBE Result I for Square

Figure 4.19: PROBE Result II for Square

Figure 4.20: Average PROBE Result for Square

68

Figure 4.21 and Figure 4.22 are the two PROBE results for Mult function. Figure 4.20 shows the

average PROBE result for Mult.

Figure 4.21: PROBE Result I for Mult

Figure 4.22: PROBE Result II for Mult

Figure 4.23: Average PROBE Result for Mult

- Reduce:

Figure 4.24 and Figure 4.25 are the two PROBE results for Reduce function. Figure 4.26 shows the

average PROBE result for Reduce.

69

Figure 4.24: PROBE Result I for Reduce

Figure 4.25: PROBE Result II for Reduce

Figure 4.26: Average PROBE Result for Reduce

70

The PROBE results and the average PROBE results for Mult and Reduce are similar to those

for Square operation, which shows the successful implementation of Newcache’s random eviction

policy. Also, from Figure 4.18, Figure 4.21 and Figure 4.24, an attacker cannot tell which footprint

corresponds to which operation.

4.2.3 More Analysis

1. Carefully comparing Figure 4.20 and Figure 4.16, people could find that the average probing

time for each LNreg of Square() function seems longer than that of clean prime-probe result. Is it

possible that by exploiting this kind of timing difference, we can figure out which of the Square,

Mult and Reduce function is executing? The answer is no. The reason that Figure 4.20 has longer

average probing time is due to the length of the executed operation. As described in Section 4.1.3,

Square function has about 973 bytes instructions, Mult has about 863 bytes, and Reduce has about

2047 bytes. The experiments are done in an ideal case (i.e. we do a prime directly before the

function and a probe directly after the function). The more instructions the function has, the more

likely the attackers’ cache-lines will be evicted by the function, which is then reflected in the longer

average probing time in the PROBE phase. However, in the real case, an attacker cannot prime and

probe at any time he wants. Usually, the cpu is interrupted constantly to context switch to different

processes, but the attacker does not know how far the victim process has gone. So the probing time

of each LNreg cannot reveal any useful information about which of Square, Mult or Reduce has been

executed.

2. There does exist a possible redesigned attack targeting Newcache. The redesigned attack is

similar to the attack described by F.Liu [35]. Her attack is specifically designed for Newcache used

as a data cache, while my attack is for Newcache used as an instruction cache.

If the attacker knows exactly where the Square(), Mult() and Reduce() instructions reside in the

memory, he can manually create memory locations that will contend for the same locations in LDM

Cache by Square, Mult and Reduce (Figure 4.27). Figure 4.27 shows (a) the cache contents directly

after attacker’s PRIME phase; we can see that none of the cache-lines of Square, Mult and Reduce

is in the LDM Cache or physical cache. After some PRIME-PROBE interval, the attacker probes

again. Let’s assume at this point, (b) part of the Square() function has been executed, and we get

the cache contents in Figure 4.28. Then the probing time for the memory location 1 will be longer.

The attacker can easily get the information that the Square() function has executed.

However, people may think that the random eviction policy of Newcache cannot get the attacker a

clean prime, which means the attacker is not able to prime every single cache-line for Newcache. From

Figure 4.17, for more than 800 clean prime-probe results, we get the number of successfully-primed

cache lines for each prime-probe. We can see that on average about 330 out of 512 cache-lines can

71

Figure 4.27: Illustration of the Attack (a)

Figure 4.28: Illustration of the Attack (b)

72

successful occupy the Newcache after the PRIME phase. It’s quite intuitive: if the attacker primes

fewer cache-lines, these cache-lines tend to stay in the cache without being evicted by further primes.

From the previous description in Chapter 4.1.3, Square() has virtual address ranging from

0x54e50 to 0x5521d (973 bytes), Mult() has virtual address ranging from 0x555a0 to 0x558ff (863

bytes), Reduce has virtual address ranging from 0x53c10 to 0x5440f (2047 bytes); these three func-

tion totally occupy instructions no more than 6kB, which are about 96 cache-lines, far less than 330

cache-lines. Thus just priming 96 cache-lines is very likely to result in a successfully priming.

Moreover, how could the attacker know where the Square, Mult and Reduce functions reside in

the physical memory? For a traditional 32kB 8-way set-associative cache, the last 12 bits decide

which cache-set a memory-line should go into. Since the OS always assigns memory by 4KB memory

pages, the last 12 bits of any virtual address is always fixed. So Square, Mult and Reduce instructions

will always be fetched into the same sets in 32kb 8-way set-associative cache. However, for Newcache,

we have n+k= 9+4 =13 bits, and the size of the LDM cache is 512kB. Everytime, the Square, Mult

and Reduce instructions from the dynamic libraries may have different n+k index bits. The attacker

thus needs to perform some independent trials [35] before he can locate the memory locations of

Square, Mult and Reduce.

3. One more thing to notice, the attack described here and the attack described by F. Liu [35]

both assume that the attacker’s process has the same RMT ID as the victim’s process, otherwise

the attacker’s cache-line access during prime-probe will be considered as an index-miss in the first

place, which will trigger random eviction instead of tag-miss eviction. So our attack model is mostly

unrealistic: to have the same RMT ID as the victim process, the attacker has to modify the victim’s

binary and inject his own codes. More detailed analysis is in Chapter 2.3.3.

4. The experiment I did is under an ideal model. I used this ideal model to get the clear footprint

left by each operation for the SA cache. In a real scenario, attackers cannot modify the source code

of the crypto-library, neither can they prime-probe at the exact time after one typical operation is

finished. Under the ideal case (where the attacker is given enough power), our experiment shows

that for SA cache, the attacker could get distinguished footprints left by different operations, while

for Newcache, the attacker failed. If an attacker cannot even get any useful information when given

enough power, he is doomed to fail in a non-ideal, real scenario.

In Zhang’s work [44], they use a support vector machine (SVM) to classify the instruction cache

PROBE-ed footprints into the corresponding function calls (S, M or R) during the training phase.

To make the attack actually work for the SA cache, they have to deal with issues like observation

granularity, observation noise etc. Actually they use an artificial intelligence method called Hidden

73

Markov Model to reduce noise and increase prime-probe accuracy when they cannot control the

exact PROBE time.

5. In the previous analysis 4, I have described that under the ideal attack scenario in Newcache,

no visual difference can be made from cache footprints of Square, Mult and Reduce. Afterwards,

we refer to Zhang’s work [44], and train a SVM model based on the labeled training samples of

Square, Mult and Reduce. However, when we use the SVM model to do testings, we get a very high

classification accuracy (71.2%, Table 4.3), which means that the ideal attack case (prime directly

before the function and probe directly after the function) will actually add information of each

operation’s length into the final footprint. Such information is not reflected in the visual pattern,

but can be detected by a trained SVM model.

We then simulate the real attack under gem5, so that the victim can only execute for a constant

period of time before being preempted. This simulation is actually based on the real attack described

by [29]. We train a SVM model again after this simulation, and we get a much lower classification

accuracy (41.0%, Table 4.4), which indicates the Newcache’s capability in preventing the successful

information extractions from cache footprints.

Table 4.2 is the classification matrix for SA Cache used as ICache with LRU replacement algo-

rithm, and the victim executes in a fixed interval between prime-probe phases (simulating the real

attack [29]), while Table 4.3 and Table 4.4 are the classification matrices for Newcache with Nebit

k=4 used as ICache. In table 4.3, we have data of the ideal prime-probe attack, so complete S,

M and R operations are performed between prime-probe phases, while Table 4.4 is simulating the

real attack [29] in the simulator, so the victim also executes in a fixed interval between prime-probe

phases. Note that to simulate the real attack, we actually modify the simulator code directly, and

let the simulator do attacker’s prime-probe work. Modifying simulator directly allows us to quickly

collect prime-probe data, thus we can easily collect 40,000 training samples and 12,000 testing sam-

ples, and use these testing samples to get the classification accuracy in Table 4.2 and Table 4.4.

However, the ideal attack is done with two processes (one attacker process and one victim process)

running under the simulator; collecting attack footprints is slow, and I only collected 3000 training

samples and 1000 testing samples in 2 days. That’s why we see much fewer testing samples in Table

4.3.

Table 4.2: Classification Matrix for 8-way SA Cache with LRU Replacement Algorithm used as
ICache , with Fixed Interval for Victim to Execute, between Prime-Probe Phases

Classification
Accuracy

Square Multiply Reduce
S 3985 (1.00) 0 (0.00) 15 (0.00)

99.7%M 1 (0.00) 3991 (1.00) 8 (0.00)
R 8 (0.00) 6 (0.00) 3986 (1.00)

74

Table 4.3: Classification Matrix for Newcache with Nebit k=4 used as ICache, with Complete S, M
or R Operation Performed, between Prime-Probe Phases

Classification
Accuracy

Square Multiply Reduce
S 319 (0.96) 6 (0.02) 9 (0.03)

71.2%M 1 (0.00) 189 (0.57) 143 (0.43)
R 4 (0.01) 125 (0.38) 204 (0.61)

Table 4.4: Classification Matrix for Newcache with Nebit k=4 used as ICache, with Fixed Interval
for Victim to Execute, between Prime-Probe Phases

Classification
Accuracy

Square Multiply Reduce
S 1143 (0.29) 940 (0.24) 1917 (0.47)

41.0%M 1154 (0.29) 1098 (0.27) 1748 (0.44)
R 696 (0.17) 620 (0.16) 2684 (0.67)

75

Chapter 5

Closing Words

In this thesis, we did a thorough measurement of the performance (e.g. IPC, Cache Miss Rate etc.)

of Newcache as data cache, L2 cache and instruction cache, and a detailed performance analysis and

comparison with a conventional set-associative cache for carefully selected cloud server benchmarks

under gem5. We find that for the L1 data cache and L1 instruction cache, Newcache has performance

comparable with a conventional set-associative cache, with Newcache sometimes having even better

performance. Newcache as L2 cache has higher local and global L2 miss rate compared with SA-

cache as L2 cache, which is possibly due to Newcache randomly evicting lines out of the L2 cache

that may have still been useful. However, the performance of program execution, which is directly

reflected by the IPC, is hardly impacted. We also found that Newcache with k = 6 extra index

bits often gave better performance for the server benchmarks studied in this work, whereas previous

studies on the SPEC benchmarks [42] showed that k = 4 was sufficient.

We also did experiments and security analysis on Newcache as an instruction cache. The results

showed that Newcache can thwart representative attacks targeting instruction cache side channels.

Under an attack model which may not be realistic, the attacker can still use a redesigned Prime-

and-Probe technique targeting Newcache to extract some secret key information.

Future work might include making a mathematical probability model about the Newcache ran-

dom replacement policy, as well as realizing possible instruction side channel attacks targeting New-

cache.

76

Appendix A

Data for Newcache Performance

Measurement

A.1 Data for Newcache as L1 Data Cache

Table A.1: Newcache as L1-DCache: IPC for Different Cache Sizes

SA-size16 SA-size32 SA-size64 new-size16 new-size32 new-size64

apache 0.1760 0.1837 0.1962 0.1722 0.1806 0.1924

mysql 0.2803 0.2901 0.2631 0.2734

mail t1 0.2447 0.2710 0.2815 0.2407 0.2655 0.2773

mail t2 0.2485 0.2822 0.2977 0.2461 0.2758 0.2931

mail t5 0.2535 0.2766 0.2952 0.2451 0.2691 0.2921

dbench write 0.2364 0.2447 0.2550 0.2368 0.2470 0.2599

dbench read 0.2308 0.2390 0.2479 0.2294 0.2414 0.2546

rtsp s1 0.3935 0.4118 0.4241 0.3872 0.4100 0.4212

rtsp s3 0.3843 0.4058 0.4215 0.3767 0.3999 0.4178

rtsp s30 0.2986 0.3251 0.3434 0.2952 0.3193 0.3341

tomcat.t1 0.3820 0.3263 0.3395 0.3135 0.3351 0.3542

tomcat.t3 0.3135 0.3265 0.3343 0.3114 0.3308 0.3522

tomcat.t11 0.3065 0.3261 0.3360 0.3101 0.3309 0.3522

arith-mean 0.2890 0.2999 0.3125 0.2791 0.2984 0.3167

geo-mean 0.2813 0.2936 0.3062 0.2729 0.2918 0.3098

77

Table A.2: Newcache as L1-DCache: IPC for Different Associativity and Nebit

SA-assoc2 SA-assoc4 SA-assoc8 new-nebit3 new-nebit4 new-nebit5 new-nebit6

apache 0.1816 0.1834 0.1837 0.1805 0.1806 0.1809 0.1808

mysql 0.2757 0.2786 0.2803 0.2731 0.2734 0.2734 0.2758

mail t1 0.2568 0.2636 0.2710 0.2639 0.2655 0.2655 0.2656

mail t2 0.2679 0.2748 0.2822 0.2730 0.2758 0.2760 0.2761

mail t5 0.2676 0.2738 0.2766 0.2679 0.2691 0.2699 0.3928

dbench write 0.2425 0.2441 0.2447 0.2483 0.2470 0.2484 0.2473

dbench read 0.2375 0.2384 0.2390 0.2410 0.2414 0.2415 0.2418

rtsp s1 0.4008 0.4085 0.4118 0.4095 0.4100 0.4101 0.4101

rtsp s3 0.3965 0.4025 0.4058 0.3997 0.3999 0.4004 0.4007

rtsp s30 0.3120 0.3176 0.3251 0.3155 0.3193 0.3150 0.3148

tomcat.t1 0.3271 0.3237 0.3263 0.3349 0.3351 0.3364 0.3363

tomcat.t3 0.3216 0.3206 0.3265 0.3406 0.3308 0.3330 0.3375

tomcat.t11 0.3198 0.3205 0.3261 0.3404 0.3309 0.3279 0.3275

arith-mean 0.2929 0.2962 0.2999 0.2991 0.2984 0.2983 0.3082

geo-mean 0.2867 0.2900 0.2936 0.2924 0.2918 0.2919 0.3008

Table A.3: Newcache as L1-DCache: DCache Miss Rate for Different Cache Sizes

SA-size16 SA-size32 SA-size64 new-size16 new-size32 new-size64

apache 0.0979 0.0748 0.0507 0.1154 0.0863 0.0581

mysql 0.0584 0.0478 0.0954 0.0749

mail t1 0.0609 0.0222 0.0111 0.0721 0.0296 0.0143

mail t2 0.0726 0.0303 0.0130 0.0837 0.0377 0.0171

mail t5 0.0785 0.0467 0.0241 0.0947 0.0557 0.0272

dbench write 0.1217 0.0987 0.0762 0.1262 0.0955 0.0681

dbench read 0.1265 0.1044 0.0793 0.1326 0.0980 0.0690

rtsp s1 0.0446 0.0260 0.0159 0.0523 0.0281 0.0177

rtsp s3 0.0635 0.0387 0.0243 0.0745 0.0456 0.0280

rtsp s30 0.1175 0.0848 0.0655 0.1262 0.0952 0.0734

tomcat.t1 0.0566 0.0637 0.0521 0.0844 0.0618 0.0448

tomcat.t3 0.0802 0.0642 0.0547 0.0850 0.0619 0.0433

tomcat.t11 0.0822 0.0644 0.0537 0.0856 0.0614 0.0433

arith-mean 0.0836 0.0598 0.0437 0.0945 0.0640 0.0420

geo-mean 0.0796 0.0538 0.0364 0.0916 0.0591 0.0365

78

Table A.4: Newcache as L1-DCache: DCache Miss Rate for Different Associativity and Nebit

SA-assoc2 SA-assoc4 SA-assoc8 new-nebit3 new-nebit4 new-nebit5 new-nebit6

apache 0.0841 0.0773 0.0748 0.0870 0.0863 0.0859 0.0858

mysql 0.0692 0.0618 0.0584 0.0759 0.0749 0.0745 0.0674

mail t1 0.0445 0.0339 0.0222 0.0323 0.0296 0.0294 0.0294

mail t2 0.0494 0.0407 0.0303 0.0396 0.0377 0.0373 0.0373

mail t5 0.0581 0.0500 0.0467 0.0575 0.0557 0.0551 0.0197

dbench write 0.1050 0.0999 0.0987 0.0957 0.0955 0.0952 0.0948

dbench read 0.1101 0.1057 0.1044 0.0991 0.0980 0.0979 0.0975

rtsp s1 0.0366 0.0299 0.0260 0.0291 0.0281 0.0275 0.0276

rtsp s3 0.0511 0.0437 0.0387 0.0458 0.0456 0.0449 0.0448

rtsp s30 0.0982 0.0887 0.0848 0.0959 0.0952 0.0933 0.0940

tomcat.t1 0.0684 0.0660 0.0637 0.0634 0.0618 0.0610 0.0609

tomcat.t3 0.0715 0.0680 0.0642 0.0621 0.0619 0.0610 0.0592

tomcat.t11 0.0723 0.0681 0.0644 0.0616 0.0614 0.0648 0.0647

arith-mean 0.0706 0.0641 0.0598 0.0650 0.0640 0.0637 0.0602

geo-mean 0.0671 0.0597 0.0538 0.0604 0.0591 0.0588 0.0537

Table A.5: Newcache as L1-DCache: Global L2 Miss Rate for Different Cache Sizes

SA-size16 SA-size32 SA-size64 new-size16 new-size32 new-size64

apache 0.0264 0.0264 0.0233 0.0261 0.0260 0.0230

mysql 0.0190 0.0162 0.0196 0.0188

mail t1 0.0048 0.0045 0.0035 0.0050 0.0046 0.0034

mail t2 0.0050 0.0048 0.0037 0.0051 0.0048 0.0038

mail t5 0.0078 0.0079 0.0062 0.0081 0.0074 0.0063

dbench write 0.0250 0.0249 0.0245 0.0245 0.0244 0.0231

dbench read 0.0264 0.0264 0.0254 0.0264 0.0252 0.0239

rtsp s1 0.0043 0.0040 0.0036 0.0043 0.0040 0.0037

rtsp s3 0.0059 0.0056 0.0050 0.0059 0.0056 0.0050

rtsp s30 0.0180 0.0168 0.0157 0.0178 0.0167 0.0162

tomcat.t1 0.0139 0.0142 0.0138 0.0138 0.0138 0.0132

tomcat.t3 0.0142 0.0141 0.0141 0.0138 0.0141 0.0134

tomcat.t11 0.0145 0.0141 0.0142 0.0141 0.0140 0.0133

arith-mean 0.0139 0.0141 0.0130 0.0142 0.0138 0.0123

geo-mean 0.0113 0.0115 0.0103 0.0118 0.0113 0.0097

79

Table A.6: Newcache as L1-DCache: Global L2 Miss Rate for Different Associativity and Nebit

SA-assoc2 SA-assoc4 SA-assoc8 new-nebit3 new-nebit4 new-nebit5 new-nebit6

apache 0.0262 0.0264 0.0264 0.0260 0.0260 0.0259 0.0260

mysql 0.0189 0.0189 0.0190 0.0188 0.0188 0.0188 0.0188

mail t1 0.0045 0.0045 0.0045 0.0046 0.0046 0.0046 0.0046

mail t2 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048

mail t5 0.0077 0.0076 0.0079 0.0075 0.0074 0.0074 0.0052

dbench write 0.0249 0.0249 0.0249 0.0241 0.0244 0.0242 0.0243

dbench read 0.0264 0.0264 0.0264 0.0254 0.0252 0.0251 0.0253

rtsp s1 0.0039 0.0039 0.0040 0.0040 0.0040 0.0040 0.0040

rtsp s3 0.0056 0.0056 0.0056 0.0055 0.0056 0.0056 0.0056

rtsp s30 0.0178 0.0176 0.0168 0.0170 0.0167 0.0172 0.0170

tomcat.t1 0.0140 0.0142 0.0142 0.0137 0.0138 0.0137 0.0137

tomcat.t3 0.0145 0.0145 0.0141 0.0131 0.0141 0.0140 0.0136

tomcat.t11 0.0142 0.0144 0.0141 0.0131 0.0140 0.0143 0.0142

arith-mean 0.0141 0.0141 0.0141 0.0137 0.0138 0.0138 0.0136

geo-mean 0.0115 0.0115 0.0115 0.0112 0.0113 0.0113 0.0110

80

A.2 Data for Newcache as L2 Cache

Table A.7: Newcache as L2 Cache: IPC for Different Cache Sizes

l2.SA

size128

l2.SA

size256

l2.SA

size512

l2.new

size128

l2.new

size256

l2.new

size512

apache 0.1658 0.1837 0.2142 0.1633 0.1803 0.2072

mail t1 0.2521 0.2710 0.2777 0.2474 0.2676 0.2758

mail t2 0.2603 0.2822 0.2893 0.2505 0.2702 0.2843

mail t5 0.2495 0.2766 0.2887 0.2468 0.2797 0.2787

dbench write 0.2351 0.2447 0.2542 0.2332 0.2409 0.2488

dbench read 0.2296 0.2390 0.2481 0.2288 0.2355 0.2438

rtsp s1 0.3987 0.4118 0.4153 0.3957 0.4052 0.4106

rtsp s3 0.3886 0.4058 0.4095 0.3819 0.3982 0.4042

rtsp s30 0.3031 0.3251 0.3287 0.2954 0.3106 0.3276

tomcat.t1 0.3177 0.3263 0.3383 0.3102 0.3161 0.3277

tomcat.t3 0.3178 0.3265 0.3383 0.3103 0.3183 0.3345

tomcat.t11 0.3181 0.3261 0.3453 0.3105 0.3181 0.3340

arith-mean 0.2864 0.3016 0.3123 0.2812 0.2951 0.3064

geo-mean 0.2788 0.2947 0.3067 0.2738 0.2885 0.3007

81

Table A.8: Newcache as L2 Cache: IPC for Different Associativity and Nebit

l2.SA

assoc4

l2.SA.

assoc8

l2.SA.

assoc16

l2.new

nebit3

l2.new

nebit4

l2.new

nebit5

l2.new

nebit6

apache 0.1833 0.1837 0.1941 0.1803 0.1803 0.1805

mail t1 0.2684 0.2710 0.2725 0.2664 0.2676 0.2670 0.2682

mail t2 0.2778 0.2822 0.2838 0.2699 0.2702 0.2712 0.2708

mail t5 0.2733 0.2766 0.2787 0.2646 0.2797 0.2642 0.2653

dbench write 0.2459 0.2447 0.2456 0.2429 0.2409 0.2430 0.2437

dbench read 0.2381 0.2390 0.2394 0.2351 0.2355 0.2357 0.2362

rtsp s1 0.4086 0.4118 0.4128 0.4042 0.4052 0.4054 0.4063

rtsp s3 0.4030 0.4058 0.4064 0.3959 0.3982 0.3982 0.3991

rtsp s30 0.3217 0.3251 0.3220 0.3084 0.3106 0.3128 0.3115

tomcat.t1 0.3244 0.3263 0.3331 0.3214 0.3161 0.3184 0.3191

tomcat.t3 0.3255 0.3265 0.3332 0.3208 0.3183 0.3186 0.3184

tomcat.t11 0.3267 0.3261 0.3266 0.3163 0.3181 0.3184 0.3190

arith-mean 0.2997 0.3016 0.3040 0.2938 0.2951 0.2945 0.3053

geo-mean 0.2930 0.2947 0.2976 0.2872 0.2885 0.2878 0.3007

Table A.9: Newcache as L2 Cache: DCache Miss Rate for Different Cache Sizes

l2.SA

size128

l2.SA

size256

l2.SA

size512

l2.new

size128

l2.new

size256

l2.new

size512

apache 0.0773 0.0748 0.0692 0.0785 0.0758 0.0710

mail t1 0.0233 0.0222 0.0214 0.0229 0.0219 0.0214

mail t2 0.0316 0.0303 0.0294 0.0327 0.0312 0.0306

mail t5 0.0496 0.0467 0.0446 0.0486 0.0438 0.0463

dbench write 0.0993 0.0987 0.0975 0.0993 0.0991 0.0981

dbench read 0.1053 0.1044 0.1015 0.1053 0.1045 0.1016

rtsp s1 0.0268 0.0260 0.0255 0.0270 0.0266 0.0259

rtsp s3 0.0403 0.0387 0.0377 0.0422 0.0397 0.0388

rtsp s30 0.0879 0.0848 0.0816 0.0899 0.0866 0.0839

tomcat.t1 0.0631 0.0637 0.0625 0.0641 0.0648 0.0630

tomcat.t3 0.0631 0.0642 0.0625 0.0641 0.0645 0.0616

tomcat.t11 0.0631 0.0644 0.0602 0.0641 0.0645 0.0616

arith-mean 0.0609 0.0599 0.0578 0.0616 0.0602 0.0587

geo-mean 0.0546 0.0535 0.0516 0.0552 0.0537 0.0525

82

Table A.10: Newcache as L2 Cache: DCache Miss Rate for Different Associativity and Nebit

l2.SA

assoc4

l2.SA.

assoc8

l2.SA.

assoc16

l2.new

nebit3

l2.new

nebit4

l2.new

nebit5

l2.new

nebit6

apache 0.0751 0.0748 0.0709 0.0761 0.0758 0.0759

mail t1 0.0223 0.0222 0.0222 0.0223 0.0219 0.0224 0.0219

mail t2 0.0304 0.0303 0.0301 0.0308 0.0312 0.0307 0.0314

mail t5 0.0466 0.0467 0.0463 0.0476 0.0438 0.0476 0.0475

dbench write 0.0969 0.0987 0.0988 0.0972 0.0991 0.0975 0.0975

dbench read 0.1040 0.1044 0.1041 0.1046 0.1045 0.1049 0.1043

rtsp s1 0.0260 0.0260 0.0260 0.0265 0.0266 0.0265 0.0265

rtsp s3 0.0388 0.0387 0.0387 0.0397 0.0397 0.0397 0.0397

rtsp s30 0.0842 0.0848 0.0854 0.0872 0.0866 0.0871 0.0860

tomcat.t1 0.0640 0.0637 0.0623 0.0630 0.0648 0.0645 0.0645

tomcat.t3 0.0638 0.0642 0.0623 0.0635 0.0645 0.0644 0.0645

tomcat.t11 0.0634 0.0644 0.0638 0.0648 0.0645 0.0645 0.0645

arith-mean 0.0596 0.0599 0.0592 0.0603 0.0602 0.0605 0.0589

geo-mean 0.0533 0.0535 0.0529 0.0539 0.0537 0.0541 0.0523

Table A.11: Newcache as L2 Cache: Local L2 Miss Rate for Different Cache Sizes

l2.SA

size128

l2.SA

size256

l2.SA

size512

l2.new

size128

l2.new

size256

l2.new

size512

apache 0.6867 0.4995 0.2030 0.6985 0.5349 0.2884

mail t1 0.5382 0.2913 0.1249 0.5401 0.3233 0.2059

mail t2 0.4493 0.2247 0.0924 0.4632 0.2886 0.1688

mail t5 0.4791 0.2427 0.1164 0.5034 0.3414 0.2044

dbench write 0.5361 0.4018 0.3024 0.5034 0.4236 0.3485

dbench read 0.5308 0.4018 0.2951 0.4995 0.4217 0.3411

rtsp s1 0.4143 0.2817 0.1962 0.4601 0.3747 0.2938

rtsp s3 0.4504 0.2668 0.1811 0.4822 0.3668 0.2854

rtsp s30 0.5298 0.3517 0.2083 0.5949 0.4653 0.3452

tomcat.t1 0.4829 0.3041 0.2096 0.5411 0.4161 0.3131

tomcat.t3 0.4827 0.2943 0.2091 0.5413 0.4163 0.3138

tomcat.t11 0.4828 0.2939 0.2145 0.5411 0.4165 0.3142

arith-mean 0.5053 0.3212 0.1961 0.5307 0.3991 0.2852

geo-mean 0.5013 0.3132 0.1858 0.5274 0.3941 0.2785

83

Table A.12: Newcache as L2 Cache: Local L2 Miss Rate for Different Associativity and Nebit

l2.SA

assoc4

l2.SA.

assoc8

l2.SA.

assoc16

l2.new

nebit3

l2.new

nebit4

l2.new

nebit5

l2.new

nebit6

apache 0.5053 0.4995 0.4896 0.5441 0.5349 0.5349

mail t1 0.3250 0.2913 0.2517 0.3340 0.3233 0.3182 0.3159

mail t2 0.2669 0.2247 0.1986 0.3039 0.2886 0.2875 0.2799

mail t5 0.2775 0.2427 0.2239 0.3335 0.3414 0.3255 0.3187

dbench write 0.4154 0.4018 0.3876 0.4275 0.4236 0.4141 0.4123

dbench read 0.4163 0.4018 0.3870 0.4250 0.4217 0.4182 0.4161

rtsp s1 0.2951 0.2817 0.2714 0.3754 0.3747 0.3713 0.3612

rtsp s3 0.2899 0.2668 0.2598 0.3786 0.3668 0.3646 0.3544

rtsp s30 0.3736 0.3517 0.3289 0.4699 0.4653 0.4576 0.4520

tomcat.t1 0.3212 0.3041 0.2971 0.4253 0.4161 0.4138 0.4100

tomcat.t3 0.3234 0.2943 0.2968 0.4262 0.4163 0.4126 0.4125

tomcat.t11 0.3240 0.2939 0.2923 0.4204 0.4165 0.4139 0.4148

arith-mean 0.3445 0.3212 0.3071 0.4053 0.3991 0.3944 0.3771

geo-mean 0.3385 0.3132 0.2981 0.4005 0.3941 0.3892 0.3733

Table A.13: Newcache as L2 Cache: Global L2 Miss Rate for Different Cache Sizes

l2.SA

size128

l2.SA

size256

l2.SA

size512

l2.new

size128

l2.new

size256

l2.new

size512

apache 0.0372 0.0264 0.0100 0.0385 0.0286 0.0146

mail t1 0.0088 0.0045 0.0019 0.0087 0.0050 0.0031

mail t2 0.0100 0.0048 0.0019 0.0107 0.0063 0.0036

mail t5 0.0166 0.0079 0.0036 0.0171 0.0104 0.0066

dbench write 0.0335 0.0249 0.0186 0.0316 0.0264 0.0216

dbench read 0.0352 0.0264 0.0192 0.0332 0.0278 0.0223

rtsp s1 0.0060 0.0040 0.0028 0.0068 0.0054 0.0042

rtsp s3 0.0098 0.0056 0.0038 0.0110 0.0078 0.0060

rtsp s30 0.0270 0.0168 0.0098 0.0309 0.0233 0.0163

tomcat.t1 0.0220 0.0142 0.0097 0.0250 0.0197 0.0145

tomcat.t3 0.0220 0.0141 0.0097 0.0249 0.0196 0.0142

tomcat.t11 0.0220 0.0141 0.0095 0.0249 0.0196 0.0142

arith-mean 0.0208 0.0136 0.0084 0.0219 0.0167 0.0118

geo-mean 0.0179 0.0110 0.0063 0.0191 0.0139 0.0096

84

Table A.14: Newcache as L2 Cache: Global L2 Miss Rate for Different Associativity and Nebit

l2.SA

assoc4

l2.SA.

assoc8

l2.SA.

assoc16

l2.new

nebit3

l2.new

nebit4

l2.new

nebit5

l2.new

nebit6

apache 0.0267 0.0264 0.0244 0.0292 0.0286 0.0287

mail t1 0.0051 0.0045 0.0039 0.0053 0.0050 0.0050 0.0049

mail t2 0.0057 0.0048 0.0042 0.0066 0.0063 0.0062 0.0062

mail t5 0.0090 0.0079 0.0072 0.0111 0.0104 0.0108 0.0106

dbench write 0.0257 0.0249 0.0241 0.0265 0.0264 0.0257 0.0256

dbench read 0.0274 0.0264 0.0254 0.0280 0.0278 0.0276 0.0275

rtsp s1 0.0042 0.0040 0.0039 0.0054 0.0054 0.0054 0.0052

rtsp s3 0.0061 0.0056 0.0054 0.0081 0.0078 0.0078 0.0076

rtsp s30 0.0178 0.0168 0.0162 0.0235 0.0233 0.0228 0.0224

tomcat.t1 0.0151 0.0142 0.0135 0.0195 0.0197 0.0195 0.0193

tomcat.t3 0.0151 0.0141 0.0135 0.0196 0.0196 0.0194 0.0194

tomcat.t11 0.0151 0.0141 0.0137 0.0199 0.0196 0.0195 0.0195

arith-mean 0.0144 0.0136 0.0130 0.0169 0.0167 0.0165 0.0153

geo-mean 0.0119 0.0110 0.0104 0.0142 0.0139 0.0138 0.0128

85

A.3 Data for Newcache as Both L1 Data Cache and L2 Cache

Table A.15: Newcache as Both L1-DCache and L2 Cache: IPC

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new

apache 0.1837 0.1806 0.1803 0.1768

mail t1 0.2710 0.2655 0.2676 0.2597

mail t2 0.2822 0.2758 0.2702 0.2645

mail t5 0.2766 0.2691 0.2797 0.2573

dbench write 0.2447 0.2470 0.2409 0.2448

dbench read 0.2390 0.2414 0.2355 0.2380

rtsp s1 0.4118 0.4100 0.4052 0.4024

rtsp s3 0.4058 0.3999 0.3982 0.3917

rtsp s30 0.3251 0.3193 0.3106 0.3022

tomcat.t1 0.3263 0.3351 0.3161 0.3273

tomcat.t3 0.3265 0.3308 0.3183 0.3276

tomcat.t11 0.3261 0.3309 0.3181 0.3277

arith-mean 0.3016 0.3004 0.2951 0.2933

geo-mean 0.2947 0.2934 0.2885 0.2864

Table A.16: Newcache as Both L1-DCache and L2 Cache: DCache Miss Rate

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new

apache 0.0748 0.0863 0.0758 0.0876

mail t1 0.0222 0.0296 0.0219 0.0298

mail t2 0.0303 0.0377 0.0312 0.0382

mail t5 0.0467 0.0557 0.0438 0.0567

dbench write 0.0987 0.0955 0.0991 0.0941

dbench read 0.1044 0.0980 0.1045 0.1000

rtsp s1 0.0260 0.0281 0.0266 0.0285

rtsp s3 0.0387 0.0456 0.0397 0.0466

rtsp s30 0.0848 0.0952 0.0866 0.0971

tomcat.t1 0.0637 0.0618 0.0648 0.0626

tomcat.t3 0.0642 0.0619 0.0645 0.0624

tomcat.t11 0.0644 0.0614 0.0645 0.0626

arith-mean 0.0599 0.0631 0.0602 0.0639

geo-mean 0.0535 0.0580 0.0537 0.0587

86

Table A.17: Newcache as Both L1-DCache and L2 Cache: Local L2 Miss Rate

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new

apache 0.4995 0.4268 0.5349 0.4749

mail t1 0.2913 0.2204 0.3233 0.2767

mail t2 0.2247 0.1803 0.2886 0.2571

mail t5 0.2427 0.1886 0.3414 0.2816

dbench write 0.4018 0.4083 0.4236 0.4400

dbench read 0.4018 0.4046 0.4217 0.4475

rtsp s1 0.2817 0.2564 0.3747 0.3715

rtsp s3 0.2668 0.2199 0.3668 0.3236

rtsp s30 0.3517 0.3088 0.4653 0.4210

tomcat.t1 0.3041 0.3215 0.4161 0.4168

tomcat.t3 0.2943 0.3265 0.4163 0.4172

tomcat.t11 0.2939 0.3279 0.4165 0.4173

arith-mean 0.3212 0.2992 0.3991 0.3788

geo-mean 0.3132 0.2873 0.3941 0.3714

Table A.18: Newcache as Both L1-DCache and L2 Cache: Global L2 Miss Rate

l1d.SA-l2.SA l1d.new-l2.SA l1d.SA-l2.new l1d.new-l2.new

apache 0.0264 0.0260 0.0286 0.0294

mail t1 0.0045 0.0046 0.0050 0.0059

mail t2 0.0048 0.0048 0.0063 0.0070

mail t5 0.0079 0.0074 0.0104 0.0113

dbench write 0.0249 0.0244 0.0264 0.0264

dbench read 0.0264 0.0252 0.0278 0.0282

rtsp s1 0.0040 0.0040 0.0054 0.0059

rtsp s3 0.0056 0.0056 0.0078 0.0084

rtsp s30 0.0168 0.0167 0.0233 0.0241

tomcat.t1 0.0142 0.0138 0.0197 0.0181

tomcat.t3 0.0141 0.0141 0.0196 0.0180

tomcat.t11 0.0141 0.0140 0.0196 0.0181

arith-mean 0.0136 0.0134 0.0167 0.0167

geo-mean 0.0110 0.0108 0.0139 0.0142

87

A.4 Data for Newcache as L1 Instruction Cache (Part A)

Table A.19: Newcache as L1-ICache: IPC

all.SA

base

l1i.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.1837 0.1768 0.1780 0.1744 0.1742 0.1739

mail t1 0.2710 0.2597 0.2595 0.2601 0.2605 0.2600

mail t2 0.2822 0.2645 0.2652 0.2648 0.2653 0.2655

mail t5 0.2766 0.2573 0.2581 0.2574 0.2575 0.2577

dbench write 0.2447 0.2448 0.2414 0.2416 0.2416 0.2418

dbench read 0.2390 0.2380 0.2360 0.2355 0.2367 0.2360

rtsp s1 0.4118 0.4024 0.3990 0.4031 0.4041 0.4041

rtsp s3 0.4058 0.3917 0.3871 0.3889 0.3893 0.3900

rtsp s30 0.3251 0.3022 0.3066 0.3002 0.3094 0.3154

tomcat.t1 0.3263 0.3273 0.3259 0.3229 0.3245 0.3234

tomcat.t3 0.3265 0.3276 0.3231 0.3235 0.3251 0.3251

tomcat.t11 0.3261 0.3277 0.3248 0.3239 0.3238 0.3231

arith-mean 0.3016 0.2933 0.2921 0.2914 0.2927 0.2930

geo-mean 0.2947 0.2864 0.2854 0.2844 0.2856 0.2859

88

Table A.20: Newcache as L1-ICache: ICache Miss Rate

all.SA

base

l1i.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.2447 0.2454 0.2721 0.2670 0.2666 0.2670

mail t1 0.2790 0.2784 0.2820 0.2783 0.2761 0.2776

mail t2 0.2792 0.2846 0.2873 0.2858 0.2829 0.2835

mail t5 0.2636 0.2651 0.2668 0.2660 0.2628 0.2631

dbench write 0.0984 0.1000 0.1082 0.1078 0.1081 0.1080

dbench read 0.0922 0.0925 0.1023 0.1018 0.1017 0.1018

rtsp s1 0.0722 0.0724 0.0756 0.0710 0.0686 0.0685

rtsp s3 0.0720 0.0726 0.0804 0.0777 0.0753 0.0753

rtsp s30 0.0699 0.0728 0.0766 0.0783 0.0743 0.0752

tomcat.t1 0.0352 0.0357 0.0409 0.0396 0.0392 0.0391

tomcat.t3 0.0320 0.0358 0.0409 0.0393 0.0392 0.0389

tomcat.t11 0.0320 0.0358 0.0408 0.0394 0.0393 0.0391

arith-mean 0.1309 0.1326 0.1395 0.1377 0.1362 0.1364

geo-mean 0.0958 0.0985 0.1063 0.1042 0.1028 0.1029

Table A.21: Newcache as L1-ICache: Local L2 Instruction Miss Rate

all.SA

base

l1i.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.4743 0.5277 0.5000 0.4887 0.4894 0.4884

mail t1 0.0535 0.0959 0.0955 0.0972 0.0970 0.0973

mail t2 0.0487 0.1126 0.1124 0.1133 0.1146 0.1145

mail t5 0.0696 0.1605 0.1594 0.1625 0.1643 0.1640

dbench write 0.4690 0.5588 0.5197 0.5216 0.5210 0.5213

dbench read 0.5077 0.5978 0.5466 0.5480 0.5483 0.5488

rtsp s1 0.0603 0.1294 0.1279 0.1367 0.1401 0.1415

rtsp s3 0.0614 0.1604 0.1509 0.1564 0.1618 0.1621

rtsp s30 0.1087 0.2828 0.2794 0.2780 0.2845 0.2800

tomcat.t1 0.2834 0.4295 0.4101 0.4260 0.4305 0.4327

tomcat.t3 0.2964 0.4289 0.4094 0.4267 0.4304 0.4334

tomcat.t11 0.2978 0.4288 0.4095 0.4274 0.4307 0.4338

arith-mean 0.2276 0.3261 0.3101 0.3152 0.3177 0.3181

geo-mean 0.1559 0.2687 0.2588 0.2642 0.2670 0.2673

89

Table A.22: Newcache as L1-ICache: Global L2 Instruction Miss Rate

all.SA

base

l1i.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.1056 0.1174 0.1190 0.1190 0.1189 0.1189

mail t1 0.0144 0.0256 0.0258 0.0259 0.0257 0.0259

mail t2 0.0131 0.0307 0.0309 0.0310 0.0310 0.0310

mail t5 0.0176 0.0406 0.0405 0.0412 0.0411 0.0411

dbench write 0.0411 0.0496 0.0502 0.0502 0.0502 0.0502

dbench read 0.0415 0.0487 0.0496 0.0495 0.0495 0.0496

rtsp s1 0.0041 0.0088 0.0092 0.0092 0.0091 0.0092

rtsp s3 0.0042 0.0110 0.0115 0.0115 0.0115 0.0116

rtsp s30 0.0073 0.0196 0.0203 0.0207 0.0201 0.0200

tomcat.t1 0.0093 0.0142 0.0155 0.0156 0.0156 0.0156

tomcat.t3 0.0088 0.0142 0.0155 0.0155 0.0156 0.0156

tomcat.t11 0.0088 0.0142 0.0155 0.0156 0.0157 0.0157

arith-mean 0.0230 0.0329 0.0336 0.0337 0.0337 0.0337

geo-mean 0.0140 0.0246 0.0255 0.0256 0.0256 0.0256

90

A.5 Data for Newcache as L1 Instruction Cache (Part B)

Table A.23: Newcache as L1-ICache: IPC

all.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.1837 0.1810 0.1808 0.1812 0.1810

mail t1 0.2703 0.2708 0.2714 0.2713 0.2711

mail t2 0.2798 0.2802 0.2806 0.2808 0.2807

mail t5 0.2768 0.2770 0.2779 0.2791 0.2780

dbench write 0.2447 0.2433 0.2435 0.2433 0.2434

dbench read 0.2390 0.2378 0.2378 0.2374 0.2376

rtsp s1 0.4071 0.4050 0.4099 0.4101 0.4097

rtsp s3 0.3848 0.3816 0.3839 0.3841 0.3834

rtsp s30 0.2857 0.2843 0.2864 0.2861 0.2862

tomcat.t1 0.3247 0.3088 0.3225 0.3269 0.3288

tomcat.t3 0.3267 0.3209 0.3334 0.3258 0.3254

tomcat.t11 0.3261 0.3228 0.3273 0.3264 0.3439

arith-mean 0.2958 0.2928 0.2963 0.2960 0.2974

geo-mean 0.2896 0.2868 0.2898 0.2896 0.2908

91

Table A.24: Newcache as L1-ICache: ICache Miss Rate

all.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.2447 0.2663 0.2668 0.2666 0.2668

mail t1 0.2798 0.2803 0.2782 0.2766 0.2782

mail t2 0.2812 0.2833 0.2826 0.2803 0.2803

mail t5 0.2660 0.2654 0.2641 0.2619 0.2621

dbench write 0.0984 0.1072 0.1071 0.1070 0.1071

dbench read 0.0922 0.1017 0.1013 0.1013 0.1013

rtsp s1 0.0810 0.0812 0.0762 0.0745 0.0748

rtsp s3 0.0837 0.0883 0.0851 0.0843 0.0846

rtsp s30 0.0883 0.0894 0.0875 0.0879 0.0877

tomcat.t1 0.0331 0.0411 0.0356 0.0363 0.0346

tomcat.t3 0.0327 0.0377 0.0373 0.0360 0.0350

tomcat.t11 0.0320 0.0358 0.0351 0.0338 0.0367

arith-mean 0.1344 0.1398 0.1381 0.1372 0.1374

geo-mean 0.0997 0.1067 0.1039 0.1030 0.1032

Table A.25: Newcache as L1-ICache: Local L2 Instruction Miss Rate

all.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.4743 0.4347 0.4345 0.4350 0.4348

mail t1 0.0535 0.0538 0.0538 0.0543 0.0553

mail t2 0.0487 0.0493 0.0496 0.0495 0.0495

mail t5 0.0643 0.0674 0.0680 0.0663 0.0675

dbench write 0.4690 0.4281 0.4286 0.4294 0.4289

dbench read 0.5077 0.4591 0.4609 0.4616 0.4612

rtsp s1 0.0444 0.0430 0.0462 0.0470 0.0469

rtsp s3 0.0529 0.0486 0.0502 0.0504 0.0511

rtsp s30 0.0919 0.0945 0.0958 0.0949 0.0952

tomcat.t1 0.2999 0.3030 0.2762 0.2688 0.2813

tomcat.t3 0.2972 0.2672 0.3126 0.2656 0.2812

tomcat.t11 0.2978 0.2681 0.2772 0.2822 0.3171

arith-mean 0.2251 0.2097 0.2128 0.2088 0.2142

geo-mean 0.1477 0.1417 0.1445 0.1424 0.1456

92

Table A.26: Newcache as L1-ICache: Global L2 Instruction Miss Rate

all.SA

base

l1i.new

nebit3

l1i.new

nebit4

l1i.new

nebit5

l1i.new

nebit6

apache 0.1056 0.1059 0.1061 0.1061 0.1062

mail t1 0.0143 0.0145 0.0144 0.0144 0.0148

mail t2 0.0132 0.0134 0.0135 0.0134 0.0133

mail t5 0.0165 0.0172 0.0173 0.0167 0.0170

dbench write 0.0411 0.0412 0.0412 0.0413 0.0412

dbench read 0.0415 0.0417 0.0418 0.0418 0.0417

rtsp s1 0.0034 0.0033 0.0034 0.0034 0.0034

rtsp s3 0.0042 0.0041 0.0041 0.0041 0.0041

rtsp s30 0.0078 0.0081 0.0080 0.0080 0.0080

tomcat.t1 0.0092 0.0115 0.0091 0.0091 0.0091

tomcat.t3 0.0090 0.0094 0.0108 0.0089 0.0091

tomcat.t11 0.0088 0.0089 0.0091 0.0089 0.0108

arith-mean 0.0229 0.0233 0.0232 0.0230 0.0232

geo-mean 0.0138 0.0142 0.0141 0.0138 0.0141

93

A.6 Data for Newcache as L1 Instruction Cache (Part C)

Table A.27: Newcache as L1-ICache: IPC

all.SA

base

l1i.new

.nebit3

l1d.new

.nebit4

l1i.new

.nebit4

l1d.new

.nebit4

l1i.new

.nebit5

l1d.new

.nebit4

l1i.new

.nebit6

l1d.new

.nebit4

l1i.new

.nebit3

l1d.new

.nebit6

l1i.new

.nebit4

l1d.new

.nebit6

l1i.new

.nebit5

l1d.new

.nebit6

l1i.new

.nebit6

l1d.new

.nebit6

apache 0.1837 0.1777 0.1775 0.1775 0.1774 0.1775 0.1778 0.1778 0.1776

mail t1 0.2703 0.2656 0.2667 0.2667 0.2663 0.2666 0.2670 0.2673 0.2667

mail t2 0.2798 0.2738 0.2741 0.2750 0.2749 0.2742 0.2745 0.2752 0.2753

mail t5 0.2768 0.2696 0.2703 0.2708 0.2707 0.2715 0.2726 0.2716 0.2721

dbench write 0.2447 0.2453 0.2455 0.2454 0.2451 0.2462 0.2462 0.2479 0.2461

dbench read 0.2390 0.2402 0.2402 0.2397 0.2401 0.2403 0.2421 0.2408 0.2398

rtsp s1 0.4071 0.4024 0.4074 0.4074 0.4075 0.4026 0.4073 0.4072 0.4070

rtsp s3 0.3848 0.3779 0.3792 0.3793 0.3793 0.3768 0.3792 0.3797 0.3788

rtsp s30 0.2857 0.2760 0.2763 0.2782 0.2749 0.2758 0.2786 0.2744 0.2789

tomcat.t1 0.3247 0.3342 0.3299 0.3343 0.3327 0.3257 0.3343 0.3353 0.3372

tomcat.t3 0.3267 0.3283 0.3317 0.3350 0.3419 0.3291 0.3299 0.3268 0.3298

tomcat.t11 0.3261 0.3315 0.3294 0.3316 0.3303 0.3256 0.3345 0.3369 0.3310

arith-mean 0.2958 0.2935 0.2940 0.2951 0.2951 0.2927 0.2953 0.2951 0.2950

geo-mean 0.2896 0.2871 0.2875 0.2884 0.2883 0.2864 0.2888 0.2885 0.2884

94

Table A.28: Newcache as L1-ICache: ICache Miss Rate

all.SA

base

l1i.new

.nebit3

l1d.new

.nebit4

l1i.new

.nebit4

l1d.new

.nebit4

l1i.new

.nebit5

l1d.new

.nebit4

l1i.new

.nebit6

l1d.new

.nebit4

l1i.new

.nebit3

l1d.new

.nebit6

l1i.new

.nebit4

l1d.new

.nebit6

l1i.new

.nebit5

l1d.new

.nebit6

l1i.new

.nebit6

l1d.new

.nebit6

apache 0.2447 0.2661 0.2665 0.2666 0.2673 0.2665 0.2662 0.2661 0.2667

mail t1 0.2798 0.2810 0.2779 0.2763 0.2767 0.2800 0.2787 0.2761 0.2777

mail t2 0.2812 0.2873 0.2866 0.2825 0.2833 0.2871 0.2868 0.2831 0.2829

mail t5 0.2660 0.2659 0.2648 0.2621 0.2618 0.2655 0.2647 0.2617 0.2622

dbench write 0.0984 0.1078 0.1075 0.1074 0.1076 0.1077 0.1077 0.1081 0.1074

dbench read 0.0922 0.1014 0.1022 0.1020 0.1022 0.1025 0.1014 0.1021 0.1013

rtsp s1 0.0810 0.0815 0.0762 0.0748 0.0746 0.0814 0.0763 0.0747 0.0748

rtsp s3 0.0837 0.0902 0.0854 0.0845 0.0866 0.0887 0.0854 0.0865 0.0848

rtsp s30 0.0883 0.0940 0.0900 0.0897 0.0929 0.0912 0.0883 0.0935 0.0891

tomcat.t1 0.0331 0.0396 0.0369 0.0361 0.0360 0.0398 0.0363 0.0358 0.0373

tomcat.t3 0.0327 0.0382 0.0366 0.0357 0.0335 0.0385 0.0370 0.0373 0.0365

tomcat.t11 0.0320 0.0375 0.0362 0.0357 0.0355 0.0398 0.0355 0.0349 0.0357

arith-mean 0.1344 0.1409 0.1389 0.1378 0.1382 0.1407 0.1387 0.1383 0.1380

geo-mean 0.0997 0.1077 0.1049 0.1038 0.1037 0.1080 0.1044 0.1045 0.1042

95

Table A.29: Newcache as L1-ICache: Local L2 Instruction Miss Rate

all.SA

base

l1i.new

.nebit3

l1d.new

.nebit4

l1i.new

.nebit4

l1d.new

.nebit4

l1i.new

.nebit5

l1d.new

.nebit4

l1i.new

.nebit6

l1d.new

.nebit4

l1i.new

.nebit3

l1d.new

.nebit6

l1i.new

.nebit4

l1d.new

.nebit6

l1i.new

.nebit5

l1d.new

.nebit6

l1i.new

.nebit6

l1d.new

.nebit6

apache 0.4743 0.4359 0.4352 0.4350 0.4355 0.4361 0.4347 0.4350 0.4345

mail t1 0.0532 0.0574 0.0562 0.0567 0.0567 0.0562 0.0564 0.0569 0.0568

mail t2 0.0487 0.0514 0.0504 0.0513 0.0510 0.0508 0.0505 0.0514 0.0513

mail t5 0.0643 0.0677 0.0662 0.0668 0.0668 0.0657 0.0650 0.0685 0.0657

dbench write 0.4690 0.4250 0.4258 0.4267 0.4255 0.4255 0.4261 0.4265 0.4267

dbench read 0.5077 0.4574 0.4569 0.4572 0.4590 0.4554 0.4605 0.4553 0.4603

rtsp s1 0.0444 0.0437 0.0467 0.0476 0.0475 0.0436 0.0466 0.0472 0.0474

rtsp s3 0.0529 0.0487 0.0502 0.0504 0.0506 0.0479 0.0499 0.0504 0.0508

rtsp s30 0.0919 0.0896 0.0978 0.0965 0.0911 0.0972 0.0997 0.0933 0.0992

tomcat.t1 0.2999 0.2951 0.2707 0.2716 0.2615 0.2548 0.2699 0.2716 0.3137

tomcat.t3 0.2972 0.2607 0.2578 0.2718 0.2661 0.2607 0.2707 0.2728 0.2748

tomcat.t11 0.2978 0.2619 0.2740 0.2757 0.2727 0.2453 0.2727 0.2808 0.2781

arith-mean 0.2251 0.2079 0.2073 0.2089 0.2070 0.2033 0.2086 0.2092 0.2133

geo-mean 0.1477 0.1416 0.1424 0.1437 0.1422 0.1391 0.1430 0.1438 0.1460

96

Table A.30: Newcache as L1-ICache: Global L2 Instruction Miss Rate

all.SA

base

l1i.new

.nebit3

l1d.new

.nebit4

l1i.new

.nebit4

l1d.new

.nebit4

l1i.new

.nebit5

l1d.new

.nebit4

l1i.new

.nebit6

l1d.new

.nebit4

l1i.new

.nebit3

l1d.new

.nebit6

l1i.new

.nebit4

l1d.new

.nebit6

l1i.new

.nebit5

l1d.new

.nebit6

l1i.new

.nebit6

l1d.new

.nebit6

apache 0.1056 0.1060 0.1060 0.1060 0.1064 0.1062 0.1058 0.1058 0.1059

mail t1 0.0143 0.0155 0.0150 0.0151 0.0151 0.0151 0.0151 0.0151 0.0152

mail t2 0.0132 0.0142 0.0139 0.0139 0.0139 0.0140 0.0139 0.0140 0.0140

mail t5 0.0165 0.0172 0.0168 0.0168 0.0168 0.0167 0.0165 0.0172 0.0165

dbench write 0.0411 0.0411 0.0411 0.0411 0.0411 0.0411 0.0412 0.0414 0.0411

dbench read 0.0415 0.0414 0.0417 0.0417 0.0419 0.0417 0.0417 0.0415 0.0417

rtsp s1 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034

rtsp s3 0.0042 0.0042 0.0041 0.0041 0.0042 0.0041 0.0041 0.0042 0.0041

rtsp s30 0.0078 0.0081 0.0084 0.0083 0.0081 0.0085 0.0084 0.0084 0.0085

tomcat.t1 0.0092 0.0108 0.0093 0.0091 0.0088 0.0095 0.0091 0.0090 0.0108

tomcat.t3 0.0090 0.0093 0.0088 0.0090 0.0083 0.0094 0.0093 0.0095 0.0093

tomcat.t11 0.0088 0.0091 0.0092 0.0091 0.0090 0.0091 0.0090 0.0091 0.0092

arith-mean 0.0229 0.0234 0.0231 0.0231 0.0231 0.0232 0.0231 0.0232 0.0233

geo-mean 0.0138 0.0143 0.0140 0.0140 0.0138 0.0141 0.0140 0.0141 0.0142

97

Appendix B

Performance Measuring Scripts

and Data Collecting Scripts

B.1 Sample Performance Measuring Script for Dbench Write

Listing B.1 is a sample bash script for running the benchmark dbench write. We set the –serverbench

option to be “smbd” and the –clientbench option to be “smbd.0’, which corresponds to the smbd-

server.rcS and smbd.0-client.rcS scripts in Listing B.2 and Listing B.3. In Listing B.1, we set

L1-DCache to be Newcache, L1-ICache and L2 cache as conventional SA caches. We also set the

stats output directory and all the other configuration details (cache associativity, size, etc.) in the

script. The server and client binaries are installed in a gem5 disk image ain.img, which can be

found in haow@palms.ee.princeton.edu:~/archive/ (it is too big to be uploaded to github). All

the other testing scripts for different benchmarks can be found in https://github.com/eepalms/

Newcache-performance-testing/tree/master/scripts-dual. Actually people can just follow

the sample script to create their own testing scripts, by either writing another auto scripts generator,

or by doing simple keywords replacement in the sample script.

Listing B.1: Sample Bash Script for dbench write

cd /home/haow/newcache_v2/

build/X86/gem5.opt --outdir =../ testing/outdir/smbd .0/ smbd.0-new -base

configs/example/fs.py --kernel=vmlinux --disk -image=ain.img

--mem -size="2048MB" --dual --serverbench="smbd" --clientbench="smbd.0"

--checkpoint -dir =../ testing/checkpoint/smbd.0 -r 1 --clock="3GHz"

--mem_lat="66.7ns" --cpu -type=detailed --caches --l1d_size="32kB"

--cacheline_size =64 --l1d_assoc =512 --l1d_nebit =4 --l1d_alg="NEWCACHE"

98

haow@palms.ee.princeton.edu:~/archive/
https://github.com/eepalms/Newcache-performance-testing/tree/master/scripts-dual
https://github.com/eepalms/Newcache-performance-testing/tree/master/scripts-dual

--l1d_index_pos="" --l1i_size="32kB" --l1i_assoc =4 --l2cache

--l2_size="256kB" --l2_assoc =8 --l3cache --l3_size="2MB" --l3_assoc =16

--maxinsts =1000000000 &

B.2 Python Script to Generate Performance Measuring

Scripts

Listing B.2 is the Python script for generating performance measuring scripts under different config-

urations for different benchmarks. The benchmarks[] array defines the benchmarks, the disk images,

the server/client configuration scripts to use and the maximum execution instruction numbers. The

configs[] array defines the configurations you want to use to measure the performance for each of these

benchmarks. The whole version of the script can be found under the haow@palms.ee.princeton.

edu:~/archive/testing/ directory.

Listing B.2: Python Script to Generate Performance Measuring Scripts

import os,sys ,stat

gem5_base = ’cd /home/haow/newcache_v2/’

gem5_exe = ’build/X86/gem5.opt’

outdir_base = ’/home/haow/testing/outdir/’

checkpoint_base = ’/home/haow/testing/checkpoint/’

scripts_base = ’./’

benchmark parameters

bm[0]: benchmark suite name / client script name / outdir name

bm[1]: disk image

bm[2]: server script name

benchmarks = [[’apache ’, ’big.img’, ’apache ’, ’NA’] ,

[’mysql ’, ’mysqltest.img’, ’mysql ’, ’NA’],

[’mail_t1 ’, ’ain.img’, ’mail’, ’1000000000 ’],

[’mail_t2 ’, ’ain.img’, ’mail’, ’1000000000 ’],

[’mail_t5 ’, ’ain.img’, ’mail’, ’1000000000 ’],

[’smbd.0’, ’ain.img’, ’smbd’, ’1000000000 ’],

[’smbd.1’, ’ain.img’, ’smbd’, ’1000000000 ’],

99

haow@palms.ee.princeton.edu:~/archive/testing/
haow@palms.ee.princeton.edu:~/archive/testing/

[’ffserver.x1’, ’ain.img’, ’ffserver ’, ’NA’],

[’ffserver.x3’, ’ain.img’, ’ffserver ’, ’2000000000 ’],

[’ffserver.x30’, ’ain.img’, ’ffserver ’, ’3000000000 ’],

[’tomcat .3’, ’ain.img’, ’tomcat ’, ’2000000000 ’],

[’tomcat .4’, ’ain.img’, ’tomcat ’, ’2000000000 ’],

[’tomcat .5’, ’ain.img’, ’tomcat ’, ’3000000000 ’],

]

gem5 configurations

#configuration [0]: [1] line [2]data -cache

[6] instruction -cache [10]l2

configs = [[’-l1i.new.base -l1d.SA.base -l2.SA.base’,

’64’, ’LRU’, ’32kB’, ’8’, ’’, ’NEWCACHE ’, ’32kB’, ’512’,

’4’, ’LRU’, ’256kB’, ’8’, ’’],

[’-l1i.new.nebit3 -l1d.SA.base -l2.SA.base’,

’64’, ’LRU’, ’32kB’, ’8’, ’’, ’NEWCACHE ’, ’32kB’,

’512’, ’3’, ’LRU’, ’256kB’, ’8’, ’’],

[’-l1i.new.nebit5 -l1d.SA.base -l2.SA.base’,

’64’, ’LRU’, ’32kB’, ’8’, ’’, ’NEWCACHE ’, ’32kB’,

’512’, ’5’, ’LRU’, ’256kB’, ’8’, ’’],

[’-l1i.new.nebit6 -l1d.SA.base -l2.SA.base’,

’64’, ’LRU’, ’32kB’, ’8’, ’’, ’NEWCACHE ’, ’32kB’,

’512’, ’6’, ’LRU’, ’256kB’, ’8’, ’’],

......

]

for bm in benchmarks:

dir_name = scripts_base + bm[0]

if not os.path.exists(dir_name):

os.mkdir(dir_name)

for configuration in configs:

file_name = dir_name + ’/’ + bm[0] + configuration [0]

100

#if not os.path.exists(file_name):

fd = open(file_name , ’w’)

fd.write(gem5_base)

fd.write(’\n’)

fd.write(gem5_exe)

#--outdir

temp_string = ’ --outdir=’ + outdir_base + bm[0] + ’/’ + bm[0]

+ configuration [0]

fd.write(temp_string)

#configs and --kernel

fd.write(’ configs/example/fs.py --kernel=vmlinux ’)

#--disk -image

temp_string = ’ --disk -image=’ + bm[1]

fd.write(temp_string)

#--mem -size

fd.write(’ --mem -size ="2048 MB"’)

#--dual --serverbench --clientbench

temp_string = ’ --dual --serverbench ="’ + bm[2]

+ ’" --clientbench ="’ + bm[0] + ’"’

fd.write(temp_string)

#--checkpoint -dir

temp_string = ’ --checkpoint -dir=’

+ checkpoint_base + bm[0] + ’ -r 1’

fd.write(temp_string)

#

fd.write(’ --clock ="3 GHz"

--mem_lat ="66.7 ns" --cpu -type=detailed --caches ’)

101

#--cacheline_size

temp_string = ’ --cacheline_size=’ + configuration [1]

fd.write(temp_string)

#l1d

temp_string = ’ --l1d_alg ="’+ configuration [2]

+ ’" --l1d_size ="’ + configuration [3]

+ ’" --l1d_assoc=’ + configuration [4]

fd.write(temp_string)

if configuration [2] == ’NEWCACHE ’:

temp_string = ’ --l1d_nebit=’ + configuration [5]

fd.write(temp_string)

fd.write(’ --l1d_index_pos =""’)

#l1i

temp_string = ’ --l1i_alg ="’+ configuration [6]

+ ’" --l1i_size ="’ + configuration [7]

+ ’" --l1i_assoc=’ + configuration [8]

fd.write(temp_string)

if configuration [6] == ’NEWCACHE ’:

temp_string = ’ --l1i_nebit=’ + configuration [9]

fd.write(temp_string)

#l2

fd.write(’ --l2cache ’)

temp_string = ’ --l2_alg ="’+ configuration [10]

+ ’" --l2_size ="’ + configuration [11]

+ ’" --l2_assoc=’ + configuration [12]

fd.write(temp_string)

if configuration [10] == ’NEWCACHE ’:

temp_string = ’ --l2_nebit=’ + configuration [13]

fd.write(temp_string)

102

#l3

fd.write(’ --l3cache --l3_size ="2MB" --l3_assoc =16’)

#max -inst

if bm[3] != ’NA’:

temp_string = ’ --maxinsts=’ + bm[3]

fd.write(temp_string)

fd.write(’ &\n’)

fd.close()

st = os.stat(file_name)

os.chmod(file_name , st.st_mode | stat.S_IEXEC)

B.3 Sample Server-Side and Client-Side Configuration

Scripts for Dbench Write on Gem5

Listing B.3 and Listing B.4 are the file server’s server-side and the client-side configuration scripts

for the gem5 x86 dual system. In smbd-server.rcS, we set up the network, give server-side an IP

address 10.0.0.1, and start up the smbd file server. In smbd.0-client.rcS, we set up the network, and

after we confirm that the server-side is ready, we use dbench to drive the server (10.0.0.1) with some

workload.

Listing B.3: smbd-server.rcS

#!/bin/sh

#

/etc/init.d/rcS

#

echo -n "setting up network ..."

mount proc /proc -t proc

/sbin/ifconfig eth0 10.0.0.1 netmask 255.255.255.0 txqueuelen 1000 up

/sbin/ifconfig lo 127.0.0.1 netmask 255.255.255.0 up

echo "1" > /proc/sys/net/ipv4/tcp_tw_recycle

echo "1" > /proc/sys/net/ipv4/tcp_tw_reuse

103

echo "1" > /proc/sys/net/ipv4/tcp_window_scaling

echo "0" > /proc/sys/net/ipv4/tcp_timestamps

echo "0" > /proc/sys/net/ipv4/tcp_sack

echo "15" > /proc/sys/net/ipv4/tcp_fin_timeout

echo "16384" > /proc/sys/net/ipv4/tcp_max_syn_backlog

echo "262144" > /proc/sys/net/ipv4/ip_conntrack_max

echo "1024 65535" > /proc/sys/net/ipv4/ip_local_port_range

echo "10000000 10000000 10000000" > /proc/sys/net/ipv4/tcp_rmem

echo "10000000 10000000 10000000" > /proc/sys/net/ipv4/tcp_wmem

echo "10000000 10000000 10000000" > /proc/sys/net/ipv4/tcp_mem

echo "524287" > /proc/sys/net/core/rmem_max

echo "524287" > /proc/sys/net/core/wmem_max

echo "524287" > /proc/sys/net/core/optmem_max

echo "300000" > /proc/sys/net/core/netdev_max_backlog

echo "131072" > /proc/sys/fs/file -max

echo "done."

echo -n "starting smbd ..."

cd /home/haow/install/samba -4.0.9/ sbin

./smbd start

sleep 10

echo "done."

echo "server ready" | nc 10.0.0.2 8000

echo -n "starting bash shell ..."

/bin/bash

Listing B.4: smbd.0-client.rcS

#!/bin/sh

#

/etc/init.d/rcS

#

echo -n "setting up network ..."

104

mount proc /proc -t proc

/sbin/ifconfig eth0 10.0.0.2 netmask 255.255.255.0 txqueuelen 1000 up

/sbin/ifconfig lo 127.0.0.1 netmask 255.255.255.0 up

echo "1" > /proc/sys/net/ipv4/tcp_tw_recycle

echo "1" > /proc/sys/net/ipv4/tcp_tw_reuse

echo "1" > /proc/sys/net/ipv4/tcp_window_scaling

echo "0" > /proc/sys/net/ipv4/tcp_timestamps

echo "0" > /proc/sys/net/ipv4/tcp_sack

echo "15" > /proc/sys/net/ipv4/tcp_fin_timeout

echo "16384" > /proc/sys/net/ipv4/tcp_max_syn_backlog

echo "262144" > /proc/sys/net/ipv4/ip_conntrack_max

echo "1024 65535" > /proc/sys/net/ipv4/ip_local_port_range

echo "10000000 10000000 10000000" > /proc/sys/net/ipv4/tcp_rmem

echo "10000000 10000000 10000000" > /proc/sys/net/ipv4/tcp_wmem

echo "10000000 10000000 10000000" > /proc/sys/net/ipv4/tcp_mem

echo "524287" > /proc/sys/net/core/rmem_max

echo "524287" > /proc/sys/net/core/wmem_max

echo "524287" > /proc/sys/net/core/optmem_max

echo "300000" > /proc/sys/net/core/netdev_max_backlog

echo "131072" > /proc/sys/fs/file -max

echo "done."

echo "waiting for server ..."

nc -l 8000

#sleep 1

echo -n "running dbench to test smbd file server ..."

cd /home/haow/install/dbench/bin

/sbin/m5 checkpoint

/sbin/m5 dumpstats

/sbin/m5 resetstats

./ dbench -B smb --smb -share =//10.0.0.1/ share \

--smb -user=% --loadfile=smb -writefiles.txt --run -once --skip -cleanup 3

echo "done."

echo -n "halting machine"

105

m5 exit

echo -n "starting bash shell ..."

/bin/bash

B.4 Sample Performance Stats Collecting Script

Listing B.5 is the Python script for collecting performance stats of different benchmarks. After

running all the benchmark performance testing under gem5, we put all these results in a base dir

(/home/haow/testing/outdir/). In the Listing B.4, we basically need to adjust several parameters

defined in the global variables area. keywords indicate the system stats that you want to collect

(DCache miss rate, IPC, etc). prog names are the benchmark names you want to collect stats from,

and configs are the different configurations you want to collect stats from for each benchmark.

Listing B.5: Data Collecting Python Script

import sys

import re

keyword is a list of keywords in the stats file

def process_raw_stats(file_name , keywords):

fin = open(file_name , ’r’)

lines = fin.readlines ()

results = []

for i in range(len(keywords)):

results.append(’’)

for line in lines:

linefield = re.split(’\s+’, line)

count = keywords.count(linefield [0])

if count == 1:

index = keywords.index(linefield [0])

results[index] = linefield [1]

fin.close()

return results

############## global variables ###########

result_all = []

106

fout = open(’/home/haow/stats_mse2.dat’, ’w’)

keywords = [’testsys.switch_cpus.ipc_total ’,

’testsys.cpu.dcache.overall_miss_rate :: total’,

’testsys.cpu.dcache.overall_mshr_misses :: total’,

’testsys.switch_cpus.commit.committedInsts ’,

’testsys.l2.overall_misses :: switch_cpus.data’,

’testsys.cpu.dcache.overall_accesses :: total’]

prog_names = [’apache -’,’mysql -’,’mail_t1 -’,

’mail_t2 -’,’mail_t5 -’,’smbd.0-’,’smbd.1-’,

’ffserver.x1 -’, ’ffserver.x3 -’, ’ffserver.x30 -’,

’tomcat.3-’, ’tomcat.4-’, ’tomcat.5-’]

base_dir = ’/home/haow/testing/outdir/’

configs = [’LRU -assoc2 ’, ’LRU -assoc4 ’, ’LRU -assoc8 ’,

’LRU -size16 ’, ’LRU -size64 ’, ’new -base’, ’new -size16 ’,

’new -size64 ’, ’new -nebit3 ’, ’new -nebit5 ’, ’new -nebit6 ’]

for program in prog_names:

for configuration in configs:

file_name = base_dir + program + configuration + ’/stats.txt’

result = process_raw_stats(file_name , keywords)

result_all.append(result)

print result

#################### write formatted data to file

num_configs = len(configs)

num_columns = len(keywords)

num_programs = len(prog_names)

for col in range(num_columns):

for prog in range(num_programs):

for config in range(num_configs):

107

row = prog*num_configs + config

fout.write(result_all[row][col]+’\t’)

fout.write(’\n’)

fout.close()

108

Bibliography

[1] Apache HTTP Server Benchmarking Tool. http://httpd.apache.org/docs/2.2/programs/

ab.html.

[2] Apache HTTP Server Project. http://httpd.apache.org/.

[3] Apache Tomcat. http://tomcat.apache.org/.

[4] Application Server Definition. http://en.wikipedia.org/wiki/Application_server.

[5] Dbench Workloads Generator. http://dbench.samba.org/.

[6] ffserver Streaming Server. http://www.ffmpeg.org/ffserver.html.

[7] Glassfish Application Server. https://glassfish.java.net/.

[8] IBM DB2 Database Software. http://www-01.ibm.com/software/data/db2/.

[9] JBoss Application Server. http://www.jboss.org/overview/.

[10] Jetty Application Server. http://www.eclipse.org/jetty/.

[11] Libgcrypt. http://www.gnu.org/software/libgcrypt/.

[12] LIVE555 Media Server. http://www.live555.com/mediaServer/.

[13] MySQL Database Management System. http://www.mysql.com/.

[14] openRTSP: a Command-line RTSP Client. http://www.live555.com/openRTSP/.

[15] OpenSSL Cryptography and SSL/TLS Toolkit. http://www.openssl.org/.

[16] PHP. http://php.net/.

[17] Postal: The Mad Postman. http://doc.coker.com.au/projects/postal/.

[18] SMBD File Server. http://www.samba.org/samba/docs/man/manpages/smbd.8.html.

[19] SysBench: A System Performance Benchmark. http://sysbench.sourceforge.net/.

[20] The gem5 Simulator System. http://gem5.org/Main_Page.

[21] VLC Media Server. http://www.videolan.org/vlc/.

[22] O. Aciiçmez. Yet Another Microarchitectural Attack: Exploiting I-cache. In ACM Workshop
on Computer Security Architecture, pages 11–18, October 2007.

[23] Joseph Bonneau and Ilya Mironov. Cache-Collision Timing Attacks against AES. In Proceedings
of Cryptographic Hardware and Embedded Systems, CHES’06, pages 201–215, 2006.

[24] E. Brickell1, G. Graunke, M. Neve1, and J.-P Seifert. Software Mitigations to Hedge AES
against Cache-based Software Side Channel Vulnerabilities. Technical report, IACR ePrint
Archive, Report 2006/052, Feb 2006.

109

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/
http://tomcat.apache.org/
http://en.wikipedia.org/wiki/Application_server
http://dbench.samba.org/
http://www.ffmpeg.org/ffserver.html
https://glassfish.java.net/
http://www-01.ibm.com/software/data/db2/
http://www.jboss.org/overview/
http://www.eclipse.org/jetty/
http://www.gnu.org/software/libgcrypt/
http://www.live555.com/mediaServer/
http://www.mysql.com/
http://www.live555.com/openRTSP/
http://www.openssl.org/
http://php.net/
http://doc.coker.com.au/projects/postal/
http://www.samba.org/samba/docs/man/manpages/smbd.8.html
http://sysbench.sourceforge.net/
http://gem5.org/Main_Page
http://www.videolan.org/vlc/

[25] C. Percival. Cache Missing for Fun and Profit. In Proc. of BSDCan, 2005.

[26] D. J. Bernstein. Cache-timing Attacks on AES. http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf, 2005.

[27] J.-F. Dhem, F. Koeune, P.-A. Lerous, P. Mestré, J.-J. Quisquater, and J.-L. Willems. A
Practical Implementation of the Timing Attack. In Proceedings of the International Conference
on Smart Card Research and Applications, pages 167–182, London, UK, 2000. Springer-Verlag.

[28] J. D. Gelas. Bulldozer for Servers: Testing AMD’s ”Interlagos” Opteron 6200 Series. http:

//www.anandtech.com/show/5058/amds-opteron-interlagos-6200/2, November 2011.

[29] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games — Bringing Access-Based
Cache Attacks on AES to Practice. In Proceedings of IEEE Symposium on Security and Privacy,
SP ’11, pages 490–505, 2011.

[30] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach. Morgan
Kaufmann, San Francisco, CA, USA, 2012.

[31] P. Kocher, R. B. Lee, G. McGraw, A. Raghunathan, and S. Ravi. Security as a New Dimension
in Embedded System Design. In Proceedings of the Design Automation Conference (DAC),
pages 753–760, San Diego, CA, USA, June 2004.

[32] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Proceedings of the 19th Annual
International Cryptology Conference on Advances in Cryptology, pages 388–397, London, UK,
1999. Springer-Verlag.

[33] R. Könighofer. A Fast and Cache-timing Resistant Implementation of the AES. In Proceedings
of the 2008 The Cryptographers’ Track at the RSA conference on Topics in Cryptology, pages
187–202, Berlin, Heidelberg, 2008. Springer-Verlag.

[34] R. B. Lee and Y.-Y Chen. Processor Accelerator for AES. In Proceedings of the IEEE 8th
Symposium on Application Specific Processors, Anaheim, CA, USA, 2010.

[35] F. Liu and R. B. Lee. Security Testing of a Secure Cache Design. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and Privacy, New
York, NY, USA, 2013. ACM.

[36] Fangfei Liu and R.B. Lee. Random fill cache architecture. In Microarchitecture (MICRO), 2014
47th Annual IEEE/ACM International Symposium on, pages 203–215, Dec 2014.

[37] K. Mowery, S. Keelveedhi, and H. Shacham. Are AES x86 Cache Timing Attacks Still Feasible?
In Proceedings of the ACM Workshop on Cloud Computing Security Workshop, pages 19–24,
New York, NY, USA, 2012. ACM.

[38] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures: The Case of AES.
In Proceedings of the Cryptographers’ Track at the RSA conference on Topics in Cryptology,
pages 1–20, Berlin, Heidelberg, 2006. Springer-Verlag.

[39] D. Page. Partitioned Cache Architecture as a Side-Channel Defense Mechanism. Technical
report, Cryptology ePrint Archive, Report 2005/280, 2005.

[40] D. Perez-Botero. Pwnetizer: Improving Availability in Cloud Computing Through Fast Cloning
and I/O Randomization. In MSE Thesis, Computer Science Department, Princeton University,
Princeton, NJ, USA, 2013.

[41] Z. Wang and R. B. Lee. New Cache Designs for Thwarting Software Cache-based Side Channel
Attacks. In Proceedings of the 34th International Symposium on Computer Architecture, pages
494–505, San Diego, CA, USA, June 2007.

110

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.anandtech.com/show/5058/amds-opteron-interlagos-6200/2
http://www.anandtech.com/show/5058/amds-opteron-interlagos-6200/2

[42] Z. Wang and R. B. Lee. A Novel Cache Architecture with Enhanced Performance and Security.
In IEEE/ACM International Symposium on Microarchitecture, pages 83–93, 2008.

[43] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. Cryptology ePrint Archive, Report 2013/448, 2013.

[44] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM Side Channels and Their Use
to Extract Private Keys. In Proceedings of 2012 ACM Conference on Computer and Commu-
nications Security, pages 305–316, New York, NY, USA, 2012.

[45] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-tenant side-channel
attacks in paas clouds. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 990–1003, New York, NY, USA, 2014. ACM.

111

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Background and Past Work
	2.1 Cache Side Channel Attacks
	2.1.1 Access-Driven Attack: Prime and Probe
	2.1.2 Trace-Driven Attack and Timing-driven Attack

	2.2 Software and Hardware Solutions
	2.3 Newcache
	2.3.1 The Original Newcache Wang2008
	2.3.2 The Modified F. Liu's Newcache Liu2013
	2.3.3 Security Analysis

	3 NewCache Performance Measurement and Analysis for Cloud Server Benchmarks
	3.1 Gem5 Simulation Methodology
	3.2 Cloud Server Benchmarks Description and Selection
	3.2.1 Web Server and Client
	3.2.2 Database Server and Client
	3.2.3 Mail Server and Client
	3.2.4 File Server and Client
	3.2.5 Streaming Server and Client
	3.2.6 Application Server and Client
	3.2.7 Benchmark Summary

	3.3 Testing Results: Newcache as L1 Data Cache
	3.3.1 IPC
	3.3.2 DCache Miss Rate
	3.3.3 Global L2 Miss Rate

	3.4 Testing Results: Newcache as L2 Cache
	3.4.1 IPC
	3.4.2 DCache Miss Rate
	3.4.3 Local L2 Miss Rate
	3.4.4 Global L2 Miss Rate

	3.5 Testing Results: Newcache as Both L1 Data Cache and L2 Cache
	3.5.1 IPC
	3.5.2 DCache Miss Rate
	3.5.3 Local L2 Miss Rate
	3.5.4 Global L2 Miss Rate

	3.6 Testing Results: Newcache as L1 Instruction Cache (Part A)
	3.6.1 IPC
	3.6.2 ICache Miss Rate
	3.6.3 Local L2 Miss Rate for Instructions
	3.6.4 Global L2 Miss Rate for Instructions

	3.7 Testing Results: Newcache as L1 Instruction Cache (Part B)
	3.7.1 IPC
	3.7.2 ICache Miss Rate
	3.7.3 Local L2 Miss Rate for Instructions
	3.7.4 Global L2 Miss Rate for Instructions

	3.8 Testing Results: Newcache as L1 Instruction Cache (Part C)
	3.8.1 IPC
	3.8.2 ICache Miss Rate
	3.8.3 Local L2 Miss Rate for Instructions
	3.8.4 Global L2 Miss Rate for Instructions

	3.9 Chapter Summary

	4 Security Analysis of Newcache as Instruction Cache
	4.1 Reconstruction of Instruction Cache Side-Channel Attack
	4.1.1 Instruction Cache PRIME and PROBE
	4.1.2 Clean PROBE-ing Result
	4.1.3 Unique ICache Footprints Left by Square, Mult and Reduce
	4.1.4 Modular Exponentiation Experiments

	4.2 Newcache in Defending against Instruction Cache Side-Channel Attack
	4.2.1 Clean PROBE-ing Result
	4.2.2 ICache footprint left by Square, Mult and Reduce
	4.2.3 More Analysis

	5 Closing Words
	A Data for Newcache Performance Measurement
	A.1 Data for Newcache as L1 Data Cache
	A.2 Data for Newcache as L2 Cache
	A.3 Data for Newcache as Both L1 Data Cache and L2 Cache
	A.4 Data for Newcache as L1 Instruction Cache (Part A)
	A.5 Data for Newcache as L1 Instruction Cache (Part B)
	A.6 Data for Newcache as L1 Instruction Cache (Part C)

	B Performance Measuring Scripts and Data Collecting Scripts
	B.1 Sample Performance Measuring Script for Dbench_Write
	B.2 Python Script to Generate Performance Measuring Scripts
	B.3 Sample Server-Side and Client-Side Configuration Scripts for Dbench_Write on Gem5
	B.4 Sample Performance Stats Collecting Script

	Bibliography

