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ABSTRACT
Distributed storage systems aim at providing reliable and
secure access to critical data over large networks, by utiliz-
ing a distributed collection of parallel storage servers which
may be individually unreliable and insecure. Other than the
cryptographic approach that relies on secret keys and com-
putational hardness assumptions to provide security, non-
cryptographic algorithms have been developed as an efficient
way to enhance reliability of distributed storage systems.
However, such a non-cryptographic approach puts security
at risk and is vulnerable under joint reliability and security
breaches. In this paper, we propose a non-cryptographic
algorithm for reliable and secure distributed storage, by in-
voking results on linear error control codes. Our algorithm
achieves a combination and tradeoff among three impor-
tant functionalities: reliability, confidentiality, and integrity,
which are collectively measured using a new unifying metric,
resilience vector, defined in this paper. A rigorous security
and complexity analysis is provided and allows our algo-
rithm to be optimized under different environments. Imple-
mentation and simulation show that our algorithm improves
both reliability and security of distributed storage systems
by three ‘nines’ at low computation and storage overhead,
requiring only bitwise XOR and table lookup operations.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Systems and
Software—distributed systems, performance evaluation ; K.6
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Algorithms, Security, Reliability

Keywords
Distributed Storage System, Security, Reliability, Perfor-
mance Evaluation
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1. INTRODUCTION
With the increasing growth in the number of applications

relying on electronic data and online access, distributed stor-
age of critical data over large networks has become an essen-
tial component of the distributed computing environment
and are evolving into complex, networked and distributed
storage models. In order to provide reliable and secure stor-
age over long periods of time, distributed storage systems
exploit the degree of spatial freedom by pooling together a
large number of parallel storage servers, while each individ-
ual server is assumed to be unreliable and insecure. Current
application scenarios of distributed storage include storage
in online servers, storage in wireless networks, and peer-to-
peer storage systems, such as OceanStore [1], Total Recall
[2], and DHash++ [4].

In view of security (i.e. confidentiality and integrity, in
this paper), distributed storage servers normally have no
clear defense boundary and are exposed to threats from the
entire network. The growth in network size and connectiv-
ity has made distributed storage systems more vulnerable
to security breaches. Currently, in distributed storage sys-
tems, confidentiality and integrity are provided by perform-
ing cryptographic operations that relies on secret keys and
computational hardness assumptions. However, such an ap-
proach does not provide a perfect solution to security due
to several reasons: First, securing the secret keys that are
used to access and decrypt the data is of paramount im-
portance, but can be very difficult to achieve in practice,
since the keys have to be secured as long as the data is not
deleted. Second, cryptographic operations only guarantee
conditional security. This means that an attacker can still
use methods such as cryptanalysis to break cryptographic
protocols and decipher confidential information without the
use of secret keys. Third, a digital signature can only be
used to check the integrity of the data and provides no cor-
rection in case of unauthorized modifications. Even if access
control and authentication are employed on the server side,
an attacker may still be able to break into storage servers
in an attempt to modify the data without making sense of
it, by spoofing the identity of a legitimate user or exploit-
ing system weakness. In addition, a malicious server can
also replace current files with valid old versions [5]. There-
fore, one important question that arises from these observa-
tions is the following: knowing that cryptographic methods
could fail, how can we ensure the security (i.e. confiden-
tiality and integrity) of distributed storage systems with a
non-cryptographic approach?

For reliability, a non-cryptographic approach has been
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taken. Since server failures and denial of service attacks
(DoS) are very difficult to prevent in practice, a system that
embeds strong cryptographic techniques, but does not en-
sure reliability is of little use. The reliability for storage
systems is also referred to as availability in security liter-
atures, where availability, confidentiality, and integrity, are
the three cornerstones of security. Ensuring reliability (or
availability) typically requires the introduction of redun-
dancy in storage. The simplest form of redundancy is repli-
cation, which stores multiple copies of the same data on
different servers and is adopted in many practical storage
systems. This implies that reliability of distributed stor-
age systems can be improved by increasing the number of
storage servers. As an extension of the replication scheme,
erasure coding offers better storage efficiency [1, 2, 3]. It di-
vides a critical data into smaller pieces, encode them using
a erasure code, and allows the original data to be recovered
from any subset of a sufficient number of coded pieces. In
another line of work [6, 7, 8, 9, 10, 11], a different approach
based on network coding has been proposed to improve stor-
age efficiency and facilitate repair after server failures and
data losses.

However, all of these previous non-cryptographic algo-
rithms provide reliability by putting security at risk. In-
creasing the number of storage servers effectively makes the
system more exposed to security breaches, since a malicious
attack is more likely to prevail at one of the distributed stor-
age servers and to compromise confidentiality and integrity
of the critical data. To address this issue, in this paper, we
propose a novel non-cryptographic algorithm for distributed
data storage, which achieves both reliability and security at
the same time. The algorithm guarantees unconditional se-
curity (i.e. absolutely no information about the critical data
can be disclosed) if less than a number of storage servers
are compromised, and it can also be implemented on top of
cryptographic algorithms to provide additional security and
reliability in case the cryptographic approach fails.

More precisely, this paper considers a unifying threat model
consisting of attacks on reliability, confidentiality, and in-
tegrity, respectively. The attack on confidentiality reveals
stored server contents to attackers; the attack on integrity
modifies data in victim storage servers without being no-
ticed; and the attack on reliability makes storage servers
unavailable to legitimate users. As we will show in Section
II, this threat model incorporates a wide range of popu-
lar attacks in practical distributed storage systems. Fur-
ther, previous work on non-cryptographic algorithms has
only dealt with special subsets of these three attacks: The
erasure coding approach [1, 2, 3] and the network coding
approach [6, 7, 8, 9, 10, 11] consider only the attack on re-
liability, while a straightforward extension to general error
control coding works for both the attack on integrity and
the attack on reliability. In a separate work [12], a scheme
based on polynomial evaluation and interpolation is applied
to defend against the attack on reliability and the attack on
confidentiality. In this paper, we propose a new algorithm
for distributed data storage, which is the first one to pro-
vide a counter-measure against all three attacks. Our main
contributions are summarized as follows.

• Exploring properties of linear error control codes in
GF2, we propose a non-cryptographic algorithm for
distributed storage, which we prove achieves both re-
liability and security at the same time. The algorithm

incurs low computation and storage overhand, since it
only requires bit-wise XOR operations and simple ta-
ble lookups. Data losses on distributed storage servers
can also be repaired efficiently without retrieving and
decoding the critical data.

• For our threat model, we introduce a new metric to
quantify the resilience of distributed storage algorithms
with respect to the three attacks on confidentiality, in-
tegrity, and reliability (or availability). We will show
that under realistic assumptions on attack statistics,
the probability of secure and reliable data storage is
directly determined by the new resilience metric. The
number of ‘nines’1 achieved by a distributed storage
system can also be obtained in a close-form.

• By varying its parameters, our algorithm illustrates a
tradeoff between security and reliability that can be
achieved by distributed storage systems. Previous dis-
tributed storage algorithms are shown to be special
cases, focusing on a subset of confidentiality, integrity,
and reliability functionalities. Our analysis and simu-
lation also show that providing all the three function-
alities simultaneously is critical for secure and reliable
data storage.

• Since distributed storage systems must provide high
performance access for hundreds of distributed users
concurrently, complexity is an important performance
metric. In this paper, we implement our distributed
storage algorithm in C and evaluate its performance
in terms of computational complexity, storage space
and execution time. The proposed algorithm is verified
to provide efficient protection against confidentiality,
integrity and reliability (availability) attacks.

The rest parts of this paper are organized as follows: In
Section 2, we describe the distributed storage problem and
its threat model. A new resilience metric for measuring se-
curity and reliability is defined. Section 3 presents our non-
cryptographic algorithm for distributed storage systems and
an algorithm for repairing server data loss. Its resilience
measured by our new metric is proven in Section 4. In
Section 5, we give an analysis for the security, reliability,
and complexity performance of our distributed storage al-
gorithm. In Section 6 and 7 we discuss the implementation
of our algorithm, present simulation results, and summarize
the paper.

2. ATTACK MODEL AND OUR RESILIENCE
METRIC

2.1 Attack Model
In this paper, we focus on the problem of achieving both

security and reliability in distributed storage systems using
a non-cryptographic approach. A distributed storage system
normally contains three components: an encoding algorithm
that maps a piece of critical information to a set of messages
and stores each message on a separate storage server, a de-
coding algorithm that retrieves messages from distributed

1In security literatures, system availability is often measured
by the number of ‘nines’. For instance, five ‘nines’ means
0.99999 availability, which is the gold standard for availabil-
ity.
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servers and derives the original critical information correctly,
and a repair algorithm that efficiently recovers a message in
case of server data loss.

Figure 1: This figure shows the storage of a piece of
critical information, denoted by F, on n distributed
servers over a network.

Consider a distributed storage system with n separate
storage servers, which may be individually unreliable and
insecure. To store a piece of critical information denoted by
F distributively, a user employs an encoding algorithm to
computes n messages M1, . . . ,Mn from F. Each message is
of m bits, contains a fragment of the critical information,
and is stored at a separate server. To restore the informa-
tion F, the user retrieves the messages from storage servers
and performs a decoding algorithm to recover F. In our
consideration, servers and messages that are protected by
secret keys and cryptographic operations are not entirely
confidential or reliably re-constructable. An attacker may
still be able to obtain the content of some messages or to
prevent the user from reconstructing the critical informa-
tion. In order to provide the three functionalities required
for a successful distributed storage, we consider a unifying
threat model, which consists of three classes of attacks and
corresponding resilience measures defined as follows:

• Attack on confidentiality: Attackers try to obtain some
knowledge of the critical information F by sniffing mes-
sage content stored in distributed storage servers. This
includes a variety of practical attacks, such as identity
spoofing, cryptanalysis, and stealing secret keys. To
quantify resilience against attacks on confidentiality,
we consider a threshold c, such that if no more than c
messages (which are stored on c different servers sepa-
rately) are disclosed, the critical information F remains
completely unknown to attackers.

• Attack on integrity: Attackers break into storage servers
and modify the messages to prevent the user from re-
constructing the critical information. Another exam-
ple of such an attack is that a malicious server can
also replace current files with valid old versions. Since
this attack breaches the integrity of distributed stor-
age servers, we use a threshold d to measure integrity,
such that a user can surely derive F in case of no more
than d erroneous messages.

• Attack on reliability: This attack class includes denial
of service attacks, traffic jamming attacks, and storage
server failures, in which some stored messages become
unavailable to their intended users. If the reconstruc-
tion of critical data F is guaranteed given any subset of
no less than n− e messages, we refer to the threshold
e as the resilience for reliability.

Under our threat model, attackers are able to perform
any combination of the three classes of attacks. This im-
plies that a good defense mechanism must take into account
the resilience against all attacks jointly. To measure security
and reliability for a given distributed storage algorithm with
n storage servers, we stack the three individual resilience
thresholds into a vector (c, d, e)n and define a new metric
called a resilience vector. Given n storage servers spread
over a network, a distributed storage algorithm achieves re-
silience vector (c, d, e)n, if the critical information F can be
successfully retrieved and decoded, from any subset of n− e
messages that contains no more than d errors, while no at-
tacker can derive any information about F from no more
than c disclosed messages.

The resilience vector (c, d, e)n gives a unifying basis for
comparing the reliability and security of different distributed
storage algorithms, regardless of their individual threat mod-
els and implementation details. Toward this end, it is im-
mediate to see that resilience vectors of previous distributed
storage algorithms always contain zero components, since
they only deal with a subset of the three attack classes.
Thus, these algorithms are vulnerable under the threat model
described in this paper. In Section III, we will propose an al-
gorithm that achieves resilience vectors with strictly positive
c, d, e > 0 at the same time.

Another advantage of our new metric is that for given dis-
tributed storage algorithms, the set of achievable resilience
vectors forms a 3-dimensional region, which illustrates a
tradeoff among confidentiality, integrity, and reliability func-
tionalities provided by the system. Fig.2 illustrates an ex-
ample of such region, where previous distributed storage al-
gorithms are only able to achieve 2-dimensional planes in the
region as they are limited to a subset of the three attacks.
In Section V, we will show that for known attack statistics,
the probability of reliable and secure data storage can be
derived directly from the resilience vectors. The achievable
resilience region {(c, d, e)n} serves as an important bench-
mark fo system designers for selecting distributed storage
algorithms and optimizing their system parameters.

3. OUR ALGORITHM FOR DISTRIBUTED
STORAGE

3.1 Linear Error Control Coding Background
Linear coding theory focuses on error and erasure correc-

tion. A linear code C over a finite field with q elements
is a linear subspace of the field GF n

q . If C is an (n, k, s)-
code, then it encodes a vector ~x of length k into a codeword
~y = GT ~x of length n, where G has size k × n and is a
generator matrix for the linear code. The parameter s is
the Hamming distance of the linear code, which is equal to
the minimal weight (i.e. number of non-zero components)
among all non-zero codewords and measures the error cor-
recting capability of the code C. In this paper, we focus on
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Figure 2: The erasure coding approach [1-3] and
the network coding approach [6-11] only consider
the attack on reliability. A straightforward exten-
sion to general error control coding deals with the
attack on reliability and the attack on integrity. The
polynomial approach in [12] works under the attack
on reliability and the attack on confidentiality. Our
proposed algorithm is able to achieve resilience vec-
tors with strictly positive c, d, e > 0 at the same time.

binary linear codes in GF n
2 , although most results can be

extended to linear codes in general.
To describe the error correcting procedure, we first intro-

duce the concept of dual code and parity check matrix. The
orthogonal complement of C, i.e. the set of all vectors in
GF n

2 which are orthogonal to every vector in C, is also a
subspace and thus another linear code called the dual code
of C, denoted by C⊥. It is easy to see that if C is an (n, k, s)-
code, then C⊥ is an (n, n − k, s′)-code, with distance s′. A
generator matrix, denoted by H, for C⊥ has size (n− k)×n
and is known as a parity check matrix for C. A parity check
matrix H can be used to recover the codewords of C be-
cause they must be orthogonal to every row of H. Suppose
~̂y = ~y + ~t is a faulty codeword with an error vector ~t. Then
we can compute r = Hŷ = Hy + Ht = Ht. The vector r
is called the syndrome of ŷ, which voices information about
the error vector ~t, since H~y = 0 for all codewords ~y ∈ C. To

recover the original codeword ~y from the faulty codeword ~̂y,
we only need to store a syndrome table containing error pat-

terns addressed by syndromes. In decoding, when ~̂y = ~y +~t

is received, we first calculate the syndrome ~r = H~̂y, look up
the syndrome table with index ~r to find ~t, and then recover

codeword ~y by ~y = ~̂y − ~t.
When both error and erasure occur, the following syn-

drome decoding procedure for binary linear codes is em-
ployed in this paper: We first fill the erased coordinates by
all zeros and all ones, and compute two different syndromes

(i.e. ~r0 and ~r1), respectively. After looking up ~r0 and ~r1

in the syndrome table to obtain two different error vectors
~t0 and ~t1, the one that contains fewer number of errors on
non-erased coordinates gives us the correct syndrome that

should be chosen. More precisely, if ~r0 (or ~r1 instead) gives
less error, then the original codeword can be recovered by
inserting zeros (or ones) on the erased coordinates and then

abstracting the error vector ~t0 (or ~t1). In coding theory,
it has been proven that an (n, k, s)-code is able to correct

any e erasures and d errors at the same time, given that
2d + e ≤ s − 1. The following example contains a genera-
tor matrix and a parity check matrix for an (8, 2, 5) linear
binary code

G =

[
1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1

]
,

H =




1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 1 1 1 0 1 1 1




.

For an input vector ~x = [1 1]T , the corresponding codeword
is given by ~y = GT ~x = [1 1 1 0 0 1 1 1]T . Now, suppose
that the first two bits of ~y are erased and the third bit is

flipped, i.e. ~̂y = [∗ ∗ 0 0 0 1 1 1]T . In order to recover

the original codeword from ~̂y, we compute two syndromes

respectively, ~r0 = [0 0 0 0 0 1]T and ~r1 = [0 1 0 0 0 1]T . By
looking up the syndrome table for this (8, 2, 5)-code, we get
~t0 = [0 0 0 1 1 0 0 0]T and ~t1 = [0 0 1 0 0 0 0 0]T . Since
~t0 contains two errors on non-erased coordinates, while ~t1

contains only one error, we choose all ones on the erased

bits in ~̂y and subtract ~t1 from it. This gives us the correct
codeword ~y. In the next section, we generalize this syndrome
decoding method and derive an algorithm for distributed
storage. The proposed algorithm not only corrects errors
and erasures (i.e. to provide integrity and reliability), but
also guarantees confidentiality of critical information.

3.2 A New Algorithm for Distributed Storage
Consider a system with n distributed servers, each of

which is able to store m bits of information. In order to check
the integrity of critical information F, we concatenate the in-
formation F with its hash value and store < F|h(F) > in the
distributed storage system. Let f be the size of < F|h(F) >.
Since each server is capable of storing a message of m bits,
we divide the information < F|h(F) > into k = d f

m
e equal-

length fragments, denoted by k column vectors S1, . . . , Sk,
such that each piece has exactly m bits and is suitable for
storage at one distributed server.

The fragments contains S1, . . . , Sk confidential informa-
tion about the critical data < F|h(F) >. To prevent disclo-
sure of the information, instead of applying the error con-
trol coding to these fragments directly, we first construct t
pseudo-random binary vectors X1, . . . ,Xt, each of m bits.
These pseudo-random vectors are used to add randomness
and freshness to the system. In the next section, we will
give a rigorous proof of the confidentiality achieved by our
distributed storage algorithm.

Now, we stack the k information fragments and the t ran-
dom vectors into an information matrix [S1, . . . , Sk,X1, . . . ,Xt],
and apply a (n+k, t+k, s) binary linear error control encod-
ing to each row of this matrix, using the following generator
matrix

G =




1 0 . . . g1,1 . . . g1,n

0 1 . . . g2,1 . . . g2,n

...
... . . .

...
. . .

...
0 0 . . . gk+t,1 . . . gk+t,n




(k+t)×(k+n)

(1)

Note that the first k columns of G are systematic, i.e. the
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upper left k × k submatrix of G forms an identity matrix.
Such generator matrices can be easily constructed by per-
forming simple eliminations. Applying the generator matrix
(1) to encode the information matrix row by row, we obtain
a binary (coded) message matrix [S1, . . . , Sk,X1, . . . ,Xt] ·G
of size m × (n + k). In our construction, it is easy to see
that the first k columns are just the original information
fragments S1, . . . , Sk, and thus should be destroyed for con-
fidentiality. For i = 1, . . . , n, we choose message Mi as the
(k + i)’th column of the the coded message and send it to
server i to be stored there, i.e.

[S1, . . . , Sk,M1, . . . ,Mn] = [S1, . . . , Sk,X1, . . . ,Xt] ·G,

or in a more explicit form,

Mi = (g1,iS1)⊕ . . .⊕ (gk,iSk)⊕ (g1+k,iX1)⊕ . . .⊕ (gt+k,iXt) .

The algorithm for storing is summarized as follows:

Algorithm 1 (Storing Phase)

Parameters: k, t, n, G.

Input: information F.

[S1, . . . , Sk] ← [F, h(F)]
[X1, . . . ,Xt] ← random()

for i = 1, . . . , n do

Mi ← 0

for j = 1, . . . , k do

if gj,i = 0 do

Mi ← Mi ⊕ Sj

end if

end for

for j = 1, . . . , t do

if gj+k,i = 0 do

Mi ← Mi ⊕ Xj

end if

end for

send Mi to server i

delete Mi

end for

delete F, [S1, . . . , Sk], [X1, . . . ,Xt]

:END

To retrieve the critical information from servers, the user
needs to successfully decode < F|h(F) > from the distribu-
tively stored messages. To state our algorithm for retrieving
phase, without loss of generality, we assume that the last
e messages are erased due to attacks on system reliability,
while the rest n− e retrieved messages contain d faulty ones
due to attacks on system integrity. Let H be a parity check
matrix of size (n − t) × (k + n) for the error control code

given by (1). We define an auxiliary H̃(n+k−t)×(n−e) by the
submatrix of H, consisting of columns k + 1 to k + n − e
in unerased coordinates of H, i.e. H̃i = Hi+k, for j =
1, . . . , n− e. The collective XOR of the other k + e columns
of H gives another auxiliary vector r̃ = H1 ⊕ . . . ⊕ Hk ⊕
Hn−e+1 . . .⊕Hn.

Let
[
M̂1, . . . , M̂n−e

]
be a matrix of retrieved messages.

Each row of the matrix is a valid codeword of the error
control code generated by (1), with k + e erasures and d
errors. According to the syndrome decoding procedure de-
scribed in Section 3.1, if we assume that the erased mes-
sages are all zero vectors, we can compute a syndrome ma-

trix R0 = H̃ ·
[
M̂1, . . . , M̂n−e

]T

, where each column R0
i for

i = 1, . . . , m is a syndrome vector. On the other hand, if
we assume that the erased messages are all one vectors, it is
easy to show that the syndrome vector for the i’th codeword
is simply r̃ ⊕ R0

i for i = 1, . . . , m. Thus, by looking up the
syndrome table and comparing the error vectors correspond-
ing to the two syndromes, we can recover the original code-

word matrix [S1, . . . , Sk,M1, . . . ,Mn] from
[
M̂1, . . . , M̂n−e

]

row by row. This decoding procedure is very efficient, since
syndrome vectors can be used to address the syndrome table
to facilitate lookups. Further, multiple entries in the syn-
drome table can be accessed simultaneously to speed up the
decoding procedure.

Recall that the critical information < F|h(F) > is the first
k columns of the codeword matrix [S1, . . . , Sk,M1, . . . ,Mn].
This means that for retrieving the critical information, we
only need to recover the first k columns of the codeword

matrix. Let ~t0 and ~t1 be the two error vectors for syndromes
R0

i and r̃ ⊕ R0
i respectively, for i = 1, . . . , m. According to

Section 3.1, if ~t0 contains less number of errors on the non-
erased coordinates, we conclude that the assumption of all

zero vectors is correct and ~t01:k gives i’th row of [S1, . . . , Sk].

Otherwise, if ~t1 contains less number of errors on the non-

erased coordinates, we choose 1 ⊕ ~t11:k. In our algorithm,
we define a length-(n + k) mask vector A and use a popcnt
instruction to compute the number of errors on unerased
coordinates. Finally, by concatenating S1, . . . , Sk, we obtain
the critical information < F|h(F) >. The hash value h(F)
can be used to check the integrity of F. The algorithm for
retrieving critical information is summarized below.

3.3 Algorithm for Repairing Server Data Loss
Given the possibility of malicious attacks in distributed

storage systems that we consider, messages stored on dis-
tributed servers must be continually refreshed as servers fail
or leave the system. To repair a message loss, a storage
server needs to communicate with existing healthy servers
and re-create the same message, such that reliability and se-
curity of the distributed storage system can be maintained.
In this section, we propose a message repair algorithm that
allows server data loss to be repaired without retrieving and
decoding the original critical information F, by deriving a
lost message from a proper linear combination of existing
messages.

According to error control coding theory, the messages
[M1, . . . ,Mn] generated by the last n columns of the genera-
tor matrix G in our distributed storage algorithm in Section
3.2, forms a valid codeword for an (n, t+ k, s− k) error con-
trol code, whose generator matrix is obtained by the last n
columns of G. As we will prove in the next section, to guar-
antee reliability and integrity, our distributed storage system
requires s − k > 2. This implies that the last n columns of
G form a generator matrix with a minimum Hamming dis-
tance s−k > 2. Thus, any single message can be repaired by
a proper linear combination of a subset of other messages.
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Algorithm 2 (Retrieving Phase)

Parameters: m, k, t, n, H, Table.

initial A ← 0, r ← 0, e ← 0, i ← 1

for j = 1, . . . , n do

if M̂i ← retrieve(j) is TRUE do

H̃i ← Hj+k

Ai+k ← 1

i ← i + 1

else

r ← r ⊕Hj+k

e ← e + 1

end if

end for

for j = 1, . . . , k do

r ← r ⊕Hj

end for

R0 ← H̃ ·
[
M̂1, . . . , M̂n−e

]T

for i = 1, . . . , m do

~t0 ← Table[R0
i ]

~t1 ← Table[R0
i ⊕ r]

if popcnt(~t0&A) < popcnt(~t1&A) do

[S1, . . . , Sk]i,1:k ← ~t01:k

else

[S1, . . . , Sk]i,1:k ← 1⊕ ~t11:k

end if

end for

[F, h] ← [S1, . . . , Sk]

if h(F) = h do

output F
end if

:END

More precisely, in order to repair message Mi0 that is gen-
erated by the i0 + k’th column of G (denoted by Gi0+k), we
only need to perform a Gaussian Elimination [15] to find a
set of columns in G that are linearly dependent with Gi0+k,
i.e. Gi0+k = Gi1+k ⊕ . . . ⊕ Gil+k for some i1, . . . , il and
l < n. Then, message Mi0 can be recovered by

Mi0 = [S1, . . . , Sk,X1, . . . ,Xt] ·Gi0+k

= [S1, . . . , Sk,X1, . . . ,Xt] · (Gi1+k ⊕ . . .⊕Gil+k)

= Mi1 ⊕ . . .⊕Mis′−1

This repair procedure can be implemented sequentially at
servers i1, . . . , il, each of which XORs Mi0 with its own
message and forwards the result to the next server. This
algorithm for repairing server data loss is distributive and
bandwidth efficient. It is summarized as follows.

4. RESILIENCE OF OUR ALGORITHM
In this section, we show that the proposed distributed

storage algorithm based on linear error control coding can
achieve both reliability and security at the same time. In

Algorithm 3 (Repair Phase)

Parameters: k, n, G.

Input: index i0.

[i1, . . . , il] ← GaussianElimination(G)

Mi0 ← 0

for j = 1, . . . , l do

Mi0 ← Mi0 ⊕Mij

delete Mij

end for

output Mi0

:END

the following, we analyze our algorithm using the resilience
vector metric we introduced in Section 2 and then compare
it with previous approaches.

4.1 Resilience Performance Proof

Theorem 1. If there exists a linear binary error control
code (k + n, k + t, s) with dual code (k + n, n − t, s′), then
the proposed distributed storage algorithm achieves resilience
vectors (c, d, e)n for c ≤ s′ − k − 1 and 2d + e ≤ s− k − 1.

Proof. Consider a scenario of distributed storage with
c attacks on confidentiality, d attacks on integrity, and e
attacks on reliability. According to our threat model and
resilience metric defined in Section 2, we need to prove that
using the proposed distributed storage algorithm, a user can
successfully retrieve the critical information F, while no at-
tacker can have any information about F. Thus, our proof
consists of two parts.

To show that the critical information F can be successfully
retrieved, we consider the message-generation procedure in
Algorithm 1 by the generator matrix G in (1):

[S1, . . . , Sk,M1, . . . ,Mn] (2)

= [S1, . . . , Sk,X1, . . . ,Xt] ·G

= [S1, . . . , Sk,X1, . . . ,Xt] ·




1 . . . g1,1 . . . g1,n

0 . . . g2,1 . . . g2,n

... . . .
...

. . .
...

0 . . . gk+t,1 . . . gk+t,n




Therefor, each row of the message matrix [S1, . . . , Sk,M1, . . . ,Mn]
is a valid codeword for the (n+k, k+t, s) error control code.
According to coding theory, a linear (n + k, k + t, s) error
control code can correct up to b s−1

2
c errors with a syndrome

decoding. In the decoding procedure described in Algorithm
2, we choose the k+e erased messages to be all zeros and all
ones respectively. Because the error control code is binary,
one of the two choices introduces less than b k+e

2
c new errors,

and thus leads to totally d + b k+e
2
c errors, which can be ef-

ficiently corrected by the syndrome decoding in Algorithm
2, if the following is satisfied:

d + bk + e

2
c = b2d + k + e

2
c ≤ bs− 1

2
c (3)
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This establishes 2d + e ≤ s− k − 1 as a sufficient condition
for recovering S1, . . . , Sk from the retrieved messages.

Next, we show that the critical information F remains
completely unknown to attacks. Without loss of generality,
we assume that the first c messages M1, . . . ,Mc are revealed
to attackers. According to (2), attackers have c linear equa-
tions in the following vector form

[M1, . . . ,Mc] = [S1, . . . , Sk] ·




g1,1 . . . g1,c

...
. . .

...
gk,1 . . . gk,c


 (4)

+ [X1, . . . ,Xt] ·




gk+1,1 . . . gk+1,c

...
. . .

...
gk+t,1 . . . gk+t,c




Because the dual error control code (k + n, n − t, s′) has
distance s′, coding theory shows that any s′ − 1 columns of
the G matrix are linearly independent. For c+ k ≤ s′− 1 as
claimed in the statement of Theorem 1, we obtain

Rank




gk+1,1 . . . gk+1,c

...
. . .

...
gk+t,1 . . . gk+t,c




= Rank




1 . . . 0 g1,1 . . . g1,c

...
. . .

...
...

. . .
...

0 . . . 1 gk,1 . . . gk,c

0 . . . 0 gk+1,1 . . . gk+1,c

...
. . .

...
...

. . .
...

0 . . . 0 gk+t,1 . . . gk+t,c




− k

≥ s′ − 1− k

≥ c (5)

Furthermore, since s′ is the distance of the error control code
(k + n, n− t, s′), it is bounded by s′ ≤ (k + n)− (n− t) + 1.
So we derive t ≥ s′ − k − 1 ≥ c, which implies that the first
matrix in equation (5) has size t ≥ c, thus its rank can be
no more than c. Combining this with the rank condition in
equation (5), we conclude that the following matrix is full
rank

Rank




gk+1,1 . . . gk+1,c

...
. . .

...
gk+t,1 . . . gk+t,c


 = c. (6)

If we regard M1, . . . ,Mc and S1, . . . , Sk as coefficients in
(4), then equation (4) defines a set of c linear independent
equations (due to (6)) with t > c unknowns, i.e. X1, . . . ,Xt.
Thus, even if attacks successfully intercept c messages, for
each possible choice of [S1, . . . , Sk], there exists 2(t−c)m pos-
sible matrices [X1, . . . ,Xt] such that equation (4) is satis-
fied, since each vector Xi has m bits. In other words, when
vectors X1, . . . ,Xt are generated randomly from a uniform
distribution independent of the information vectors, for any

realization Ŝ, we have

Prob
{

[S1, . . . , Sk] = Ŝ
∣∣ [M1, . . . ,Mc] = M̂

}

=
Prob

{
[S1, . . . , Sk] = Ŝ, [M1, . . . ,Mc] = M̂

}

∑
S

Prob
{

[S1, . . . , Sk] = S, [M1, . . . ,Mc] = M̂
}

=
Prob

{
[S1, . . . , Sk] = Ŝ, [X1, . . . ,Xt] ∈ XŜ,M̂

}

∑
S Prob

{
[S1, . . . , Sk] = S, [X1, . . . ,Xt] ∈ XS,M̂

}

=
Prob

{
[S1, . . . , Sk] = Ŝ, [X1, . . . ,Xt] ∈ XŜ,M̂

}

∑
S Prob {[S1, . . . , Sk] = S}Prob

{
[X1, . . . ,Xt] ∈ XS,M̂

}

=
Prob

{
[X1, . . . ,Xt] ∈ XŜ,M̂

}
Prob

{
[S1, . . . , Sk] = Ŝ

}

Prob
{

[X1, . . . ,Xt] ∈ XŜ,M̂

} ∑
S

Prob {[S1, . . . , Sk] = S}

= Prob
{

[S1, . . . , Sk] = Ŝ
}

(7)

where XŜ,M̂ is the set of all [X1, . . . ,Xt] satisfying equa-

tion (4) for [S1, . . . , Sk] = Ŝ and [M1, . . . ,Mc] = M̂ . The

fifth step of (7) follows from the fact that
∣∣∣XŜ,M̂

∣∣∣ = 2m(t−c)

for any choice of Ŝ and M̂ . From (7), we conclude that
given messages M1, . . . ,Mc, all critical information vectors
[S1, . . . , Sk] remains equally likely. Let I(·) be the mutual
information function and H(·) be the entropy function. We
have

I([S1, . . . , Sk] , [M1, . . . ,Mc])

= H([S1, . . . , Sk])−H([S1, . . . , Sk]
∣∣ [M1, . . . ,Mc])

= 0.

In other words, attacks can obtain absolutely no information
about the critical information F, which is unconditionally
confidential.

Corollary 1. At optimum, the proposed distributed stor-
age algorithm is able to achieve a resilience vector (c, d, e)n

with c + 2d + e = n − k − 2 , when both the primal code
(k + n, k + t, s) and the dual code (k + n, n− t, s′) are max-
imum distance separable (MDS).

Remark 1. Theorem 1 and Corollary 1 provide a rigor-
ous reliability and security analysis for the attack resilience
of the proposed distributed algorithm. The relationship be-
tween the achievable resilient (c, d, e)n and the algorithm pa-
rameters {n, t, k, s, s′} are summarized below

2d + e + c ≤ n− k − 2,

2d + e ≤ s− k − 1,

c ≤ s′ − k − 1 ≤ t.

These constraints can be used to estimate the minimum re-
quired number of servers to achieve a certain resilience tar-
get.

Remark 2. From Theorem 1, it is easy to see that reduc-
ing k has a positive impact on both reliability and security.
Recall that k = d f

m
e, where f is size of the critical informa-

tion and m is the storage space at each server. In practice,
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storage at distributed servers are normally inexpensive com-
pared with the requirement for security and reliability. Thus
we can have m > f and k = 1. This leads to a special case of
Theorem 1 and Corollary 1, where the distributed algorithm
achieves 2d+e ≤ s−2 and c ≤ s′−2, with 2d+e+c = n−3 at
optimum. This is the optimal reliability and security that can
be achieved by the proposed distributed storage algorithm. In
coding theory, the existence of error control code with given
parameters has been well studied. For the case of k = 1, we
list the maximum achievable resilience vectors (c, d, e)n with
c, d, e > 0, achievable by our distributed storage algorithm
for different numbers of storage servers: In this paper, we

# of Servers Code Distance Tolerance (c, d, e)m

s s′ 2d + e c

n = 6 4 3 2 1

3 4 1 2

n = 14 8 3 6 1

7 4 5 2

4 7 2 5

3 8 1 6

n = 31 16 4 14 2

12 6 10 4

10 7 8 5

8 8 6 6

7 10 5 8

6 12 4 10

4 16 2 14

Table 1: Table of maximum achievable resilience
vectors (c, d, e)n with strictly positive c, d, e > 0,
achievable by our distributed storage algorithm, for
n = 6, 14, 31 servers.

only focus on binary error control codes, although all ideas
can be extended to codes with higher dimensions. For exam-
ple, if a linear ternary error control code is used, reliability
and security resilience can both be improved, since the code
has a larger Hamming distance.

4.2 Comparison with Previous Algorithms
The erasure coding approach in [1, 2, 3] utilizes linear era-

sure codes to generate messages M1, . . . ,Mn. It is a special
class of binary linear error control code and works only for
message erasures. The algorithm for storing phase is similar
to the Algorithm 1 in this paper, except that no random
vectors are used in the construction. a piece of critical in-
formation and its hash value < F|h(F) > are divided into
k equal-length fragments (each of m bits) and encoded into
n messages using a generator matrix of an (n, k, s) erasure
code, where s is the distance of the erasure code. An (n, k, s)
erasure code has a property that any n− s + 1 out of the n
messages suffice to recover the original critical information.
Thus, this approach only deals with attacks on reliability
and achieves resilience vectors (c, d, e)n for e ≤ s − 1 and
d = c = 0. Encoding and decoding complexity for erasure
codes has been studied extensively, and certain linear era-

sure codes have encoding and decoding complexity that is
linear to n.

For distributed storage applications, the idea of using net-
work coding was first introduced in [6] in a sensor network
scenario, and further explored by [7, 8, 9, 10, 11] to improve
storage and repair efficiency. a piece of critical information
and its hash value < F|h(F) > are divided into k equal-
length fragments, each represented by an integer Si between
0 and 2m−1. Instead of binary XOR operation on GF2, the
network coding approach generates messages by weighted
linear sum of the information integers over a finite field GFq

with prime q > 2m − 1. Each message Mi for i = 1, . . . , n is
an integer in GFq and is given by

Mi = ai,1S1 + ai,2S2 + . . . + ai,kSk, (8)

where coefficients [ai,1, . . . , ai,k] are random integers in GFq.
From known results in network coding, it is shown that the
set of linear equations in (8) are linearly independent with
probability that can be pushed arbitrarily high by increas-
ing the field size [8]. Therefore, any subset of k messages
will be sufficient for solving S1, . . . , Sk with high probability.
The encoding and decoding algorithm of the network cod-
ing approach incurs higher computational complexity com-
pared with that of the erasure coding approach, but allow
message repair to be performed more efficiently [11]. The
network coding approach only provides reliability for dis-
tributed storage and achieves resilience vectors (c, d, e)n for
e ≤ n − k and d = c = 0. It outperforms the erasure cod-
ing approach since s ≤ n − k for non-trivial binary erasure
codes.

Another approach proposed in [12] is able to deal with at-
tacks on confidentiality and attacks on reliability. However
it requires km bits of storage on each distributed server and
needs to perform expensive polynomial evaluation and inter-
polation over GFq, where q > max(2mk, n) is a prime. The
algorithm works as follows: a piece of critical information
and its hash value (which have mk bits) can be represented
by an integer S ∈ GFq. We generate a random degree-t
polynomial in GFp:

f(x) = S + a1x + a2x
2 + . . . + atz

t, (9)

where ai ∈ GFp for i = 1, . . . , t are randomly chosen inte-
gers. Then n messages are computed by evaluating f(x) at
n distinct points for x = 1, . . . , n, i.e.

[M1, M2, . . . , Mn] = [f(1), f(2), . . . , f(n)]. (10)

Since the polynomial has degree t, it has been shown in [12]
that the original polynomial f(x) can be reconstructed from
any t + 1 evaluations using polynomial interpolation algo-
rithms, while disclosing no more than t evaluates leaves the
information coefficient S completely unknown. This means
that this approach achieves resilience vectors (c, d, e)n for
c ≤ t, e ≤ n − t − 1 and d = 0. The complexity for poly-
nomial evaluation and interpolation using a straightforward
algorithm is o(n2) large integer multiplications, which is pro-
hibitive in practical distributed storage systems.

5. PROBABILITY OF SECURE AND RELI-
ABLE DATA STORAGE

From Theorem 1, using different generator matrices, our
distributed storage algorithm is able to achieve resilience
vectors (c, d, e)n for c ≤ s′ − k − 1, 2d + e ≤ s− k − 1, and
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Approaches Resilience vector (c, d, e)n Storage on each server Operations required
c e d

Erasure coding [1-3] c = 0 e ≤ s− 1 d = 0 m bits Bitwise XOR

Network coding [6-11] c = 0 e ≤ n− k d = 0 m bits Multiplication in GFq, q > 2m

Polynomial [12] c ≤ n− t e ≤ n− t− 1 d = 0 mk bits Multiplication in GFq, q > 2km

Our Approach c = s′ − k − 1 2d + e ≤ s− k − 1 m bits Bitwise XOR, Table lookup

Table 2: Compare the resilience and basic parameters of our distributed storage algorithm and previous
algorithms.

different choices of (s, s′), as illustrated in Table 1. This
implies that varying the algorithm parameters allows our
distributed storage system to offer various tradeoffs among
confidentiality, integrity, and reliability functionalities. Let
Rn denote the set of achievable resilience vectors using n
servers. If the statistics of the three attacks on confiden-
tiality, integrity, and reliability can be estimated from past
history, we can calibrate our distributed storage algorithm
over the regionRn to maximize the probability of secure and
reliable data storage. In this section, we address the question
of optimizing our algorithm parameters over Rn for a given
security and reliability target and known attack statistics.
Our analysis shows that for even attack probabilities, the
security and reliability performance of a distributed storage
system is primarily determined by the minimum individual
resilience min(c, d, e) over region Rn.

Since storage servers are distributively deployed over a
large network, we assume that each server is attacked with
independent probability Pc for attacks on confidentiality, Pd

for attacks on integrity, and Pe for attacks on reliability.
Thus, a storage server remains unharmed with probability
P0 = 1 − Pc − Pd − Pe. In practice, these probability can
be collected from historical attack statistics. For a given
resilience vector (c, d, e)n, a distributed storage system re-
mains reliable under no more than e attacks on reliability,
and remains secure under no more than c and d attacks on
confidentiality and integrity. The joint probability of secure
and reliable data storage is given by

Pn(c, d, e)

=
∑

i≤c,j≤e,l≤d

(
n

i, j, l

)
P i

cP j
e P l

dP n−i−j−l
0

=
∑

i≤c,j≤e,l≤d

n!P i
cP j

e P l
dP n−i−j−l

0

i!j!l!(n− i− j − l)!
(11)

When the number of storage servers in a system is fixed,
to maximize the the probability Pn(c, d, e), we consider an
optimization problem over Rn:

P ∗n = max
c,d,e

Pn(c, d, e) (12)

s.t. (c, d, e) ∈ Rn

where the optimal solution P ∗n is a function of the server
number n and the three attack probabilities (Pc, Pd, Pe). In
general, problem (12) can be solved off-line by an exhaustive
search over Pareto optimal resilience vectors in Bn (i.e. vec-
tors lies on the boundary ofRn), before a distributed storage
system is deployed. Next, we will provide some approxima-
tion of the probability Pn(c, d, e), which allows distributed

storage systems to adaptively adjust its resilience operating
point, in order to counter any change in the attack pattern.

Theorem 2. For a resilience vector (c, d, e)n and given
attack probabilities Pc, Pd, Pe < 1

n
, the probability of secure

and reliable data storage is lower bounded by

Pn(c, d, e) ≥ 1−
∑

x∈{c,d,e}

(
n

x + 1

)
P x+1

x (1− Px)n−x

1− nPx/v
.(13)

Further, when Pc = Pd = Pe = P and nP << 1, we have

Pn(c, d, e) ≈ 1−
(

n
min(c, d, e) + 1

)
Pmin(c,d,e)+1. (14)

Equations (13) in Theorem 2 provides a very close lower
bound on the probability Pn(c, d, e). It can be easily com-
puted in real time for selecting a nearly-optimal defence op-
erating point, and it guarantees that the probability of se-
cure and reliable data storage is above the threshold value
given by (13). In Figure 3, we plot the probability Pn(c, d, e),
its lower bound in (13), and its approximation in (14), for
all linear codes of n = 14 storage servers and an attack pat-
tern Pc = Pd = Pe = 1%. Theorem 2 is observed to provide
a good benchmark for selecting the optimal algorithm pa-
rameters, as the optimal defence in this case is achieved by
a (15, 5, 7) linear code and a dual code (15, 10, 4). The lin-
ear code and its dual code give the largest min(c, d, e) = 2
among all codes applicable to n = 14 servers. This agrees
with our intuition from (13), which states that Pn(c, d, e) is
maximized by the linear code with the largest min(c, d, e)
value.

Optimization problem (12) shows that for a given security
and reliability requirement Ptarget, there are two different
ways to achieve P ∗n > Ptarget: increasing the resilience re-
gion Rn by installing more server and reducing the attack
probabilities by employing stronger cryptographic mecha-
nisms. In security literatures, system security and reliability
are often measured by the number of ‘nines’, that is.

Nines = blog10
1

1−P∗n
c. (15)

For instance, a distributed storage system achieve five ‘nines’,
if its probability of secure and reliable operation is above
999.99%. Therefore, the number of ‘nines’ can be regarded
as a function of the server number n and the three attack
probabilities (Pc, Pd, Pe). For Pc = Pd = Pe = P and
nP << 1, using equation (14), we derive the number of
‘nines’ achieved by our distributed storage algorithm

Nines ≈
[
max
Rn

min(c, d, e) + 1

]
log10

1

P
+ Cn, (16)
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where max
Rn

min(c, d, e) is the minimum individual resilience

maximized on region Rn, and Cn is a proper constant inde-
pendent of attack probability P .

Remark 3. For fixed servers, max
Rn

min(c, d, e) + 1 is an

important resilience index, which determines the number of
‘nines’ that can be improved by reducing attack probability
P . Equation (16) shows that if we reduce the attack proba-
bility P by an order of magnitude, we can improve system
security and reliability by approximately max

Rn

min(c, d, e)+1

‘nines’. Figure 4 plot the required attack probability P ∗n for
achieving different numbers of ‘nines’ in a system of n = 14
storage servers. According to our discussion above, linear
code (15, 5, 7) and dual code (15, 10, 4) are optimal in this
case and gives maxRn min(c, d, e) + 1 = 3. It is observed in
Figure 4 that reducing the attack probability P by an order
of magnitude results in a linear improvement of about three
‘nines’.

6. COMPLEXITY
We analyze complexity of our distributed storage algo-

rithm in terms of network trips, computation overhead, and
storage space. For computation overhead, since we are re-
stricted to linear binary codes in this paper, all operations
are performed in Gf2. We observe that the algorithm con-
sists of four basic operations: binary XOR, table lookup,
pseudo-random vectors, and assembly instructions (i.e. popcnt
and cmp). For storage space, a syndrome table, generator
and parity check matrices, and auxiliary vectors have to be
stored at user terminals locally. We derive the complexity
of the proposed algorithm using these metrics.

For the storing phase in Algorithm 1, it is easy to see
that t pseudo-random vectors need to be generated and
nm(t+k−1) binary XOR operations are used next for con-
structing n messages. Due to t ≤ n and k ≤ n, the compu-
tation overhead in the storing phase is o(n) pseudo-random
vectors and mn2 binary XOR operations. The required stor-
age space is m(n+t+k) bits (i.e. o(mn)) for auxiliary vectors
M1, . . . ,Mn,X1, . . . ,Xt, S1, . . . ,Xk and (k + t)× (k + n) bits
(i.e. o(n2)) for the generator matrix.

For the retrieving phase in Algorithm 2, computing the
syndrome matrix requires m(n − t)(n − e − 1) + m(n − t)
binary XOR operations. So, the complexity order is o(mn2)
in total. For the syndrome table lookups, it is clear that 2m
table lookups are needed. Further, two popcnt and one cmp
instructions are performed for each loop, resulting in a com-
plexity of 3m. In the retrieving phase, the required storage
space for auxiliary vectors is m(k + n− e) bits for messages

S1, . . . , SkM̂1, . . . , M̂n−e, m(n− t) bits for syndrome matrix

R0, and n − t + 3(n + k) bits for vectors r̃, A, ~t0, and ~t1,
i.e. totally o(mn) bits. The parity check matrix requires
(2n + k − e)(n − t) bits with complexity order o(n2). Fi-
nally, the syndrome table requires (n + k)2n−t bits, because
there can be no more than 2n−t different syndromes, each
of length n− t bits, and each entry in the syndrome table is
an error vector of length n + k bits.

Remark 4. The complexity analysis summarized in Table.3
is derived for the worst-case. A practical implementation of
the proposed distributed storage algorithm may have much
lower complexity by performing the algorithm in parallel. For

Complexity Metrics Storing Phase Retrieving Phase

Network Trips 1+ACK 2

XORs o(mn2) o(mn2)

Random Vectors o(n) -

Table Lookups - o(m)

popcnt and cmp - o(m)

Total Computation o(mn2) o(mn2)

Syndrome Table - o(n2n−t)

Coding Matrices o(n2) o(n2)

Auxiliary Vectors o(mn) o(mn)

Total Storage o(mn + n2) o(mn + n2n)

Table 3: Summary of the complexity analysis for our
distributed storage algorithm in terms of network
trips, computation overhead, and storage space.

example, multiple entries in the syndrome table can be ac-
cessed at once, such that the complexity for table lookups can
be greatly reduced. Similarly, a logic circuit that computes
vector XOR operations can be used to replace the bitwise
XOR logic gate discussed in this section.

Remark 5. The proposed distributed storage algorithm
employs a syndrome decoding scheme for recovering the crit-
ical information F. In practice, recovering F can be made
much simpler by leveraging the special structure of a given
linear code. For example, if Reed-Muller codes are used, syn-
drome decoding will no longer be necessary for retrieving F.
Low complexity algorithms for decoding Reed-Muller codes
have been extensively studied in the past.

7. SIMULATIONS
We implemented our distributed storage algorithm in C

and evaluate its performance in terms of security and reli-
ability, execution time, and memory requirement. To make
a comparison, we also implemented the algorithm based on
network coding and the algorithm based on polynomial in-
terpolation discussed in Section 4.2, under the same environ-
ment. The distributed storage algorithm using erasure cod-
ing is skipped because its resilience vector is upper bounded
by that of the network coding algorithm, while its encoding
and decoding based on bitwise XOR operations is similar to
our algorithm.

For n = 14 servers and attack probability Pc = Pd = Pe,
the set of curves in Figure 5 plots the probability P ∗n of
secure and reliable data storage, for the three algorithms
we implemented. Our algorithm uses a generator matrix of
a (15, 5, 7) linear code and achieves resilience vectors (c ≤
2, 2d + e ≤ 5). According to the result summarized in Table
2, the algorithm based on polynomial interpolation gener-
ates a degree-seven random polynomial to achieve resilience
vectors (c ≤ 7, e ≤ 6, d = 0), and the algorithm based on
network coding choose k = 1 to achieve maximum resilience
(c = 0, e ≤ 14, d = 0). It is observed that when the attack
probability at each individual server ranges from 0% to 25%,
our distributed storage algorithm exhibits a significant im-
provement over the other two algorithms. This observation
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Figure 5: Compare probability
of secure and reliable data stor-
age of different algorithms for
n = 14 servers. Our algorithm
achieves resilience vectors (c ≤
2, 2d+ e ≤ 5), the algorithm based
on network coding achieves (c =
0, e ≤ 14, d = 0), and the algo-
rithm based on polynomial in-
terpolation achieves (c ≤ 7, e ≤
6, d = 0). The ability to deal with
all three attacks simultaneously
is critical.

substantiates our analysis in Section 5: the security and re-
liability performance is mainly determined by the minimum
individual resilience against the three attacks. The ability
to deal with all three attacks at the same time is critical for
distributed storage systems.

In the second set of simulations, compare the complexity
of the three algorithms we implemented, by plotting the ex-
ecution time and total memory usage, against the number
of servers varying from n = 5 to n = 30. The critical infor-
mation < F|h(F) > is a randomly generated binary sequence
with m = 1024 bits. In the implementation our algorithm,
for each n, the optimal linear code that maximizes the prob-
ability of secure and reliable data storage is chosen by solving
the optimization problem (12) off-line. Function rand() in
C is used to generate t pseudo-random vectors in Algorithm
1 for storing phase. For the algorithm based on polynomial
interpolation, large integers in GFq are divided into 32-bit
segments, each of which can be represented by an unsigned
int in C, so that large integer multiplications over GFq are
carried out by multiplications and additions of unsigned int,
segment by segment. For retrieving phase, we implemented
Neville’s algorithm for polynomial evaluation with complex-
ity o(n2). For the algorithm based on network coding, we
choose k = 5 and use a standard Gaussian Elimination for
decoding the original critical information from five randomly
chosen messages. All algorithms are evaluated on a windows
machine with 1.60 GHz CPU and 1.0 GB RAM.

The execution time for storing phase and retrieving phase
are plotted in Figure 6 and Figure 7, respectively. For the
storing phase in Figure 6, our algorithm exhibits minimum
execution time: For as many as n = 20 servers, messages
can be generated in less than 0.1ms, since our Algorithm 1

only needs bitwise XOR operation and pseudo-random vec-
tor generation. For the retrieving phase in Figure 7, it turns
out that syndrome table lookups dominate the computation
complexity, and our Algorithm 2 can efficiently decode the
critical information in about 10ms for n = 20 servers. The
execution time can be further reduced by using more sophis-
ticated hardware to access multiple entries of the syndrome
table at the same time. Figure 8 shows the memory usage
of different algorithms measured by bits. Our algorithm re-
quires exponential memory increase as n gets large, since a
syndrome table of size n2n−t has to be stored on the user
side. However, since practical distributed storage systems
normally have less than 20 servers, a memory usage of less
than 100K bits in our algorithm is almost the same as that
of the network coding approach. Our algorithm is able to
provide confidentiality, integrity, and reliability functionali-
ties with relatively low computation and storage overhead.

8. CONCLUSION
In this paper, we propose a non-cryptographic algorithm

for distributed data storage. The algorithm provides both
security and reliability for storing critical information. We
analyze and compare our algorithm with previous work un-
der a new resilience metric, and other performance and com-
plexity measures. Our algorithm is the first one to achieve
resilience vectors (c, d, e)n with strictly positive c, d, e >
0, thus guarantee confidentiality, integrity, and reliability
(availability) at the same time. By optimizing the algo-
rithm parameters under different attack patterns, a signifi-
cant security and reliability improvement has been observed
in both simulation and analytical results. Our algorithm
achieves these benefits at low computation and storage over-
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Figure 6: Compare the total ex-
ecution time for storing phase.
Our algorithm exhibits minimum
execution time of 0.1ms for n = 20
servers, since it only needs bit-
wise XOR operation and pseudo-
random vector generation. Algo-
rithm 1 for storing phase is very
efficient.
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Figure 7: Compare the total exe-
cution time for retrieving phase.
Our algorithm requires about
10ms for decoding with n = 20
servers, since the computation
complexity is mainly dominated
by the number of syndrome table
lookups.
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Figure 8: Compare storage com-
plexity by total memory usage.
For less than 20 servers (which
is an reasonable assumption for a
practical system), our algorithm
requires about the same com-
plexity as that of the network
coding approach.

head, since it only requires o(mn2) binary XOR operations,
o(m) table lookups, and o(n2n) bits of memory for storing
a syndrome table.

9. REFERENCES
[1] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B.

Zhao, and J. Kubiatowicz, “Pond: the OceanStore
Prototype”, in Procedings of USENIX File and
Storage Technologies, 2003.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.
M. Voelker, “Total Recall: System Support for
Automated Availability Management”, in Procedings
of NSDI, 2004.

[3] H. Xia and A. A. Chien, “RobuSTore: A Distributed
Storage Architecture With Robust And High
Performance”, Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, 2007.

[4] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek,
and R. Morris, “Designing a DHT for Low Latency
and High Throughput”, in Procedings of NSDI, 2004.

[5] J. Li, M. Krohn, D. Mazires, and D. Shasha, “Secure
untrusted data repository (SUNDR)”, in Procedings
of OSDI, 2004.

[6] A. G. Dimakis, V. Prabhakaran, and K. R.
Ubiquitous, “Acess to Distributed Data in
Large-Scale Sensor Networks through Decentralized
Erasure Codes”, in Procedings of IEEE/ACM
International Symposium on Information Processing
in Sensor Networks, 2005.

[7] C. Gkantsidis and P. Rodriguez, “Network coding for
large scale content distribution”, in Proceedings of
IEEE Infocom, 2005.

[8] T. Ho, M. M’edard, R. Koetter, D. Karger, M.
Effros, J.Shi, and B. Leong, “A random linear
network coding approach to multicast”, Submitted to
IEEE Transactions on Infomation Theory, 2006.

[9] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “On
the benefits of random linear coding for unicast
applications in disruption tolerant networks”, in
Procedings of Second Workshop on Network Coding,
Theory, and Applications, 2006.

[10] D. Wang, Q. Zhang, and J. Liu, “Partial network
coding: Theory and application for continuous sensor
data collection”, in Procedings of Fourteenth IEEE
International Workshop on Quality of Service, 2006.

[11] A.G. Dimakis, P.B. Godfrey, M.J. Wainwright, and
K. Ramchandran, “Network Coding for Distributed
Storage Systems”, in Proceedings of IEEE
INFOCOM, 2007.

[12] A. Shamir, “How to Share a Secret”, Communications
of the ACM, 1979.

[13] V. Kher and Y. Kim, “Securing Distributed Storage:
Challenges, Techniques, and Systems”, in Proceedings
of the 2005 ACM workshop on Storage, 2005.

[14] P. B. Godfrey, Scott Shenker, and Ion Stoica.
“Minimizing churn in distributed systems. in
Proceedings of ACM SIGCOMM, 2006.

[15] A. Bogdanov and M. C. Mertens, “A Parallel
Hardware Architecture for fast Gaussian Elimination
over GF2”, in Proceedings of the 14th Annual IEEE
Symposium on Field-Programmable Custom
Computing Machines, 2006.

12



APPENDIX
A. PROOF OF COROLLARY 1

Proof. According to coding theory, for binary error con-
trol codes, we have s+s′ = n+k when when both the primal
code (k + n, k + t, s) and the dual code (k + n, n− t, s′) are
maximum distance separable. Combining this with Theo-
rem 1, we derive c + 2d + e = s + s′ − 2k − 2 = n − k − 2,
which is the desired result.

B. PROOF OF THEOREM 2
Proof. Let Ac, Ad, Ae denote the numbers of attacks on

confidentiality, integrity, and reliability, respectively. Ac-
cording to our attack model, Ac, Ad, Ae are Binomial-distributed
random variables with parameters n and Pc, Pd, Pe. Apply-
ing the union bound to the probability Pn(c, d, e), we have

Pn(c, d, e) = Prob{Ac ≤ c, Ad ≤ d, Ae ≤ e}
≥ 1−

∑

x∈{c,d,e}
Prob{Ax ≥ x + 1} (17)

For each probability Prob{Ax ≥ x + 1} in (17), we have

Prob{Ax ≥ x + 1}

=

n∑
i=x+1

(
n
i

)
P i

x(1− Px)n−i

=

(
n

x + 1

)
P x+1

x (1− Px)n−x−1

[
1 +

n−x−1∑
i=1

(
Px

1− Px

)i i∏
j=1

n− x− j

x + 1 + j

]

≤
(

n
x + 1

)
P x+1

x (1− Px)n−x−1
n−x−1∑

i=0

(
Px(n− x− 1)

(1− Px)(x + 2)

)i

≤
(

n
x + 1

)
P x+1

x (1− Px)n−x−1 1

1− Px(n−x−1)
(1−Px)(x+2)

=

(
n

x + 1

)
P x+1

x (1− Px)n−x 1

1− Px(n+1)
x+2

≤
(

n
x + 1

)
P x+1

x (1− Px)n−x 1

1− nPx
x+1

≤
(

n
x + 1

)
P x+1

x (1− Px)n−x 1

1− nPx
x

(18)

where the forth and the seventh inequality use the assump-
tion Px < 1

n
, for all x ∈ {c, d, e}. Combining (17) and (18),

we derive the lower bound for Pn(c, d, e) as claimed in The-
orem 2. For Pc = Pd = Pe = P and nP << 1, we apply the
approximation 1+ nP ≈ 1 to the last inequality in (18) and
directly derive the desired result in Theorem 2.
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