

1Dept. of Electrical Engineering
Princeton University

Princeton, NJ 08544, USA
{zhenghon,rblee}@princeton.edu

2Dept. of Computer Science
University of New Orleans

New Orleans, LA 70148, USA
jing@cs.uno.edu

Abstract—Known covert channel based on splitting algorithms
in Medium Access Control (MAC) protocols requires the
receiver’s knowledge of the sender’s identity. In this paper we
present a new covert channel that does not have this restriction. In
such a channel, multiple senders may operate independently
without knowing each other, and the receiver can learn the
transmitted information without knowing the identity of any
covert sender a priori. These properties make the channel robust
to malfunctioning senders, and more importantly help protect the
secrecy of senders’ identity which is essential for covert
communications. We also analyze the capacity of our proposed
covert channel.

Keywords—security; covert channels; Medium Access Control.

I. INTRODUCTION
Covert channels, first introduced in [1], often refer to

communication channels that are neither designed nor intended
to transfer information. Covert channels usually exploit
“legitimate” use of shared resources and operations of a system
to leak sensitive information to someone who is not authorized
to access it. For example, in a computer system with multiple
security levels, a sending program (the sender) with a high
security level can embed information into its usage of the
system’s CPU time and leak it out to a listening program (the
receiver) with a low security level, bypassing all mandatory
access control mechanisms. The sender can simply use as much
CPU time as possible to send a bit ‘1’ and use minimum CPU
time to send a bit ‘0’. Other running programs in the system will
experience longer delay if the sender sends a bit ‘1’. The
receiver can therefore decode this information bit by measuring
the delay it experiences.

Unlike traditional communication channels, a covert channel
does not need to have a high capacity or transmission rate to be
useful. In contrast, the stealthiness and resilience are much
more important issues for covert channels. It should be hard for
an auditor to discover if there is covert communications going
on. More importantly, it is essential to ensure the secrecy of the
sender’s as well as the receiver’s identity in all circumstances.

In past work, two types of covert communications were
studied. One category exploits techniques that “hide” secret
messages into existing “cover text”, e.g., an image. Such
techniques are usually referred to as information hiding and
steganographic techniques. In covert communication over a
network, it is a common technique to embed covert information
into certain portions of network packets [3]. The other category

of covert communications does not rely on any existing
messages. Rather, some seemingly normal operations are
exploited to interfere with the system so that the receiver can
detect covert information from the system behavior. The
CPU-time-based covert channel described above belongs to this
category. A covert channel based on the splitting algorithms in
Medium Access Control (MAC) protocol [2] is such a
network-based covert channel. In this covert channel, the
receiver needs to know the identity of the sender, even though
the reverse is not needed.

In this work, we present a new covert channel that exploits
splitting-tree algorithms in MAC protocols. Our new covert
channel falls into the second category of covert communication
channels, and has several salient features that significantly
improve its stealthiness and resilience.

1) Multiple covert senders, without knowing the existence
or identities of each other, can transmit covert information
independently. The covert communication data rate and
secrecy are improved (cf. sections III.D&E).
2) The receiver does not need to know the identity of the
covert sender(s) a priori. We will show that such a
difference has major effect on our covert channel’s security
performance (cf. section III.D).

The rest of the paper is organized as follows. In section II, the
splitting algorithm in MAC protocol and the covert channel in
[2] are reviewed. In section III, we first describe the basic idea
of the new covert channel. We then discuss the detectability
issue of the channel and present more advanced transmission
techniques that improve transmission rate and communication
secrecy. A brief capacity analysis is then presented. We
conclude our work in section IV.

II. SPLITTING ALGORITHMS AND COVERT COMMUNICATIONS

A. Splitting-tree Algorithms
The network model is that of a time-slotted channel, with

Poisson arrival, collision or perfect reception, (0, 1, e)
immediate feedback. In our study, we assume that there are a
fixed number of potential contending nodes. There are m covert
senders and n normal contenders. We further assume that the
data packets have a fixed length, Lpacket.

Splitting-tree algorithms were designed to efficiently resolve
collisions among active channel contenders. One example of
such algorithms is the binary tree splitting algorithm. In this

Mutual Anonymous Communications: A New
Covert Channel Based on Splitting Tree MAC

Zhenghong Wang1, Jing Deng2, and Ruby B. Lee1

This work is supported in part by DARPA and NSF Cybertrust
CNS-0430487 and CNS-0636808.

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2531
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

algorithm, the colliding nodes are split into two subsets by
randomly choosing either the left or the right subset to join. The
nodes joining the left subset will send in the next time slot. The
exact procedure depends on the outcome of the next time slot:

1) If the next time slot experiences collisions (e-state), the
same procedure repeats for the new set of colliding nodes;
2) Otherwise, the next time slot experiences successful or
idle state (1- or 0-state) and the right subset should transmit in
the following time slot.

The period of time in which the collisions are resolved is called
Collision Resolution Period (CRP).

There are also improved schemes based on this basic
splitting-tree algorithm. For example, one technique asks these
nodes to split immediately if the next time slot is idle (0-state),
since all colliding nodes have joined the right subset. In this
work, however, we base our discussions on the standard binary
splitting-tree algorithm.

B. Covert Channels based on Splitting Algorithms
As shown in [2], a node in the network can covertly send out

a sequence of bits by choosing a specific path in the splitting
tree in a CRP. Upon each collision, the sender intentionally,
rather than randomly, chooses to join either the left set (if the
covert bit to be sent is ‘1’), or the right set (if the covert bit is
‘0’). The receiver can be any node in the network or an external
observer that knows the identity of the covert sender. At the end
of each CRP, all nodes have transmitted successfully and the
receiver sees the path that the sender has followed. The
transmitted bits can then be decoded by looking at which subset
the sender has joined at each splitting point, defined as the slot
with collisions and further splitting is necessary. Figure 1 shows
an example where the sender sends a bit string ‘01’.

Figure 1. An example of covert transmission using splitting-tree algorithm
As shown in Figure 1, 3 nodes in the network contend for the

medium in the CRP. The sender’s path is highlighted with red
color. The sender first joined the R subset to send a bit ‘0’ and
then joined subset RL (the left subset of set R) to send a bit ‘1’.
Two covert bits were transmitted in this CRP. Note that the
identity of the covert sender has to be known before the covert
information is decoded. In our new covert channel, this is not
needed.

C. Other Related Work
The notion of covert communication was first introduced in

[1]. It was defined and analyzed, mostly in the context of
computer systems, e.g., the Multi-Level Security (MLS)
systems. A comprehensive survey of work in this area can be
found in [4, 5]. To measure the significance of a covert channel,
Shannon’s theory of communications was often employed in

the analysis of channel capacities [6-9]. Recent work also
studied covert channels in communication networks that exploit
the weakness of different communication layers [2, 3, 10]. Our
work falls into this category.

III. A NEW COVERT CHANNEL
In this section, we present our new covert channel that

exploits the splitting-tree algorithm. This channel allows
multiple anonymous senders to simultaneously transmit covert
information to the anonymous receiver, resulting in more robust
communication and higher transmission rate. A salient feature
of our new covert channel is that the receiver and the covert
senders do not need to know each other’s identities a priori. The
senders do not even need to know the existence of their peer
senders. This makes the channel survivable under extreme
circumstances. For example, if a sender is captured and all
information it knows is revealed, other senders and the receiver
are still safe.

We assume that every sender keeps an identical copy of the
covert text to be sent, and these senders are initially
synchronized at a certain position in the text, e.g., the first bit of
the whole sequence.

In the rest of the section, we first present a Basic Covert
Transmission (BCT) technique that sends one bit in each CRP.
Then an Advanced Covert Transmission (ACT) technique with
higher transmission rate is proposed. We discuss the
detectability issue of these techniques, and then we present an
Undetectable Covert Transmission (UCT) technique.

A. Basic Covert Transmission (BCT) Technique

Figure 2. Transmission procedure of BCT

Figure 2 shows the transmission procedure of BCT. getbit(ti)
returns the bit to be sent at the current position in the covert text
of sender ti and moves the pointer to the next bit; rand() returns
a random number x that uniformly distributes in [0,1); pb is a
pre-defined biased probability, 0 < pb < 1.

At the beginning of each CRP, if there is a collision in the
first slot, the transmission set needs to split. Note that although
in Figure 2 the operation for a sender is in a FOREACH loop, all
operations are executed independently by each sender in
parallel rather than in serial. Depending on the value of the
covert bit, each sender joins either the L subset or the R subset
with a biased probability pb (e.g., 0.95). This would make the L

IF collision in the 1st slot THEN
FOREACH sender ti DO

x = rand();
bi = getbit(ti);
IF bi == ‘1’ THEN
 IF x < pb THEN
 join_L(ti);
 ELSE
 join_R(ti);
ELSE
 IF x < pb THEN
 join_R(ti);
 ELSE
 join_L(ti);

 END

S

L R

RRL Transmitting set Feedback

1 S e

2 L 1

3 R e

4 RL 1

5 RR 1

‘0’

‘1’

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2532
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

subset larger if a ‘1’ is sent or R larger if a ‘0’ is sent. The
receiver can then decode the transmitted bit based on the sizes
of the L and R subsets. Note that the random behavior of the
normal nodes may corrupt the above relationship with certain
probability and make the channel erroneous.

Hard decision can be made in the reception procedure, i.e., if
subset L is larger than R, a ‘1’ bit is decoded. Otherwise a ‘0’ bit
is decoded. Other more sophisticated techniques can be used
here to achieve more reliable transmission, e.g., channel coding
and/or soft decision can be applied here to overcome errors.
However such detailed discussion is out of the scope of this
paper.

B. Advanced Covert Transmission (ACT) Technique
The covert information transmission rate using BCT is very

low: one bit transmitted in each CRP. We propose here an
Advanced Covert Transmission (ACT) technique that can send
multiple bits in each CRP. The basic idea is to ask covert
senders to transmit one covert bit at each splitting point in a
CRP, using the BCT technique repeatedly. In order to maintain
synchronization among all covert senders and between the
senders and the receiver, everyone needs to advance one bit in
the covert text whenever there is a splitting point, regardless of
whether it participates in the splitting operations.

Figure 3. Transmission procedure of ACT

Figure 3 shows the transmission procedure of ACT. Upon a
collision, the corresponding transmission set (e.g., S or L in
Figure 1) needs to split. If a sender belongs to this set, it will try
to send the bit in a similar way as in BCT. Other senders sit out
during this splitting operation but they need to skip one bit to
keep synchronization. After the CRP is completed, all senders
“send” the same number of covert bits (some of the bits are
actually skipped, though at different positions for different
senders). The number of bits that have been sent equals to the
number of splitting points in the splitting tree.

C. Detection of Senders and Stealthiness of the Channel
As the receiver is a pure passive listener during both the

transmission and reception operations, it is undetectable even if
the auditor is aware of the covert communication. However,
with BCT or ACT it is still possible that a covert sender or even

an external observer can figure out the identities of the covert
senders. To do so, a covert sender simply looks for the nodes
that go to the same branch as itself with a probability higher
than 0.5. An external observer can detect the covert senders by
looking for nodes that go more frequently to the same branch of
the splitting tree. It is not difficult to show that the larger pb, the
easier it is to find the covert senders. Furthermore, with larger
pb, senders will be more likely to join the same subsets and
therefore cause more collisions. This will artificially lengthen
the CRP and raise suspicions. It is of course possible to improve
the covert channel’s stealthiness by employing a pb closer to
0.5. However, this leads to channel capacity degradation. With
ACT, a trade-off has to be made between the stealthiness of the
covert channel and the capacity.

D. Undetectable Covert Transmission (UCT) Technique
To prevent an arbitrary observer other than the receiver from

detecting the covert communications and/or the identities of the
senders, a secret shared by the senders and the receiver is added
into the scheme. One can detect the covert communications or
may identify the covert senders only if he knows the secret.

However, simply letting all senders know the common secret
will significantly reduce the resilience of the channel: if a
sender is captured, it can be disassembled and the secret will be
exposed, leading to easier discovery of all other senders. Below
we present our improved scheme that overcomes this problem.

Assumptions:
1) Each node in the network has a unique ID;
2) The receiver is always safe.
Given that most networks use some sort of unique ID for each

node to address the network packets, the first assumption should
not impose extra restriction on existing networks. We assume
that the receiver is safe because it is a purely passive listener and
hence undetectable. Furthermore, unlike the senders, who are
network nodes and often accessible for testing and investigation
by the network administrator, the receiver can be an external
listener that is out of the investigator’s control.

Secret distribution: a secret K is shared among all covert
senders and the receiver but is stored in different forms.

1) Receiver: the receiver keeps a copy of K in its original
form since it is considered safe.

2) Sender: each sender ti keeps Ci = HASH(IDi||K), where
HASH() stands for a one-way hash function and || is the
concatenation operator.

The one-way property of the hash function ensures that even
if Ci is revealed, it is impossible to calculate K based on Ci and
IDi. Any good cryptographic hash function such as SHA and
MD5 can be used to generate Ci. By doing this, even if a sender
is captured and Ci is discovered, K remains secret.

Operations:
1) Sender: the sender’s operation is identical to ACT/BCT

except that the covert bits are pre-coded before
transmission. The pre-coding scheme is simple: XOR the
original covert bits with a sequence of random bits
generated based on a common random source and the
node’s secret Ci. Detailed steps are shown in Figure 4.

2) Receiver: the receiver first needs to decode the transmitted

FOREACH splitting set Sk DO
FOREACH sender ti DO
 bi = getbit(ti);

IF ti∈Sk THEN
x = rand();
IF bi == ‘1’ THEN

 IF xi < pb THEN
 join_L(ti,Sk);
 ELSE
 join_R(ti,Sk);

ELSE
 IF xi < pb THEN
 join_R(ti,Sk);
 ELSE
 join_L(ti,Sk);

 END
END

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2533
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

bits into its original form for each node (assuming all
nodes are senders). The final received bits are then derived
based on the decoded bits for all nodes. Figure 5 shows the
detailed operations.

Figure 4. Sender’s Operations

Figure 5. Receiver’s Operations

The common random source should be visible to all senders and
the receiver. For instance, it can be obtained from the network
itself during the normal communication, e.g., the content of one
or more data packets transmitted in the previous CRP, e.g., the
first transmitted packet, the last transmitted one, or packet(s)
that can be determined using any predefined (and possibly
public known) rules. With this common random source and the
secret Ci, each sender can generate a unique random bit
sequence to pre-code the covert bits. The receiver can generate
exactly the same sequence of random bits for each node based
on the node ID and the secret K. It is possible that one can force
all nodes to send non-random data packets to remove the
randomness and detect the covert channel. However, since the
senders are also nodes in the network, they can stop sending out
bits to protect themselves once they receive such commands.

In step 1 of the receiver’s operations, once the CRP is
completed, the bits (the pre-coded bits) that a node has
transmitted can be determined: at the splitting point where it
participated in set splitting, a bit ‘1’ or ‘0’ can be determined
based on whether it joined the L subset or the R subset. At other

splitting points, a symbol ‘e’ is put into the bit sequences,
meaning that the bit has been skipped by this node.

In step 2, for each node the receiver needs to generate the
same random bit sequence that was used in pre-coding the
covert bits during the sender’s transmission procedure (see
Figure 4 -- STEP 2). To do so, it first computes Ci for each node
using the secret K and the node’s IDi: Ci = HASH(IDi||K). It then
computes the random bit sequence in the same way as the
sender does in Figure 4. The original covert bits can then be
recovered with XOR operations. Note that the bit sequence
obtained in step 1 may contain ‘e’. Any XOR operation over ‘e’
will still generate an output of ‘e’. The obtained bit sequence for
each node therefore is a series of ‘1’, ‘0’ and ‘e’.

The receiver then computes the sizes of the L subset and the
R subset for each splitting point. This can be done by the
decode() function shown in Figure 6. For a given splitting point,
the numbers of nodes that join the L subset and the R subset are
accumulated in variables size_L and size_R, respectively. The
final decoded bit can then be determined based on these two
numbers. Figure 6 shows a decoder using hard decision.

Figure 6. An example decode function

Security Analysis:
Stealthiness of the channel: In UCT, each sender in the CRP

generates a unique random bit sequence with which the covert
bits (identical to all senders) are encoded into the actual
transmitted bits. If the PRNG() function can generate
independent sequences with different seeds, the covert senders
will not join the same subset with high probability. This makes
the sender nodes indistinguishable from normal nodes, which
prevents an external observer from detecting the covert
communications. In practice, cryptographically secure pseudo
random number generators (CSPRNG), e.g., the AES-based or
SHA-based PRNG, can be good candidates of the PRNG()
function.

Detection of the covert senders: For a covert sender ti,
although it knows Ci, the property of the HASH() function
ensures that it cannot derive the secret K or Cj of any other
sender. This prevents the sender from correctly decoding the
transmitted bits of any other sender, which makes it impossible
to find out the peer senders. Similarly, if any one of the senders

STEP 1: Once a CRP is complete, decode the
transmitted bits TXbitsi for each node Ni
based on the splitting tree T.

FOREACH node Ni DO
 TXbitsi = obtain_bits(Ni, T);

END

STEP 2: For each node Ni, decode TXbitsi into the
original bit sequence Bits[i];

Seed = common_rand();
FOREACH node Ni DO

 Ci = HASH (IDi||K);
 Bitseqi = PRNG(seed||Ci);
 Bits[i] = TXbitsi XOR Bitseqi;

END

STEP 3: Derive the final received bits text based on
Bits
text = decode(Bits);

STEP 1: At the beginning of a CRP, obtain a random
number Seed based on a common random
source.
Seed = common_rand();

STEP 2: Generate a sequence of random bits Bitseq
based on Seed and its secret Ci, using a
pseudo random number generator PRNG().
Bitseq= PRNG(seed||Ci);

STEP 3: Pre-code the original covert bits text with
Bitseq.
newtext = Bitseq XOR text;

STEP 4: Send the bits using ACT or BCT
 ACT(newtext); (or BCT(newtext);)

FUNCTION decode (Bits)
 /* number of bits transmitted in the CRP */
 M = number of branching points in splitting tree;

 FOR j = 1 TO M
 /* initialize counters */
 size_L= size_R = 0;

FOREACH node Ni DO
 b = Bits[i][j];
 IF b != ‘e’ THEN
 IF b == ‘1’ THEN size_L++;
 IF b == ‘0’ THEN size_R++;
 END

 IF size_L >= size_R THEN
 text[j] = ‘1’;
 ELSE
 text[j] = ‘0’;
END

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2534
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

is captured and its secret Ci is discovered, the secrecy of the
identity of other senders will not be compromised.

Discussion:
Initial synchronization: In the above discussion we assume

an initial synchronization of all covert senders. Although a
system clock should of course help achieve this
synchronization, we do not assume this since it may be
unrealistic. Similar to the way we obtain the common random
source from the normal operations of the network, the senders
may synchronize themselves with some common events such as
a certain byte of a successful packet on the channel or the hash
of it being equal to a predefined value. If such an event occurs in
the current CRP, all senders start to transmit in the next CRP. A
sender may fail to synchronize with others, but this does not
mean the covert communication will fail, as we explain below.

Malfunctioning nodes: A malfunctioning sender may lose
synchronization and/or behave incorrectly during the covert
transmission. However, since there is no cooperation among
peer senders, this will not affect other senders. From the
receiver’s perspective, a malfunctioning sender simply behaves
like a normal node, which reduces the number of effective
covert senders by 1 and degrades the channel capacity slightly.

Discovery of the senders’ identity by the receiver: The
receiver does not need to know the identities of the covert
senders a priori. It will treat all nodes in the network as covert
senders, decode their messages, and regenerate the covert text
using majority voting. In this process, the senders’ identities
will eventually be disclosed to the receiver. Since the receiver is
undetectable, such disclosures do not change the stealthiness of
our covert channel. Note that this is more flexible and secure
than requiring the receiver to know the identities of the senders
a priori [2]. For instance, any covert sender can join in or quit
the covert transmission without the need to keep the receiver
updated.

E. Capacity Analysis
The channel with BCT can be modeled as a discrete time

memoryless channel (DMC). The input alphabet of the channel
is {‘0’,‘1’}. The output alphabet is a set of ordered pairs (L,R)
where L and R are the numbers of nodes that joined in the left
subset and right subset, respectively. It is rather straightforward
to compute the channel matrix, given the number of covert
senders, the number of normal nodes, and the biased probability
pb used in Figure 2. The capacity of such a channel can then be
easily calculated. The analysis of the channels with ACT and
UCT is rather complicated. Due to the limited space, we omit
the detailed derivation of the capacity bounds, which can be
found in our full technical report [11].

Our results show that the capacity of the channel with BCT is
low. For example, in a network with 30 nodes among which 15
are covert senders, when a pb = 0.9 is used, the channel capacity
is approximately 0.96 bit/CRP or 0.012 bit/slot. In contrast,
using ACT the channel capacity is improved significantly. With
the same network parameters, the upper bound of the capacity is
approximately 36 bits/CRP or 0.4 bit/slot. In a channel with
UCT, a more biased pb can be used since the covert
communication is undetectable. Our result shows that in the
same network with pb=1, the upper bound of the capacity is

approximately 0.35 bit/slot, which is only slightly lower than
the capacity of the channel with ACT.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed and investigated a new

covert channel based on the splitting tree algorithms in MAC
protocols. The covert information is embedded into the covert
senders’ behavior in choosing which subset to join during a
splitting operation. Unlike other known covert channels based
on splitting tree algorithms, this channel allows multiple
senders to participate in the covert communications, improving
the robustness and transmission rate of the channel.

One salient feature of this covert channel is that it does not
require the receiver’s knowledge of identities of the covert
senders. Furthermore, all senders operate without knowing the
identities of other senders or that of the receiver. This mutual
anonymity significantly improves the resilience of the channel:
even if part of the channel is compromised, e.g., one or more
covert senders are captured and their information is exposed,
the rest of the channel remains safe. We have analyzed the
transmission techniques involved in this channel and discussed
the detectability issue. We further proposed a UCT scheme that
enables undetectable covert communications. The capacity of
the channel with different transmission techniques is also
analyzed and calculated.

Future work will involve further investigation in other
transmission schemes that allow more robust and faster covert
communications, and countermeasures to mitigate these covert
channels.

REFERENCES
[1] B.W. Lampson, “A Note on the Confinement Problem,” Communications

of the ACM, vol. 16, issue 10, pp. 613-615, October 1973.
[2] S. Li and A. Ephremides, “A Covert Channel in MAC Protocols Based on

Splitting Algorithms,” in Proc. Of IEEE Wireless Communications and
Networking Conf. (WCNC), March 2005.

[3] T. Handel and M. Sandford, “Hiding Data in the OSI Network Model,” in
Proc. of the First Int. Workshop on Information Hiding, Cambridge, U.K.,
May-June 1996.

[4] National Computer Security Center, “A Guide to Understanding Covert
Channel Analysis of Trusted Systems,” NCSC-TG-30, November 1993,
available at http://www.radium.ncsc.mil/tpep/library/rainbow/.

[5] John McHugh, “Covert Channel Analysis: A Chapter of the Handbook for
the Computer Security Certification of Trusted Systems,” December 1995,
available at http://chacs.nrl.navy.mil/publications/handbook/.

[6] J.K. Millen, “Covert Channel Capacity,” in Proc. of the IEEE Symposium
on Research in Security and Privacy, pp. 60-66, April 1987.

[7] I.S. Moskowitz, S.J. Greenwald, and M.H. Kang, “An Analysis of the
Timed-Z Channel,” in Proc. of IEEE Computer Symposium on Security
and Privacy, pp. 2-11, May 1996.

[8] J.K. Millen, “Finite-State Noiseless Covert Channels,” in Proc. of the
Computer Security Foundations Workshop II, pp. 81-86, June 1989.

[9] Zhenghong Wang, and Ruby B. Lee, “Capacity Estimation of
Non-Synchronous Covert Channels,” in Proc. of the 2nd Int. Workshop on
Security in Distributed Computing Systems, pp. 170-176, June 2005.

[10] K. Szczypiorski, “HICCUPS: Hidden Communication System for
Corrupted Networks,” in Proc. of the 10th Int. Multi-Conf. on Advanced
Computer Systems, pp. 31-40, October 2003.

[11] Zhenghong Wang, Jing Deng and Ruby B. Lee, “Mutual Anonymous
Communications: A New Covert Channel Based on Splitting Tree MAC,”
Princeton University Department of Electrical Engineering Technical
Report CE-L2006-011, July 2006.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2535
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

