
35

Non-Monopolizable Caches: Low-Complexity Mitigation of Cache
Side Channel Attacks

LEONID DOMNITSER, State University of New York at Binghamton
AAMER JALEEL, Intel Corporation, VSSAD
JASON LOEW, NAEL ABU-GHAZALEH, and DMITRY PONOMAREV, State University of
New York at Binghamton

We propose a flexibly-partitioned cache design that either drastically weakens or completely eliminates
cache-based side channel attacks. The proposed Non-Monopolizable (NoMo) cache dynamically reserves cache
lines for active threads and prevents other co-executing threads from evicting reserved lines. Unreserved
lines remain available for dynamic sharing among threads. NoMo requires only simple modifications to
the cache replacement logic, making it straightforward to adopt. It requires no software support enabling
it to automatically protect pre-existing binaries. NoMo results in performance degradation of about 1%
on average. We demonstrate that NoMo can provide strong security guarantees for the AES and Blowfish
encryption algorithms.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General

General Terms: Design, Security, Performance

Additional Key Words and Phrases: Side-channel attacks, shared caches, secure architectures

ACM Reference Format:
Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., and Ponomarev, D. 2012. Non-monopolizable caches:
Low-complexity mitigation of cache side channel attacks. ACM Trans. Architec. Code Optim. 8, 4, Article 35
(January 2012), 21 pages.
DOI = 10.1145/2086696.2086714 http://doi.acm.org/10.1145/2086696.2086714

1. INTRODUCTION

In recent years, security has emerged as a key design consideration in computing and
communication systems. Security solutions center around the use of cryptographic
algorithms, such as symmetric ciphers, public-key ciphers, and hash functions. The
strength of modern cryptography makes it infeasible for the attackers to uncover the
secret keys using brute-force trials, differential analysis [Biham and Shamir 1991] or
linear cryptanalysis [Matsui 1994]. Instead, almost all known attacks today exploit
weaknesses in the physical implementation of the system performing the encryption,
rather than exploiting the mathematical properties of the cryptographic algorithms
themselves.

This material is based on research sponsored by the Air Force Research Laboratory under agreement number
FA8750-09-1-0137 and by National Science Foundation grants CNS-1018496 and CNS-0958501. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies and endorsements, either expressed
or implied, of Air Force Research Laboratory, National Science Foundation, or the U.S. Government.
Contact author’s address: D. Ponomarev, Computer Science Department, State Univeristy of New York at
Binghamton, Binghamton, NY 13902-6000; email: dima@cs.binghamton.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART35 $10.00

DOI 10.1145/2086696.2086714 http://doi.acm.org/10.1145/2086696.2086714

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:2 L. Domnitser et al.

1.1. Side Channel Attacks

A subtle form of vulnerability in the physical implementation of otherwise secure sys-
tems is the leakage of information through unintended (or side) channels. The leaked
information is called side channel information, and attacks exploiting such information
are called side channel attacks [Bernstein 2005; Kong et al. 2009; Wang and Lee 2007;
2008; Osvik et al. 2005; Tromer et al. 2009; Percival 2005; Bangerter et al. 2011; Side
2009]. Examples of side channels include execution time, power consumption, heat,
electromagnetic radiation, or even sound level emanating from a device [Backes et al.
2010]. A large number of side channel attacks have been successfully demonstrated
against a range of software and hardware security mechanisms, breaking many cryp-
tographic systems including block ciphers (such as DES, AES, Camellia, IDEA, and
Misty1), stream ciphers (such as RC4, RC6, A5/1, and SOBER-t32), public key ciphers
(such as RSA-type ciphers, ElGamal-type ciphers, ECC, and XTR), signature schemes,
message authentication code schemes, cryptographic protocols, and even the network-
ing subsystems [Side 2009]. Thus, it is critical to build systems that are immune to
side channel attacks.

Early side channel attacks were used to break specialized systems such as smart
cards. However, side channel attacks that exploit the shared resources in conventional
microprocessors have been recently demonstrated [Bangerter et al. 2011; Wang and
Lee 2007, 2008; Kong et al. 2009; Tromer et al. 2009; Osvik et al. 2005; Percival
2005; Bernstein 2005; Bonneau and Mironov 2006; Canteaut et al. 2006]. Such attacks
are extremely powerful because they do not require the attacker’s physical presence
to observe the side-channel and can therefore be launched remotely using only legal
non-privileged operations. Cache-based software side-channel attacks represent one
example of this attack class. The cache accesses performed by a cryptographic process
can be monitored by another process sharing the cache (which observes its own cache
miss pattern), leaking information about the secret key. Cache-based attacks do not
require the attacker’s physical presence to observe the side channel, so they can be
launched remotely using only legal non-privileged operations.

1.2. Cache-Based Side Channel Attacks

Recent literature classifies cache-based attacks into three groups: time-driven attacks,
trace-driven attacks and access-driven attacks [Aciicmez and Koh 2006]. Trace-driven
attacks are based on obtaining a profile of cache activity during the encryption and
deducing which cache accesses generated by the encryption process resulted in a hit
[Aciicmez and Koh 2006]. Time-driven attacks measure the run time of a victim pro-
cess to deduce information about the secret key [Bernstein 2005; Bonneau and Mironov
2006; Kong et al. 2009; Osvik et al. 2005; Tromer et al. 2009]. The critical insight is
that self-contention within the cache varies with the key and the input data, leading
to differences in the execution time that can be used to infer the key. These attacks are
limited and are relatively easy to circumvent (more details in Section 2). In contrast,
access-driven attacks defy straightforward defense mechanisms, because the attacker
actively uses the shared cache simultaneously with the victim process, and can monitor
the victim’s cache behavior in detail [Percival 2005; Osvik et al. 2005; Tromer et al.
2009; Kong et al. 2009; Wang and Lee 2007, 2008; Bangerter et al. 2011]. More specif-
ically, the attacker can force the victim to experience cache misses and observe them
through the side channel. In this type of attack, the attacker can glean detailed mem-
ory access information, such as the cache sets accessed by the victim program, making
the side channel more informative and the attack more dangerous. For example, a
recent work [Bangerter et al. 2011] demonstrated an access-driven attack on AES that

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:3

recovers the secret key after monitoring 100 encryptions followed by a 3-minute long
offline analysis phase. In this paper, we only address this type of attack.

Existing algorithmic solutions (reviewed in Section 7) provide limited protection
against access-driven attacks. Architectural solutions [Wang and Lee 2007, 2008; Kong
et al. 2009] can shut down the side channel, but require some modifications to the
cache design and peripheral circuitry, which may hamper adoption in practice. In
addition, most of the hardware schemes proposed so far require OS, compiler, ISA or
programming language support. This support is often needed to explicitly mark the
critical data (data that needs protection) and limit the scope of protection only to critical
cache lines in order to reduce the negative performance impact.

This paper presents a novel approach to mitigating cache-based side channel attacks
that is designed purely in hardware and requires no support from the ISA or software
layers. The proposed approach is extremely simple, consisting of a small modification to
the cache replacement logic, leaving the performance-critical core circuitry of the cache
unchanged. The proposed approach provides side-channel security while resulting in
minimal performance losses.

1.3. Proposed Solution: Non-Monopolizable (NoMo) Caches

We propose a low-complexity hardware-only design that protects against access-driven
cache-based attacks. The proposed solution, called Non-Monopolizable (NoMo) cache,
is a simple modification to the cache replacement policy that restricts an attacker to
using no more than a predetermined number of lines in each set of a set-associative
cache. As a result, the victim’s data in the protected cache line(s) of each cache set
cannot be replaced by the attacker, preventing the attacker from observing those mem-
ory accesses through the side channel. NoMo caches significantly weaken a common
class of cache-based side channel attacks in a low-complexity manner, without OS,
compiler, programming language or ISA support, and with minimal or no performance
degradation to applications sharing the cache. By controlling the sharing restrictions,
NoMo designs can tradeoff performance and security. We demonstrate that even min-
imal cache sharing restrictions provide strong security benefits for AES and Blowfish
encryption algorithms, while in the limit NoMo provides static non-overlapping cache
partitioning, closing the side channel completely.

Every cache side channel attack involves two phases: the data collection phase
through the side channel and the subsequent off-line analysis of this data for the
key reconstruction. The secret key reconstruction process is difficult: the side-channel
often leaks only some information that is contaminated with noise (information that
does not correlate with the key). Despite this fact, in practice, keys have been suc-
cessfully recovered from side-channel information on different platforms [Tromer et al.
2009; Bangerter et al. 2011]. Thus, the security of the system depends critically on the
quantity of information about the key that can be extracted from the side channel [Kopf
and Basin 2007; Standaert et al. 2006]. As will be demonstrated in this paper, NoMo
significantly reduces the information leakage through the side channel, making key
reconstruction (already a difficult process), virtually impossible.

1.4. Contributions

The main contributions and the key results of this paper are the following.

—We propose a new variation of access-driven cache-based attack that exploits the
knowledge of underlying cache replacement policy and significantly reduces the num-
ber of cache accesses needed by the attack.

—We propose the Non-Monopolizable (NoMo) cache design, a low-complexity hardware
approach to mitigate access-driven cache-based side channel attacks. NoMo requires

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:4 L. Domnitser et al.

simple changes to the existing cache design and has minimal performance impact.
An attractive feature of the NoMo design is that it does not require any support from
the OS, ISA, compiler or programming language.

—We describe variations of the NoMo design, which are defined by the cache shar-
ing restrictions (degree of NoMo). These variations define a spectrum of security-
performance trade-offs, where some schemes completely eliminate the side channel
at higher performance cost, while others dramatically diminish the side channel at
a slightly higher cost to performance.

—We evaluate the security characteristics of NoMo caches using AES and Blowfish
encryption and decryption algorithms as examples.

Our performance studies show that for a 32KB 8-way set-associative L1 D-cache1:
(1) NoMo-2 cache, where applications sharing cache are restricted to use at most 6 out
of the 8 ways in each set, only allows 0.6% of critical cache accesses to be observed
through the cache side channel. The average performance impact on simulated SPEC
2006 benchmarks is 0.5% (maximum 3%); (2) NoMo-3 completely shuts down the cache
side channel for AES and has 0.007% leakage of critical data for Blowfish, but in-
curs an average performance loss of 0.8% (maximum 4%) for SPEC 2006 benchmarks;
(3) NoMo-4 design (non-overlapping static partitioning) provides a complete isolation
of applications sharing the cache and thus eliminates cache-based side channel in prin-
ciple, but that comes at the expense of 1.2% (5% maximum) performance loss on the
average. All these designs are attractive choices for secure caches.

The remainder of the paper is organized as follows: in Section 2 we review
the AES and Blowfish cryptographic algorithms and existing cache-based attacks.
Section 3 presents our assumptions and threat model. In Section 4 we describe the
Non-Monopolizable cache design. Section 5 describes our performance and security
evaluation methodology, followed by our results in Section 6. We review related work
in Section 7, and Section 8 offers our concluding remarks.

2. BACKGROUND AND IMPROVED ATTACK

In this section we describe the AES and Blowfish cryptographic algorithms, classify
cache-based side channel attacks, and present the threat model assumed for our study.
We also present a variation of an access-driven attack that significantly reduces the
number of cache accesses needed by the attacker.

2.1. The Advanced Encryption Standard (AES)

AES, the Advanced Encryption Standard, is a widely used symmetric block cipher. It
encrypts and decrypts 128-bit data blocks using either a 128-, 192-, or 256-bit key.
Each block is encrypted in 10 rounds of mathematical transformations. To achieve
high performance, AES implementations use precomputed lookup tables instead of
computing the entire transformation during each round. The indexes to these tables
are partially derived from the secret key, thus by detecting the cache sets accessed
by the victim (through the side channel observations), the attacker can derive some
information about parts of the secret key. By using multiple measurements, the en-
tire key can be successfully reconstructed. The version of the AES code that we use
in this study [Daemen and Rijmen 2002] employs five tables (1KB each) for both en-
cryption and decryption. The first four tables are used in the first nine rounds of
encryption/decryption, and the fifth table is used during the last round. Separate sets
of tables are used for encryption and decryption. More details on the AES encryption
algorithm and specific side channel attacks on AES can be found in [Tromer et al.

1This cache configuration is representative of Intel’s Core i7 processor.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:5

2009; Bangerter et al. 2011]. In summary, the AES table lookups constitute critical
cache accesses, and their observation through the cache-based side channel can lead to
secret key discovery.

2.2. The Blowfish Encryption

Blowfish is a keyed, symmetric block cipher, included in a large number of cipher suites
and encryption products. Blowfish has a 64-bit block size and a variable key length from
32 up to 448 bits. It is a 16-round Feistel cipher and uses large key-dependent S-boxes.
Again, just in the case with AES, the accesses to S-boxes are the critical accesses that
can reveal the key-related information through the cache side channel.

2.3. Cache-Based Attack Variations

The original idea that cache memory could be used as a side channel during the run
of a cryptographic algorithm was proposed by Kelsey et al. [1998]. A comprehensive
taxonomy of software cache-based side channel attacks is presented in [Osvik et al.
2005; Tromer et al. 2009; Kong et al. 2009]. Attacks can be categorized into three
groups: trace-driven, time-driven and access-driven [Aciicmez and Koh 2006].

Trace-Driven Attacks. In trace-driven attacks, the attacker obtains the detailed cache
activity profile during the encryption [Aciicmez and Koh 2006; Zhao and Wang 2010].
This profile includes the outcomes of every memory access issued by the cipher in terms
of cache hits and misses. Therefore, the adversary is capable of observing if a particular
access to a lookup table yields a hit and can infer information about the lookup indices,
which are key-dependent. Consequently, the attacker can use this information to derive
the secret key. The limitation of these attacks is that they require access to very detailed
profiling information.

Time-Driven Attacks. Time-driven attacks [Tsunoo et al. 2002, 2003; Bernstein 2005;
Osvik et al. 2005; Bonneau and Mironov 2006; Canteaut et al. 2006; Kong et al. 2009]
are less restrictive than trace-driven attacks, they exploit the relationship between
inputs and execution time to deduce information about the secret key. Bernstein [2005]
demonstrated a successful attack on AES exploiting the variance in the execution time
(due to internal cache interference of the AES algorithm itself) for different inputs.
Bonneau and Mironov [2006] further optimized the attack by exploiting cache collision
information and relationship between the number of cache collisions (table accesses
that hit into the cache) and the execution time.

Time-driven attacks have several shortcomings that make it challenging to imple-
ment them in practice. The attack demonstrated by Bernstein [2005] was carried out
using a pristine environment (although sophisticated coding techniques that filter out
the noise can be used to alleviate this requirement). Another limitation is that the at-
tack requires references of encryption timings for different secret keys in an identical
system configuration. The number of such measurements is exponential in the size of
the key; although this is a one time setup effort that would allow the extraction of
multiple keys from the same environment, it is very expensive. In addition, the attack
relies on the ability to execute the timing code synchronously before and after the
encryption. Finally, the attack relies on the overall execution time, which is a coarse
grained measure shared by many keys (that must then be evaluated to identify the
correct one). Since this overall time is measured externally over complex encryption
services with various overheads, there is likely to be substantial variability in timing
for the same key, substantially increasing the overhead of key recovery [Osvik et al.
2005; Tromer et al. 2009].

Thus, while timing-driven attacks are possible, it is challenging to mount them in
practice. In this paper, we target the third class of attacks: access-driven attacks, which

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:6 L. Domnitser et al.

are easier to launch and allow the attacker to extract significantly more information
from the cache side channel (e.g., cache sets accessed by the references to critical data
and even their order). The richer side-channel exploited by these attacks makes them
extremely dangerous and practical [Bangerter et al. 2011]. We describe access-driven
attacks in the next section.

Access-Driven Attacks. Access-driven attacks defy straightforward defense mecha-
nisms, because the attacker runs simultaneously with the victim process and manip-
ulates the usage of the shared cache. This directly impacts the cache behavior of the
victim process [Percival 2005; Osvik et al. 2005; Wang and Lee 2007, 2008; Tromer
et al. 2009; Kong et al. 2009; Bangerter et al. 2011]. The easiest way to launch such an
attack is by running the attacker alongside the encryption process on a simultaneously
multithreaded processor [Percival 2005; Osvik et al. 2005; Tromer et al. 2009], but it
can also be done in a single-threaded environment with appropriate support from the
OS [Osvik et al. 2005; Tromer et al. 2009]. The attacker does not need the knowledge
of either a plaintext or a ciphertext (note that this is in contrast to traditional crypt-
analytic scenarios, where such knowledge is necessary) and it only times its own cache
accesses, instead of timing the victim’s activity, which is much easier.

If the caches are completely shared, then the attacker can monopolize the entire
cache and cause the victim to miss into the cache and evict the attacker’s data. When
the attacker later experiences its own cache miss, it can determine the set number
of the victim’s cache access, which resulted in the replacement of the attacker’s cache
line. From that information, it can derive the lookup table indices and therefore deduce
parts of the secret key. This attack is much more powerful than the time-driven attack,
because the attacker can obtain the actual order of accesses (if his cache traversal rate
is aggressive enough), in addition to the information of which specific table entries
were used. Furthermore, the attack can also be synchronized with the boundaries of
individual block encryptions. This type of attack was shown to successfully uncover the
secret key in the popular OpenSSL implementation of the RSA encryption algorithm
[Percival 2005] and also was used to break the AES key [Osvik et al. 2005; Tromer
et al. 2009]. Access-driven attacks can be based on collecting individual cache accesses
[Percival 2005] or even the frequencies of accesses to individual cache sets [Tromer
et al. 2009]. A recent effort [Bangerter et al. 2011] demonstrated a practical access-
driven attack that recovers secret AES key in about 3 minutes. Figure 1 shows the C
code of a simple access-driven attack. In summary, while the predefined memory-to-
cache mapping remains the root cause of the attack [Wang and Lee 2007, 2008], the
ability of the attacker to monopolize the cache and cause the victim’s evictions makes
the access-driven attack far more dangerous.

2.4. Proposed Replacement-Aware Attack Optimization

In the basic access-driven attack [Percival 2005; Osvik et al. 2005; Tromer et al. 2009],
the attacker fills the entire cache by accessing all cache blocks. This opens the attack to
defenses that observe the rate of cache filling by each process. Moreover, the fact that
the whole cache must be continuously visited means that the attacker can only sample
accesses to each block at a fairly coarse granularity.

In this section, we propose an optimization to this attack that exploits the knowledge
of the cache replacement policy to significantly reduce the number of cache accesses
needed by an attacker to check the cache contents. This allows the attack to proceed
faster, allowing the attacker to more efficiently monitor the victim’s accesses. The
optimized attack can substantially improve the attack efficiency, especially if the cache
access time is high (for example, as future attacks on lower level caches are devised).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:7

Fig. 1. C code for a simple access-driven attack.

The optimized attack relies on the knowledge of the replacement policy to avoid having
to access every block in each set of the cache.

Without loss of generality and to simplify the description, we assume an LRU replace-
ment policy. Its important to note that the optimized attack works for all deterministic
replacement policies including most policies used on modern microprocessors. In warm-
ing up the cache, the attacker accesses the blocks in the set to make the replacement
target block (RTB) the same for each set. After warming up the cache, the attacker
proceeds by timing the RTB in each set. On a cache hit, the attacker knows that the
set has not been accessed and moves to the next set. On a cache miss, the attacker
recognizes the victim’s access. In this case, the attacker walks the full set to discover if
additional accesses were made by the victim. Also, the RTB is adjusted to point to the
line to be replaced next for the next round of checks. Note that if the replacement policy
is non-deterministic (such as random cache replacement proposed by RPCache [Wang
and Lee 2007] and NewCache [Wang and Lee 2008] and implemented by ARM and
Loongson processors [ARM 2011; Zhou 2010]), the attacker cannot use this optimized
attack and has to rely on a code similar to that shown in Figure 1.

The optimized attack (when it is possible) reduces the number of cache accesses
that are needed by the attacker by a factor of the cache associativity for the sets that
are not accessed by the victim within an iteration of the attack. The victim typically
accesses only a few sets in each iteration due to locality and due to excessive cache
misses experienced as a result of the attacker’s behavior. A faster attack increases the
amount of information that can be obtained by the attacker through the cache side-
channel. Moreover, the optimized attack can defeat potential defense mechanisms that
are based on controlling the rate of filling the cache. We use this modified attack in our
experiments in Section 6.

3. THREAT MODEL, ASSUMPTIONS AND SOLUTION SCOPE

We make the following assumptions with respect to the attack and the attacker’s
capabilities.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:8 L. Domnitser et al.

—We consider an access-driven cache side channel. As we describe in Section 2, these
are the most difficult attacks to protect against due to the attacker’s ability to extract
detailed information through the side-channel.

—The attack is mounted on the set-associative L1 data cache of a Simultaneously
Multithreaded (SMT) processor. While it is possible, in principle, to launch a side-
channel attack on shared L2/L3 caches in a multi-core processor, such an attack is
complicated by the fact that most memory accesses are filtered by the private L1
caches and not visible to the attacker unless the attacker exploits the properties of
inclusive caches. The size of the cache also challenges the ability of the attacker to
capture leaked accesses. L2/L3 attacks and defenses are beyond the scope of this
paper.

—We consider an SMT processor with only two threads (which is typical of most existing
SMT designs). In general, our technique applies to all situations where the number
of threads does not exceed the number of cache ways (which is typical at the L1
cache level for out-of-order processors). We only consider set-associative caches in
this study, as they are the norm in today’s systems. Our proposal does not apply to
direct-mapped caches, but those are rarely used in performance-sensitive designs.
Finally, while access-driven attacks are also possible in single-threaded processors,
they require OS support [Tromer et al. 2009] and are therefore more challenging
to launch. Since the proposed technique is based on cache partitioning, it does not
apply as such to superscalar designs.

—We assume that an attacker is synchronized with the cryptographic process at the
granularity of individual block encryption. That is, the attacker determines which
sets were accessed for each block. This assumption represents a worst case scenario
where the attacker uncovers the most information through the side-channel. Such
an attack scenario is realistic: an attack can be performed synchronously, in which
the attacker triggers the victim’s cryptographic operation. For example, the attacker
may trigger a server or file system operation that performs encryption or decryp-
tion [Tromer et al. 2009]. We note that this assumption is not fundamental to the
feasibility of the proposed defense, our goal here is to evaluate security against the
worst-case attack scenario.

4. NON-MONOPOLIZABLE CACHES

Access-driven attacks, outlined is Section 2, depend on the ability to evict victim’s
data from the cache. To thwart such an attack, we propose the Non-Monopolizable
cache (NoMo cache in the rest of the paper), a minimally restrictive partial partition-
ing scheme, which prevents one application (simultaneously co-scheduled on an SMT
processor) from monopolizing all lines in any set of a shared cache. NoMo logic is imple-
mented as a simple modification to the replacement policy, so the core cache circuitry
need not be reengineered. NoMo is a purely hardware scheme requiring no support
from the operating system, compiler, ISA or programming language.

4.1. NoMo Overview

When operating in the NoMo mode, a cache enforces the NoMo invariant: a running
thread is guaranteed to have at least Y lines exclusively reserved in each cache set.
Feasible values of Y are in the range of [0, � N

M�], where N is the associativity of the
cache, and M is the number of SMT thread contexts. We call Y the degree of non-
monopolization, or simply the NoMo degree. A NoMo cache configuration is referred
to as NoMo-Y , with NoMo-0 being traditional unconstrained cache sharing, NoMo-
� N

M� being non-overlapping even cache partitioning, and intermediate configurations
representing various levels of sharing flexibility, trading off performance and security.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:9

If a victim (encryption) process uses no more than Y lines in each set, a NoMo-Y
cache does not allow any accesses to be observed through the side channel, because the
attacker cannot evict any of the Y lines reserved for the victim. If the victim uses more
than Y lines in at least some sets, some information can still leak, but the side channel
information leaked is dramatically degraded due to the NoMo filtering effect.

NoMo caches require no changes to the cache datapath, and involve only simple
changes to the cache controller to implement the NoMo mechanism as a simple exten-
sion to the cache replacement policy. In the following subsections, we describe the NoMo
implementation and analyze the implications of this design on the attack itself and the
side channel leakage resulting from the attack. We consider both a naive attacker and
an attacker that is aware of the presence of NoMo.

4.2. Implementation of NoMo Caches

A NoMo design has two major components: replacement logic and mode transition
logic. We describe each of these components in this section.

4.2.1. NoMo Replacement Logic. NoMo replacement logic, integrated with an existing
replacement policy, forms the basis for protection. We propose way-partitioning to
satisfy the NoMo invariant where we statically reserve a subset of cache lines in a set
for each application. For example, if two applications are sharing an 8-way cache with
a NoMo-2 policy, then two cache ways, say 0 and 1, can be statically reserved for the
first application, and two other ways, say 2 and 3, can be statically reserved for the
second application. The remaining four ways are dynamically shared.

Static way-partitioning is simple to implement; each thread maintains an N-bit
reservation vector (where N is the cache associativity). Each bit in the reservation
vector corresponds to a way in the cache. Only if a bit in the reservation vector is
set can a thread allocate lines to that way. The logic to implement reservation vector
simply amounts to excluding reserved lines from the replacement. This additional logic
is minimal and amounts to a single byte per thread for an 8-way cache.

4.2.2. Mode Transition Initiation Logic. When only a single thread is executing, or when
security is not a concern, the NoMo policy is not necessary and the cache can be used in
unrestricted mode. NoMo mode is switched on when multiple threads start using the
cache simultaneously. To determine which threads are actively using the cache, a small
M-entry table is maintained (one entry per thread context). Each entry in this table
has two fields: process ID and cache access counter. The process ID field stores a virtual
address space identifier of a process that owns the corresponding table entry. Note that
it is the same identifier that is stored with the cache tags to distinguish the cache lines
belonging to different processes. The cache access counter field indicates the number of
cycles that have elapsed since the last cache access was performed by this thread. This
counter is incremented every cycle and is reset to zero every time the thread accesses
the cache. When the counter saturates it is assumed that the corresponding thread is
inactive.

The proposed NoMo entry detection mechanism, avoids explicit OS/ISA control of
the cache access mode. Thus, NoMo can be implemented entirely at the hardware
level.

4.2.3. Mode Transition and Gang Invalidation. When an inactive thread accesses the cache,
or when a process ID is changed (during a context switch), a NoMo entry procedure
is performed to ensure that no initial leakage occurs when NoMo mode is enabled.
During a NoMo entry, Y lines are invalidated in every cache set. We elect to carry out
the invalidation up front for all sets, rather than when each set is accessed, to provide
immediate leakage protection using simple gang-invalidation circuitry. Without this

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:10 L. Domnitser et al.

gang-invalidation the attacker can detect initial accesses by the new thread, as it ob-
serves misses to its data residing in the now exclusive sets as the new thread accesses
the same ways. Such initial leakage was shown to provide significant data for the at-
tacker [Kong et al. 2009]. During a NoMo exit, reservations are cleared. The clearing of
the reserved ways in this fashion does not have any significant impact on performance,
because it happens infrequently, at the granularity of context switches. We performed
experiments clearing the entire L1 cache every 30 milliseconds for a processor with
2GHz frequency, and observed only 0.1% loss in performance on the average across our
benchmark mixes.

4.3. NoMo-Aware Attacks and Implications on Side Channel

The NoMo design naturally thwarts a straightforward access-driven attack (an attack
spanning the entire cache), because the attacker simply cannot access the reserved
ways of the victim process, and therefore it would experience a cache miss on at least Y
out of every N accesses to the same set. These misses will be encountered in every set,
thus exposing no useful information. We assume that the attacker is aware of the NoMo
defense mechanism, and modifies the attack to access only the number of lines that it
is permitted to access under the NoMo rules. To simplify exposition, and without loss
of generality, we assume a 4-way set-associative cache with LRU replacement policy
and a NoMo-1 cache.

The NoMo-aware attack performs repetitive accesses to a large array in an effort to
cover the entire cache. When the attacker encounters its first cache miss, it is impossible
to distinguish whether this miss is a result of an actual access by the victim or is simply
an artifact of cache way reservation. Since way reservation affects all sets, no useful
information can be determined from these initial misses.

At this point, knowing that at least one of the ways is always reserved for the victim,
the attacker can switch the attack mode to repetitively access n-1 instead of all n-
ways in each set. Alternatively, the attacker may use the optimized attack described
in Section 2.4 where it repetitively accesses the sets in the order of their expected
replacement; for LRU, the attacker accesses the least recently used way, then the next
one on the LRU stack and so on. This optimized attack minimizes the number of cache
accesses needed, by taking into account the knowledge of the replacement policy.

On a miss, the attacker detects an intervening access to the set by the victim. It
is possible for the attacker to uncover some of victim’s accesses when the victim uses
more than the reserved NoMo ways in a particular set. In practice, this form of leakage
does not happen often, as we demonstrate in the results section. The main reason is
that when the victim hits into the single cache block (within the targeted set) that it
owns, or misses into the cache, but replaces the only block that it owns, the attacker
gleans no information from this activity by the victim.

4.4. Example of NoMo Defense

Figure 2 shows an example scenario of a side channel attack. We depict accesses to one
set of a 4-way cache. The attacker is able to evict all of the victim’s data and capture
information about the victim’s accesses. Victim accesses that hit into the cache are not
exposed, but then the initial access is still exposed. Note that the cache replacement
policy used in this figure is LRU.

In Figure 3 we show an equivalent attack attempt on a NoMo-1 cache. The attacker
accesses are not exactly the same as in Figure 2 because the attacker is necessarily
aware that it is attacking a NoMo cache. As long as the victim process stays within the
bounds of its reserved way, the attacker cannot evict its data, and nothing is exposed.
Partial exposure is still possible when the victim uses the shared cache ways. For
simplicity, these figures show NoMo-1 on a 4-way cache, but our experiments use an

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:11

(a) A stream of accesses to a single cache set, S. A1, A2, A3, and
A4 are 4 different locations in the attacker’s memory space that
map to set S, and their presence in the time-line indicates attacker
accesses. Likewise, V1 and V2 are victim memory locations map-
ping to set S, and represent victim accesses. Each phase I through
V is a logical grouping of sequential accesses by attacker or vic-
tim.

(b) A descriptive timeline of each phase of the attack.

(c) The contents of cache set S after each phase of the attack.

Fig. 2. Example of side channel attack on traditional 4-way cache. LRU replacement is used.

8-way cache, and we show that NoMo-2 or higher is preferred. Again, the replacement
policy assumed is the LRU, which explains the movement of some of the addresses
across the cache blocks.

4.5. NoMo Scalability

When the NoMo design is extended to more than 2 threads, we can protect against a
possible attacker that uses several colluding processes, where neither one monopolizes
a set by itself. In this case, the NoMo invariant needs to be strengthened: a process may
use up to N − (A−1)Y lines in a set, where the new variable A is the number of threads
actively sharing the cache. In our 2-threaded model, there is a binary NoMo mode, but
with more threads, the threshold for set monopolization would vary with the number
of active threads. Again, as mentioned in the threat model section above, we are not
concerned with the situation where the number of threads exceeds the number of cache
ways, NoMo design in its basic form is not applicable to such scenarios and additional
considerations need to be taken into account. The exploration of these opportunities is
part of our future work.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:12 L. Domnitser et al.

(a) A stream of accesses to a single cache set, S (see
Figure 2(a)). The attacker only accesses 3 different lo-
cations because the NoMo cache will limit the thread
to 3 ways.

(b) A descriptive timeline of each phase of the attack.

(c) The contents of cache set S after each phase of the attack.
NoMo mode is enabled at the start of phase II, and reserved ways
are highlighted in phases II through V. In this diagram, way 0 is
reserved for the attacker and way 3 is reserved for the victim. We
chose these ways to simplify this example. Had the victim’s re-
served way been in use by the attacker, the attacker’s data would
have been evicted, but it would not reveal any information because
the attacker’s data would be evicted from that way for every set,
whether the victim accessed the set or not.

Fig. 3. Example of side channel attack on 4-way NoMo-1 Cache. LRU replacement is used.

4.6. Operating System and Instruction Set Architecture Support

While NoMo caches do not require any operating system and/or ISA support, they
can further benefit if such support can be provided. For example, a system call and
the corresponding ISA support could be added to dynamically adjust the NoMo de-
gree. While allowing a process to decrease the NoMo degree opens the cache to attack,
a process could request that a higher NoMo degree is used when it is running. The
operating system could also adjust the timeout for exiting the NoMo mode, or pro-
vide hints about process activity. Finally, an application can request the use of NoMo
caches through a system call. Again, we emphasize that while all this support can
benefit the security-performance trade-offs of NoMo, it is not required. In fact, the
evaluations in this paper assume no such support and still demonstrate very attractive
trade-offs.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:13

4.7. NoMo and Multithreaded Workloads

When multiple threads belonging to the same process are active together, partitioning
schemes can lead to cache coherence issues as different copies of the same data exist in
different partitions. However, NoMo is simply a reservation mechanism that affects the
replacement policy. Consider two threads A and B belonging to the same process. When
thread A accesses a memory location that was previously accessed by B, it will find it in
the cache, even if it is located in the cache way reserved for B by NoMo: NoMo does not
interfere with normal cache operation. In this way, NoMo is critically different from
cache partitioning schemes [Suh et al. 2001; Qureshi and Patt 2006], which must either
do the partitioning at the process level, or solve the resulting cache coherence issues.

5. EVALUATION METHODOLOGY

We used a Pin [Luk et al. 2005] based trace-driven x86 simulator for our performance
studies. Our baseline system is a 2-way SMT processor with an 8-way issue width, a
128-entry reorder buffer and a three-level cache hierarchy. The L1 instruction and data
caches are 8-way 32KB each while the L2 cache is unified 8-way 256KB. The last-level
cache (L3) is a unified 16-way 2MB cache. All caches in the hierarchy use a 64B line
size. This memory hierarchy is reminiscent of modern high performance processors,
such as Intel’s Core i7 [Nehalem 2009]. For replacement decisions, all caches use the
LRU replacement policy. The load-to-use latencies for the L1, L2, and L3 caches are
1, 10, and 24 cycles respectively. We model a 250 cycle penalty to main memory and
support a maximum of 32 outstanding misses to memory.

For our studies we use 15 representative SPEC CPU2006 [Spradling 2007] bench-
marks compiled using the icc compiler with full optimization flags. The following bench-
marks were used: astar, bzip2, calculix, dealII, gobmk, h264ref, hmmer, libquantum,
mcf, perlbench, povray, sjeng, sphinx, wrf, xalancbmk. Traces of representative regions
for these benchmarks were collected using PinPoints tool [Pinpoints 2009]. We ran all
possible two-threaded combinations of the 15 SPEC benchmarks, i.e. 105 workloads.
We simulated 250 million instructions for each benchmark. Simulations continue to
execute until all benchmarks in the workload mix execute at least 250 million in-
structions. If a faster thread finishes its 250M instructions, it continues to execute to
compete for cache resources. However, we only collect statistics for the first 250 million
instructions of each application.

We report performance results using two widely-used metrics for multithreaded
workloads. The first metric is the cumulative IPC throughput of two co-executing
benchmarks, and the second metric is fairness [Luo and Franklin 2001].

We evaluated the security properties of NoMo using two popular cryptographic algo-
rithms, AES [Daemen and Rijmen 2002] and Blowfish [blowfish 2009], obtained from
the MiBench security benchmark suite [mibench 2009].

To evaluate the security of NoMo cache, we simulated the execution of an idealized
attacker (as a separate thread) alongside an encryption or decryption process. We
used AES and Blowfish encryption and decryption on 3 million blocks of truly random
input [random 2009] and simulated them to completion. The large number of input
blocks was used to detect the worst-case scenarios with our proposed designs.

6. RESULTS AND DISCUSSIONS

In this section we evaluate security and performance characteristics of NoMo cache.

6.1. Leakage Evaluation

We start by describing memory accesses performed by AES and Blowfish pro-
grams, and introducing terminology. Typical implementations use extensive lookups of

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:14 L. Domnitser et al.

(a) Critical exposure rate (b) Overall exposure rate

Fig. 4. Aggregate exposure rates.

precomputed data tables. For AES, the tables used in rounds 1 through 9 of encryption
or decryption occupy 4KB of contiguous memory space. Another set of tables, also 4KB,
are used during the 10th and final round. Blowfish uses 4 1KB tables and an 18-entry
(72 byte) array during all 16 rounds of encryption or decryption.

The indices used to access these tables are derived from the secret key. A cache-based
side channel attacker can observe accesses to these tables, and can reconstruct the key
from the leaked portions of memory addresses. Because these table accesses can be
used by side channel attacks, we call them critical accesses, and the tables themselves,
critical data. When an access is observed by an attacker, it is an exposure, and a critical
access that an attacker observes is a critical exposure.

As part of our idealized attack scenario, we present cache access statistics from
the start of encryption or decryption of a 16-byte data block to the end of the block
operation, so noise from peripheral work is not captured. Our input data consisted
of 3 million randomly generated blocks. We perform our experiments on an 8-way
cache, varying the degree of NoMo between 0 (normal, fully-shared cache) and 4 (static
non-overlapping partitioning).

Figure 4 shows the rate of exposure under all NoMo modes, averaged across all blocks.
The critical exposure rate is the rate of critical exposures out of all critical accesses, and
the overall exposure rate is the rate of all exposures out of all cache accesses. The critical
exposure rate is higher than the overall rate, meaning that critical data is especially
likely to be exposed. The baseline (NoMo-0) critical exposure rate for AES encryption
is 75.8%. NoMo-1 reduces this rate to 6.1%, NoMo-2 to 0.2%, and NoMo-3 prevents all
exposure. (NoMo-4, which fully partitions the cache, always guarantees 0 exposure.)
Blowfish encryption shows a 87.0% baseline critical exposure rate, dropping to 4.5%
for NoMo-1 and 0.3% for NoMo-2. Blowfish also has negligible non-zero exposure with
NoMo-3. Decryption results are omitted, as they are almost identical to encryption.

Although some critical accesses can be exposed with NoMo, exposures tend to occur in
the same cache sets, and accesses to other sets are entirely filtered. NoMo-1 has critical
exposures in all sets (this does not mean that the same number of exposures occur as
without NoMo, just that all sets have some critical exposures). NoMo-2 filters most sets,
and NoMo-3 filters all sets for AES, and all but one set for Blowfish. Figure 5 presents
a spatial analysis of exposure rates. The graphs show exposure rates calculated only
for accesses to an individual set, from set index 0 to 63. The general trend is of high
exposure rates in all NoMo-0 cases, though there are dips for some sets. Exposure
rate with NoMo-1 stays low, but above 0, with occasional spikes. NoMo-2 eliminates
exposure in most sets, with small spikes in some sets. NoMo-3 and 4 rates overlap at 0
for all sets, though some there is minimal exposure in 1 set for Blowfish under NoMo-3.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:15

(a) Average exposure rate of critical data, by set, AES encryption

(b) Average exposure rate of all data, by set, AES encryption

(c) Average exposure rate of critical data, by set, Blowfish encryption

(d) Average exposure rate of all data, by set, Blowfish encryption

Fig. 5. Exposure rate in each of 64 cache sets, for all NoMo degrees.

Across all data blocks, our NoMo-2 cache has non-zero exposure rates in 10 of 64
sets for AES encryption, 14 for AES decryption, and 22 for Blowfish encryption and
decryption. With NoMo-3, AES exposes nothing, and Blowfish occasionally exposes
critical accesses, only in 1 set.

In addition to average exposure rates, we look at the maximum number of exposures
possible in a single block operation, to see if some pathological inputs cause high
exposure. For AES encryption on a baseline cache, the worst-block exposure rate is
68.9%. The worst block on a NoMo-1 cache had 10.9%, 1.6% with NoMo-2, and no
exposure with NoMo-3 or 4. Blowfish encryption worst-block critical exposure rates,
for NoMo-0 through 4, are 45.1%, 9.4%, 1.8%, 0.2%, and 0. Again, similar decryption
numbers are omitted. Such pathological cases are a small fraction of all randomly-
generated blocks that we considered in this study.

Since NoMo-2 and NoMo-3 designs filter all accesses to the majority of sets, infor-
mation about accesses to most critical data is never exposed through the side channel.
Additionally, all NoMo configurations hide the majority of critical accesses. For these
reasons, NoMo-2 and NoMo-3 designs would require high brute-force cryptanalysis
effort after a side channel attack.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:16 L. Domnitser et al.

(a) Normalized IPC (b) Normalized Fairness

Fig. 6. NoMo performance for 105 SPEC benchmark pairs.

6.2. Performance Evaluation

Figure 6 shows instruction throughput for 105 2-threaded workloads, each consisting of
2 benchmarks from the SPEC CPU2006 suite. The graphs show performance of NoMo-
1 through 4, normalized to the baseline case (that is, NoMo-0 performance is 1). Each
point on the graph represents one of the workloads, and they are sorted by increasing
performance. We show performance as a simple IPC figure (committed instructions per
cycle) and as fair throughput (“fairness”), which is the harmonic mean of weighted IPC.

As expected, increasing the degree of NoMo generally hurts performance. We demon-
strate a continuum of performance options up to static partitioning that depend on the
security requirement. On average, NoMo-1 decreases performance by 0.2%, NoMo-2
by 0.5%, NoMo-3 by 0.8%, and static partitioning by 1.2%. We see similar averages for
the fairness metric, but lower worst-case degradation. By reserving part of the cache
for each thread, NoMo prevents starvation, so we sometimes see better fairness per-
formance than absolute performance. For a few workloads, NoMo performance reaches
and slightly exceeds baseline performance. In general, performance and fairness losses
are within 1.2% for all configurations. The highest performance degradation for an
individual benchmark pair was observed with static partitioning (5%).

7. RELATED WORK

Both software and hardware solutions to address cache-based side channel attacks
have been previously proposed.

7.1. Software Approaches

On the software side, the main idea is to rewrite the code of the encryption algorithms
such that known side channel attacks are not successful. Examples of such techniques
include avoiding the use of table lookups in AES implementations, preloading the
AES tables into the cache before the algorithm starts, or changing the table access
patterns [Osvik et al. 2005; Brickell et al. 2006; Tromer et al. 2009; Side 2009].

A limitation of software solutions is that they are tied up to a specific algorithm
and attack, do not provide protection in all cases, are subject to programming errors,
and often result in significant performance degradation [Wang and Lee 2007]. Another
recent approach is to dedicate special functional units and ISA instructions to support
a particular cryptographic algorithm. An example of this approach is the Intel AES
instruction [Gueron 2008]. Another example is the support for general-purpose parallel
table lookup instructions and permutation instructions that also speed up AES and
other algorithms [Lee and Chen 2010].

7.2. Hardware Approaches

In response to the limitations of software solutions, several hardware supported
schemes have been recently introduced. A partitioned cache was proposed [Page 2005],

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:17

along with ISA changes to make the cache a visible part of the architecture. This
scheme requires changes to both the ISA and the cache hardware design and can lead
to significant performance degradation.

Several alternative cache designs for thwarting cache-based attacks have been pro-
posed by Wang and Lee [2007, 2008]. Partition-Locked Cache (PL cache) design [Wang
and Lee 2007] uses cache line locking to prevent evictions of cache lines containing
critical data, thus closing the side channel. The PL cache can lead to some cache un-
derutilization, as the locked lines cannot be used by other processes, even after they
are no longer needed by the process that owns them. In addition, the PLcache requires
system support to control which cache lines should be locked.

Another effective side-channel protection technique proposed in Wang and Lee [2007]
is the Random Permutation Cache (RPcache) that implements a randomization based
approach to attack mitigation. A key operation performed by the RPcache is the per-
mutation of memory addresses to cache sets. When the two cache sets are swapped
(to realize permutation), the contents of their valid lines are invalidated, resulting in
additional cache misses. To limit this effect, the OS support mechanism (similar to
that used in the PLcache design) is needed. Finally, Wang and Lee [2008] proposed
a novel cache architecture (called NewCache) with security-aware replacement algo-
rithm. It uses a direct-mapped cache as an underlying substrate, but augments it with
dynamic memory-to-cache re-mapping and longer cache index. While achieving secu-
rity comparable to RPcache in Wang and Lee [2007], Newcache further improves cache
performance for access time and cache misses. In contrast to the earlier schemes and
similar to NoMo, NewCache does not require any support from the system software
and/or the ISA. In addition, NewCache represents a more general solution to cache
side-channel attacks than NoMo, because it applies to direct-mapped caches as well
as set-associative caches, protects against the attacks on single-threaded cores and
does not depend on the attack that monopolizes the cache. However, NoMo is a simpler
design to implement for the typical Intel’s microprocessor caches.

The technique proposed by Keramidas et al. [2008] introduces randomly se-
lected cache decays to create caches with non-deterministic behavior and thus non-
deterministic leakage through the side channel for the same input data. However, the
use of small decay intervals needed to impact the aggressive attacks that we consider
in this paper would lead to performance degradations.

In summary, prior efforts on L1 cache security rely on schemes that explicitly make
an attacker incapable of identifying any critical cache access—this requirement was the
underlying foundation of these designs. Consequently, the proposed schemes require
substantial changes to the cache design. As a result, the integration of these designs
into existing highly optimized cache data-paths can be challenging. Additionally, most
of these techniques require OS, PL, compiler and/or ISA support to determine which
memory lines need to be locked or permuted, to limit the impact of the proposed
modifications only to the critical lines.

NoMo differs from prior art targeting cache security in that it is a low-overhead
solution that can be readily adopted into the existing cache designs of modern high
performance processors. We minimize design complexity by not explicitly identifying
and hiding all critical cache accesses from a potential attacker. Instead, we use cache
management mechanisms to probabilistically limit the amount of critical cache ac-
cesses that are exposed through the cache side channel.

7.3. Comparison with Prior Cache Partitioning Works

NoMo is a cache partitioning scheme targeting security. However, a number of previous
efforts developed cache partitioning techniques targeted for performance [Suh et al.
2001; Qureshi and Patt 2006; Xie and Loh 2009; Jaleel et al. 2010]. In this subsection,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:18 L. Domnitser et al.

Fig. 7. IPC of recent cache partitioning schemes applied to L1 cache normalized to LRU. Each point on these
graphs represents one benchmark pair.

we place NoMo design in the context of these prior cache partitioning efforts, notwith-
standing the fact that those were designed for improving the performance of last-level
caches.

With respect to their implications on security, cache partitioning schemes can be
categorized into two groups. Techniques in the first group provide isolated cache parti-
tions for multiple applications, for example by giving each application a predetermined
number of cache ways [Qureshi and Patt 2006]. These solutions provide security in the
steady state, after the partition boundaries are established, but do not address the side
channel leakage occurring during the training period (when the proper partition sizes
are determined) and also during the reconfiguration periods. An advanced attacker
can potentially exploit these weaknesses. Prior work [Kong et al. 2009] demonstrated
that if the initial phase is not protected, then enough side-channel leakage can occur
to recover the secret key.

Techniques in the second group instead rely on cache pseudo-partitioning [Xie and
Loh 2009; Jaleel et al. 2010]. Pseudo-partitioning provides flexible partition boundaries
between the applications, sometimes allowing one application to replace the data placed
in the cache by another application. While these approaches may have performance
benefits due to soft-sharing of the cache, they are fundamentally vulnerable to side-
channel attacks. Specifically, the attacker, exploiting knowledge of the cache pseudo-
partitioning algorithm, can generate access patterns that will cause it to replace the
victim’s entries with high probability, which enables them to form the side-channel.

An additional point that we would like to emphasize is that most of these previous
partitioning works were proposed for the last-level caches, where they were shown to
provide a clear performance benefits over LRU replacement. However, these schemes
do not outperform LRU replacement at the level of L1 cache. This is because the
LRU captures well the high locality of references exhibited at the L1 level. For ex-
ample, we studied the performance of a representative of the two partitioning groups
(UCP [Qureshi and Patt 2006], representing isolated partitioning, and RRIP [Jaleel
et al. 2010] representing pseudo partitioning) when used at the level of L1 cache.
Figure 7 shows their performance on a number of two-benchmark mixes taken from
the SPEC 2006 benchmark suite. UCP generally performed slightly worse than LRU,
while RRIP provided marginal performance improvement over LRU. For many of the
benchmark pairs that we considered, RRIP performed almost identical to LRU.

The primary reason for the observed behavior is that these partitioning schemes
rely on the filtering of spatial/temporal locality from smaller caches to make intelligent
replacement/partitioning decisions. The ample amount of spatial and temporal locality
at the L1 cache causes intelligent replacement policies implemented at the L1 cache to

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:19

behave very similar to LRU. Therefore, since the performance benefits are not present,
there is no motivation to apply performance-driven partitioning schemes designed for
the last-level cache to the L1 cache. Applying them will only increase the complexity
and adversely impact the L1 cache access time. The complexity of NoMo is indeed
significanty lower that that of the L2/L3 partitioning designs. NoMo only requires a
simple tweak to the LRU replacement policy to avoid replacing reserved lines, main-
tains way reservation vectors (1 bit per way per thread), and needs a simple logic to
gang-reset the valid bits of the reserved ways. Just for comparison, the implementa-
tion of utility-based partitioning [Qureshi and Patt 2006] requires utility monitoring
circuitry (8-bytes per line overhead for two threads sharing the cache), the partitioning
algorithm, and the modification to the LRU policy to take partitioning into account.
Other schemes used at the L2/L3 level also feature more complex logic and algorithms
than NoMo. Again, this higher complexity is more affordable at the lower cache levels.

In summary, if the goal is to enhance the security of the L1 caches through partition-
ing, it is important to consider security directly, at the same time incurring as little
redesign of the existing caches as possible. This is the approach taken by the NoMo
proposal.

7.4. Implications on Key Reconstruction

Despite the presence of a number of a solutions to side-channel problems that do not
perfectly close the channel [Goubin and Patarin 1999; May et al. 2001], the security
properties of side-channels and the effectiveness of such imperfect solutions were open
questions. Micali and Reyzin were the first to present a theoretical analysis of side-
channel attacks [Micali and Reyzin 2004]. Using general assumptions, this model
defines the notion of an abstract computer and a leakage function that together can
capture almost all instances of side channels. However, the overly general assumptions
make it difficult to apply this analysis to particular algorithms (e.g., DES or AES) or
for specific side-channels.

Standaert et al. [2006] started from the Micali and Reyzin model and specialized it
for more practical situations. Specifically, they restricted some of the assumptions to a
range that corresponds to relevant adversary and leakage models. Moreover, they show
how to map the abstract computational model to physical instances such as circuits and
operations. Although this model brings the original model by Micali and Reyzin [2004]
closer to practice, it models the leakage and adversary abstractly using information
theoretic principles. Kopf and Badin [2007] investigate a similar information theoretic
model.

8. CONCLUDING REMARKS

We proposed non-monopolizable caches, a family of flexibly partitioned cache designs
which provides protection against cache-based side-channel attacks without signifi-
cant cache redesign, without OS, programming language, compiler or ISA support, and
with minimal performance impact. The NoMo variations considered in this paper pro-
vide a range of solutions with different performance to information leakage tradeoffs.
NoMo-4 (static partitioning) design eliminates the side channel for all applications
at the average performance cost of only 1.2%. The other configurations provide more
flexible partitioning of the cache, where some sets remain in contention between the
two threads. However, leakage is significantly reduced. For example, NoMo-2 leaks
only 0.6% of critical accesses for AES, and 1.6% of critical accesses for Blowfish at an
expense of 0.5% to the IPC throughput and 0.5% to fairness. Although the leakage of
critical data is non-zero in this case, it is very small.

In summary, we show that simply partitioning the L1 cache among competing
threads provides sufficient isolation and security at a minimal performance loss for

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

35:20 L. Domnitser et al.

the access-driven cache side channel attacks considered in this paper. NoMo ideas may
be easier to apply to existing microprocessor caches than the changes suggested by
prior hardware designs.

ACKNOWLEDGMENTS

We thank all the anonymous reviewers for their useful insights related to this work. We also thank Mehmet
Kayaalp for his help in improving the paper.

REFERENCES

ACIICMEZ, O. AND KOH, C. 2006. Trace-driven cache attacks on aes. Cryptology ePrint Archive rep. 2006/138.
ARM. 2010–2011. Cortex-r5 and cortex-r5f: A technical reference manual, revision r1p1. http://infocenter.

arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C cortexr5 trm.pdf (accessed 7/11).
BACKES, M., DURMUTH, M., GERLING, S., PINKAL, M., AND SPORLEDER, C. 2010. Acoustic side-channel attacks on

printers. In Proceedings of the USENIX Security Symposium.
BANGERTER, E., GULLASCH, D., AND KRENN, S. 2011. Cache games - bringing access-based cache attacks on aes

to practice. In Proceedings of IEEE Symposium on Security and Privacy.
BERNSTEIN, D. 2005. Cache-timing attacks on AES. http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
BIHAM, E. AND SHAMIR, A. 1991. Packaging of multi-core microprocessors: Tradeoffs and potential solutions.

J. Cryptology 4, 1, 3–72.
BLOWFISH. 2009. The blowfish encryption algorithm. http://www.schneier.com/blowfish.html.
BONNEAU, J. AND MIRONOV, I. 2006. Cache-collision timing attacks against aes. In Proceedings of the CHES

Workshop.
BRICKELL, E., GRAUNKE, G., NEVE, M., AND SEIFERT, J. 2006. Software mitigation to hedge aes against cache-

based software side channel vulnerabilities. IACR ePrint Archive, rep. 2006/052.
CANTEAUT, A., LAURADOUX, C., AND SEZNEC, A. 2006. Understanding cache attacks. INRIA Tech. rep.

ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5881.pdf.
DAEMEN, J. AND RIJMEN, V. 2002. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer.
GOUBIN, L. AND PATARIN, J. 1999. DES and differential power analysis. In Proceedings of the CHES.
GUERON, S. 2008. Advanced encryption standard (AES) instruction set. White paper, Intel.
JALEEL, A., THEOBALD, K., STEELY, S., AND EMER, J. 2010. High performance cache replacement using re-reference

interval prediction (rrip). In Proceedings of the International Symposium on Computer Architecture
(ISCA).

KELSEY, J., SHNEIER, B., WAGNER, D., AND HALL, C. 1998. Side channel cryptanalysis of product ciphers. In
Proceedings of the 5th European Symposium on Research in Computer Security. 97–110.

KERAMIDAS, G., ANTONOPOULOS, A., SERPANOS, D., AND KAXIRAS, S. 2008. Non-deterministic caches: A simple and
effective defense against side channel attacks. Design Automation Embedd. Syst.

KONG, J., ACLICMEZ, O., SEIFERT, J., AND ZHOU, H. 2009. Hardware-software integrated approaches to defend
against software cache-based side channel attacks. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA).

KOPF, B. AND BASIN, D. 2007. An information-theoretic model for adaptive side-channel attacks. In Proceedings
of the ACM Conference on Computer and Communication Security (CCS). 286–296.

LEE, R. AND CHEN, Y. 2010. A processor accelerator for aes. In Proceedings of the Symposium on Application
Specific Processors (SASP).

LUK, C., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI, V., AND HAZELWOOD, K.
2005. PIN: Building customized program analysis tools with dynamic instrumentation. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

LUO, K. AND FRANKLIN, M. 2001. Balancing throughput and fairness in smt processors. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software.

MATSUI, M. 1994. Linear cryptanalysis method for DES cipher. In Proceedings of the Advances in Cryptology,
386–397.

MAY, D., MULLER, H., AND SMART, N. 2001. Randomized register renaming to foil DPA. In Proceedings of CHES.
MIBENCH. 2009. The MiBench benchmark suite. http://www.eecs.umich.edu/mibench/.
MICALI, S. AND REYZIN, L. 2004. Physically observable cryptography. In Proceedings of the Theory of Cryptog-

raphy Conference

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

Non-Monopolizable Caches 35:21

NEHALEM. 2009. First the tick, now the tock: Intel microarchitecture (nehalem). http://www.intel.com/
technology/architecture-silicon/next-gen/319724.pdf.

OSVIK, D., SHAMIR, A., AND TROMER, E. 2005. Cache attacks and countermeasures: the case of aes. Cryptology
ePrint Archive, rep. 2005/271.

PAGE, D. 2005. Partitioned cache architecture as a side-channel defense mechanism. Cryptology ePrint
Archive.

PERCIVAL, C. 2005. Cache missing for fun and profit. http://www.daemonology.net/papers/htt.pdf.
PINPOINTS. 2009. Pinpoints home page. http://www.cs.virginia.edu/wiki/pin/index.php/PinPoints.
QURESHI, M. AND PATT, Y. 2006. Utility-based partitioning: A low-overhead, high-performance, runtime mech-

anism to partition shared caches. In Proceedings of the International Symposium on Microarchitecture
(MICRO-39). 423–432.

RANDOM. 2009. Random.org. http://www.random.org/.
SIDE. 2009. Side channel attacks database. http://www.sidechannelattacks.com.
SPRADLING, C. D. 2007. Spec cpu2006 benchmark tools. SIGARCH Comput. Archit. News 35, 1, 130–134.
STANDAERT, F.-X., PEETERS, E., ARCHAMBEAU, C., AND QUISQUATER, J.-J. 2006. Towards security limits in side-

channel attacks. In Proceedings of the CHES Workshop.
SUH, E., RUDOLPH, L., AND DEVADAS, S. 2001. Dynamic cache partitioning for simultaneous multithreading

systems. In Proceedings of the International Conference on Parallel and Distributed Computing and
Systems (PDCS’01).

TROMER, E., SHAMIR, A., AND OSVIK, D. 2009. Efficient cache attacks on aes, and countermeasures. J. Cryptology.
TSUNOO, Y., SAITO, T., SUZAKI, T., SHIGERI, M., AND MIYAUCHI, H. 2003. Crypronalysis of des implemented on

computers with cache. In Proceedings of the Cryptographic Hardware and Embedded Systems (CHES)
Workshop. 62–76.

TSUNOO, Y., TSUJIHARA, E., MINEMATSU, K., AND MIYAUCHI, H. 2002. Crypronalysis of block ciphers implemented
on computers with cache. In Proceedings of the ICITA Conference.

WANG, Z. AND LEE, R. 2007. New cache designs for thwarting software cache-based side channel attacks. In
Proceedings of the International Symposium on Computer Architecture (ISCA).

WANG, Z. AND LEE, R. 2008. A novel cache architecture with enhanced performance and security. In Proceedings
of the International Symposium on Microarchitecture (MICRO).

XIE, Y. AND LOH, G. 2009. PIPP: Promotion/insertion pseudo-partitioning of multi-core shared caches. In
Proceedings of the International Symposium on Computer Architecture (ISCA).

ZHAO, X. AND WANG, T. 2010. Improved cache trace attack on AES and CLEFIA by considering cache miss and
s-box misalignment. Cryptology ePrint Archive, rep. 2010/056.

ZHOU, S. 2010. An efficient simulation algorithm for cache of random replacement policy. Lecture Notes in
Computer Science vol. 6289, 144–154.

Received July 2011; revised October 2011; accepted November 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 35, Publication date: January 2012.

