
Implementation Complexity of Bit Permutation
Instructions

Zhijie Jerry Shi and Ruby B. Lee
Department of Electrical Engineering, Prioceton University, Princeton, NJ OS544 USA

(zshi, rbleet @ee.nrinceton.edu

Absfrocf- Several bit permutation instructions, including GRP,
OMFLIP, CROSS, and BFLY, have been proposed recently for
eNiciently performing arbitrary bit permutations. Previous work
has shown that these instructions can accelerate a variety of
applications such as block ciphers and sorting algorithms. In this
paper, we compare the implcmentation complexity of these
instructions in terms of delay. We use logical effort, a process
IechnologV independent method, 10 estimate the delay of the bit
permutation functional units. Our results show that for @-bit
operations, the BFLY instruction is the fastest among these bit
permutation instructions; the OMFLIP instruction is next; and
the GRP instruction is the slowest.

1. INTRODUCTION
Bit permutation operations permute the bits in the operand.

They are very effective for achieving diffusion io block
ciphers [I], where diffision dissipates the redundancy in the
plain text over the encrypted cipher text. Bit permutation
operations are used in many ciphers such as the Data
Encryption Standard (DES), Twofish and Serpent. However,
arbitmy bit permutations are not directly supported on
existing microprocessors, and hence very slow. As a result,
many ciphers such as RC5 [2] use datadependent rotation
(DDR) instead. DDR uses only log(n) bits to specify the shift
amount for n-bit words. This property of DDR has reduces
the strength of the ciphers and makes them vulnerable to
cryptanalytic attacks [3].

Several insfructions have been proposed recently to do
arbitrary hit permutation efficiently. They are GRF' 141,
OMFLIP [SI, CROSS [6], and BFLY [7, SI. Each instruction
has its advantages and disadvantages [9]. For example, GRF'
can accelerate subword sorting [IO] and has good
cryptographic properties [I l l . OMFLIP needs only four
stages regardless of how many bits are to be permuted. But
these instructions have not been compared with each other in
detail in terms of implementation complexity and latency.

In this paper, we compare the implementation complexity
of bit permutation instructions in terms of the latency, or delay,
of their respective permutation units. Ideally, when a new
instruction is added to a processor, the cycle time of the
processor should not be significantly impacted. Knowing the
relative delays of these permutation functional units is very
helpful when deciding which one to include in a given
processor. We use a process technology independent method,
logical effort [IZ], to compare the delays of different
permutation units. Logical effort is a design methodology that

can be used to estimate the number of stages required to
implement the critical path of a given logic function, and
hence estimate its delay in a process technology independent
way.

In Section 11, we briefly describe the logical effort
methodology. In Section In, we describe the bit permutation
instructions and discuss their implementation. In Section IV,
we use logical effort to estimate and compare the delay of
different permutation circuits. Section V concludes the paper.

11. LOGICAL EFFORT
Logical effort [I21 is a technology-independent method to

estimate the number of stages required to implement a given
logic function with CMOS and to determine the maximum
possible speed of the circuit. It uses the following concepts:

logical effort g: The total gate capacitance of a logic gate
relative to that of a minimum-sued inverter
electrical effort h: The ratio of output capacitance of a gate
to its input capacitance
branching effort b: The ratio of total capacitive load on
one logic gate's output to the gate capacitance of the next
gate on the path examined
parasitic delay p: The total diffusion capacitance on the
output node of a gate relative to that of a minimum-sized
inverter.

The delay of a single gate can be calculated as:

To find the delay along a path, we first calculate the total path
effort:

d = g h i p (1)

F = GBH (2)
where G = IIg, B = IIb, and H = IIh. IIg means the product

of the logical effort of all the gates along the path. Similarly,
l lb is for the total branch effort and IIh for the total electrical
effort. The total electrical effort H = IIh reduces to the ratio
of the output Capacitance loading the last gate to the gate
capacitance of the fmt gate on the path. Normally, we assume
a circuit drives a copy of itself, so H = 1.

Once the path effort has been calculated, the ideal number
of stages required to achieve the logical function can be
estimated as:

where 3.6 is the stage effort achieving the best performance
[12]. N is then rounded to the nearest integer that is
reasonable for the path, and the effort delay for each stage can

N = log, 8. (3)

0-7803-S104-1/03/$17.00 02003 IEEE 879

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

mailto:ee.nrinceton.edu

be calculated as:
(4) a = F'"

a can be used to decide the transistor size in each stage
along the path. The basic idea is to estimate the number of
stages using the ideal stage effort a-3.6, and then calculate the
real a from the estimated number of stages. Finally, the total
delay of the path can be calculated as:

where P = G. We results in (5) are in the basic time unit
used in logical effort, which is independent of process
technology. Dividing D in (5) by five gives the estimated
delay in terms of fan-out of four (F04). the delay of an
inverter that drives four identical inverters.

D = N a + P , (5)

III. BIT PERMUTATION INSTRUCTIONS

We now describe the permutation instructions CROSS,
BFLY, OMFLIP and GRP.

A. CROSS
The CROSS instruction defined in [6] is based on the Benes

network. A Benes network consists of a butterfly network
followed by an inverse butterfly network. An n-bit butterfly
network consists of log@) stages. In each stage, n bits are
divided into n/2 pairs. Two bits in a pair can go to the same
position at the output or exchange position with the other one.
This is determined by a single control bit. So n / Z control bits
are needed for n/2 data pairs at each stage. The stages are
differentiated by bow bits are paired. If we count stages
starting fiom 1, the distance between two paired bits in stage i
is 1112'. Figure 1 shows an example of a 16-bit butterfly
network. Each small box is like a 2:l MUX, where one of two
bits in a pair is selected. In the first stage, the distance
between two paired bits is 16/2 = 8. In the last stage, the
distance is one, i.e., two bits are next to each other.

Figure I : A 16-bit butterfly network

The inverse butterfly network can be constructed by
reversing the stages in a butterfly network.

A Benes network is constructed by concatenating a butterfly
network with an inverse butterfly network. A CROSS
instruction is defined as:

CROSS.ml.rn2 Rd, Rs, RC

CROSS permutes the bits in Rs using any two stages in a
Benes network that are specified by ml and m2, and stores the
permuted bits in Rd. The two stages specified by ml and m2
are coniigured with bits in Rc; the lower n/2 bits are used to
configure Stage ml, and higher n/Z bits to configure Stage m2.
A method is given in [6] to configure a Benes network to
perform any permutations of the input bits using all stages in a
Benes network. log(n) CROSS instructions are needed to
achieve any one of the n! permutations of n bits.

E. BFLY
We BFLY instruction is also based on the Benes network

However, BFLY uses the full butterfly network (six stages for
64 bits) to permute input bits while CROSS uses only two
stages of the butterfly network or inverse butterfly network per
instruction.

To perform arbitrary n-bit permutations, another instruction
IBFLY is required to permute bits with the full inverse
butterfly network. In th is paper, we focus only on the BFLY
instruction. IBFLY will have similar latency as BFLY.

C. OMFLIP
The OMFLIP instruction is based on the omega-flip

network. A full omega network consists of log@) omega
stages, and all omega stages are the same; a full flip network
consists of log(n) flip stages, and all flip stages are the same.
A full omega-flip network, constructed by concatenating a full
omega network with a full flip network, is isomorphic to a
Benes network. An OMFLIP instruction permutes bits with
two stages of the full omega-flip network, and log@)
instructions can perform arbitrary n-bit permutation.

OMFLIP uses only two stages each time, and all omega
stages or all flip stages are the same. Hence, only two omega
stages and two flip stages are enough to do the OMFLIP
instructions. Such a 4-stage network is shown in Figure 2.
Unlike CROSS, the number of stages in the functional unit
does not depend on the number of bits to be permuted.

OWPUT

Figure 2: A +stage omega-flip network for 16-bit O M n I P operations

880

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

D. GFP
The GRP instruction is defined as:

The GRP instruction permutes the data bits in Rs according
to the control bits in Rc. The bits in Rs are divided into two
groups depending on whether the corresponding bit in Rc is 0
or I . The two groups of bits are then placed next to each other
in Rd. The bits with a control bit of 0 are placed at tbe left
end; the bits with a control bit of 1 at tbe right end. Figure 3
shows an example of an 8-bit GRP operation. Since the
control bit of b, c,f; and h is 0, these four bits are placed at the
left end in Rd. a, d, e, and p are placed at the right end

GRP R d , Rs, RC

Rs a j b / c l d l e] f / g l h

output 0, and a select signal sel. The output o is connected
with the input i wben and only wben sel = 1. In Figure 6, (b,
11, 12, I,) and (4, Is, la, 17) are tbe outputs of two GRP4Z
circuits. In both of them, z bits are already placed at the left
end and other bits at the right end are set to 0. Those bits that
are set to 0 will be referred to as padded Os. (&, S3, S2, SI, So)
is a one-hot code indicating the number of padded Os in 6, I , ,
12, 13). Depending on bow many padded Os are in (b, I,, 12, I,),
one of (&, S,, S2, SI, SO) is set to 1, and that bit determines at
which row the outputs are connected to the inputs. At the
output, padded Os in (b, I,, 12, 13) are replaced with bits
shifting in from (4, Is, IS, 17), and all the z bits are located at
the left end. For example, wben (Io, 11, 12) are z bits and 1, is a
padded 0, only SI is set to 1. The inputs and outputs are
connected at the second row. The output (Oo, ..., 0,) = (b, I,,
4 , 4 , Is, la, 17, 0).

ni2 bits d2 bits

Figure 3: 8-bit GRP operation

There are many ways to implement a GRP operation. Here,
we describe a parallel implementation. For convenience, the
bits in Rs with a control bit of 0 are referred to as i bits, and
the bits with control bit of 1 as M' bits. The GRP operation can
he performed in three conceptual steps. Step 1 grabs all z bits
and sets other bits in the word to 0; Step 2 grabs w bits and
sets other bits in tbe word to 0; Step 3 merges the z hits and
the w bits by OR-ing the results generated in the two previous
steps. Step 3 is straightforward. And if we can grab z bits in
Step 1, Step 2 can use the same circuit to grab w bits for
flipping control bits changes w bits to z bits.

We use the divide-and-conquer strategy to grab z bits in n
bits, as shown in Figure 4. First, the n input bits are divided
into two halves. After putting z bits at the left end in each half,
we combine the z bits in both halves, putting all z bits at the
left end and setting the rest of the bits to 0. For each half of
n/2 bits, we can apply the same method by dividing them into
two halves of d 4 bits. Each set of nl4 bits can be further
divided into smaller sets until every set has only one bit. For
sets that has only one bit, the z bit is already at the left end if
the only bit is a z bit. Othenvise, it is set to 0. This can be
done with the circuit shown in Figure 5, which we call GRF'IZ.
In the figure, i is the input data bit, and c is the corresponding
control bit. When c = 0, the output d = i because i is a z bit.
When c = 1, d is set to 0. (k , , ko) is one-bot code indicating
the number of bits that are set to 0 in (4. So (k , , $) = (1, 0)
when c = 1 because one bit d is set to 0.

A circuit that grabs z bits from a n-bit set is called GRPeZ.
GRF'IZ is illustrated in Figure 5. GRPZZ consists of two
GRPlZs, and combines their outputs; the circuit that does
combination is called GRP2ZD. GRP4Z consists of two
GRP2ZDs, and combines their results with a GRPPZD, and so
on. Figure 6 presents a diagram of GRPIZD, wbicb combines
z bits eom two 4-bit sets. Each small box is the basic cell that
is shown in Figure 7. The basic cell has a data input i, a data

I n bits I

zbitr OS

Figure 4; Grab z bits recursively

C i

k ,ko d
Figure 5 : GRPlZ the fim stage in GRP units

10 I1 U U 14 I5 16
I I I I I I I Y 9

0 0 01 0 2 0 3 04 05 06 0 7

Figure 6: Diagram ofGRP8ZD

The circuits generating select signals have a similar
stmcture to that of the data combining circuits shown in
Figure 6. These circuits generate tbe number of padded Os in

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

T T each set of data bits. We call these circuits GRPIZS, GRPZZS,
GRP4ZS, and so on.

Figure 7: Basic cell

Figure 8 shows the block diagram of the datapath of GRF'64,
a GRP functional unit for 64 bits. We first use GRF'IZ to
generate z bits and w bits for I-bit groups. Then, we keep
combining the output of smaller sets to generate z hits and w
bits for a larger sei until we get all the z bits and w bits for the
64 bits. Then, the z bits and w bits are combined with OR
gates to get the result of the &bit GRP operations.

MdafabiaMdMW
M h bitrdfflcmm4 bim &bib h.reve!Tcoda

A
~

.~ g::::.pg ~~ p)p-J
. ~~~ ~,.,. ...

*
--m

Figure 8: Diagram of GRPM

w. ANALYSIS OF DIFFEREN? PERMUTATION CIRCUITS

We now estimate the delay of the 64-bit permutation
functional units that performs the BFLY, OMFLIP, and GRP
instructions. As mentioned earlier, we assume each
permutation unit drives a copy of itself.

In OUT calculation, only the capacitance of the wires is
considered. Wires are converted into a number of inverters,
the total input capacitance of which is the same as the
capacitance of the wires. We estimate the capacitance of a
wire traveling across a cell as equivalent to 1 0 the input
capacitance of a minimum-sized inverter [Appendix A].

A. BFLY burteifly nehvork latency
In the butterfly network shown in Figure I, each box can be

considered as a 2:l MUX. In a real implementation, we use
2: 1 MUXl shown in Figure 9 instead of MUX. MUXl works
similarly to a MUX except that the output of MUXI is inverted.
This causes no problem as long as signals are inverted an even
number of times.

1 i
Figure 9 T m i s t o r diagram of a 2 1 MLixl

The numbers in Figure 9 indicate the ratio of the width of
transistors to the width of an N-type transistor in a minimum-
sized inverter. To achieve the same drive characteristics as a
minimum-sized inverter, we double the size of transistors that
are connected io series. The parasitic delay of the 2 1 MUXI
can be calculated as [12]:

The denominator in (6) is the sum of the width of transistors
that are connected to the output in a minimum-sized inverter;
and the numerator is the sum of width of transistors that
connected to the output in tbe MUXI.

The capacitance of each input is twice that of a minimum-
sized inverter. Therefore, the logical effort per data input is 2.
The logical effort of the select si& is 4.

Theload of the gates in each stage, except for the last stage,
consists of wires and MUXIS in the next stage. As mentioned
earlier, wires are converted into a number of inverten that
have the same capacitance, and then can be modeled as
branching effort. Let Nee,ls be the number of cells that the
longest wire travels across in a stage. Since an output in a
stage needs to drive the wire and two data inputs of 2:I
MUXIs, we can estimate the branching effort in each stage
with the following formula [12]:

Table 1 lists the branching effort, logical effort, and the
parasitic delay of gates on the critical path of a full 64-bit
butterfly network. We use (7) to calculate the branching effort
in all stages except for the last stage. The load of the last stage
is the wire and the select signals in the first stage because we
assume the circuit drives another copy of itself. Suppose the
select signal has to cross 32 celk to reach both MUXIS in the
first stage. In addition, the select signal needs to drive the
select signal for two 2:l MUXIs; each bas a gate capacitance
four times as a minimum-sized inverter (See Figure 9). The
branching effort before the inverter in the 2:l MUXIS can be
calculated as:

In Table I , the p in Stage 1 is five because of the inverter in
2:l MUXIS for the select signal.

(3213 + 2 x 4) I 2 = 2813

882

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

TABLE I: LOGICAL EFFORT AND Pmsmc DELAY M B U T T E R ~ Y NETWORK

Stage Critical

MUXl Track+ 161-2
2 m s = 1413

2 MUXl Track+ 8/6+2 2 4

%age I Gale I Load I b 1 1 1 1 U .
1 M W i n Track+ (3213+3*2)12 2 5

2 I 3:1 MUXl I Track+ I (3213+3*2)12 I 2 I 6
3 I M U X 33:IMUXIs =25/3

Z M U X I E

2 m r =I316
2813

I I 2 select signals I I l l
Total I I I 1957.31 I 64 I 25

The total effort can be calculated as
F = C B H = 6 4 x l 9 5 7 . 3 1 ~ 1=125267.84
The optimal number of stages is:
N = log lp = 9
There are already seven stages (including the inverter inside

the fust MUXI). Two inverters can be added along the path to
drive long wires. This increases the parasitic delay by two.
Therefore, the total delay is:

D = N ~ F " ~ ' + P = 9 ~ 1 2 5 2 6 7 . 8 4 ' " + (2 5 + 2) = 6 0 . 2
Hence, the delay is about 12.0 F04.
The delay of the inverse butterfly network is estimated as

13.0 F04 [Appendix B], slightly longer than the delay of the
butterfly network.

B.
The OMFLIP instruction can be performed with a 4-stage

omega-flip network that has two omega stages and two flip
stages. Since it uses only two of the four stages each time,
data need to pass through the other two stages. Such pass
through paths do not exist in omega or flip stages, so they
need to he added in the stages. After the pass through paths
are added, an output in an omega or a flip stage can choose
one fiom three input bits. Two of them are defined by omega
or flip stages (Figure 2) and the third is for the pass through
path. So each box in Figure 2 can be implemented with the
3:l MUXes that is shown in Figure 10. In tbe figure, data bits
either go through two 2:l MUXI or one inverter and one 2:l
MUXI. MUXll chooses one from in-0 and in-1, the two
paired bits defined by the omega or flip network. MUXIZ
chooses one from the output of MUXll and the pass-through
source i n g . Since MUXI2 inverts the input, i n g is inverted
before going to MUXI2. l f p a s s = 1 in a stage, data take the
pass through path. Alternatively, 3:l MUXIS may be used for
shorter delays from the data input to the output. The diagram
of a 3:l MUXI is presented in Figure 11. Figure l l a shows
the transistors for selecting data inputs, which have similar
structure as those in 2:l MUXIs. The select signals in Figure
I l a are generated in Figure l l h from pass and se/. The
parasitic delay of 3:l MUXIS is six; and the logical effort per
data input is two, the same as that for 2:l M U X I s . Since 3:l
MUXIS have shorter delays from the data input to the output,
we will use them to implement omega or flip stages except for

4-srage omega andfl ip network latency

the fmt omega stage, where the delay is dominated by the
select signal. In the first omega stage, 3:l MUXes will be
used for they have short delays frompass to the output.

I

Figure IO Implementing a 3:l MlJX with 2 1 MUXIS

T T T

0wl.U
151

NAND1

b)

Figure I I : 3:1 MUXlrforomegaarllipstages

T4BLE 2 LOGICAL EFFORT PARASITIC DELAY FOR 4-STAGE OMEGA-FLIP
NEWORK

I I33:IMUXIr 112513
3 I 3:1 MUXl I Track+ I (3213+3*21/2 I 2 I 6

I I 3 3 : l M U x l s I =25/3 I I
4 I 3 : l M U x I I NOT I I I 2 1 6

1 NOT I Track+ 1 (6413+64*4Y2 I 1 I I
I I 64 select signals I 41613 I I

Total 1 I I 80246.91 1 1 6 1 2 4

The logical effort, branching effort, and parasitic delay for
4-stage omega-flip network are listed in Table 2.

883

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

The output of the fust three stages needs to drive wires and
three data inputs of 3:1 MUXIs. The longest wire in a stage

tahle, TG.sel refers to the select input of a TG, and TG.1 refers
to the data inuut.

GRPfflD
-

INV 1 i 2

TPJ -
Total

Il?? ~- NOR+TRACK 128 133/5 U3 3
NOR INV I 513 2
I N V I N Y 2 1 1

Z.OZxl0" 35.56 18

,. .Yb,.O. -_I

o f m . The parasitic delayp becomes three because o f w .
Since TGs generate the inverted Signals, Some Stages may

have the inverted select signals. In such stages, We use ITGS
instead of TGs and inverters. Figure 13 shows the diagram Of

Since there are two in G W ~ D , we aheady have 1 I
stages shown in Table 3. Twelve inverten need to be added
along the path to drive the large load. The delay of the path
can be calculated as:

an ITG, which is the same as a TG except that it uses the
inverted select signal. In a TG, the input goes to the output
when sel = 1 while in an ITG, the input goes to the output

D=N p / ~ + = 13 F1/23 + (18 + 12) = 13.30
when divided by five, this is about 22,7 ~ 0 4 ,

when sel = 0. The input load of the data input i in an ITG is
the same as in a TG; the input load of sel increases to 7/3. If
the critical path extends Gom sel to nsel to o, an f l ~ has =

D,
Table 4 compares the latency of the different 64-bit

permutation functional units. We see that GRF' is the slowest,

disnrssion

884

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

Functional Unit
GRP

OMFLIP (4 stages with pass-throughs)
BFLY (c~tagc Buttemy network)

to whether a faster implementation of the GRP instruction
exists, and this can be investigated in future work.

ACKNOWLEDGMENT
The authors wish to thank Professor Neil Burgess of Cardiff

University for his time and valuable suggestions.

REFERENCES
[I] C. E. Shannon, “Communication T h e w of Secrecy Systems”,
Bell Stmen, Tech. Journal, Vol. 28, pp. 656-715, October 1949
[2] RL. Rivest, “The RC5 encryption algorithm”, Fasf Sofhlnre
Enoyption: Second Inrenmrional Workshop, volume 1008 of Lema-e
Notes in Cornpurer Science, pp. 86-96, December 1994
[3] B. Kaliski and Y.L. Yin. On diferential and linear crpranalwis
of RCS. Lecture Notes in Computer Science 963, Advances in
Cryptology - Crypto’95, pp.171-184, Springer-Verlag, 1995
[4] Zhijie Shi and Ruby B. Lee, “Bit Permutation Instructions for
Accelerating Software Cryptography”, Proceedings of the IEEE
lnrernarional Conference on Applicarion-Spectsc Swrem.
Archirecttrws and Pvocessora, pp. 138-148, July 2000
[5] Xiao Yang and Ruby E. Lee, ‘.Fast Subword Permutation
Instructions Using Omega and Flip Network Stages”, Proceedings of
the Inrerflorional Con/erence on Contpurer Design , pp. 15-22,
September 2000
[6] Xiao Yang, Manish Vachhmjani and Ruby E. Lee, “Fast
Subword Permutation Instructions Based on Butterfly Networks”,
Proceedings of Media Processom 1999 IS&T/SPIE S~~nposiant on
Electric Imaging: Science and Technologv, pp. 80-86, January 2000
[7] Ruby E. Lee, zhijie Shi and Xiao Yang, “How a Processor can
Permute n bits in O(1) cycles,”, Proceedings of Hor Chips 14 - A
sy~nposiunt on High Perjbnnance Chips, August 2002
[SI Zhijie Shi, Xiao Yang and Ruby B. Lee, “Arbihary Bit
Permutations in One or Two Cycles”, Proceedings of rhe IEEE
Inrernational Conference on Applicarion-Speci$c Swems.
A!rhirecttrres and Processot-s, June 2003
191 Ruby E. Lee, Zhijie Shi and Xiao Yang, “Efficient Permutation
Instructions for Fast Software Cryptography”, IEEE Micro , Vol. 21,
No. 6, pp. 56-69, December 2001
[IO] Zhijie Shi and Ruby E. Lee, “Subword Sorting with Versatile
Permutation Instructions”, Proceedings of the Inremotional
Conference on Contpurer Design (ICCD 2002), pp. 234-241,
September 2002
[I I] Ruby B. Lee, Ronald L. Rivest, L. I. B. Robshaw, Z. I. Shi, and
Y. L. Yin, *‘On pennutation operations in cipher design”, submitred
faor. publicarion
[I21 Ivan Sutherland, Bob Spmull, David Hanis, Logical Efirt;
Designing Fan CMOS Cimirs , Morgan Kaufmann Publishers, 1999
[I31 R Ho, R Mai, and M. Homwik, ‘The future of wires,” Special
Proceedings of IEEE, Vol. 89, No. 4, pp. 490-504, April 2001
[I41 MOSIS, “MOSIS Parameter Test Results (0.25 urn)”,
htto:l/wvw.mosi s .ore/cd-binicwwraD/urnosis/swo/oaramsitsmG
02Wt25t mm non ai mtl-oarams.txc June 2003
[I51 Artisan Components, Inc., TSMC 0.25um Process 2.5-Volt
SAGE Standard Cell Libmy Databwk, November 1999.
[I61 MOSIS, “MOSIS Parameter Test Results (0.18 um)”,
hno://wvw.mosis.or~/clcd-biniceiwrao/umosi~s~/omm~~~m~
018h18h mm non eoi-oarm.W,Iune 2003
[I71 Jan M. Rabaey, Digirol integrated cimuirs: a design perspecrive,
F’rentice Hall, 1996
[IS] Neil Burgess, “New models of prefvt adder topologies,” ro be
published in Journal of VZSI Sigf7mol Processing. 2004

Lstencv (F04)
22.7
13.8
12.0

885

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

, Process technology 0.25 pm 0.18 pm

Fringing capacitance of M1 35 aF1pm 38.5 aFipm

I WidthafMl meks I 0.45 pm I 0.30 pm

Gate capacitance of
a minimum-sired inverter

I I I
101.50aF 100.1 aF 7 Capacitance of MI mck per pm

I Number of inverters with equivalent I 0.045 I 0.062

2.25 ff 1.61 ff

Number of invenm with equivalent =I13 -113
capacitance ofwire haveling across a

1 I cell I I I

The gate capacitance of minimum-sized inverter, which is

g-/en x (g_len x 2 + g l e n x 4) x g-cap
listed in row 3 in the tahle, is calculated as [17]:

where g-len is feature size of the process technology, and two
and four are the width-to-length ratio of nFET and pFET,
respectively. g-cap is the gate capacitance per unit area.

The wire capacitance of I-pm MI track, which is listed in
row 7 in the table, is calculated as [17]:

area-cap x w n i d t h +pinging-cap x 2
where w-width is the width of the wire; area-cap is the
capacitance per unit area and pinging-cap is the fringing
capacitance per unit length. The length of the wire does not

appear in the formula because it is one here.
Row 8 in the table is the number of minimum-size inverters

that have a capacitance equivalent to that of I-pm wire. It is
calculated by dividing row 7 by row 3.

In 0.25pm technology, the height of 2:l MUXI is 6.4 pm
[IS], and the width ranges from 6.3pm to 7.2pm, where
smaller ones are used to drive small loads. It is safer to
choose a larger one.

Row 10 is generated by multiplying row 9 by row 8.
Table 5 shows the capacitance of wire extending across a

2:1 MUXl is approximately one third of the capacitance of a
minimum-sized inverter. Burgess uses similar method in [181
to estimate the delay of adders, and shows the estimation
matches the simulation results well.

B.
The following table lists the branching effort, logical effort,

and parasitic delay for calculating the delay of the inverse
butterfly network In the table, all MUXIS refer to 2:l MUXIs.

Delay of inverse butierfly network

TABLE 6: LOGICAL EFFORT AN0 PARASITIC DELAY OF THE MVERSE
BWIERFLV NETWORK

I I I I
Total I I I 6624.74 1 6 4 1 2 5

The total effort can be calculated as:
F = G B H = 6 4 ~ 1 9 5 7 . 3 1 ~ 1 = 4 2 3 9 8 3 . 3 6
The optimal number of stage is:
N = log, 6 = 9
Since there are already seven stages (including the inverter

inside MUXI), we add two inverters on each path. This will
increase the parasitic delay by 2. Therefore, the delay is:

D = N x F”” + P = 9 x FIB + 2 5 + 2 = 65.0
When divided by 5 , this is about 13.0 F04.
The inverse butterfly network is slightly slower than the

butterfly network because the delay of the stage that has the
longest wires can not overlap with the delay of the control
signals.

886

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.

